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Random quantum circuits yield minimally structured models for chaotic quantum dynamics, which are
able to capture, for example, universal properties of entanglement growth. We provide exact results and
coarse-grained models for the spreading of operators by quantum circuits made of Haar-random unitaries. We
study both 1þ 1D and higher dimensions and argue that the coarse-grained pictures carry over to operator
spreading in generic many-body systems. In 1þ 1D, we demonstrate that the out-of-time-order correlator
(OTOC) satisfies a biased diffusion equation, which gives exact results for the spatial profile of the OTOC and
determines the butterfly speed vB. We find that in 1þ 1D, the “front” of the OTOC broadens diffusively, with
a width scaling in time as t1=2. We address fluctuations in the OTOC between different realizations of the
random circuit, arguing that they are negligible in comparison to the broadening of the front within a
realization. Turning to higher dimensions, we show that the averaged OTOC can be understood exactly via a
remarkable correspondence with a purely classical droplet growth problem. This implies that the width of the
front of the averaged OTOC scales as t1=3 in 2þ 1D and as t0.240 in 3þ 1D (exponents of the Kardar-Parisi-
Zhang universality class). We support our analytic argument with simulations in 2þ 1D.We point out that, in
two or higher spatial dimensions, the shape of the spreading operator at late times is affected by underlying
lattice symmetries and, in general, is not spherical. However, when full spatial rotational symmetry is present
in 2þ 1D, our mapping implies an exact asymptotic form for the OTOC, in terms of the Tracy-Widom
distribution. For an alternative perspective on the OTOC in 1þ 1D, we map it to the partition function of an
Ising-like statistical mechanics model. As a result of special structure arising from unitarity, this partition
function reduces to a random walk calculation which can be performed exactly. We also use this mapping to
give exact results for entanglement growth in 1þ 1D circuits.
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I. INTRODUCTION

A key challenge for many-body physics is to identify
universal properties of quantum dynamics and the approach
to thermalization. Particularly important are universal
results that hold for generic quantum systems. Examples
of such universal properties include the existence of
effective light cones for the propagation of quantum
information [1] and the existence of universal scaling
forms for the growth and saturation of the von Neumann
entanglement entropy in 1þ 1D [2–15].
By definition, generic systems lack the structures (for

example, large numbers of symmetries or conservation

laws) that allow for exact results in typical solvable many-
body systems. Surprisingly, insight into generic systems
can come from studying dynamics with even less structure
than a generic Hamiltonian system, such as the dynamics
generated by a random quantum circuit. Random circuit
dynamics provide a minimally structured model with which
real Hamiltonian dynamics can be compared [16–24].
Despite its simplicity, this model is able to capture universal
scaling forms for entanglement growth both in 1þ 1D and
in higher dimensions [10]. Random circuits are also toy
models for information scrambling in black holes and other
strongly coupled systems [16–25].
In this paper, we provide both exact results and coarse-

grained descriptions for the spreading of quantum operators
under random circuit dynamics, as measured by the “out-
of-time-order correlator” (OTOC). The OTOC originally
appeared in the study of quasiclassical approximations to
superconductivity [26] and is closely related to the com-
mutator norm that appears in Lieb-Robinson bounds [1],
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but it has been studied recently as a means of quantifying
the scrambling of quantum information [27–30]. It has been
argued that early-time exponential growth of the OTOC is a
characteristic feature of chaotic quantum systems, and such
growth has been obtained within the AdS/CFT correspon-
dence and in a range of physical systems [31–38]. The
OTOC has also been applied to characterize slow dynamics
in the presence of disorder and in the many-body localized
phase [39–46]. It has been calculated in 2D conformal
field theories [47] and integrable chains [48], and studied
numerically in nonintegrable 1D systems [49–51].
Following theoretical proposals [52–54], experiments
addressing the OTOC have been conducted [55–57].
Random quantum circuits provide an ideal theoretical

setting for the exact calculation of quantities such as the
OTOC. While the behavior of the OTOC in a random
circuit is interesting in its own right, we conjecture that the
long-distance properties of the OTOC that we derive will
also be applicable to deterministic dynamics. Therefore, we
believe that these results will provide a useful starting point
for understanding the generic spatial structure of spreading
operators.
An operator O0 that is initially localized near the spatial

origin (say, on a single site of a spin chain) will evolve
under Heisenberg time evolution into a vastly more
complicated operator O0ðtÞ ¼ U†ðtÞO0UðtÞ that acts non-
trivially on many sites. The “size” ofO0ðtÞ is the size of the
region in which OðtÞ fails to commute with a typical local
operator Yx at position x. This may be measured by

Cðx; tÞ≡ 1

2
Trρ½O0ðtÞ; Yx�†½O0ðtÞ; Yx�; ð1Þ

where the expectation value has been taken in an appro-
priate Gibbs state. (For our purposes, this will be taken to
be the infinite-temperature Gibbs state ρ∞, which is the
state to which random circuit dynamics equilibrate.) To
make the connection with the OTOC, we may expand out
the commutators in Eq. (1). For simplicity, let us assume,
for the moment, that the operators O0 and Yx are both
Pauli-like operators squaring to the identity. We then have

Cðx; tÞ ¼ 1 − Trρ∞O0ðtÞYxO0ðtÞYx: ð2Þ

The second term, in which the operators are not time
ordered, is the OTOC. Other measures of the structure of an
operator could be defined (for example, correlation func-
tions involving higher powers of the commutator), but in
this paper, we restrict ourselves to the OTOC.
At a given time t, the range of x where the commutator

Cðx; tÞ is significantly larger than zero gives a measure
of the size of the operator. This region typically grows
ballistically [58], even when local conserved quantities
exhibit diffusive transport [31,38,49,50,59]. The immediate
natural questions about Cðx; tÞ include the following: What
is the “butterfly” velocity vB associated with this ballistic

growth? What is the spatial structure of Cðx; tÞ? Is there a
“hydrodynamic” equation for Cðx; tÞ at large time and
distance scales? Are there important differences between
1þ 1D and higher dimensions? We will answer all of these
questions for the case where the time evolution operator
UðtÞ is a circuit composed of Haar-random unitaries, as
in Fig. 1.
We demonstrate that, both in 1D and in higher dimen-

sions, operator spreading and the growth of the OTOC can
be mapped to classical stochastic growth models. We show
via an exact calculation that operator spreading in 1þ 1D
can be understood in terms of an equation involving
diffusion and drift. The front of the operator propagates at
a finite velocity vB. However, the front also broadens
diffusively, so its width is proportional to

ffiffi
t

p
(Fig. 2). We

conjecture that this physics also occurs in generic (non-
integrable) 1D systems undergoing deterministic
Hamiltonian dynamics. For random circuit dynamics, we
must also consider how the averaged correlator C̄ differs
from the correlator C within a given realization of the random
circuit. We argue that fluctuations between realizations are
small: Typical variations in the front position between

FIG. 1. Left: Random unitary circuit in 1þ 1D. Each brick
represents an independently Haar-random unitary, acting on the
Hilbert space of two adjacent “spins” of local Hilbert space
dimension q.

FIG. 2. Schematic behavior of the average OTOC: We find that
the average OTOC C̄ðx; tÞ (where the average is over the local
unitaries in the quantum circuit) has a front that broadens as tα,
with the indicated exponents in various spatial dimensions d.
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different realizations are Oðt1=4Þ, so they are negligible in
comparison with the

ffiffi
t

p
broadening of the front.

Turning to higher dimensions, we show by an exact
mapping that there is a remarkable relationship with a
classical droplet growth problem in the Kardar-Parisi-
Zhang universality class [60]. (To avoid confusion, we
note that this is not related to the connection between
entanglement growth and KPZ introduced in Ref. [10].)
We use this relationship to quantify the broadening of
the front of a growing operator in a higher-dimensional
random circuit. In 2þ 1D, the front broadens like t1=3 [60],
and in 3þ 1D, it broadens like t0.240 [61,62]. In the two-
dimensional case, and in the absence of lattice anisotropies,
recent breakthroughs in the theory of interface growth
[63–75] also translate to an exact form for the OTOC, in
terms of the celebrated Tracy-Widom distribution (Fig. 3).
The broadening of the front of the OTOC is summarized
in Fig. 2. Again, we conjecture that these universal
scaling forms extend to nonintegrable models with time-
independent Hamiltonians, although we note that a pre-
vious calculation in a different setting has instead found a
front that does not broaden with time and is governed by
a traveling wave equation [31] (see also Refs. [37,38]).
(A traveling wave equation arises from our mappings if we
make a certain mean-field treatment, as in Appendix I. But
this mean field is not valid in physical dimensionalities.)
In higher dimensions, the shape of the spreading

operator [76] is also of interest. At first sight, one might
expect the shape of the operator to be asymptotically
spherical at late times. Instead, we argue that in systems
with an underlying lattice, which have only discrete
spatial symmetries, the spreading operator will not become
spherical. Its asymptotic shape is determined by a model-
specific velocity function vBðn̂Þ, the speed of the front
depending on the local normal vector n̂. We verify this for
random circuits by simulation in 2þ 1D.
The results above are for random circuits composed of

generic (Haar-random) unitary matrices. It is interesting to
compare with random circuits composed of unitaries from
the Clifford group, a discrete subgroup that leads to
efficiently simulable dynamics [77,78]. In this case, the
dynamics of the operator is much simpler [10], and
randomness-induced fluctuations are much more severe.

But, remarkably, the results for the averaged OTOC C̄
coincide with the results for generic unitaries. This is a
consequence of the fact that the Clifford group is a unitary
2-design [79].
In one dimension, we give a complementary exact

calculation of the averaged OTOC, using a mapping to
the partition function of a classical Ising model. These Ising
degrees of freedom have a similar origin to those found in
calculations in random tensor networks [80]. We show that
the special structure arising from the unitarity of the quantum
circuit means that this partition function is exactly calculable
for any value of the local Hilbert space dimension.
Another important question is how the speed vB asso-

ciated with operator spreading relates to the speed vE that
can be associated with entanglement growth following a
quench in 1D [2–4,6–8,10,11,81,82]. References [10,11]
pointed out that, in general, vE is smaller than vB, unlike
the situation in a 1D conformal field theory [3]. We extend
this here, showing that arbitrarily small values of vE=vB
can be achieved without any fine-tuning. (In a system with
quenched, i.e., time-independent, disorder, it is even
possible to have vB > 0 but vE ¼ 0 [40].)
We also use the Ising mapping described above to give

an exact calculation of the average entanglement purity
[83–85] (the exponential of the second Renyi entropy) for a
random circuit, complementing the scaling picture (in
terms of a coarse-grained minimal cut) of Ref. [10].

II. OPERATOR DYNAMICS IN 1+ 1D

We begin by defining the random circuit dynamics,
which we consider in 1þ 1D, and by describing the
“hydrodynamic” continuum picture we propose for the
OTOC in 1þ 1D. In Sec. IV, we give an alternative exact
calculation of the OTOC, confirming and extending the
results below.

A. Hydrodynamic equation for averaged OTOC

We consider time evolution by a quantum circuit on an
infinite 1D spin chain, where each spin (qudit) has local
Hilbert space dimension q. The structure of the quantum
circuit is shown in Fig. 2(a). Two-site unitaries are applied
to “even” bonds on even time steps and “odd” bonds on
odd time steps (a “running bond” layout in the language
of bricklaying). Each two-site unitary is drawn independ-
ently from the uniform distribution on the two-site unitary
group Uðq2Þ. Formally, our time evolution operator is
UðtÞ ¼ Uðt; t − 1ÞUðt − 1; t − 2Þ…Uð1; 0Þ, where a single
layer of the circuit is given by

Uðt0; t0 − 1Þ ¼
8<
:

⊗
x∈2Z

Ux;xþ1ðt0; t0 − 1Þ if t0 is even

⊗
x∈2Zþ1

Ux;xþ1ðt0; t0 − 1Þ if t0 is odd:

ð3Þ

1

0

FIG. 3. Cartoon for the form proposed here for the OTOC in
two spatial dimensions, when lattice anisotropy can be neglected.
The functional form is given by the Tracy-Widom distribution F2.
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Each two-site unitary Ux;xþ1ðt0; t0 − 1Þ is Haar random and
independent of all of the others.
Given an operator O, we write OðtÞ ¼ UðtÞ†OUðtÞ. We

evaluate the following out-of-time-order correlator with
respect to this time evolution:

Cðx; tÞ≡ 1

2
Trρ∞½X0ðtÞ; Yx�†½X0ðtÞ; Yx�

¼ −
1

2
Trρ∞½X0ðtÞ; Yx�2: ð4Þ

Here, ρ∞ is the infinite-temperature Gibbs state, i.e., the
mixture of all possible spin configurations with equal
weights. Note that X0 is a Hermitian operator located at
the origin of the spin chain, and Yx is a Hermitian operator
located at site x. We take both X and Y to be traceless and
normalized such that TrX2 ¼ TrY2 ¼ q. For example, if
q ¼ 2 (the spin-1=2 chain), we can take X and Y to be Pauli
matrices at sites 0 and x, respectively.
Since the unitaries in the circuit are random, we must

distinguish between averaged quantities (denoted by EU, or
whenever unambiguous, by an overline ½� � ��) and quantities
within a given realization of randomness. However, we
argue that fluctuations induced by the random circuit are
small, meaning that the spatial profile of Cðx; tÞ in a given
realization of the circuit is, at large times, parametrically
close to the average value Cðx; tÞ.
Figure 2 is a schematic of the spatial profile we show for

Cðx; tÞ at a fixed large time. The “size” of the operator is
determined by a butterfly speed, which is

vBðqÞ ¼
q2 − 1

q2 þ 1
: ð5Þ

Within a region of size ∼2vBðqÞt, the commutator CðxÞ has
saturated to a value very close to unity. Note that for finite
q, the butterfly velocity is smaller than the “naïve” speed
limit of unity, which is set by the geometry of the quantum
circuit, while in the limit q → ∞, they coincide. The front
of the operator, i.e. the region in which C varies between
0 and 1, broadens diffusively. The width of the front is
proportional to

σðq; tÞ ¼ 2q
q2 þ 1

ffiffi
t

p
: ð6Þ

More precisely, letting Φ denote the error function [the
cumulative density function of the Gaussian distribution,
ΦðyÞ ¼ ½1=ð ffiffiffiffiffiffi

