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Nonlocality and contextuality are at the root of conceptual puzzles in quantum mechanics, and they are
key resources for quantum advantage in information-processing tasks. Bell nonlocality is best understood
as the incompatibility between quantum correlations and the classical theory of causality, applied to
relativistic causal structure. Contextuality, on the other hand, is on a more controversial foundation. In this
work, I provide a common conceptual ground between nonlocality and contextuality as violations of
classical causality. First, I show that Bell inequalities can be derived solely from the assumptions of no
signaling and no fine-tuning of the causal model. This removes two extra assumptions from a recent result
from Wood and Spekkens and, remarkably, does not require any assumption related to independence of
measurement settings—unlike all other derivations of Bell inequalities. I then introduce a formalism to
represent contextuality scenarios within causal models and show that all classical causal models for
violations of a Kochen-Specker inequality require fine-tuning. Thus, the quantum violation of classical
causality goes beyond the case of spacelike-separated systems and already manifests in scenarios involving
single systems.
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I. INTRODUCTION

Quantum contextuality, the phenomenon uncovered by
Kochen and Specker (KS) [1], is at the core of the quantum
departure from classicality and has recently been identified
as a candidate for the resource behind the power of
quantum computation [2]. Much controversy still exists,
however, on what exactly contextuality is, with different
formalisms giving different definitions of the phenomenon
[3–6]. For example, derivations following the work of
Kochen-Specker require an assumption of outcome deter-
minism, the validity of which in experimentally relevant
situations has been criticized [3,7]. Indeed, it has been
argued that it is not possible to experimentally test con-
textuality without extra assumptions [8].
Bell nonlocality [9] rests on comparatively solid foun-

dations. It is best understood as the incompatibility between
quantum correlations and causal constraints [10]. A modern
approach is to capture these constraints within the frame-
work of causal networks [11], where causal structure is
represented as a directed acyclic graph (DAG) (Fig. 1).
Assuming a causal graph motivated by relativity (Fig. 2),

we can derive constraints on observable probability
distributions—the Bell inequalities. A violation of a Bell
inequality thus implies either a violation of relativistic
causality or of one or more of the assumptions underlying
this framework for causality, such as Reichenbach’s prin-
ciple of common cause [12,13]. This second alternative has
motivated a program to extend the classical causal formal-
ism to a framework of quantum causal models [13–18],
opening the exciting prospect of a coherent understanding
of the nature of causality in a quantum world and a resolu-
tion of at least part of the puzzle of Bell’s theorem [19].
Contextuality, on the other hand, is a priori unrelated to

causality: It is not necessary that measurements are space-
like separated or that they involve separate subsystems at
all. Thus, it is not clear how a theory of quantum causality
could help with contextuality. Here, I bridge that gap and
show that all classical causal models that reproduce the
violation of Bell and KS inequalities violate a core
principle of the causal-models framework: no fine-tuning.
This unifies Bell nonlocality and KS contextuality as

Y Z

X W

Y Z

X W

FIG. 1. In a DAG (left diagram), nodes represent random
variables, and directed edges represent causal links. Closed
cycles (right diagram) are excluded.
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violations of classical causality and opens a new direction
for the study of contextuality as a resource.
In an influential work [20], Wood and Spekkens showed

that every classical causal model that can reproduce Bell
inequality violations requires causal connections not
observed in the phenomena, such as faster-than-light cau-
sation. Only with special, finely tuned parameters can a
causal model “hide” those connections from observers. This
provides a novel way of looking at Bell inequalities—not as
implications of relativistic causal structure but as implica-
tions of classical causal principles for any causal structure.
That result, however, applied only to phenomena satisfying
two extra assumptions, which makes it inapplicable to
contextuality scenarios. Here, I prove a more general result
without those extra conditions and show how it can be
extended to the case of contextuality.
This work is organized as follows. In Sec. II, I review the

framework of causal models and show how it can be used to
derive Bell inequalities by assuming free choice and
relativistic causality. In Sec. III, I introduce a formalism
for describing contextuality scenarios within classical
causal models and present the main results. In Sec. IV, I
illustrate the need for fine-tuning in causal models for
violations of Kochen-Specker inequalities with an example.
In Sec. V, I discuss the relation between the present result
and the previous work of Ref. [20] and how it provides a
novel interpretation for quantum advantage in biased
nonlocal games [21]. I conclude in Sec. VI with a summary
of the results and a discussion of its relevance, drawbacks,
and directions for further research.