2π
p Þ� R y

−∞ e−x
2=2dx, which tends to zero for

y ≪ 0 and to 1 for y ≫ 0], we have

Cðx; tÞ ≃Φ
�
vBtþ x
σðtÞ

�
Φ
�
vBt − x
σðtÞ

�
: ð7Þ

In Sec. IV, we see that Eq. (7) is the partition function of
an Ising-like statistical mechanics problem, and we derive
an exact formula on the lattice (without any continuum
approximation):

Cðx; tÞ ¼ ð1− ξÞg
�
t−1;

t−x−3

2
;p

�
g

�
t−1;

tþx−3

2
;p

�

þ ξg
�
t−1;

t−x−1

2
;p
�
g
�
t−1;

tþx−1

2
;p
�
;

ð8Þ

where

p ¼ 1

q2 þ 1
; ξ ¼ q4

q4 − 1
;

and

gðn; a; pÞ ¼
Xa
k¼0

�
n
k

�
ð1 − pÞn−kpk:

Here, we show how Eq. (7) can be related to a continuum
hydrodynamic equation, which is asymptotically accurate
at large times. For x near the operator’s right-hand front,
C is related to a diffusing conserved density ρ:

C̄ðx; tÞ ¼
Z
x
dx0ρ̄ðx0; tÞ; ð9Þ

∂ρ̄ðx; tÞ
∂t ¼ vBðqÞ

∂ρ̄ðx; tÞ
∂x þDðqÞ ∂

2ρ̄ðx; tÞ
∂x2 : ð10Þ

We will explain the quantity ρ below.
To begin, focus on the spin-1=2 chain (q ¼ 2). At time t,

we may write the operator in the basis of products of Pauli
matrices [11,22,23,58,82],

X0ðtÞ ¼
X
S

aSðtÞS; ð11Þ

where X0ðt ¼ 0Þ is a single-site operator. Here, the
“string” S can be any product of Pauli matrices on
distinct sites. The number of strings in the sum generi-
cally grows exponentially with time (at the naive light-
cone velocity, set by the geometry of the circuit). The S
are normalized as

Trρ∞SS0 ¼ δSS0 ; ð12Þ

and X0 is also normalized so Trρ∞X2
0 ¼ 1, implying

X
S

aSðtÞ2 ¼ 1: ð13Þ
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It is also useful to introduce ρðx; tÞ, the “fraction” of
strings ending at x:

ρðx; tÞ ¼
X
strings S
ending at x

aSðtÞ2;
X
x

ρðx; tÞ ¼ 1: ð14Þ

We observe that the OTOC is determined by aSðtÞ2 as
follows. Let Yx be the Pauli matrix σy at site x. (This choice
does not sacrifice generality because of the Haar random-
ness of the circuit.) Since distinct Pauli matrices anticom-
mute, we see

½X0ðtÞ; Yx�2 ¼
�X

S
aSðtÞ½S; Yx�

�
2

¼
� X

S∶Sx¼σy;σz
2aSðtÞSYx

�
2

: ð15Þ

Because of the orthonormality in Eq. (12), we have

C ¼ −
1

2
Trρ∞½X0ðtÞ; Yx�2 ¼

X
S∶Sx¼σy;σz

2aSðtÞ2: ð16Þ

This tells us that if we determine the evolution of aSðtÞ2,
then the averaged OTOC is also determined. The dynamics

of aSðtÞ2 turns out to be remarkably simple, as shown in
Refs. [22,23]. It is best understood if we first consider a
system of just two sites (rather than an infinite chain) over
which a Haar-random unitary is applied at time t. It is
straightforward to calculate (see Appendix A) that for
arbitrary q,

aS0 ðtþ 1Þ2 ¼
X
S

WS0SaSðtÞ2; ð17Þ

where

WS0S ¼ δS0;IδS;I þ
1

q4 − 1
ð1 − δS0;IÞð1 − δS;IÞ: ð18Þ

Note the following two features. First, the result is linear in

aSðtÞ2. Second, S0 must be the identity if and only if S is,
but otherwise aS0 ðtþ 1Þ is a constant for all S0 ≠ I. In other
words, the random unitary introduces a (fictitious) Markov

process on the probabilistic ensemble f(S; aSðtÞ2)g of
strings [22,23]. This Markov process describes a single
string S, which is stochastically updated over time. If S is
nontrivial, each update maps it to any nontrivial string, with
uniform probability. The generalization to multiple spins is
immediate: For each pair of spins that interact in a given
time step, the stochastic update is applied to the corre-
sponding two-site substring of S. This Markov process will
also be used in a higher-dimensional setting below, as it is
not specific to the 1þ 1D setting. Note that the fictitious

stochastic dynamics, which involves a single evolving
string, is entirely different from the stochastic dynamics
of the operator X0ðtÞ itself (which is a superposition of
exponentially many strings).
Returning to the average of the OTOC, we realize that it

only matters whether or not the string component of X0ðtÞ
at the site x is the identity. In the ensemble f(S; aSðtÞ2)g,
the fraction

μðx; tÞ ¼
X

S∶Sx≠I
aSðtÞ2 ð19Þ

of strings that occupy the site x may fail to commute with
Yx. There are q2 − 1 possible nontrivial operators at the
site, which are all equally probable in the ensemble of
string components of X0ðtÞ. In the present case of q ¼ 2
(see endnote for the general case [86]) this yields

Cðx; tÞ ¼ q2

q2 − 1
μðx; tÞ: ð20Þ

In turn, the average occupation number μðx; tÞ can be
related to the end-point density ρ, assuming that x is far to
the right of the left-hand front of the operator:

μðx; tÞ ¼ μ0
X
x0≥x

ρðx0; tÞ; μ0 ¼
q2 − 1

q2
: ð21Þ

The constant of proportionality μ0 has been determined by
assuming local equilibration of the structure of the strings
[87]. Therefore,

Cðx; tÞ ¼
X
x0≥x

ρðx0; tÞ : ð22Þ

It is natural to conjecture that local equilibration of the
strings, together with the exponentially large number of
strings contributing to ρ, will make this identity asymp-
totically valid even without the average.
It remains to analyze the dynamics of ρ̄ðx; tÞ. The above

Markov process implies a simple autonomous dynamics
for ρ̄:

ρðtþ 1; xÞ ¼ p
h
ρðx; tÞ þ ρðt; xþ 1Þ

i
;

ρðtþ 1; xþ 1Þ ¼ ð1 − pÞ
h
ρðx; tÞ þ ρðt; xþ 1Þ

i
; ð23Þ

where

p ¼ q2 − 1

q4 − 1
¼ 1

q2 þ 1
ð24Þ

is calculated by counting the nonidentity two-site operators
S that have the identity at xþ 1, and the overline denotes
averaging over unitaries applied up to a given time.
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Recalling that unitaries are applied on even and odd
bonds alternately, Eq. (23) gives a complete description of
the dynamics of ρðx; tÞ. This is a lattice diffusion equation
for the conserved density ρ̄. Formally, ρ̄ behaves like the
probability density for a random walker who starts at the
origin and who prefers to travel to the right since p < 1

2
.

In the continuum (i.e., at long timescales), ρ̄ satisfies a
simple diffusion equation,

∂tρðx; tÞ ¼ vBðqÞ∂xρðx; tÞ þDðqÞ∂2
xρðx; tÞ; ð25Þ

whose drift and diffusion constants are determined in
Appendix B:

vBðqÞ ¼
q2 − 1

q2 þ 1
; DðqÞ ¼ 2q2

ðq2 þ 1Þ2 : ð26Þ

The peak in ρ corresponds to the front of the spreading
operator X0ðtÞ. It travels at speed vBðqÞ and broadens as
σðq; tÞ [Eq. (6)]. We emphasize that this fictitious random
walker should not be thought of as the “end point” of the
operator X0ðtÞ, which is a superposition of many strings
with different end points.
From Eq. (22), or in the continuum

Cðx; tÞ ¼
Z
x
dx0ρðx0; tÞ; ð27Þ

we see that C̄ obeys the same equation as ρðx; tÞ but with
different boundary conditions,

∂tCðx; tÞ ¼ vBðqÞ∂xCðx; tÞ þDðqÞ∂2
xCðx; tÞ: ð28Þ

Taking into account similar behavior at the left-hand front,
we obtain Eq. (7).
Above, we make two (very natural) assumptions. One is

that we can ignore the interaction between the left end and
the right end, and the other is that the occupation density
μðx; tÞ reaches its equilibrium value. In Sec. IV, we give an
exact calculation of the averaged OTOC (including exact
results for finite t and x, not necessarily large) without
making any approximation.

B. Hydrodynamic description including fluctuations

Having determined the averaged OTOC, the key ques-
tion is about the fluctuations between different realizations
of the random circuits. From the point of view of exact
results, this is a much harder question. (It is possible to
obtain bounds in regions far from the front: We return
to this in Sec. IV C.) However, we conjecture that the
universal physics of fluctuations in ρðx; tÞ can be obtained
by upgrading Eq. (25) to a stochastic diffusion equation for
the random quantity ρðx; tÞ. This description indicates that
fluctuations are strongly suppressed at late times. Since the

diffusive broadening is present in a single realization (i.e.,
is not an artefact of disorder averaging), it is natural to
conjecture that it will also be present in generic, non-
random, 1D many-body systems.
The postulated stochastic diffusion equation may contain

noise in both the diffusion constant and the drift, but we
restrict to noise in the latter since it is more relevant in the
renormalization group (RG) sense:

∂tρðx; tÞ ¼ ∂x(vB þ ηðx; tÞ)ρðx; tÞ þD∂2
xρðx; tÞ: ð29Þ

Here, ηðx; tÞ is white noise, uncorrelated in space and time.
The statistical properties of this equation are easy to

analyze. In the absence of the noisy drift term, ρðx; tÞ forms
a “wave packet” whose width grows like

ffiffi
t

p
and whose

center of mass is at xcm ¼ vBt. When the noisy drift is
turned on, it induces statistical fluctuations in xcm whose
magnitude scales with time as

Δxcm ∼ t1=4: ð30Þ

A quick way to see this is to ask what the drift velocity has
been in a given realization, averaged over the spacetime
region visited by the wave packet. The wave packet visits a
spacetime volume of order

R
t dt0

ffiffiffi
t0

p
∼ t3=2. Averaging the

drift velocity ηðx; tÞ over this spacetime volume yields
vav ∼ t−3=4. The typical random displacement of the wave
packet is thus of order Δxcm ∼ vavt ∼ t1=4. A standard
perturbative calculation in Appendix C reproduces this
exponent 1=4, which also characterizes the spreading of
directed waves in random media [88].
The quantity Δxcm is parametrically smaller than

ffiffi
t

p
, the

width of the front of the averaged commutator. Therefore,
this heuristic argument indicates that the front profile of
the averaged OTOC also applies to the OTOC within a
given instance of the random circuit. This is somewhat
surprising. To see why, let us contrast the above Haar-
random dynamics with Clifford dynamics for q ¼ 2.

C. Comparison with Clifford circuit dynamics

The Clifford group is a discrete subgroup of the unitary
group, defined by the property that any Pauli matrix is
mapped to a product of Pauli matrices. When the quantum
circuit consists of Clifford operators, an initial Pauli matrix
remains a single string (rather than evolving into a super-
position of exponentially many strings as for dynamics with
generic unitaries), and at any given time, the end-point
density ρðx; tÞ is localized on a single site.
However, uniformly random Clifford circuits have a

crucial relationship with Haar-random circuits. Under
a uniformly random Clifford update on a pair of sites, a
nontrivial operator is mapped with equal probability to any
of the nontrivial operators, and thus, the dynamics satisfies
the master equation of the Markov process in Eq. (17) [10].
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As a result, the averaged quantities, such as the average
end-point density ρðx; tÞ, the average occupation number
μðx; tÞ, and, most importantly, the average OTOC Cðx; tÞ,
obey exactly the same dynamics as the Haar-random case.
Formally, this is a consequence of the fact that random
Clifford operators form a unitary 2-design [79]; see
Appendix D for the definition of design and a proof for
random Clifford operators. One may say that Clifford
dynamics realizes the a priori fictitious Markov process
in a physical system [89].
Despite the equivalence of averaged quantities, the

quantities within a realization are entirely different. In
the Clifford case, the end-point density ρ and the OTOC C
are strongly fluctuating, while we have argued that for
generic unitaries, they are self-averaging (fluctuations are
parametrically small).

III. HIGHER DIMENSIONS

We now address the structure of the out-of-time-order
correlator Cðx; tÞ in spatial dimensions greater than 1 by
exploiting the relationship between the averaged OTOC
and a fictitious classical Markov process (Sec. II A).
We show that this process is a classical droplet growth
problem whose universal physics can be understood in
terms of the Kardar-Parisi-Zhang equation [60]. By taking
appropriate averages, we then obtain exact universal
exponents and scaling forms for the OTOC in a circuit
composed of Haar-random unitary matrices. We conjec-
ture that these scaling forms also apply to more realistic
Hamiltonian dynamics in nonintegrable lattice models and
field theories.
Somewhat surprisingly, we show that the “shape” of the

spreading operator at late times does not become spherical,
unless the microscopic dynamics has symmetry under
continuous spatial rotations. In a lattice model, the spread-
ing operator remembers forever that the lattice has only
discrete point group symmetries. Our argument for this is
not specific to random circuit dynamics. The point is
simply that the butterfly velocity vB, which sets the speed
at which the operator’s front moves, generically depends on
the front’s orientation, resulting in an anisotropic profile for
the spreading operator at long times. Another surprising
outcome, given previous work in the context of many-body
perturbation theory including Ref. [31], is that, for the
dynamics considered here, the averaged OTOC C̄ does not
satisfy a local differential equation.
In 2þ 1D, when lattice anisotropy is absent (e.g., in an

appropriate continuum model) or negligible, recent results
in KPZ theory [63–75] yield the full functional form of
Cðx; tÞ as a function of position and time. For an initially
localized operator, this is expressed in terms of the
Gaussian unitary ensemble (GUE) Tracy-Widom distribu-
tion [67,70] (which describes the extremal eigenvalue
statistics for the GUE of Hermitian matrices [90,91]).