II. BACKGROUND

A. Causal models

A modern framework for causation and its role in
explaining correlations can be found in the theory of causal
networks [11]. With extensive applicability from statistics
to epidemiology, economics, and artificial intelligence, it
has been developed as a tool to connect causal inferences
and probabilistic observations. In such a model, causal
structure is represented as a graph G, with variables as
nodes and direct causal links as directed edges (arrows)
between nodes. To avoid the potential for paradoxical
causal loops, closed cycles are forbidden, and the resulting
structure is a DAG (Fig. 1). The relations between nodes in
a DAG G can be expressed in an intuitive genealogical
terminology: Nodes pointing to a given node X (the direct
causes of X) are called the parents of X, denoted as PaðXÞ;
the ancestors of X, AnðXÞ, are all nodes from which there
is a directed path to X (i.e., all variables in the causal past
of X); the descendants of X, DeðXÞ, are all nodes for which
X is an ancestor (i.e., all variables in the causal future of X);
the set of nondescendants of X is denoted by NdðXÞ.
The purpose of a DAG is to encode the conditional

independences associated with any probability distribution

compatible with the causal structure, through the causal
Markov condition: In any probability distribution P that is
compatible with a graph G, a variable X is independent of
all of its nondescendants, conditional on its parents. In
other words, P(XjNdðXÞ;PaðXÞ)¼P(XjPaðXÞ), which we
denote as (X ⫫ NdðXÞjPaðXÞ). The causal Markov con-
dition is equivalent to the requirement that any distribution
over the variables X1;…; Xn compatible with the graph G
factorizes as

PðX1;…; XnÞ ¼
Y

j

P(XjjPaðXjÞ): ð1Þ

Those conditional independences can be obtained from
the graph through a rule called d-separation [11]. Two sets of
variables X and Y are d-separated given a set of variables Z
[denoted ðX ⫫ YjZÞd] if and only if Z “blocks” all paths p
from X to Y. A path p is blocked by Z if and only if (i) it
contains a chainA → B → C or a forkA ← B → C such that
the middle node B is in Z, or (ii) it contains an inverted fork
(head-to-head) A → B ← C such that the nodeB is not in Z,
and there is no directed path from B to any member of Z.
The d-separation is a sound and complete criterion for

conditional independence: If in a DAG G two variables X
and Y are d-separated given Z, ðX ⫫ YjZÞd, then they are
conditionally independent given Z, ðX ⫫ YjZÞ, in all
distributions compatible with G; if for all distributions
compatible with G, the conditional independence ðX ⫫
YjZÞ holds, then G satisfies ðX ⫫ YjZÞd.

B. Causal models and Bell’s theorem

As an example of the application of this framework, I
review how it can be used to derive Bell’s theorem.
Consider the correlations between measurements per-
formed by two agents, Alice and Bob. Alice’s choice of
measurement is represented by a variable X, and Bob’s by a
variable Y. Their respective outcomes are represented by A
and B. Their measurements are assumed to be performed
within spacelike-separated regions, so no relativistic causal
connection can exist between the variables in Alice’s lab
and those in Bob’s lab. They may however be correlated
because of variables in their common causal past, the set of
which is denoted by Λ. The assumption that Alice and Bob
can make “free choices” is translated as the requirement
that X and Y are exogenous variables: They have no
relevant causes. This scenario is represented in the graphi-
cal notation as in Fig. 2.
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X

FIG. 2. DAG representing the causal structure of a Bell
scenario.
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The causal Markov condition then implies that
PðABΛjXYÞ ¼ PðAjXΛÞPðBjYΛÞPðΛÞ. Averaging over
Λ, we obtain the factorizability condition of a local hidden
variable model:

PðABjXYÞ ¼
X

Λ
PðΛÞPðAjXΛÞPðBjYΛÞ: ð2Þ

As is well known, this leads to the Bell inequalities,
which can be violated by quantum correlations [22].
Therefore, assuming relativistic causal structure and free
choices, quantum correlations cannot be reproduced by the
classical framework of causality.
Note that the assumption of free choice is not strictly

necessary: A weaker but sufficient condition is simply
“Λ-independence”; i.e., the measurement choices are in-
dependent of any latent variables Λ that are causally
connected with the systems, ðΛ ⫫ XYÞ. This would still
be compatible with a causal graph where there is a common
cause between the measurement choices X and Y. But
without one of these assumptions, it would be possible for a
conspiratorial “superdeterministic” theory to reproduce the
quantum correlations. Remarkably, in the main result of
this paper, neither of these assumptions is needed.
Superdeterministic theories, for example, are ruled out
because they violate the no-fine-tuning rule.

III. CONTEXTUALITY SCENARIOS
AND CAUSAL MODELS

A. Basic definitions

Traditionally, locality and noncontextuality have been
spelled out in terms of ontological models, but here I
translate those concepts into the language of causal models.
Indeed, we can think of ontological models as causal
models in disguise, which is a useful perspective as it
allows one to more clearly identify implicit classical causal
assumptions that may be revised in light of quantum causal
models. The formalism used here is most analogous to that
of Abramsky and Brandenburger [4], although it is
expressed in the language of causal models and uses
simplified terminology (for example, without reference
to sheaf theory).
A measurement scenario is specified by the following:

(i) a set M of measurements; (ii) for each measurement
m ∈ M, a set of possible outcomes Om; and (iii) a
compatibility structure C on M—a family of subsets of
M—specifying joint measurability. Two measurements
m1, m2 ∈ M are said to be jointly measurable or compat-
ible, or to be part of a context, iff fm1; m2g ∈ C, and
likewise for sets of more than two measurements [23].
Without loss of generality, we can enlarge each Om so that
all measurements have the same number of outcomes, and
we can label them so that all outcome sets are equal and
denoted simply by O.

Consider now an individual test within a measurement
scenario, where a set of n random variables, X1;…; Xn,
specifies nmeasurements to be performed upon the system.
A compatibility scenario, or contextuality scenario, is one
in which, for any given run, x1;…; xn are jointly measur-
able. In other words, let Xi ¼ xi ∈ M denote the values of
those variables in a particular run. Then, fx1;…; xng ∈ C.
This could be done, for example, through a further random
variable C that selects a context, from which X1;…; Xn are
determined, but I make no assumption about the process of
selection or the order in which the measurements are
performed. A special class of contextuality scenarios is
that in which M can be decomposed into k subsets
M1;M2;…;Mk such that all contexts c ∈ C have at
most one element from each subset. These are called
(k-partite) Bell-nonlocality scenarios.
From here on, I consider scenarios containing only pairs

of compatible measurements. This does not necessarily
mean that there are no sets of three or more compatible
measurements that can be performed on the system but only
that I am restricting M so that it only contains pairs of
them. These will be called binary contextuality scenarios, a
special case of which are bipartite Bell scenarios. The
measurements will be chosen through random variables X
and Y, with outcomes respectively recorded by random
variables A and B.
A phenomenon P for such a scenario is specified by a

probability distribution PðABXYÞ for the observable var-
iables. Note that no causal assumption has been made at
this stage. I now define what I mean by a (classical) causal
model for a phenomenon.
Definition 1 (Causal model). A (classical) causal model

Γ for a phenomenon P consists of a (possibly empty) set of
latent variables Λ, a DAG G with nodes fA;B; X; Y;Λg,
and a probability distribution PðABXYΛÞ compatible with
G, such that PðABXYÞ ¼ P

ΛPðABXYΛÞ.
A special class of phenomena are those where the

probability for the outcome of one measurement does
not depend on which measurement it may be performed
together with, i.e., those that satisfy the property of no
disturbance.
Definition 2 (No disturbance). A phenomenon is said to

satisfy no-disturbance iff PðAjXYÞ ¼ PðAjXÞ and
PðBjXYÞ ¼ PðBjYÞ for all values of the variables A, B,
X, Y for which those conditionals are defined.
In the causal-model notation, the no-disturbance

conditions are denoted by ðA ⫫ YjXÞ and ðB ⫫ XjYÞ. Com-
patibility scenarios naturally satisfy those conditions since
X and Y can only take joint values as pairs of compatible
measurements and since the no-disturbance condition is
implicit in the very meaning of compatibility [4]. In Bell
scenarios, this assumption is called no signaling, and where
the measurements X and Y are performed in spacelike-
separated regions, it is justified by relativity.
Whereas no-disturbance and no-signaling are purely