A. Higher dimensions: Setup and mapping
to classical growth

We now describe the unitary dynamics for which we
wish to study operator spreading and the OTOC.We choose
a circuit where, in each time step, Haar-random two-site
unitaries are applied to bonds of a d-dimensional cubic
lattice in a manner that generalizes the 1þ 1D protocol. We
describe the 2þ 1D case for concreteness; the generaliza-
tion to higher dimensions is immediate. The periodicity of
the circuit is four layers. Four successive layers cycle
through the four columnar “dimer coverings” of the square
lattice as shown schematically in Figs. 4 and 5, so the site
at the origin interacts sequentially with its neighbors at
x ¼ ð0; 1Þ, ð−1; 0Þ, ð0;−1Þ, (1,0).
We relate the dynamics of C̄ to a fictitious classical

stochastic process for a growing cluster, described by the
evolution of “occupation numbers”

nðxÞ ¼ 0 or 1 ð31Þ

at each site. These arise from the higher-dimensional
generalization of the one-dimensional stochastic process
for an evolving string S described in Sec. II, in which we
define the string’s occupation number nðxÞ to be 1 if the
string has support on site x and zero otherwise. The
effective stochastic process for these occupation numbers
is simple (Appendix A). Consider two adjacent sites x and y
that undergo a joint update in a given time step. If both sites
are initially empty [nðxÞ ¼ nðyÞ ¼ 0], they remain so after
the update. If at least one of the sites is initially occupied
[nðxÞ ¼ 1 or nðyÞ ¼ 1 or both], then the configuration after
the update can be nðxÞ ¼ 1, nðyÞ ¼ 0 with probability p,
or nðxÞ ¼ 0, nðyÞ ¼ 1 with the same probability, or
nðxÞ ¼ nðyÞ ¼ 1 with probability 1 − 2p, where as before

p ¼ 1

q2 þ 1
: ð32Þ

FIG. 4. Top row: 2þ 1D Haar-random quantum circuit. We
consider unitary dynamics in which two-site Haar-random
unitaries are applied on the bonds of a two-dimensional square
lattice, in the columnar dimer configurations shown in (1)–(4).
Bottom row: Allowed updates in the corresponding stochastic
process.
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If we consider the OTOC for a spreading operator that is
initially localized at a single site, then the corresponding
classical model is initialized with n ¼ 1 at the origin and
n ¼ 0 everywhere else. A possible evolution of nðxÞ in a
single time step is shown in Fig. 4.
The Haar-averaged OTOC is related to the mean occu-

pation number for this Markov process at time t by the
relation

Cðx; tÞ ¼ q2

q2 − 1
hnðx; tÞiclassical ð33Þ

as illustrated schematically in Fig. 6. The averages on the
two sides of the above equation have different meanings.
On the left, the bar denotes an average over realizations
of a unitary circuit, and C is a correlator for this quantum
dynamics. On the right, the angle brackets denote an
average in a classical stochastic process. The real number
C and the integer n are only related after averaging. (As we
noted above, the fictitious Markov process can be

physically realized by random Clifford dynamics, when-
ever q is a prime power.)

B. Classical model in 2 + 1D: Analytical
and numerical results

The seed at the origin grows to produce a cluster of
linear size of order t. In the interior of this cluster, the state
equilibrates rapidly to a state in which nearby sites are
essentially uncorrelated, with average occupation
hnðx; tÞiclassical ¼ ðq2 − 1Þ=q2. In a given realization, there
is an interface between the occupied and unoccupied
regions which is sharp on length scales of the order of
the lattice spacing. The evolution of the droplet is very
similar to well-studied growth models such as the Eden
model [92], and it reduces to the stochastic growth of this
one-dimensional interface. The size of the occupied region
grows linearly in time, with statistical fluctuations in the
shape of the interface. (The average shape in our 2D model
is not circular but has only fourfold rotational symmetry;
we discuss this in Sec. III E.)
Typically, such interface growth processes are in the

universality class of the KPZ equation [60]. Consider a
section of the interface, with ξ a coordinate parallel to the
interface and h its height in the perpendicular direction. The
KPZ equation is

∂th ¼ cþ ν∂2
ξhþ λ

2
ð∂ξhÞ2 þ ζðx; tÞ; ð34Þ

where ζ is uncorrelated spatiotemporal noise. The con-
stant c contributes to the average normal growth rate for
the interface, while the ν term describes diffusive smooth-
ing of sharp features. Finally, the nonlinear λ term encodes
the dependence of average growth rate on the slope. (In
the present setting, lattice symmetry also allows a term
∝ ∂ξh if the ξ axis is at a generic angle to the lattice axes.
This term may be removed by a coordinate boost.) The
KPZ equation renormalizes to a nontrivial fixed point.
One of its most basic properties is the fact that the
fluctuations in the height at a given position ξ grow with
time as tβ, with β ¼ 1=3.
The KPZ description above is justified on RG grounds,

assuming that the relevant length scales for the fluctuations
of the classical interface are much larger than the lattice
spacing. (See Ref. [93] for a review of lattice growth
models.) We show numerically that KPZ scaling does indeed
apply to the growing droplet, so long as the front is not
locally parallel to the lattice axes, where—as a result of the
discrete spacetime geometry we have chosen—an additional
effect can come into play. (We expect this additional subtlety
to be absent in models in continuous time.)
Let us write the shape of the droplet as a parametrized

curve in polar coordinates, with RðθÞ the radius at angle θ
from the origin. [As mentioned above, the interface is sharp
on anOð1Þ length scale, and therefore, RðθÞ is well defined

FIG. 5. Geometry of 2þ 1D Haar-random circuit.

FIG. 6. Growth of a classical droplet and the OTOC: We relate
the behavior of the OTOC (averaged over the unitaries in the
circuit) to a classical stochastic process for the growth of a droplet
in two spatial dimensions. A given configuration of the classical
droplet is specified by a binary occupation number nðx; tÞ as
shown on the left. Remarkably, the average droplet profile
hnðx; tÞi precisely reproduces the averaged OTOC.
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up to an Oð1Þ uncertainty; this is sufficient since the
properties we discuss below are on parametrically larger
length scales when t is large.] From KPZ scaling, we would
expect

hRðθ; tÞi ¼ rðθÞt − AðθÞtβ þ � � � ; ð35Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hRðθ; tÞ2i − hRðθ; tÞi2

q
¼ CðθÞtβ þ � � � ; ð36Þ

with the exactly known exponent β ¼ 1=3. We will discuss
the nonuniversal function rðθÞ below and in Sec. III E, and
we will discuss more detailed universal properties in the
next section.
We have examined the growth of the droplet for

spin-1=2 degrees of freedom (q ¼ 2) on the square lattice
by tracking the average, evolving support of a cluster
over M ¼ 2 × 103 realizations of the classical dynamics
up to time t ¼ 1000 (see Fig. 7). We store only the
density hnðx; tÞi, averaged over all M realizations, as a
function of position and time, as this is the quantity with
a direct interpretation in the quantum setting. We have
also investigated smaller values of q: These do not have
an interpretation in the quantum circuit, but in the
classical model, decreasing q simply corresponds to
increasing the probability p in the update. Taking
q < 2 is a convenient way to explore two regimes
(discussed below) that differ in the properties of a
lattice-aligned front; both regimes could also be accessed
at fixed q, say q ¼ 2, by varying other parameters in the
random circuit such as the circuit geometry.
At each time slice, the form of hnðx; tÞi is fitted, along

cuts through lattice symmetry axes, to extract the cluster
size and the width of the front [where hnðx; tÞi is appreci-
ably different both from zero and from its t → ∞ value].
We observe linear growth of the size, as expected. Note that

the fluctuations in the second equation of (35) imply that
the width of the front region is expected to scale like t1=3.
Figure 8 (top panel) shows the growing width of the

front for cuts along the diagonal, θ ¼ �π=4. There, at
the largest times we can access, the fitted exponent is
β ¼ 0.3305� 0.0269, extracted from a fit to the blue data
points in Fig. 8. As expected, this value is consistent with
the KPZ value β ¼ 1=3.
A slight surprise is that the behavior along the axis, e.g.,

at θ ¼ 0, is rather different: See Fig. 8 (bottom panel),
which does not show KPZ growth. Generically, the only
stable fixed point for the growth of a 1D interface is
believed to be the KPZ fixed point. However, anomalous
growth is possible in this model, for q greater than a
critical value qc ≲ 2, when the direction of the front’s local
normal vector is fine-tuned to coincide with one of the
axes, as occurs at θ ¼ 0. In this regime, a front with
normal parallel to a lattice axis moves at a speed exactly
equal to the naive light-cone speed, vB ¼ 2, and does not
roughen. This is a known phenomenon in various lattice
growth models in discrete time, which have synchronous
parallel updates and can be understood by a relationship
with directed percolation [94–98]: See Appendix E for an
explanation. While interesting, this phenomenon is an
artefact of the specific discrete spacetime geometry we
have chosen, which could be eliminated by modifying
this geometry, [99] and we certainly do not expect it to be
relevant to continuous time dynamics. (It would be
interesting to look for this effect in appropriate determin-
istic Floquet dynamics, however.) This phenomenon has
an effect on the shape of the droplet, leading to flat
“facets” on the front close to θ ¼ 0, π=2, π, and 3π=2
(Sec. III E).
We now discuss the OTOC scaling that results from the

KPZ mapping, neglecting effects of lattice anisotropy
(which we will return to in Sec. III E).
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FIG. 7. Growth of a 2D cluster (q ¼ 2): We determine the behavior of the averaged OTOC by simulating the stochastic growth
of a two-dimensional cluster over M ¼ 2 × 103 realizations, with local updates applied at each time step, as described in the text.
The average occupation number for the cluster hnðx; tÞi is shown for the indicated times in the evolution as it approaches
its asymptotic shape.
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C. Scaling of the OTOC in 2 + 1D

We have already mentioned the basic consequence of
KPZ growth, which is the t1=3 broadening of the front. But,
unusually for a nontrivial fixed point, not only the exact
critical exponents but also certain exact scaling functions
are known for the growth of an interface in 1D [63–75] (see
Refs. [100–103] for reviews). We can now apply this
information to the OTOC to obtain scaling functions that
we propose are generic.
To simplify things, let us consider a case where lattice

anisotropy is absent or very weak so that the spreading
operator is circular and the OTOC depends only on a radial
coordinate and time. Weak anisotropy could certainly be
engineered in an appropriate random circuit. More impor-
tantly, we conjecture that the scaling form below captures
universal scaling in realistic, rotationally invariant, many-
body systems and field theories.

For the growth of a droplet, the probability distribution
of the interface radius is given by the GUE Tracy-Widom
distribution [67,70] (which has been observed experimen-
tally in striking experiments on the growth of a turbulent
domain in liquid crystals [104,105]). Following conven-
tion, we write

Rðθ; tÞ ¼ vBtþ ct1=3χðθ; tÞ; ð37Þ

where the nonuniversal constants vB and c are of order one,
and χðθ; tÞ is a random variable whose mean and variance
are of order one at large times. Focusing on a fixed value of
θ, the cumulative probability distribution of χ at a fixed
time is t independent at large times and given by the Tracy-
Widom distribution F2:

Prðχ < sÞ ¼ F2ðsÞ: ð38Þ

Remarkably, this allows us to fix the full functional form
of Cðx; tÞ in two dimensions, in the case where lattice
anisotropy is absent. In polar coordinates ðr; θÞ, and in the
continuum, Eq. (33) is

Cðr; θ; tÞ ¼ hΘ½Rðθ; tÞ − r�iclassical; ð39Þ

where Θ is the Heavyside step function. The right-hand
side is precisely the probability that χ is greater than
ðr − vBtÞ=ct1=3. We suppress the θ dependence since we
are assuming rotational symmetry:

Cðr; tÞ ¼ 1 − F2

�
r − vBt

ct1=3

�
: ð40Þ

The form of Cðr; tÞ is shown in Fig. 9. The asymptotic
behavior near the trailing edge, close to saturation (i.e., for
½vBt − r�=ct1=3 ≫ 1), is [106,107]

Cðr; tÞ ¼ 1 − b1
c1=8t1=24

jr − vBtj1=8
exp

�ðr − vBtÞ3
12c3t

�
þ � � � ; ð41Þ

where b1 ¼ 21=24eζ
0ð−1Þ with ζ0ð−1Þ ≈ −0.165, the deriva-

tive of the Riemann zeta function. Near the leading edge,
½r − vBt�=ct1=3 ≫ 1,

Cðr; tÞ ¼ c3=2t1=2

16πðr − vBtÞ3=2
exp

�
−
4ðr − vBtÞ3=2
3c3=2t1=2

�
þ � � � :

ð42Þ

The former asymptotic expansion of F2 was achieved only
recently [106,107].
One can also consider operator spreading with other

initial conditions. For example, we can initialize an
operator in a half-plane so that Cðx; tÞ has a straight, rather
than a circular, front. The scaling form for Cðx; tÞ will then

FIG. 8. Fluctuation exponent β: We fit the profile of the
evolving droplet for q ¼ 2 along the θ ¼ �π=4 directions (top
panel) to extract the mean operator size and magnitude of the
fluctuations about the mean. The fluctuations exhibit power-law
growth with exponent β ¼ 0.3305� 0.0269, consistent with the
KPZ value β ¼ 1=3. When fitting the profile along θ ¼ 0 (bottom
panel), we observe no appreciable growth of the fluctuations; we
argue in Appendix E that this occurs for sufficiently large qwhen
the front’s local normal vector is precisely aligned with a lattice
axis (as a result of the specific circuit geometry).
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be given by the Tracy-Widom distribution of the Gaussian
orthogonal ensemble, denoted F1. The objects F1 and F2

are of fundamental importance in a broad range of
mathematical and physical problems, and it would be very
interesting to see whether any of these connections shed
light on operator growth.
It should be noted that the mapping to a classical growth

process described above gives exact results for the averaged
OTOC C̄ but does not immediately give access to the
fluctuations in C between different realizations of the
circuit. [These circuit-to-circuit fluctuations in the quantum
expectation value should not be confused with the stochas-
tic fluctuations of nðxÞ in the auxiliary classical model.] A

calculation of, say, C2 − C2 would need to go beyond the
mapping provided here for C̄. Nevertheless, we conjecture
that, by analogy with the 1D case described in Sec. II B,
circuit-to-circuit fluctuations in C are parametrically small
at late times whenever the front broadens with time.

D. Scaling of the OTOC in 3 + 1D and above

The basic features of the 3þ 1D case are very similar to
those in 2þ 1D. The KPZ equation extends to an interface
of arbitrary dimensionality [60]. For the 3þ 1D quantum
problem, the dimensionality of the interface is two, and the
critical exponent β relevant to the width is β ≃ 0.240
(Ref. [61] and references therein). The analogue of F2

that yields the universal form of C̄ is not known analytically,
but it has been determined numerically [103]. Numerical
simulations for the 3þ 1D random circuit, along the lines
of those above, would be feasible.
Dimensions equal to or higher than 4þ 1 are, of course,

inaccessible experimentally, but they are nonetheless inter-
esting because, in these high dimensionalities, the KPZ
equation yields a phase transition as a function of the

strength of nonlinearity [60]. Both a rough phase, in which
fluctuations grow as tβ with β > 0, and a smooth phase,
where fluctuations remain of order one as t → ∞, exist. It
would be interesting to know whether both phases are
accessible in appropriate many-body systems.