properties of phenomena, the subsequent definitions are
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about properties of causal models for phenomena. I say that
a phenomenon violates a property when no causal model
for the phenomenon satisfies that property.
Bell locality and KS noncontextuality are equivalent to

the existence of a factorizable hidden variable model,
which, in the language of causal models, translates to
the following:
Definition 3 (Factorizability). A causal model is said

to satisfy factorizability iff ∀A; B; X; Y, PðABjXYÞ ¼P
ΛPðΛÞPðAjXΛÞPðBjYΛÞ.
The original Kochen-Specker theorem assumed the exist-

ence of a deterministic noncontextual model. By Fine’s
theorem [25], this is equivalent to the existence of a
factorizable model, and to the existence of a joint probability
distribution for the outcomes of allmeasurements that returns
the observable correlations as marginals.
Definition 4 (KS noncontextuality). A causal model for

a contextuality scenario is said to satisfy KS noncontex-
tuality iff it is factorizable.
From factorizability, one can derive, for each con-

textuality scenario, inequalities that bound the set of KS-
noncontextual phenomena, as facets of a convex polytope
[26,27]. These are the KS inequalities [28], which reduce to
Bell inequalities in Bell scenarios.
Despite this formal equivalence, much controversy

remains regarding the justification for factorizability in
contextuality scenarios. While in Bell scenarios it is
implied by Bell’s notion of local causality (for a detailed
review, see Ref. [10]), this is not the case in contextuality
scenarios, where measurements are not spacelike separated.
To derive factorizability in this case, one requires, apart
from the assumption of measurement noncontextuality, an
extra assumption of outcome determinism [7], calling into
question the implication of violations of Kochen-Specker
inequalities. However, as we will see below, factorizability
is implied by another fundamental principle of the causal-
models framework, the principle of no-fine-tuning, or
faithfulness.
Definition 5 (No fine-tuning). A causal model Γ is said

to satisfy no fine-tuning, or be faithful, relative to a
phenomenon P iff every conditional independence ðC ⫫
DjEÞ in P corresponds to a d-separation ðC ⫫ DjEÞd in the
causal graph G of Γ.
For example, suppose a phenomenon satisfies the no-

disturbance condition ðA ⫫ YjXÞ, but its causal structure
contains a direct link from Y to A and thus lacks the
d-separation ðA ⫫ YjXÞd. This is only possible if some of
the parameters of the model take special values that hide the
influence of Y on A. An example is Bohmian mechanics,
where the probability distributions for the hidden variables
are constrained by the “quantum equilibrium” condition
[34]. A faithful causal model, on the other hand, has no
such hidden causal connections.
Therefore, the no-fine-tuning condition can be seen as an

instance of Occam’s razor [11], or of a methodological

principle that also motivates Spekkens’ notion of general-
ized contextuality [3]: Leibniz’s principle of the identity of
indiscernibles. This principle states that one should not
postulate differences in the ontological (i.e., causal-model)
description of a phenomenon where none exists at the
operational level. Here, however, I show that this principle
leads to KS noncontextuality, implying that the two com-
peting notions of noncontextuality have more in common
than has been previously realized. Whether Spekkens’
notion can also be directly derived from faithfulness is an
interesting question left for future work.

B. Main result

Theorem 1. Every faithful causal model for a no-
disturbance phenomenon is factorizable.
As shown in detail in the Appendix, the proof of

Theorem 1 proceeds by showing that all DAGs that do
not require fine-tuning to explain the no-disturbance con-
ditions lead to factorizability. We first note that the no-
disturbance conditions, together with the assumption of no
fine-tuning, imply that every DAG G for a no-disturbance
phenomenon P must satisfy the d-separation conditions
ðA ⫫ YjXÞd and ðB ⫫ XjYÞd. We thus proceed by exclud-
ing every DAG that does not satisfy these conditions, and I
show that all remaining DAGs imply factorizability. As an
immediate corollary:
Corollary 1. No fine-tuning and no-disturbance imply

KS noncontextuality.
Another corollary is a stronger version of the result of

Ref. [20], without the extra assumptions of marginal-setting
independence and local-setting dependence:
Corollary 2. No fine-tuning and no-signaling imply

Bell locality.
It is instructive to state Corollary 1 in a contraposi-

tive form:
Corollary 3. Every classical causal model that repro-

duces the violation of a KS inequality in a no-disturbance
phenomenon requires fine-tuning.
This result implies that the quantum violation of classical

causality, long recognized in the case of spacelike-
separated entangled quantum systems, also manifests in
the case of single systems.