E. Shape of the operator at late times

It is interesting to consider the shape of the spreading
operator at late times—i.e., the shape of the growing spatial
region in which the OTOC Cðx; tÞ has already saturated
to its late-time value (to within an exponentially small
correction). Rescaling distances by a factor of t−1 gives a
droplet of Oð1Þ size, which we expect to reach a fixed
asymptotic shape. [108] What is this shape?
At first glance, one might expect that, asymptotically, the

front is a circle in two spatial dimensions and a sphere in
higher dimensions. For example, this would be expected if
the OTOC satisfied a local nonlinear differential equation in
which derivatives higher than 2 could be neglected, as
discrete lattice symmetries would ensure that such an
equation had symmetry under continuous spatial rotations.
Instead, we argue that, for many-body systems on the
lattice, the shape of the operator is model dependent and
retains information about the discrete symmetries of the
lattice, even at arbitrarily late times. For the random circuit
model, this follows immediately from the mapping to
domain growth processes, for which anisotropy is a
well-known feature [109–113]. Figure 10 shows the shape
of the droplet in the present model for various values of q.
For concreteness, consider the 2D case (similar state-

ments hold in higher dimensions). The asymptotic droplet
shape is described by a radius RðθÞ ¼ hðθÞt depending on
the polar coordinate θ. Since the size of the operator is large
at large times, the curvature of the front is parametrically
small, except possibly at isolated θ values where hðθÞ is not
smooth. Away from such isolated points, the local velocity
of the front, in the direction of its normal vector, can depend
only on the orientation of this local normal vector. This
dependence is captured by a velocity function vBðϕÞ, where
ϕ ¼ ϕðθÞ is the angle of the local normal vector to the
x axis. A priori vBðϕÞ is constrained only by lattice
symmetry; for example, on the square lattice,

vBðϕÞ ¼ v0 þ v1 cos 4ϕþ v2 cos 8ϕþ…: ð43Þ

It is evident that the asymptotic shape cannot be a circle
except when vBðϕÞ is a constant function. Since the front of
the operator advances by vBðϕÞdt in the normal direction n̂,
the distance between the front and the origin grows by
vBðn̂Þdt=n̂ · r̂, which must be equal to hðr̂Þdt. Expressing
the normal vector in terms of h, one obtains

vBðϕðθÞÞ ¼
hðθÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðθÞ2 þ (∂θhðθÞ)2
p ; ð44Þ
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FIG. 9. The OTOC in ð2þ 1ÞD: Plot of the front of the
averaged OTOC Cðr; tÞ in two spatial dimensions and in the
absence of lattice anisotropy, as determined from the exact
expression in terms of the Tracy-Widom distribution in the main
text.
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where ϕðθÞ is the angle of the normal at polar position
θ on the interface. This equation is solved by a geometrical
construction described in Refs. [112,113]: hðθÞ ¼
minϕf½vBðϕÞ�=½cosðϕ − θÞ�g. When the effect of lattice
anisotropy is weak (as is likely to be the case in many
realistic situations when the relevant degrees of freedom
are long-wavelength modes), we expect vBðϕÞ to be a
smooth, weakly varying function, and we may also solve
for the shape perturbatively in wðϕÞ ¼ v0BðϕÞ=vBðϕÞ, as
described in Appendix F. Restoring the time dependence,
we obtain

RðθÞ ¼ vBðθÞt exp
�
−
1

2
wðθÞ2 þ 1

6
∂θwðθÞ3 þ � � �

�
: ð45Þ

However, when vBðϕÞ varies sufficiently strongly, the
asymptotic shape RðθÞ can include sharp corners or
straight segments on the boundary: In this regime, the
perturbative solution above is no longer appropriate.

For many-body systems in continuous time, we expect
vBðϕÞ to be analytic. In the present lattice model, vBðϕÞ is
analytic for q < qc (qc ≲ 2), while for q > qc, this function
is nonanalytic near ϕ ¼ 0 as a result of the anomalous
behavior of a lattice-aligned front: vBðϕÞ ≃ 2þ constjϕj
[98]. This leads to flat facets near θ ¼ 0 in the asymptotic
shape [98]. This change in the surface morphology as q is
varied is shown in Fig. 10.
For the random circuit model, it is straightforward to

determine vBðθÞ in the extreme limit q ¼ ∞, where growth
becomes deterministic. The propagation of the front in
this limit is similar to that of the “next-nearest-neighbor”
deterministic Eden model introduced in Ref. [114], and
it has the same nonanalytic angular dependence of the
velocity [115] [114]:

vq¼∞
B ðϕÞ ¼ 2ðj cosϕj þ j sinϕjÞ: ð46Þ

In this limit, the growing operator is simply a square.
Figure 11 shows the angular dependence of the radius for

the 2þ 1D random circuit dynamics at q ¼ 2, for several
values of the time, showing a clear anisotropy. Note also
that Rðθ ¼ 0Þ → 2t at late times: The front has a small facet
near θ ¼ 0 that moves at the naive light-cone speed for
propagation along an axis direction. In the light of our 1D
results where, for finite q, vB is always less than the speed
associated with the naive light cone, it is remarkable that, in
a higher-dimensional circuit, it is possible for the OTOC
front to propagate at the maximal speed in some directions.
However, we emphasize that this effect relies on the
specific discrete spacetime geometry.

F. Formal viewpoint

Before returning to 1D, we restate the higher-
dimensional results of Sec. III A in a more formal language,
which parallels our discussion in 1D. We introduce a
density on clusters, C, where C is a collection of sites:

ρðCÞ ¼
X

S;suppðSÞ¼C

a2S;
X
C

ρðCÞ ¼ 1: ð47Þ
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FIG. 11. Anisotropy in the cluster profile: Numerically de-
termined anisotropy in the average shape of the 2D cluster
Rðθ; tÞ=t, at the indicated times. The anisotropy in the cluster
shape grows in time and appears to asymptote to a nontrivial
steady-state shape.
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FIG. 10. “Faceting” of the cluster: Shown are the cluster shapes at fixed time t ¼ 103, for the indicated values of q. When q is
sufficiently large (third panel), the cluster develops facets along the θ ¼ 0, π directions, where the normal growth speed is the maximum
possible given the circuit geometry. The region shown is the naive light cone.
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Here, suppðSÞ is the support of S. After coarse graining, we
can represent C by a closed surface of spherical topology,
namely, the boundary of the coarse-grained cluster.
Therefore, ρðCÞ is the natural analogue of the “end-point
density” ρðxÞ in 1D. The surface growth picture implies
that the effective dynamics of ρðCÞ are the dynamics of the
probability distribution of a growing interface. Therefore,
when this is KPZ, ρðCÞ satisfies the Fokker-Planck
equation corresponding to the KPZ equation. We will
discuss this further in a separate publication.

IV. EXACT CALCULATION OF OTOC IN
THE SPACETIME PICTURE

We now give an analytical treatment of the OTOC
from a spacetime point of view. This leads to connections
with domain walls in an effective Ising model. Similar
Ising degrees of freedom have appeared in work on
random tensor networks [80]. Here, the effective Ising
model looks complicated at first sight, but it turns out to
be much simpler than those encountered in random
(nonunitary) tensor networks because of the special
structure arising from unitarity. We arrive at a problem
of two nonintersecting directed walks, shown schemati-
cally in Fig. 12.
This spacetime picture may be much more generalizable

than the dynamical point of view above. In Sec. V, we use it
to calculate the entanglement purity. In the future, we hope
that the tools introduced in this section will be generalizable
to higher moments of the OTOC which capture fluctuations

(C2, etc.), or higher powers of the commutator, or to a direct
calculation of the von Neumann entropy. We note that the
OTOC is not the only tool for characterizing operator
spreading: The operator entanglement entropy of a spread-
ing operator is also of interest [116,117]. Scaling forms for
this quantity will be discussed in Ref. [118].

Our exact result for the OTOC for arbitrary x and t
(not necessarily large) is given in Eq. (8). There are no
approximations in this equation. Approximating g by the
cumulative density function ΦðyÞ¼ð1= ffiffiffiffiffiffi

2π
p ÞR y

−∞e−x
2=2dx

of the Gaussian distribution, we reproduce Eqs. (5)–(7)
above. This approximation is valid when t is large.
Although the spin chain is spatially infinite in both

directions, as is our quantum circuit, the time-evolved
operator U†ðtÞX0UðtÞ is supported only on the interval
½−t; t − 1� of length 2t. Therefore, it suffices to consider an
observable Y inserted in this interval, and our correlator
becomes the trace of a q2t × q2t matrix. The infinite-
temperature Gibbs state reduces to the identity matrix
divided by the dimension q2t. Expanding the commutator,
we see

−
1

2
Trρ∞ð½U†ðtÞX0UðtÞ; Yx�Þ2

¼ q−2tðTr½U†ðtÞX2
0UðtÞY2

x� − Tr½X0ðtÞYxX0ðtÞYx�Þ
≕ q−2tTr½U†ðtÞX2

0UðtÞY2
x� − F: ð48Þ

The Haar average of the first term is easy to evaluate. The
observable X2

0 is conjugated by a unitary U−1;0ð1; 0Þ, and
after taking the Haar average, it becomes proportional to
the identity. The constant of proportionality is fixed by the
trace-preserving condition. By the normalization conven-
tion, TrX2

0 ¼ q ¼ TrY2
x, and therefore, the Haar average of

the first term is equal to q−2tTrI ¼ 1. The second term F
contains all the complexity.
Observe that the local unitaries form a square lattice

that is rotated by 45°. It is thus natural to introduce null
coordinates as

u ≔ ðtþ xþ 1Þ=2; v ≔ ðt − xþ 1Þ=2; ð49Þ

t ¼ uþ v − 1; x ¼ u − v: ð50Þ

Because of the cyclic property of the trace, the only
unitaries in the circuit that could affect the correlator are
those in the intersection (a rectangle) of the future light
cone of X0 and the past light cone of Yx. From now on,
let us use lu and lv to denote the linear sizes of this
intersection along the u and v directions, respectively.
There are lulv local unitaries contained in the intersection
of the light cones.

A. Reduction to Ising spins

For each local unitary U, the expression F contains two
U’s and two U†’s. We will see that averaging over the local
unitaries allows us to express F as a partition function for a
set of classical Ising spins. To see why such Ising spins
arise, consider the standard expression for the Haar average
of a single unitary matrix in UðnÞ:

FIG. 12. The calculation of the OTOC in the spacetime picture
leads to a partition function for two nonintersecting directed
random walks (domain walls in an effective Ising model). These
walks have a bulk energy cost [Eq. (69)] and a boundary potential
[Eq. (70)] that biases them to a positive and negative velocity,
respectively. Directions of null coordinates u, v used in the text
are indicated.
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EU∈UðnÞUa0aU�
b0bUc0cU�

d0d

¼ 1

n2 − 1

�
δa0b0δc0d0 × δabδcd þ δa0d0δb0c0 × δadδbc

−
1

n
ðδa0b0δc0d0 × δadδbc þ δa0d0δb0c0 × δabδcdÞ

�
: ð51Þ

(See Appendix G for a self-contained derivation of this
formula.) It is convenient to regard the above expression
as a matrix whose rows are labeled by the multi-index
ða0; b0; c0; d0Þ and whose columns are labeled by ða; b; c; dÞ.
Note that two types of contractions appear for the unprimed
indices, namely, δabδcd and δadδbc, and similarly for the
primed ones. Correspondingly, in bra-ket notation, the
above matrix can be written in terms of two vectors, which
we denote jI↑i and jI↓i (the reason for the notation will
become clear below):

U⊗U� ⊗U⊗U�

¼ n2

n2−1

�
ðjI↑ihI↑jþ jI↓ihI↓jÞ−

1

n
ðjI↑ihI↓jþ jI↓ihI↑jÞ

�
:

ð52Þ

In the natural basis, these vectors are

habcdjI↑i ¼
1

n
δabδcd; habcdjI↓i ¼

1

n
δadδcb: ð53Þ

With this definition, we may write Eq. (52) as

U⊗U�⊗U⊗U� ¼ n2

n2−1

X
s;s0¼↑;↓

wðs;s0ÞjIsihIs0 j; ð54Þ

with

wðs; s0Þ ¼
�
1 if s ¼ s0

− 1
n if s ≠ s0:

ð55Þ

We see that the unitary may be associated with a pair of
classical Ising “spins” s and s0.
For the application of interest to us, the unitaries are two-

site unitaries acting on the q2-dimensional space associated
with spins i and iþ 1. In this case, it is easy to see that

jI↑i ¼ j↑iij↑iiþ1; jI↓i ¼ j↓iij↓iiþ1; ð56Þ

with

hαβγδj↑i ¼ 1

q
δαβδγδ; hαβγδj↓i ¼ 1

q
δαδδγβ; ð57Þ

and now α;…; δ run over the q basis vectors associated
with a given spin. The vectors j↑i and j↓i have norm 1 and
satisfy

h↑j↓i ¼ 1

q
: ð58Þ

When we consider F, the spins arising from each
unitary in the circuit will form an interacting network.
The interactions between spins from the same unitary will
be given by wðs; s0Þ, while the interactions between spins
from different unitaries will arise from the inner products of
kets j↑;↓ii associated with a given spin. As a result of the
second line of Eq. (55), the weight of an Ising configuration
may be negative. However, we will see that the weights
simplify when we integrate out half of the spins. This leads
to a simpler Ising partition function, which can be treated
exactly in terms of domain walls.
As a final piece of notation, we generalize the

definition of jI↑i and jI↓i. Given an operator Oab on the
n-dimensional space, we define n4-dimensional vectors
jO↑i and jO↓i via

habcdjO↑i¼
OabOcd

TrOO† ; habcdjO↓i¼
OadOcb

TrOO† : ð59Þ

Choosing O to be the identity gives the vectors jI↑;↓i.
Before we evaluate F for arbitrary lu and lv, let us

consider the simplest case, where lu ¼ lv ¼ 1.

F̄ ¼ q−2EUTrUXU†YUXU†Y

¼ q−2EU

Xq2
i1;…;i8¼1

Ui1i2X
0
i2i3

U�
i4i3

Y 0
i4i5

Ui5i6X
0
i6i7

U�
i8i7

Y 0
i8i1

¼ q−2EU

Xq2
i1;…;i8¼1

Y 0
i8i1

Y 0
i4i5

Ui1i2U
�
i4i3

Ui5i6U
�
i8i7

X0
i2i3

X0
i6i7

¼ q2hðI ⊗ YÞ↓jU ⊗ U� ⊗ U ⊗ U�jðI ⊗ XÞ↑i: ð60Þ

In the second line, X0 ¼ I ⊗ X and Y 0 ¼ I ⊗ Y. The third
line is a trivial rearrangement of the second, and the fourth
employs the formal correspondence between matrices and
normalized vectors introduced above.
The Haar average of the tensor product of four unitaries is

given by Eq. (52) with n ¼ q2. To complete the evaluation of
F̄, we observe that hðI⊗XÞ↑jðIq2Þ↑i¼q−4ðTrXÞ2ðTrIqÞ2
¼0, hðI⊗XÞ↑jðIq2Þ↓i¼q−4ðTrX2ÞðTrIqÞ¼q−2, hðI⊗YÞ↓
jðIq2Þ↑i¼q−4ðTrY2ÞðTrIqÞ¼q−2, and hðI⊗YÞ↓jðIq2Þ↓i¼
q−4ðTrYÞ2ðTrIqÞ2¼0. This gives F̄¼−1=ðq4−1Þ.
When lu, lv > 1, we map the layout of local unitaries

to a partition function for the spins s, s0 in Eq. (54). To
facilitate the mapping, we decompose the input bra hIs0 j and
output ket jIsi into separate “legs” corresponding to the two
physical spins, as in Eq. (56),
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U ⊗ U� ⊗ U ⊗ U� ¼ q4

q4 − 1

X
s;s0¼↑;↓

wðs; s0Þjsijsihs0jhs0j:

ð61Þ

Similarly, the vectors encountered above for the case
lu ¼ lv ¼ 1 can be decomposed as jðIXÞ↑i ¼ j↑ijX↑i
and jðIYÞ↓i ¼ j↓ijY↓i, which satisfy

h↑jY↓i ¼ q−2TrY2 ¼ 1

q
; h↓jY↓i ¼ q−2ðTrYÞ2 ¼ 0;

h↑jX↑i ¼ q−2ðTrXÞ2 ¼ 0; h↓jX↑i ¼ q−2TrX2 ¼ 1

q
:

ð62Þ

The expression Eq. (60) is now depicted as in Fig. 13.
It is now clear that for general lu, lv, we may regard the

array of unitaries as a tensor network composed of tensors
of the form (61). The boundaries of this tensor network—
i.e., the external legs of the array of lu × lv unitaries—
involve inner products with fixed vectors. Two of the
boundary legs are dressed with qjX↑i and qhY↓j; see
Fig. 13. Apart from these, the external legs on the top
boundary are dressed by states qh↓j, while those on the
bottom boundary are dressed with qj↑i. In addition, F̄
includes an overall dimension factor q−2t coming from the
infinite-temperature Gibbs state. For convenience, we
absorb the overall dimension factor q−2t into the vectors
on the lower boundaries; these vectors are taken to be
normalized, whereas the boundary bras in the top bounda-
ries have norm q.
We may now interpret F̄ as a partition function for the

Ising spins su;v and s0u;v, which, according to Eq. (61), are
associated with the unitary at position ðu; vÞ. These
spins take the values ↑, ↓. The weight associated with
the “bond” between su;v and s0u;v comes from the single-
unitary Haar average and is ½q4=ðq4 − 1Þ� if su;v ¼ s0u;v, and
½ð−q2Þ=ðq4 − 1Þ� if su;v ≠ s0u;v. The leg of the tensor net-
work connecting the unitary at ðu; vÞ to that on (for

example) its lower right at ðu; v − 1Þ yields an interaction
between s0u;v and su;v−1 that comes simply from the inner
product hs0u;v−1jsu;vi. This gives weight 1 if s0u;v ¼ su;v−1
and weight ð1=qÞ if s0u;v ≠ su;v−1. See Fig. 14.
Thus, we have mapped the Haar average of the out-of-

time correlator to a partition function for Ising degrees of
freedom on a honeycomb lattice (with the q dependence
residing in the interactions on the bonds). At first sight, this
may appear to be a formidable problem. Note, in particular,
that some configurations have negative weight. However, a
simplification is possible, as a result of the unitarity of the
underlying dynamics. A hint that a simplification is
possible comes from the fact that the expression for F,
Eq. (48), becomes trivial if one of the operators X0 and Yx
is the identity operator. In the Ising language, this corre-
sponds only to a slight change of boundary conditions.
The simplification is effected by integrating out the bra

variable s0u;v from each unitary. This generates a three-spin
interaction among the ket variables su;v, su−1;v, and su;v−1.
The calculation is straightforward and yields the table of
weights in Fig. 15. For example, if su;v ¼ su;v−1 ¼ su−1;v,

FIG. 13. Elementary tensor for the computation of F̄. The
boundary conditions in the top-left figure are for lu ¼ lv ¼ 1.

FIG. 14. Weights due to the interaction between adjacent Ising
variables arising from the same unitary (top diagram) and from
unitaries at adjacent time steps (bottom diagram). After inte-
grating out the “bra” Ising variable s0, we obtain the weights
shown in Fig. 15.

FIG. 15. Weights for the three-body interaction that arises after
integrating out half of the Ising variables (the bra variables).
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then the weight is ½q4=ðq4 − 1Þ� · 1 · 1þ ½ð−q2Þ=ðq4 − 1Þ�·
ð1=qÞ · ð1=qÞ ¼ 1.
We are left with an effective Ising model for the s spins

only. One s spin is associated with each unitary in the
network. The fact that the weight in Fig. 15 is zero for two
of the configurations means that only a very restricted
subset of Ising configurations are allowed. We show that
these can be summed exactly by viewing the configurations
in terms of domain walls.
Let us specify the new boundary conditions. The rules of

Fig. 15 apply along the bottom boundary (with the lower
spins of Fig. 15 being fixed-up spins) because of our
normalization convention for the boundary kets, except for
the site where the observable ket jX↑i is dangling.

ð63Þ

ð64Þ

The top boundary bras, which have norm q, follow the
rule that

ð65Þ

B. Partition function for two directed paths

Now, the problem is reduced to a partition function of
Ising variables with the three-body interaction and the
boundary interaction. We first simplify the partition func-
tion by relating it to one with modified boundary conditions
as follows. We denote the weight of a given configuration
by WX;YðsÞ, where the subscripts indicate the dependence
on the boundary conditions induced by the operators X and
Y. Because of the last rule in Eq. (65), the spin at the site
where Yx is attached—null coordinate ðlu;lvÞ—has to be
slu;lv ¼ ↑. As a result, we can replace Y↓ with ↓fixed,
which, according to Eq. (65), gives the same weight when
slu;lv ¼ ↑. Let us denote the weight of a configuration s
under this modified top boundary condition by WXðsÞ,
dropping the subscript Y. We may then write the desired
quantity F̄ ¼ P

sWX;YðsÞ as

F̄ ¼
X
s∶

slu;lv¼↑

WXðsÞ ¼
X
s

WXðsÞ −
X
s∶

slu;lv¼↓

WXðsÞ: ð66Þ

We claim that the first term is equal to 1, and thus

−
1

2
Trρ∞½UðtÞX0UðtÞ†; Yx�2 ¼ 1 − F̄ ð67Þ

¼
X
s∶

slu;lv¼↓

WXðsÞ: ð68Þ

The claim can be shown in two ways. First, the out-of-time
correlator 1 − F̄ must vanish if the operator Y is replaced
by the identity. The boundary vector jY↓i then becomes
j↓i, and the partition function for F̄ becomes preciselyP

sWXðsÞ. Therefore, 1 −
P

sWXðsÞ ¼ 0. The other way
to show the claim is by directly integrating out the Ising
variables inductively, starting from the top line with respect
to the all–↓ boundary condition along the top boundary.
This is a nontrivial consistency check on our reduction.
Now, we focus on WXðsÞ, with the variable at null

coordinate ðlu;lvÞ fixed to be ↓. If the bottom variable
where X is attached is ↑, then the second rule in Fig. 15,
together with the boundary condition along the bottom
boundary, dictates that all the bulk variables should be ↑.
This cannot be fulfilled for the spin at ðlu;lvÞ, implying
that the weight is zero.
Hence, we have fixed two Ising variables at the bottom

and top boundaries to be ↓, where the observables X0 and
Yx are attached. Let us consider domain walls instead of
spins. The key point is the first rule in Fig. 15, which leads
to the domain walls being directed, drastically simplifying
the partition function. If we follow a domain wall from
the top to the bottom, it should always go down left or
down right. This implies that there are two nonintersecting
domain walls extending from the bottom to the top
boundary. The starting vertices of the right and left domain
walls have null coordinates (1,0) and (0,1), respectively.
The domain wall has a weight

�
q

q2 þ 1

�
t−1

ð69Þ

from the three-spin interactions in Fig. 15, excluding that
involving the spin at null coordinate (1,1). The domain wall
can fluctuate freely in the bulk without changing this
weight; see Fig. 16.
However, the end position of the domain wall at the top

boundary does affect the weight, and we will need to count
the number of domain walls for each ending position. For
the right domain wall, the end position can be at a vertex
ðt − v; vÞ in null coordinates for some v ¼ 0; 1;…;lv − 1.
Likewise, the end position of the left domain wall can be
ðu; t − uÞ for some u ¼ 0; 1;…;lu − 1. The weight from
the top boundary interaction is then
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q2t−2u−2v ð70Þ

from Eq. (65).
It remains to count the number of domain walls, given

their end positions. The right domain wall connects (1,0) to
ðt − v; vÞ, while the left domain wall connects (0,1) to
ðu; t − uÞ, with the constraint that they must not intersect.
To handle the constraint, we use a reflection trick. Regard
the domain walls as random walkers. The right random
walker randomly chooses between up-left and up-right
edges, to proceed from A ¼ ð1; 0Þ to B ¼ ðt − v; vÞ.
Similarly, the left random walker proceeds from C ¼
ð0; 1Þ to D ¼ ðu; t − uÞ. Any pair of paths A → B and
C → D that has a common point can be viewed as a pair of
paths A → D and C → B. Conversely, any pair of paths
A → D and C → B, which must meet at a point, can be
viewed as a pair of paths A → B and C → D with a
common point. Therefore, the number of pairs of paths
from A → B and C → D without intersection is the
number of all unrestricted pairs from A → B and
C → D, minus the number of all unrestricted pairs from
A → D and C → B. The number of our domain wall
configurations is therefore

�
t − 1

v

��
t − 1

u

�
−
�
t − 1

v − 1

��
t − 1

u − 1

�
; ð71Þ

where the second factor vanishes when u ¼ 0 or v ¼ 0.

Finally, we combine the results above:

X
s∶

slu;lv¼↓

WXðsÞ ¼
q2

q4 − 1|fflffl{zfflffl}
Eq: ð64Þ

�
q

q2 þ 1

�
2t−2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Eq: ð69Þ

Xlu−1

u¼0

Xlv−1
v¼0

q2t−2u−2v|fflfflfflfflffl{zfflfflfflfflffl}
Eq: ð70Þ

×
��

t − 1

v

��
t − 1

u

�
−
�
t − 1

v − 1

��
t − 1

u − 1

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Eq: ð71Þ

:

ð72Þ

This correctly reproduces the answer q4=ðq4 − 1Þ when
lu ¼ lv ¼ 1. This result can be conveniently rewritten as

Cðt; xÞ ¼ ð1 − pÞ2
1 − 2p

gðt − 1;lv − 1Þgðt − 1;lu − 1Þ

−
p2

1 − 2p
gðt − 1;lv − 2Þgðt − 1;lu − 2Þ; ð73Þ

where

t¼luþlv−1; x¼lu−lv; p≔
1

q2þ1
; ð74Þ

gðn; aÞ ≔
Xa
k¼0

�
n
k

�
ð1 − pÞn−kpk: ð75Þ

Further simplification is possible since gðt − 1; aÞ ≃
gðt − 1; a − 1Þ for large t.

Cðt; xÞ ≃ gðt − 1;lv − 1; pÞgðt − 1;lu − 1; pÞ ð76Þ

≃Φ
�
vBtþ x

σ

�
Φ
�
vBt − x

σ

�
; ð77Þ

where

vB ¼
q2− 1

q2þ 1
; σ ¼ 2q

ffiffi
t

p
q2þ 1

; ΦðyÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

y

−∞
e−x

2=2dx:

ð78Þ

C. Bounds on fluctuations

Here, we estimate the fluctuation of Cðt; xÞ due to the
randomness of the unitaries. One might wish to calculate
this fluctuation directly, using a similar technique that
we employ for the average of Cðt; xÞ, but we found the
exact computation unwieldy as it involves high powers of
unitaries. (See Ref. [84].) Nevertheless, we can argue that
the fluctuations are negligible in two regimes.

FIG. 16. A section of one of the domain walls in the bulk
(double line). The two configurations shown have equal weight.
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Since the random variable Cðt; xÞ takes values between 0
and 2, the variance is upper bounded by 2C̄. Therefore, the
standard deviation is upper bounded by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðt; xÞ2 − Cðt; xÞ2

q
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cðt; xÞ

q

≃Oð1Þ exp
�
−
1

4

�jxj − vBt
σ

�
2
�
:

ð79Þ

This bound is valid for any t, x, but it is only meaningful
when jxj ≫ vBt. This basically says that there is almost
no “leakage” of operators beyond the light cone defined by
vB. (In passing, we note that one can also use Markov
inequality Pr½X ≥ a� ≤ a−1EX, which holds for any pos-
itive random variable X and a positive number a to have a
probability tail bound.)
In the opposite regime where jxj ≪ vBt, we have shown

that the average Cðt; xÞ is almost 1; the discrepancy is upper
bounded by Oð1Þ expð−ðvBt − jxjÞ2=2σ2Þ. Thus, in this
regime, the fluctuation is basically given by

EUF2ðUÞ ¼ N−2EUðTrUXU†YUXU†YÞ2 ≥ 0; ð80Þ

where F is defined in Eq. (48) andN is the dimension of the
Hilbert space of spins on whichUXU†Y is supported. Here,
U includes all the local unitaries in the evolution quantum
circuit.
To estimate the fluctuation, we consider a slightly

different system in which 2ct spins form a ring, where c
is some absolute constant that depends on q only. If c > 1,
this does not modify the dynamics at all since the evolved
operator UX0U† is supported on 2t spins. For c < 1, while
we do not insist that this allows us to compute the
fluctuation rigorously, we anticipate that qualitative con-
clusions from this modified setting carry over to the
original open chain system.
In Appendix H, we show that if c ¼ M−1

q ¼ Õðq−2Þ,
then for all jxj < ct,

EUF2ðUÞ ≤ 11q−4ct: ð81Þ

In other words, deep in the light cone, there is a region in
spacetime bounded by a nonzero speed, where the fluc-
tuation of Cðt; xÞ is suppressed exponentially in t. It is likely
that this is only a bound, rather than a tight estimate of
fluctuation. Equation (81) is proved using previous results
on approximate unitary designs [24], as well as estimates
for EUF2ðUÞ when U is truly Haar random [119].