IV. EXAMPLES

To illustrate the need for fine-tuning in causal explanations
of KS-inequality violations, let us consider as a simple
example the three-observable scenario introduced by Liang,
Wiseman, and Spekkens (LSW) in Ref. [24]. The measure-
ment scenario consists of a set of three measurements
M¼fm1;m2;m3g with binary outcomes O ¼ f0; 1g and
compatibility structureC¼ffm1;m2g;fm1;m3g;fm2;m3gg—
that is, they are pairwise compatible but not triplewise
compatible. In any given experimental test, X and Y can
take any pair of values from C and A, and B can take values
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from O ¼ f0; 1g. Consider a phenomenon PðABXYÞ that
satisfies the no-disturbance relations PðAjXYÞ ¼ PðAjXÞ
andPðBjXYÞ ¼ PðBjYÞ. Thus, fromTheorem1, any faithful
causal model for this phenomenon must satisfy KS
noncontextuality.
In this scenario, KS noncontextuality implies the LSW

inequality [24]:

X

fmi;mjg∈C

1

3
PðA ≠ Bjmi;mjÞ ≤

2

3
: ð3Þ

To see this, recall that the existence of a KS-noncontextual
model is equivalent to the existence of a joint probability
distribution for the outcomes of all measurements. For each
extreme point of this distribution, at most two of the three
pairs of measurements can be anticorrelated, so the average
probability of anticorrelation cannot exceed 2=3. [Note that
since ðX; YÞ ¼ ðm1; m2Þ and ðX; YÞ ¼ ðm2; m1Þ corre-
spond to the same pair of measurements being performed,
PðA¼ k;B¼ ljX¼mi;Y ¼mjÞ ¼PðA¼ l;B¼ kjX¼mj;
Y ¼miÞ.]
The authors of Ref. [24] illustrate a hypothetical maxi-

mal violation of Eq. (3) as a realization of the “parable of
the overprotective seer” (OS): Wishing to ward off unwor-
thy suitors for his beloved daughter, a seer from ancient
Assyria proposed to each of them the following task. They
were taken to a table upon which sat three boxes and asked
to open two of the boxes. If both boxes contained a gem or
both boxes did not contain a gem, they would win the task
and would be allowed to marry the seer’s daughter. As it
turned out, every suitor always randomly found a gem in
one box and none in the other—a seemingly paradoxical
situation.
An example of a causal model that realizes the OS

correlations consists of the causal graph in Fig. 3 and the
following causal parameters. A uniformly distributed latent
variable Λ determines, for each box, whether or not it
contains a gem. Let X denote the first box opened by the
suitor, so AðX;ΛÞ ∈ f0; 1g for any value of X, with A ¼ 1
representing the presence of a gem. Depending on whether
or not the first box contained a gem, a gem is added or
removed from the second box Y to ensure that
BðX; Y;ΛÞ ¼ AðX;ΛÞ ⊕ 1 for all fX; Yg ∈ C. To see the
need for fine-tuning, note that if one were able to prepare
any distribution for the hidden variables, the no-disturbance
condition would be violated. For example, suppose one
could prepare Λ ¼ Λ0 such that AðX ¼ mi;Λ0Þ ¼ δi;1. If

Y ¼ m3 is measured, its outcome will be B ¼ 0 if X ¼ m1

and B ¼ 1 if X ¼ m2. Of course, the need for fine-tuning
would manifest in different ways for other causal models,
but Theorem 1 guarantees that any causal model for these
correlations requires fine-tuning.
Although the LSW inequality does not have a quantum

violation for projective measurements, a very similar
analysis would hold for the slightly more complex scenario
of Klyachko et al. [30], involving five observables with
binary outcomes and a cyclical compatibility structure. We
leave this as an exercise for the reader.

V. RELATION TO PREVIOUS WORK

The present work was inspired by Ref. [20]; however,
there are some important differences. In Ref. [20], it was
shown that any causal model for a Bell scenario that
satisfies the no-signaling and no-fine-tuning assumptions,
plus two extra assumptions of marginal-setting independ-
ence and local-setting dependence, is factorizable. As the
present derivation does not make those extra assumptions,
it generalizes the result of Ref. [20] already for Bell
scenarios.
Local-setting dependence is the assumption that the local

outcome is not independent of the local setting, i.e., that it is
not the case that ðA ⫫ XÞ or ðB ⫫ YÞ. This assumption rules
out standard examples of Bell-inequality violation with
unbiased outcomes. Marginal-setting independence is the
assumption that the settings X and Y are uncorrelated,
ðX ⫫ YÞ. While in Ref. [20] the no-signaling condition is
justified by spacelike separation, here the more general no-
disturbance condition is implied by measurement compat-
ibility. In Bell scenarios, the compatibility of X and Y is
guaranteed because they are chosen from disjoint sets of
measurements MA and MB, but in general contextuality
scenarios, X and Y are chosen from the same setM and are
not, in general, independent. Thus, the result of Ref. [20]
cannot be applied to contextuality scenarios.
Note that the Bell inequalities implied by the present

result are the usual constraints on conditional probabilities
PðABjXYÞ. In some contexts, such as that of biased
nonlocal games [21], one may be interested in constraints
on the unconditional PðABXYÞ. The class of classical
models considered in that paper is one where the
usual constraints on conditional probabilities apply but
where the joint probabilities for X and Y are allowed to be
arbitrary. Therefore, PðABXYÞ ¼ PðXYÞPðABjXYÞ ¼
PðXYÞPΛPðΛÞPðAjXΛÞPðBjYΛÞ. It was shown in
Ref. [21] that quantum correlations can violate inequalities
implied by this model for some values of PðXYÞ, even in
cases where the conditional probabilities do not violate a
Bell inequality. Since here we make no assumption about
the joint probabilities PðXYÞ, the set of classical models
above can also be derived from the assumption of no fine-
tuning, and therefore, classical causal models that repro-
duce the quantum violations of those constraints also

A B

V

YX

FIG. 3. Example of a causal structure that can reproduce
violations of KS inequalities with fine-tuning.
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require fine-tuning—even when they do not allow for the
violation of a Bell inequality.

VI. CONCLUSION

In summary, we have derived KS inequalities as a
consequence of the principle of no fine-tuning for causal
models of phenomena that satisfy the no-disturbance con-
ditions. This result unifies Bell nonlocality (where the
no-disturbance condition corresponds to the no-signaling
condition) and KS contextuality as violations of classical
causality. Remarkably, unlike all other derivations of Bell
inequalities, this result needs no assumption related to the
independence of settings, such as free choice, Λ independ-
ence, or marginal-setting independence.
One could object that to achieve the no-disturbance

conditions in general contextuality scenarios, one requires
perfectly compatible measurements and that this idealization
makes it inapplicable to real experimental tests. This is true,
but it is no worse than the problem faced by all standard
derivations ofKS inequalities, as discussed inRef. [7], where
the assumption of outcome determinism is incompatiblewith
realistic unsharpmeasurements. The advantage of the present
work is that, at least for idealized phenomena, it allows the
derivation of KS inequalities from causality principles alone,
without the extra assumption of outcome determinism. Thus,
it allows for the conclusion that those causal principles must
be revised in light of the (idealized) predictions of quantum
theory, whereas no such conclusion can be reached with the
usual derivation, even in the idealized case.
Furthermore, the present derivation suggests a path for

an experimentally robust generalization. Given a measure
of causal connection [35,36], we can propose a generalized
principle of no fine-tuning: A causal model should not
allow causal connections stronger than needed to explain
the observed deviations from the no-disturbance condition.
It would be interesting to determine whether testable
constraints can be derived this way. Another interesting
question is whether the proof can be extended to arbitrary
numbers of measurements per context.
From thepoint of viewof applications,wemay understand

fine-tuning as a kind of “resource waste,” postulating causal
links that are not directly observed in the phenomena but that
arewashed out by our ignorance of underlying parameters. It
is plausible to conjecture that quantum causal models
[14–18], on the other hand, can avoid fine-tuning in explain-
ing quantum correlations. If we think of classical causal
models as classical simulations of quantum phenomena, the
present result implies that they must necessarily waste
resources via fine-tuning. A quantification of this intuition
could potentially provide a novel picture to explain the power
of contextuality as a resource for quantum computation.
Finally, it would be interesting to determine whether the

generalized notions of noncontextuality given by the
formalism of Spekkens [3] can also be understood as
arising from the no-fine-tuning condition.
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APPENDIX: PROOF OF THEOREM 1