V. ENTANGLEMENT GROWTH

Entanglement can by quantified in various ways, but
perhaps the simplest measure is the entanglement purity

P ¼ TrðTrAc jψihψ jÞ2 ≤ 1, where A is some region. A pure
state jψi on A ∪ Ac is entangled if and only if the purity is
not equal to 1. The logarithm of the entanglement purity is
the Renyi-2 entropy

S2ðAÞ ¼ − logP: ð82Þ

In this section, we calculate exactly the average purity of
“half” of the infinite chain, for arbitrary t, under the
evolution protocol in Sec. II, with an initial product state.
Previously, a bound on the saturation time for q ¼ 2 was
obtained [23]. Also, the evolution of average entanglement
purity has been calculated using other techniques under a
protocol where random two-site unitaries are applied to
random bonds [83] and other protocols [84].
Here, we show that the averaged purity P̄ can be

mapped to the partition function for a directed walk,
shown schematically in Fig. 17. Our calculation technique
below will be very similar to the OTOC calculation in the
previous section; the difference is only in the boundary
conditions.

A. Random walk picture

Let A be the left half of our chain, and B be the right half.
The initial pure density matrix is ρðt ¼ 0Þ ¼ � � � ⊗ P−1 ⊗
P0 ⊗ P1 ⊗ …, where Pi is the projector jiihij onto the
initial state at site i. If U is the full time-evolution unitary
consisting of local unitaries, the entanglement purity P
across the cut between A and B is

PðtÞ

¼
XqjAj
a;a0¼1

XqjBj
b;b0¼1

habjUρð0ÞU†ja0biha0b0jUρð0ÞU†jab0i

¼qjAjþjBjh↑⊗jAj↓⊗jBjjU⊗U�⊗U⊗U�j� ��ðP0Þ↑ðP1Þ↑ � ��i:
ð83Þ

FIG. 17. The average entanglement purity P̄ maps to the partition
function for a directed random walk. At the top boundary, the walk
terminates at the position of the entanglement cut between sub-
systems A and B. At the bottom boundary, the end point is free.
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The notation j↑i, j↓i is the same as in Sec. IVA. For a
one-dimensional projector P on q-dimensional space, the
q4-dimensional vector jP↑i satisfies

h↑jP↑i ¼
1

q
¼ h↓jP↑i: ð84Þ

The expression for the purity can be thought of as a
partition function for classical Ising spins as in Sec. IVA.
There are two Ising spins associated with each local
unitary; see Eq. (54). Because of Eq. (84), for any
configuration of the Ising spins, the weight factor from
the bottom boundary is q−jAj−jBj, which cancels the factor
qjAjþjBj in front of Eq. (83). Hence, the average purity is
simply the sum of weights from the domain wall in the bulk
(e.g., see Fig. 16).
In Sec. IVA, we first integrated out the bra Ising

variables s0, but here we find it simpler to integrate out
the ket Ising variables s. The transition rules of Fig. 15 are
now upside down but otherwise the same. Then, we have a
single domain wall starting from the top boundary to reach
the bottom. Any domain wall has length exactly t, giving
rise to weight ½q=ðq2 þ 1Þ�t. The domain wall can choose
between left-down or right-down moves as it proceeds
from the top, and therefore, there are 2t domain walls. We
conclude that

PðtÞ ¼
�

2q
q2 þ 1

�
t
: ð85Þ

Note that the factor 2q=ðq2 þ 1Þ is directly related to the
average “entangling power” of Ref. [120]. We may define
the “purity speed” as

PðtÞ≡ q−vPt; vP ¼ logq
q2 þ 1

2q
: ð86Þ

This quantity gives a bound on the growth rate of the
second Renyi entropy:

S2ðρðtÞAÞ ¼ −logqPðtÞ ≥ −logqPðtÞ ¼ vPt: ð87Þ

The inequality is because the function fðxÞ ¼ − log x is
convex. Note that this expression bounds the growth rate
of S2 but does not fix it. The distribution of S2 fluctuates in
a window of small size compared to its mean [10,121], but

since S2 appears in the exponential in q−S2 , this does not
rule out the possibility that this quantity is affected by rare,
anomalously small values of S2, making it very different
from q−S̄2 .
The von Neumann entropy SvN is always greater than

or equal to S2, so the growth rate vE of SvN is also bounded
by vP:

vE ≥ vP ¼ logq
q2 þ 1

2q
¼ 1 −

log 2
logq

þO

�
1

q2 logq

�
; ð88Þ

where the expansion is for large q.
In Ref. [10], we argued that the universal fluctuations

of the entanglement in random circuit dynamics may be
understood in terms of a coarse-grained minimal cut, of
random shape, through the random circuit. This picture
may be contrasted with the domain wall calculation of the
averaged purity, which reduces to a statistical mechanics
problem without quenched randomness. This is reminiscent
of the difference between a quenched and an annealed
average in the statistical mechanics of disordered systems
[122]. A direct exact calculation of S2 (not to mention SvN,
or of the fluctuations in the entropy) for finite [123] q
would be much more difficult than the calculation above, as
a replica-like limit [122] would be required to handle the
logarithm. However, structure arising from unitarity might
make this calculation tractable. This is an interesting task
for the future.
The scaling limit of the representation obtained in this

section, where we take length scales and timescales to be
large and of the same order, yields a “deterministic” domain
wall configuration. This is simply a vertical line for the
infinite geometry considered here. [124] We expect that
extending the calculation to higher dimensions will give,
in the scaling limit, a formula for − log P̄ as the “energy” of
a minimal surface (representing the Ising domain wall),
which has a deterministic coarse-grained geometry,
obtained from an effective, elastic, energy minimization
problem. This is precisely the scaling picture proposed in
Ref. [10] for the growth of entanglement in higher-dimen-
sional systems.

B. Nonuniversality of the ratio vE=vB
In Ref. [10] (see also Ref. [11]), we showed that the

speed vE associated with entanglement growth is, in
general, smaller than the operator growth speed vB, and
we gave explicit models displaying a ratio vE=vB < 1. In
these models, [125] this ratio happened to be 1=2. Values
close to 1=2 were also found numerically in Refs. [11,51].
These results might lead one to wonder whether this value
is, in some sense, generic. Here, we show that it is not
generic by constructing random circuit dynamics involving
interactions of a large but finite range, which give arbi-
trarily small values of vE=vB without any fine-tuning. The
construction uses random unitaries made up of “staircases”
of length Oðq2Þ, which are made up of smaller random
unitaries (Fig. 18). When q is large, we obtain a ratio vE=vB
that is at most of order 1=q2. (In a deterministic spin
chain with quenched spatial disorder, it is even possible to
have vE=vB ¼ 0 [40], but here we insist on statistical
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translational invariance: i.e., we insist that the probability
distribution for the circuit is invariant under translations.)
Consider quantum circuit dynamics in which “staircase

unitaries” are applied at random locations and at random
times in a Poissonian fashion. A staircase is a collection of
two-site unitaries arranged as in Fig. 18. Left- and right-
oriented staircases are applied with equal probability. The
staircase acts on l bonds, and we take l large but finite,
satisfying l=q2 ≫ 1. Let r be the rate at which staircases
are dropped at a given location.
A single staircase can increase the entanglement across a

given bond by at most two units, implying vE ≤ 2rl. On
the other hand, a single staircase can move the end point
of an operator a long way when l≳ q2 ≫ 1. The random
walk picture of Sec. II A shows that in the limit of large
l=q2, a staircase advances the front of the OTOC by an
average distance of about q2=2. This involves an average
over the two staircase orientations, only one of which is
effective in advancing the front a long distance. The large
value is because, when q is large, the small value of p ¼
1=ðq2 þ 1Þ [Eq. (24)] means the randomwalker can “run” a
long way up a rightward-oriented staircase before falling
off. The previous case implies vB ≃ q2rl=2 at leading order
in l. This yields a ratio vE=vB ≲ 4=q2 in this regime, which
can be made arbitrarily small by taking q (and hence l) to
be large.

VI. OUTLOOK

We have argued that universal scaling forms for the out-
of-time-order correlator can be obtained by using mappings
to paradigmatic problems in classical statistical mechanics.
In one dimension, we gave an extremely simple hydro-
dynamic picture in terms of diffusion. In higher dimen-
sions, we gave a mapping to classical surface growth and
the KPZ equation [126]: The OTOC is given by the

averaged density for a growth process in the KPZ univer-
sality class.
These mappings were derived exactly for random unitary

circuits, which are natural “least structured” models for
chaotic quantum dynamics in situations where conserved
quantities do not play an important role. We have con-
jectured that the universal scaling forms found here also
apply to OTOCs at asymptotically late times in generic,
nonintegrable many-body systems and quantum field
theories. It will be interesting to test this conjecture in
other situations where calculations are possible.
This picture differs from that obtained in a number of

previous calculations using many-body perturbation theory
[31,33,37,38], and it will be interesting to understand the
reasons for these differences. Reference [31] found an
operator front that did not broaden in time, whereas here
we find a broadening front in all dimensions below 4þ 1.
Additionally, in Ref. [31], the OTOC was found to obey a
local, nonlinear, traveling wave equation, which is unlike
what we found for random circuits. In 1D, we obtained a
linear hydrodynamic equation, while in higher dimensions,
C̄ðx; tÞ in a random circuit is not governed by a local
differential equation at all, contrary to standard lore
about OTOCs.
Interestingly, a mean field approximation to the classical

growth process would yield a local differential (or rather
difference) equation for the OTOC of traveling wave form.
This is discussed in Appendix I. However, the mean field
approximation is not valid in physical dimensionalities.
Assuming that the results here do indeed apply to

realistic systems with Hamiltonians that are fixed in time,
it will be interesting to consider extensions of the present
coarse-grained pictures which take conserved quantities
into account.
We have also given exact results for entanglement growth

in 1þ 1D that support the scaling ideas put forward in
Ref. [10], as discussed in Sec. V. In this picture (in any D),
entanglement growth is determined by a minimal surface in
spacetime, whose geometry becomes well defined [127] in
an appropriate scaling limit and is determined essentially by
an elastic minimization problem. Furthermore, it was argued
in that paper and in Ref. [11] that, generically, vE < vB,
where vE is the speed characterizing the growth of entan-
glement. Here, we have shown that it is possible to have
arbitrarily small vE=vB in a random quantum circuit.
It turns out that the effective Ising partition functions

for calculating the OTOC and the purity have interesting
structure, making them drastically simpler than they
appeared to be at first sight and much simpler than the
analogous partition function for a nonunitary tensor net-
work [80]. It would be very interesting to explore whether
similar simplifications occur when the averaging involves
higher powers of the unitary circuit. If so, this would
permit calculations of, say, modified versions of the OTOC
involving higher powers of the commutator (here, we have

FIG. 18. Random circuit built from “staircase” unitaries: We
use “left” and “right” staircases—built from random two-site
unitary operators as shown, and extending over l bonds—as the
building blocks for a random quantum circuit in which the ratio of
the entanglement and butterfly velocities vE=vB may be made
arbitrarily small.
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considered only the square). Similar techniques would also
allow a calculation of fluctuations in the OTOC due to
randomness in the circuit. We have conjectured that these
fluctuations are small whenever the front broadens with time,
but we have not attempted a direct calculation, except via a
heuristic argument in 1D. [128] Even more interesting would
be a direct calculation of the von Neumann entropy, which
would have to use a replica limit to handle the logarithm.
OTOCs involving higher powers of the commutator are

important for comparison with the Lieb-Robinson bound.
The OTOC considered here can be thought of as the
squared Frobenius norm of the commutator divided by
the Hilbert space dimension, whereas the Lieb-Robinson
bound is on the operator norm of the commutator. Our
results do not determine the operator norm: they yield a
lower bound on the average squared operator norm, but not
a nontrivial upper bound because of the large dimension
factor. The exact relation of the two quantities is yet to be
determined.
In addition to exploring implications for realistic many-

body systems, interesting questions remain that are specific
to the random circuit context. (Note that, at the most basic
level, our results show that operator growth saturates the
naive causal light cone of the quantum circuit as q → ∞ but
not for finite q.) The randomness in the circuit necessarily
implies statistical fluctuations in all observables including
Cðx; tÞ. We have argued that these statistical fluctuations are
(perhaps counterintuitively) a subleading effect at late
times. We have shown this in regimes far from the front
of the OTOC by giving inequalities, and we have given a
heuristic argument for it in the region near the front. This
argument was based on a phenomenological extension of
the hydrodynamic equation for Cðx; tÞ in the 1D case to
allow for statistical fluctuations in Cðx; tÞ [Eq. (29)]. It
would be desirable to give a microscopic derivation of
Eq. (29). (For the entanglement entropy, statistical fluctua-
tions were investigated in Ref. [10].) It also remains to
characterize the classical growth problem in Sec. III more
fully, for example, by obtaining the nonuniversal constants
via an approximate analytic treatment.
The KPZ equation is connected to a remarkable array of

topics in classical statistical mechanics [129], including the
directed polymer in a random medium [130] and one-
dimensional hydrodynamics [131], and it has beautiful
experimental applications [104,105]. Through the Tracy-
Widom distribution [90], it is also connected to random
matrix theory and an array of combinatorial problems (for
example, the longest increasing subsequence problem and
the statistics of random permutations [132,133]). It will be
interesting to explore which members of this array can shed
light on operator growth.
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APPENDIX A: EVOLVING DISTRIBUTION
ON OPERATOR STRINGS

In this appendix, we give a more detailed explanation of
the relationship between the dynamics of the coefficients
aS and a Markov process [22,23] and of the derivation of
the diffusion picture. We consider Haar-random, local
unitary dynamics. In anN-site system with a q-dimensional
Hilbert space at each site, a Hermitian operator that has
evolved under the unitary circuit OðtÞ ¼ UðtÞ†OUðtÞ may
be expanded in a basis of SUðqNÞ generators fSg as