Proof.—We prove by exhaustion that all DAGs that
do not require fine-tuning to explain the no-disturbance
conditions lead to factorizability and, thereby, to KS
noncontextuality.
First, note that the no-disturbance conditions, together

with the assumption of no fine-tuning, imply that every
DAG G for a no-disturbance phenomenon P must satisfy
the d-separation conditions ðA ⫫ YjXÞd and ðB ⫫ XjYÞd.
We thus proceed by excluding every DAG that does not
satisfy these conditions and by showing that all remaining
DAGs imply factorizability.
The class of DAGs we need to consider are those that

include latent variables as common causes for observable
variables or direct causal connections between variables.
There is no point considering latent variables as intermedi-
aries between variables, or as common effects of variables,
since adding those has no effect on the allowed probability
distributions over the observable variables.
To aid the proofs, I introduce the graphical notation in

Figs. 4–7 to represent sets of causal connections.

X Y
X Y

V

V

X Y
X Y

FIG. 4. Shortcut graphical notations for causal connections
between X and Y.

X Y

X Y

X Y

or

FIG. 5. Shortcut graphical notation for a direct cause from X to
Y with or without a common cause.
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As a reminder, the d-separation condition ðA ⫫ YjXÞd
means that X “blocks” all paths p from A to Y. A path is
blocked by X if and only if (i) it contains a chain or a fork
with X in the middle node, or (ii) it contains an inverted
fork such that X is not the middle node nor a descendant of
it. The intuition behind these rules is that in case (i), X is a
common cause or an intermediate cause between its
adjacent variables, and thus conditioning on X eliminates
the correlations established by this causal path, thereby
“blocking” it. In case (ii), X is a common effect of its
adjacent variables, and thus conditioning on X can render
them correlated. Therefore, from this d-separation con-
dition, we eliminate all graphs that contain one or more
paths between A and Y that are not blocked by X, and
likewise for ðB ⫫ XjYÞd.
Step 1: From the d-separation condition ðA ⫫ YjXÞd, we

can exclude any direct causal link or common cause
between A and Y (i.e., all edges of the kind shown in
Fig. 7). Likewise, from ðB ⫫ XjYÞd, we can exclude any
direct causal link or common cause between B and X.
Taken together, these exclude common causes between any
three or all four of the variables. We are left with the
possibility of any causal links between the pairs fA;Bg,
fX; Ag, fY; Bg, and fX; Yg, as shown in Fig. 8. Note that I
do not assume a priori that common causes can only act
between at most two variables—this is a consequence of no
fine-tuning.
Step 2a: Next, we exclude a direct causal link from A to

B (with or without a common cause between those two
variables). First, note that the assumption of such a link
excludes any causal link between A and X, as those would
violate ðB ⫫ XjYÞd, and a direct link from B to Y, as this
would violate ðA ⫫ YjXÞd. The remaining class of graphs
compatible with a direct link from A to B can now have any
connection between X and Y plus any link with no direct
cause from B to Y (Fig. 9).

Step 2b: We now exclude a common cause between B
and Y, acting together with a direct link from X to Y and/or
a common cause between X and Y; those graphs would
violate ðB ⫫ XjYÞd as they are colliders. There are now two
classes of graphs compatible with a direct link between A
and B: (i) any link between X and Y and a direct link from Y
to B, or (ii) a direct link from Y to X plus any link with no
direct cause from B to Y (Fig. 10).
Step 2c: We proceed to show that all phenomena

compatible with the two classes of graphs remaining after
Step 2b are factorizable. To see this, first note that both
classes of graphs (i) and (ii) above respect the following
d-separation conditions: ðAB ⫫ XjYÞd and ðA ⫫ YÞd. This
means that all distributions compatible with those graphs
must respect PðABjXYÞ ¼ PðABjYÞ and PðAjYÞ ¼
PðAÞ. The first conditional independence implies that the
joint distribution of A and B does not depend on the choice
of measurement X, which intuitively should imply that this
phenomenon cannot be contextual. To see this formally,
note that from the definition of conditional probability
and the two equations above, we get PðABjXYÞ ¼
PðBjAYÞPðAjYÞ ¼ PðBjAYÞPðAÞ. Now, let Λ be a

X Y

X Y

X Y

or

FIG. 6. Shortcut graphical notation for any causal link with no
direct cause from Y to X.

X Y

X Y

X Y

or

FIG. 7. Shortcut graphical notation for any causal link between
X and Y.

X Y

A B

FIG. 8. Remaining class of DAGs after step 1. Dashed lines
represent a connection of the type indicated or its absence.

X Y

A B

X Y

A B

X Y

A B

(B
d

(AX|Y ) Y|X)
d

FIG. 9. DAG elimination from d-separation in Step 2a. The
diagrams in this and the following figures should be read as
follows. Each graph represents the set of all DAGs that contain
only causal connections compatible with each shortcut notation.
Solid lines require a compatible causal connection, and dashed
lines are compatible with no connection. On each arrow between
graphs, we eliminate all graphs that are incompatible with the
d-separation condition indicated.

(B X|Y)
d

X Y

A B

X Y

A B

or

X Y

A B

FIG. 10. DAG elimination from d-separation in step 2b.
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variable that determines A, so PðAÞ ¼ P
ΛPðΛÞPðAjΛÞ

and PðBjAYÞ ¼ PðBjYΛÞ. Then, PðABjXYÞ ¼ P
ΛPðΛÞ×

PðAjΛÞPðBjYΛÞ, which is a factorizable model with no
dependence on X.
This concludes the part of the proof excluding a direct

causal link from A to B. By symmetry, we exclude any
direct causal link from B to A. The remaining class of
graphs now can have a common cause between A and B and
any causal link between the pairs fX; Ag, fY; Bg, and
fX; Yg (Fig. 11).
Step 3: We now proceed to exclude, from the remaining

graphs, any direct cause from A to X (a retrocausal model).
First, we see that, assuming such a link, a common cause
between A and B is excluded from ðB ⫫ XjYÞd. Next, any
link between X and Y except X → Y is excluded from
ðA ⫫ YjXÞd. Finally, any link between Y and B except Y →
B is excluded by ðB ⫫ XjYÞd.
The remaining class of graphs, as shown in Fig. 12, has

four possible links: a common cause between A and X,
A→X, X→Y, and Y→B. This implies that ðB⫫AXjYÞ
and ðA⫫YjXÞ. Thus, PðABjXYÞ¼PðBjAXYÞPðAjXYÞ¼
PðAjXÞPðBjYÞ, which is trivially factorizable. By sym-
metry, we eliminate any direct cause from B to Y.
Step 4: After Step 3, we are left with the following

class of graphs (Fig. 13): a possible common cause (let us
call it Λ) between A and B, any link between X and Y, no
direct cause A → X, and no direct cause B → Y.
In the next step, illustrated in Fig. 14, we exclude, from

ðA ⫫ YjXÞd, any common cause A ↔ X acting together
with X ↔ Y and/or X ← Y. Likewise, from ðB ⫫ XjYÞd,
we exclude any common cause B ↔ Y acting together with
X ↔ Y and/or X → Y.

Step 5:We are finally left with three remaining classes of
graphs. All three classes allow for A ↔ B, X → A, and
Y → B, and, respectively, (i) X ↔ A, X → Y, (ii) Y ↔ B
X ← Y, and (iii) any link between X and Y. All of
these have Λ as a free variable and imply the condi-
tional independences ðA ⫫ BYjXΛÞ and ðB ⫫ AXjYΛÞ.
Thus, PðABjXYÞ ¼ P

ΛPðΛÞPðAjBXYΛÞPðBjXYΛÞ ¼P
ΛPðΛÞPðAjXΛÞPðBjYΛÞ, which is of factorizable form.

This completes the proof.
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