OðtÞ ¼
X
S

aSðtÞS: ðA1Þ

Our normalization convention is TrðSS0Þ ¼ qNδSS0 , so
aSðtÞ ¼ q−NTr(OðtÞS). The squared coefficient aSðtÞ2
evolves as

aSðtÞ2 ¼ q−2N
X
S0;S00

aS0 ðt − 1ÞaS00 ðt − 1Þ

× Tr½US0U†S�Tr½US00U†S�
¼ q−2N

X
S0;S00

aS0 ðt − 1ÞaS00 ðt − 1Þ

×
Y
r

tr½UrSr0U
†
rSr�tr½UrSr00U

†
rSr�; ðA2Þ

where U is a layer of m-site unitaries that were applied at
time t − 1. In the second line, we have written U ¼ Q

rUr,
where r is the coordinate of disjoint, m-site clusters on
which the unitary Ur ∈ UðqmÞ acts, and we have also
decomposed S ¼ Q

rSr as a product of basis elements
acting on these m-site clusters. These operators are nor-
malized according to tr½SrSr0� ¼ qmδSr;Sr 0 and tr½Sr� ¼
qmδSr;1. The Haar average of the above expression is
given by
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tr½UrSr0U
†
rSr�tr½UrSr00U

†
rSr�

¼ δSr 0;Sr 00

1 − q−2m
fq2mδSr;1δSr 0;1 þ 1 − δSr 0;1 − δSr;1g: ðA3Þ

Thus, the Haar-averaged aSðtÞ2 evolves linearly,

aSðtÞ2 ¼
1

q2N
X
S0;S00

aS0 ðt − 1ÞaS00 ðt − 1Þ

×
Y
r

δSr 0;Sr 00 ðq2mδSr;1δSr 0;1 þ 1 − δSr 0;1 − δSr;1Þ
1 − q−2m

¼
X
S0

WSS0aS0 ðt − 1Þ2 ðA4Þ

with the real, symmetric matrix

WSS0 ¼
Y
r

�
δSr;1δSr 0;1 þ

ð1 − δSr;1Þð1 − δSr 0;1Þ
q2m − 1

�
: ðA5Þ

Averaging again over the unitaries applied in the previous

time steps gives an equation for PSðtÞ≡ a2SðtÞ,

PSðtÞ ¼
X
S0

WSS0PS0 ðt − 1Þ; ðA6Þ

which is formally a master equation for a fictitious
Markov process [22,23]; at a given time, there is a single
string S that is updated stochastically in each time step,
via local updates involving a cluster of m sites. From the
form of WSS0 , we see that the local update on m sites is
performed by replacing a nontrivial generator on the cluster
randomly by any one of the q2m − 1 nontrivial generators.
We emphasize that this fictitious Markov process is not the
true unitary dynamics of the operator OðtÞ.
This fictitious classical stochastic process dramatically

simplifies through the following observations. We focus
here on one spatial dimension with updates on bonds. First,
observe that the matrix elements WSS0 only depend on the
support of the generators S and S0, so Eq. (A6) gives rise to
a simpler Markov process for the binary occupation number
nðxÞ, which is 1 if the corresponding generator has support
at site x and 0 otherwise (if S acts as the identity at x).
Formally, the probability distribution of the occupation
numbers is given by

P½fng; t� ¼
X

S
0aSðtÞ2; ðA7Þ

where the prime indicates that the sum is only over strings
S that are compatible with the configuration nðxÞ. Further,
the end point of the string observes an autonomous
Markovian dynamics. Since m ¼ 2, updates involving
the end point either include the site to the right of it, which
is empty, or that to the left, which may be empty or full.

The dynamical rule above implies that the probabilities for
the position of the end point after the update are inde-
pendent of whether the leftward site was initially occupied
or empty. Formally, the probability distribution for the
position of the end point in this fictitious dynamics is

pendðx; tÞ ¼
X
n with

endpt at x

P½fng; t� ¼
X

S ends at x

aSðtÞ2; ðA8Þ

which is precisely ρðx; tÞ, as defined in Sec II. Therefore,
for an end point at x or xþ 1, a single update applied to the
sites x and xþ 1 leaves the end point at x with probability
p ¼ ðq2 − 1Þ=ðq4 − 1Þ ¼ 1=q2 þ 1 and at xþ 1 with
probability 1 − p. This establishes the claim in Sec. II
for the evolution of ρðx; tÞ in a single time step.

APPENDIX B: VELOCITY AND DIFFUSION
CONSTANT FOR LATTICE
DIFFUSION EQUATION

Our layout of the evolution operator is such that the local
unitaries alternate between even and odd bonds. In other
words, a bond at time step t is either at the left or right of the
bond at t − 1. Thus, it suffices to count the left and right
moves to specify the position of the right end bond of
X0ðtÞ. As described in the main text, the probability of a left
move is p. Let u ≥ 0 be the number of right moves, and let
v ≥ 0 be the number of left moves. We have uþ v ¼ t, and
u − v (or u − v� 1) is the spatial coordinate of the right
end point. Therefore, the probability distribution of the
position of the right end bond is

fðu; vÞ ¼
�
uþ v
u

�
ð1 − pÞupv: ðB1Þ

This is correctly normalized since
P

uþv¼tfðu; vÞ ¼
ð1 − pþ pÞt ¼ 1. Then, the probability that a site x is
left to the right end of X0ðtÞ is

X
uþv¼t;u−v≥x

fðu; vÞ ¼
Xðt−xÞ=2
v¼0

�
t
v

�
ð1 − pÞt−vpv ðB2Þ

≃Φ
�
vBt − x

σ

�
; ðB3Þ

where Φ is the cumulative density function of the normal
distribution, and

vB ¼ q2 − 1

q2 þ 1
; σ ¼ 2q

ffiffi
t

p
q2 þ 1

: ðB4Þ
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APPENDIX C: NOISY DIFFUSION EQUATION

Starting with Eq. (29), without loss of generality we
rescale space so D ¼ 1, and set v ¼ 0 by going to the
moving frame. Let ρ0 be the solution without noise,
ρ0 ¼ ð4πtÞ−1=2e−x2=4t. In terms of the Green’s function,

ρðx; tÞ − ρ0ðx; tÞ ¼
Z
x0;t0

Gðx − x0; t − t0Þ∂x0ηðx0; t0Þρðx0; t0Þ

¼
Z
x0;t0

G0ðx − x0; t − t0Þηðx0; t0Þρðx0; t0Þ:

ðC1Þ

The center-of-mass position of the wave packet within a
given realization is xcm ¼ R

x xρðx; tÞ, so, if xcm is the
center-of-mass position averaged over realizations,

xcm − xcm ¼
Z
x;x0;t0

xG0ðx − x0; t − t0Þηðx0; t0Þρðx0; t0Þ

¼ −
Z
x;x0;t0

Gðx − x0; t − t0Þηðx0; t0Þρðx0; t0Þ;

ðxcm − xcmÞ2 ¼
Z

x;x̃;x0 ;
x̃0 ;t0 ;t̃0

Gðx − x0; t − t0ÞGðx̃ − x̃0; t − t̃0Þ

× ηðx0; t0Þηðx̃0; t̃0Þρðx0; t0Þρðx̃0; t̃0Þ:

Averaging over the noise with hηðx; tÞηðx0; t0Þi ¼
λδðx − x0Þδðt − t0Þ, we get

½xcm− xcm�2 ¼ λ

Z
x;x̃;
x0 ;t0
Gðx− x0; t− t0ÞGðx̃− x0; t− t0Þρðx0; t0Þ2:

ðC2Þ

For the leading-order scaling, we replace ρ with ρ0 on the
right-hand side. Then, dimensional analysis applied to the
integral gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxcm − xcmÞ2

q
∝ λ1=2t1=4 þ � � � : ðC3Þ

This is a statistical variation in xcm of order t1=4, in
agreement with the heuristic argument and with
Ref. [88]. This variation is small compared to the width
of ρ, indicating that ρ − ρ0 ≪ ρ at late times. The typical
size of ∂xρ near the peak is Oð1=tÞ, so xcm − xcm ∼ t1=4

corresponds to ρ − ρ0 ∼ t−3=4, as compared with ρ ∼ t−1=2.
The approximation above is therefore self-consistent.

APPENDIX D: RANDOM CLIFFORD
OPERATORS

Here, we review that the left- and right-invariant
probability distribution over the Clifford group on n
q-dimensional qudits is a unitary 2-design when q is a

prime number. In other words, for a qudit of prime
power dimension qn, the unitary group UðqnÞ has a finite
subgroup that is a unitary 2-design, and there is a linear
operator basis that remains closed under conjugations by
this subgroup. This is a well-known result [79], but we
include it here for the reader’s convenience.
To define the Clifford group, we first need the

Pauli group. Define X ¼ Pq−1
j¼0 jjþ 1 mod qihjj and Z ¼Pq−1

j¼0 e
2πij=qjjihjj. Then, the Pauli group is the subgroup of

UðqnÞ generated by matrices X1; Z1;…; Xn; Zn, where

Xj ¼ I⊗ðj−1Þ
q ⊗ X ⊗ I⊗ðn−jÞ

q ;

Zj ¼ I⊗ðj−1Þ
q ⊗ Z ⊗ I⊗ðn−jÞ

q : ðD1Þ

The Clifford group is defined to be the normalizer of the
Pauli group in UðqnÞ. The Pauli group quotiented out by
its center hω ¼ e2πi=qi is Abelian since XZX† ¼ ω−1Z, and
it is isomorphic to the additive group Z2n

q . We define Pv

for v ∈ Z2n
q to be an element of the Pauli group (Pauli

operator) as

Pv ¼ Xv1
1 X

v2
2 …Xvn

n Zvnþ1

1 Zvnþ2

2 …Zv2n
n : ðD2Þ

The center of the Pauli group is also contained in the
center of UðqnÞ, and therefore, the conjugation action by
the Clifford group on the Pauli group induces an action
on Z2n

q . It turns out that this group S of action consists
precisely of those that preserve the symplectic form

λn ¼
�

0 −In
In 0

�
ðD3Þ

over Zq.
A probability distribution ν of unitary matrices forming a

2-design means that

EU∼νU ⊗ U� ⊗ U ⊗ U� ¼ EU∼μU ⊗ U� ⊗ U ⊗ U�;

ðD4Þ

where μ is the Haar probability distribution over UðqnÞ,
and U� is the complex conjugate of U. Tautologically, the
Haar distribution is a 2-design. This is equivalent to

EU∼νUOU† ⊗ UO0U† ¼ EU∼μUOU† ⊗ UO0U† ðD5Þ

for any qn × qn matrices O and O0. Since Pauli operators
(the elements of the Pauli group defined above) generate
the full operator algebra over the complex numbers, it is
enough to have Eq. (D5), with O and O0 being Pauli
operators.
Let ν be the left-invariant (hence right-invariant) prob-

ability distribution over the Clifford group. This is the
uniform distribution over the finite Clifford group.
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Consider a C-linear map Πν on the set of operators
defined by

Πν∶ O ⊗ O0 ↦ EU∼νUOU† ⊗ UO0U†: ðD6Þ

Since ν is a left-invariant distribution over a group of
unitaries, Πν is a projector (which is Hermitian under the
Hilbert-Schmidt inner product). Since the Clifford group
includes the Pauli group, we have, for arbitrary a; b ∈ Z2n

q ,

ΠνðPa ⊗ P†
bÞ ¼

X
x;y∈Z2n

q

ηa;bx;yPx ⊗ P†
y ðηx;y ∈ C;Pauli basis expansionÞ

¼ P⊗2
c ΠνðPa ⊗ P†

bÞðP⊗2
c Þ−1 ðfor any c ∈ Z2n

q by the left invariance of νÞ
¼

X
x;y∈Z2n

q

ηa;bx;yωcTλnðx−yÞPx ⊗ P†
y ðcommutation relation among Pauli operatorsÞ

¼
X
x∈Z2n

q

ηa;bx;−xPx ⊗ P†
x ðdet λn ¼ 1; and c was arbitraryÞ:

The use of inverse P†
b here instead of Pb is for notational

convenience later.
Now, observe that for any nonzero x, y ∈ Z2n

q , there
exists a symplectic transformation S ∈ S such that y ¼ Sx.
For this step, it is essential that q is prime. By the right
invariance of ν by S, we see ΠνðPx ⊗ P†

xÞ ¼ ΠνðPy ⊗ P†
yÞ.

This implies that

ΠνðPa ⊗ PbÞ ¼ ηa;b0;0I þ ηa;b
X

x∈Z2n
q nf0g

Px ⊗ P†
x: ðD7Þ

We claim that this is a linear combination of the identity
operator and the swap operator F ¼Pq−1

u;v¼0 juihvj⊗ jvihuj.
This is easily verified once we expand F in the Pauli
operator basis; using TrðFO⊗O0Þ¼TrðOO0Þ for any qn ×
qn matrices O and O0, we see that F ∝

P
x∈Z2n

q
Px ⊗ P†

x.
The identity operator and the swap operator commute

with U ⊗ U, where U ∈ UðqnÞ. This implies that
ΠνðPa ⊗ P†

bÞ commutes with U ⊗ U and hence is equal
toΠμHaar ∘ΠνðPa ⊗ P†

bÞ. By the right invariance of the Haar
distribution μHaar, we conclude that Eq. (D5) is proven.
When q is not prime, any probability distribution over

the Clifford group fails to be a unitary 2-design. Let n ¼ 1.
Since the image ofΠμ is a linear combination of the identity
and the swap, we must have (see Appendix G below)

ΠμðO ⊗ O0Þ ¼
X
s¼�1

TrðOÞTrðO0Þ þ sTrðOO0Þ
qðqþ sÞ

I þ sF
2

:

ðD8Þ

When q ¼ 6, there are nonidentity Pauli operators P and Q
such that P2 ¼ I and Q3 ¼ I. From Eq. (D8), we have
ΠμðP ⊗ P†Þ ¼ ΠμðQ ⊗ Q†Þ ≠ 0. However, ΠνðP ⊗ P†Þ
is a linear combination of Pauli operators, each of which
squares to identity, whereas ΠνðQ ⊗ Q†Þ is a linear

combination of those that cube to identity, so they cannot
be equal.

APPENDIX E: ANOMALOUS BEHAVIOR
OF THE FRONT FOR ϕ= 0

Above, we noted that for sufficiently large p, p > pc, the
lattice growth process that we consider has anomalous
behavior when the front is oriented parallel to a lattice
plane. This is a known phenomenon in various lattice
growth models in discrete time, which have synchronous
parallel updates, and is well understood in terms of directed
percolation [94–98].
In the regime p > pc, the lattice-aligned (ϕ ¼ 0) front

has a speed vBðϕ ¼ 0Þ ¼ 2, which is precisely the maxi-
mum possible speed allowed by causality. In this regime,
the front is pinned to the “light front” and is not rough (i.e.,
the width is of order one). (Exactly at pc, the aligned front
is logarithmically rough [97].) For our lattice model, it
appears that pc ≲ 2.
This phenomenon is easily understood via a correspon-

dence with directed percolation [96]. First, consider a
straight, lattice-aligned front in the trivial deterministic
limit p ¼ 0 (q ¼ ∞). Apart from possibly on the first time
step, this flat front advances by two lattice spacings every
period: The front keeps pace with the “light cone,” which is
the line x ¼ 2t. Let ñðy; tÞ ¼ 0, 1 denote the occupation
numbers of the column of sites at the light cone: ñðy; tÞ
is the occupation number of the site at position ð2t; yÞ at
time t. When p ¼ 0, we have ñðy; tÞ ¼ 1. We are interested
in the density hñi (averaged over y) at late times when p is
nonzero. If this density remains finite, that means the front
has an Oð1Þ width and is attached to the light cone. If it
instead tends to zero, the front detaches from the light cone,
and we expect to recover standard KPZ roughening. Note
that, in order to determine ñ at time tþ 1, it is sufficient to
know only ñ at time t. The dynamics of the occupation
numbers ñðy; tÞ are as follows. Under a horizontal dimer
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update (which advances the lightfront), each occupied y has
a chance (1 − p) of becoming unoccupied. Under a vertical
update, pairs of adjacent y undergo the pairwise update
described in the main text. This process allows occupied
sites to “reproduce.” This is therefore a birth-death process
of the directed percolation type [122]. When p is large, the
death rate is small and the reproduction rate is large, and the
process is in an “active” phase with hñi > 0, while when p
is small, the population of occupied sites dies out.

APPENDIX F: SHAPE OF A SPREADING
DROPLET FOR WEAKLY VARYING v(ϕ)

Consider an asymptotic front shape described by the
parametrized curve (θ; rtðθÞ) in polar coordinates, which
grows simply by rescaling: rtðθÞ ¼ t × rðθÞ. Let ϕðθÞ be
the angle of the front’s normal (to the x axis) at polar
position θ. The radial growth rate is _rtðθÞ ¼ vB(ϕðθÞ)=
cos½ϕðθÞ − θ�. Since the curve grows by rescaling, we have
∂θ½_rtðθÞ=rtðθÞ� ¼ 0. Note that

∂θ ln rðθÞ ¼ − tan½ϕðθÞ − θ�: ðF1Þ

Combining these gives [112]

ðtan½ϕðθÞ − θ� þ w(ϕðθÞ)Þϕ0ðθÞ ¼ 0: ðF2Þ

Therefore, at a location where rðθÞ is smooth, we either
have ϕ0ðθÞ ¼ 0, i.e., a straight segment, or

tan½ϕðθÞ − θ� ¼ −w(ϕðθÞ): ðF3Þ

If the solution is smooth everywhere, then the above
equation must be satisfied everywhere. (Such solutions
exist for sufficiently weakly varying vB.) It is straightfor-
ward to solve this equation in powers of w:

− tan½ϕðθÞ − θ� ¼ wðθÞ − 1

2
∂θwðθÞ2 þ

1

6
∂2
θwðθÞ3 þ � � � :

ðF4Þ

We find that the rhs involves only total derivatives of
periodic functions. [Just from looking at Eq. (F3), this is, at
first sight, surprising since it emerges from various can-
cellations.] Therefore, integrating the right-hand side
according to Eq. (F1) gives a periodic rðθÞ.
For a formal explanation for why the expansion of

tanðϕ − θÞ contains only total derivatives of periodic
functions, consider a flow in the space of functions
vBðϕÞ that interpolates between the function of interest
and the trivial function vBðϕÞ ¼ const. Let v1ðϕÞ and v2ðϕÞ
be two functions that are infinitesimally close on this flow,
and let ϕ1ðθÞ and ϕ2ðθÞ be the corresponding solutions.
Assuming that ϕ1ðθÞ is periodic and corresponds to a
periodic rðθÞ, we show that this property is inherited by
ϕ2ðθÞ to order ϕ2 − ϕ1. Using Eqs. (F1) and (F3), we obtain

tan½ϕ1ðθÞ − θ� − tan½ϕ2ðθÞ − θ� ðF5Þ

¼ ∂θ½ln v2(ϕ1ðθÞ) − ln v1(ϕ1ðθÞ)�: ðF6Þ

As required, the rhs is indeed the total derivative of a
periodic function (note that ϕ2 does not appear on the rhs).
Integrating along the flow then establishes the property for
general vBðϕÞ at the formal level—i.e., assuming that the
solution evolves smoothly during the flow.

APPENDIX G: HAAR AVERAGE FORMULA

Here, we review a standard formula for the average of
matrix elements of the unitary matrix with respect to the
Haar probability measure μ on UðNÞ. (See, e.g., Ref. [84].)
Let us abbreviate

R
UðNÞ dμðUÞ as EU. We are going to prove

that

EUUjaihbjU† ⊗ UjcihdjU† ðG1Þ

¼
X
s¼�

I þ sF
2NðN þ s1Þ ðδabδcd þ sδcbδadÞ; ðG2Þ

where F is the swap operator on ðCNÞ⊗2. Evaluating a
particular matrix element, we have

EUUa0aU�
b0bUc0cU�

d0d

¼ 1

N2 − 1

�
δa0b0δc0d0δabδcd þ δa0d0δb0c0δadδbc

−
1

N
ðδabδcdδa0d0δb0c0 þ δa0b0δc0d0δadδbcÞ

�
: ðG3Þ

Proof of Eq. (G2).—The average is a matrix on H ¼
ðCNÞ⊗2 that commutes with every U⊗2. Hence, the average
is block diagonal in the basis where the representation of
UðdÞ is block diagonal. The irreps appearing in H are the
symmetric subspace and the antisymmetric subspace. In
each irrep, the average must be proportional to the identity
I� by Schur’s lemma, and we need to evaluate the trace
in order to determine the constant of proportionality. The
projection onto the (anti)symmetric subspace is ðI � FÞ=2,
where F is the swap operator: Fjaci ¼ jcai. So the trace is
1

2
Tr½UjaihbjU† ⊗UjcihdjU† �UjcihbjU† ⊗UjaihdjU†�

¼ 1

2
½δabδcd � δcbδad�: ðG4Þ

This must be equal to C�TrðI�Þ¼C�NðN�1Þ=2.
Therefore, the average is equal to

P
s¼�CsðIþsFÞ=2. □

APPENDIX H: PROOF OF EQ. (81)

Let N be the Hilbert space dimension of n q-dimensional
qudits: N ¼ qn. For any N × N unitary U, denote by U⊗t;t
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the tensor product ðU ⊗ U�Þ⊗t, where U� is the complex
conjugate of U. Let μ be the Haar probability distribution
on UðNÞ, and define, for any probability distribution ν on
UðNÞ, a real number

gðν; tÞ ¼
						EU∼νU⊗t;t;|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Πν

− EU∼μU⊗t;t|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Πμ

						
∞

: ðH1Þ

Here, k · k∞ denotes the maximum singular value. Because
of the left and right invariance of μ, it follows that
Π2

μ ¼ Πμ ¼ ΠνΠμ ¼ ΠμΠν. (Πν is not, in general, a pro-
jector.) Therefore,

gðν�m; tÞ ¼ kΠm
ν − Πμk∞ ¼ kðΠν − ΠμÞmk∞ ¼ gðν; tÞm;

ðH2Þ

where ν�m is the m-fold convolution of ν; i.e., ν�m is the
distribution of the product U1U2…Um when every Ui
obeys distribution ν.
Now, let ν be the distribution on UðNÞ obtained by

applying one layer of even-bond local Haar-random uni-
taries [Uðq2Þ] and then one layer of odd-bond local
Haar-random unitaries. Brandao-Harrow-Horodecki’s
result [24] implies that

gðν; tÞ ≤ expð−1=Mt;qÞ; ðH3Þ

Mt;q ¼ 4250⌈ logqð4tÞ⌉2q2t5t3.1= log q: ðH4Þ

Their theorem does not directly cover this, but they have
lemmas that are good enough for our purpose; Eq. (48) of
Ref. [24] is what we actually need.
Consider fðUÞ ¼ N−2ðTrUXU†YUXU†YÞ2 ≥ 0, where

all the matrices U, X, Y are N × N. Here, fðUÞ can be
thought of as hX̃jU⊗4;4jỸi for some vectors jX̃i and jỸi.
Assume TrðXÞ ¼ TrðYÞ ¼ 0, but TrðX2Þ ¼ TrðY2Þ ¼ N.
Then, the Euclidean norms of jX̃i and jỸi are both N2.
Normalizing so that jXi ≔ jX̃i=N2 and jYi ≔ jỸi=N2, we
can write fðUÞ ¼ N2hXjU⊗4;4jYi.
By Eqs. (H2) and (H3), we have

jEU∼ν�mfðUÞ − EU∼μfðUÞj ≤ e−m=M4;qq2n: ðH5Þ

If jEU∼μfðUÞj ≤ q−cn, then EU∼ν�mfðUÞ ≤ 2q−cn when-
ever m=n ≥ ðcþ 2ÞM4;q logq.
Hastings’ Schwinger-Dyson trick [119] gives

EU∼μfðUÞ ≤ 10N−2 ¼ 10q−2n: ðH6Þ

Therefore, whenever m=n ≥ 4M4;q log q, we have

EU∼ν�mfðUÞ ≤ 11q−2n: ðH7Þ

APPENDIX I: MEAN FIELD APPROXIMATION

Reference [31] argued, on the basis of Keldysh pertur-
bation theory, that in various circumstances, the out-
of-time-order correlator would satisfy a traveling wave
equation such as the Fisher-KPP equation (the details of
this equation depend on the physical system). An example
is the Fisher-KPP equation itself:

∂tC ¼ D∇2C þ λCð1 − CÞ: ðI1Þ

Thekey feature is the λ term,whichmeans that ifC is “seeded”
with a small nonzero value, it will increase to a value close to 1
on a timescale of order λ−1 (and then saturate). This equation
has stable solutions describing a front propagating with a
speed vB ¼ 2

ffiffiffiffiffiffi
Dλ

p
. This front does not broaden.

This phenomenology is very different from the picture
that we have obtained from the random circuit and the
mapping to classical growth processes. Recall that in 1D,
we related C to a homogeneous (linear) equation, and in
higher dimensions, we found that C was not governed by a
partial differential equation.
The purpose of this appendix is to show that a traveling

wave picture can emerge from our mappings if we make a
certain mean field approximation. This mean field approxi-
mation is not valid in the systems we have studied—it is an
uncontrolled approximation, which does not capture the
true behavior at either short or large times. However, in
variant models, a small parameter could be present that
justifies the mean field approximation up to some finite but
large timescale. In this situation, we expect that the mean
field will nevertheless break down at asymptotically long
times, with the front eventually roughening in the manner
discussed in the text.
Recall that for the random circuit, we have

C̄ðx; tÞ ¼ q2

q2 − 1
hnðx; tÞi; ðI2Þ

where nðx; tÞ is the occupation number in the fictitious
classical cluster growth problem. Let us consider the
joint probability distribution Pðfng; tÞ for this occupation
number. This distribution involves nontrivial correlations
between sites, which are crucial for capturing the correct
asymptotic behavior. Nevertheless, let us explore the mean
field approximation in which we pretend all sites are
independent, Pðfng; tÞ ¼ Q

xPxðnðxÞ; tÞ, with

PxðnðxÞ; tÞ ¼ ½1 − hnðx; tÞi�δnðxÞ;0 þ hnðx; tÞiδnðxÞ;1: ðI3Þ

For simplicity, consider a model on the hypercubic lattice in
d dimensions (with coordination number z ¼ 2d) in which
unitaries (“updates”) are applied to bonds in a Poissonian
fashion at rate Γ=2 per bond. This continuous-time protocol
does not change the basic point, but it simplifies the
equations. Write m ¼ hni. Note that if we update a bond
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that contains at least one fictitious particle, the subsequent
(conditionally) averaged density on that bond is 1 − p. This
implies

mðx; tþ ΔtÞ ¼ ð1 − zΓΔtÞmðx; tÞ
þ ΓΔtð1 − pÞ

X
y∈x

hð1 − δnðxÞ;0δnðyÞ;0Þi;

ðI4Þ

where the first term is the probability that site x does
not receive an update in the interval Δt. Making the
mean field approximation, hδnðxÞ;0δnðyÞ;0i factorizes into
ð1 −mðxÞÞð1 −mðyÞÞ, so

∂tmðx; tÞ ¼ Γ
X
y∈x

(−pmðx; tÞ þ ð1 − pÞmðy; tÞ ðI5Þ

−ð1 − pÞmðx; tÞmðy; tÞ): ðI6Þ

The first term on the right is a “death rate,” the second term
is the spreading, and the third term is a correction to
overcounting in the second term. An analogous equation
could be written down for the regular circuit considered in
the main text, but we would have to use discrete time.
Equation (I5) is a lattice traveling wave equation. This is

most apparent if we make a formal expansion in the lattice
spacing a to second order (which is valid, given the
approximations already made, if the solution is slowly
varying). Recalling p ¼ 1=ðq2 þ 1Þ and Eq. (I2),

Γ−1∂tC̄ðx; tÞ ¼ a2(ð1 − pÞ − ð1 − 2pÞC̄)∇2C̄ ðI7Þ

þ 2dð1 − 2pÞC̄ð1 − C̄Þ: ðI8Þ

This differs from the Fisher-KPP equation only in the C
dependence of the diffusion constant, and we expect similar
properties.
Above, the mean field limit is an unjustified formal

approximation. We could, of course, construct random
circuit models in which the (lattice) mean field approxima-
tion is quantitatively accurate up to a large time, for example,
by using long-range interactions or a large coordination
number to reduce the effect of correlations. However, at long
times, in physical dimensionalities, we expect the front to
roughen, so the mean field traveling wave picture breaks
down. In (unphysically) high dimensions, the mean field
may be valid even at late times (recall that the phase diagram
of the KPZ equation allows for a nonroughening phase in
high dimensions, as discussed in the text).
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