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We put the theory of interacting topological crystalline phases on a systematic footing. These are
topological phases protected by space-group symmetries. Our central tool is an elucidation of what it means
to “gauge” such symmetries. We introduce the notion of a crystalline topological liquid and argue that most
(and perhaps all) phases of interest are likely to satisfy this criterion. We prove a crystalline equivalence
principle, which states that in Euclidean space, crystalline topological liquids with symmetry group G are
in one-to-one correspondence with topological phases protected by the same symmetry G, but acting
internally, where if an element of G is orientation reversing, it is realized as an antiunitary symmetry in the
internal symmetry group. As an example, we explicitly compute, using group cohomology, a partial
classification of bosonic symmetry-protected topological phases protected by crystalline symmetries in
(3þ 1) dimensions for 227 of the 230 space groups. For the 65 space groups not containing orientation-
reversing elements (Sohncke groups), there are no cobordism invariants that may contribute phases beyond
group cohomology, so we conjecture that our classification is complete.

DOI: 10.1103/PhysRevX.8.011040 Subject Areas: Condensed Matter Physics,
Strongly Correlated Materials,
Topological Insulators

I. INTRODUCTION

Symmetry is an important feature of many physical
systems. Many phases of matter can be characterized in part
by the way the symmetry is implemented. For example,
liquids and solids are distinguished by whether or not
they spontaneously break spatial symmetries. In fact, it was
once thought that all known phases could be distinguished
by their symmetries and that all continuous phase tran-
sitions were spontaneous symmetry-breaking transitions.
The discovery of topological order [1] showed that, at zero
temperature, there are quantum phases of matter that can
be distinguished by patterns of long-range entanglement
without the need to invoke symmetry. However, even for
topological phases, symmetry is important. Any symmetry
that is not spontaneously broken in a topological phase
must have some action on the topological structure of
the phase, and such different patterns can distinguish
different phases. Even a phase of matter that is trivial
without symmetry can become nontrivial when considering
how symmetry is implemented. Topological phases

distinguished by symmetry are known as symmetry-
enriched topological (SET) [2–8] or symmetry-protected
topological (SPT) [9–26] depending on whether they are
nontrivial or trivial without symmetry, respectively.
For internal symmetries, which do not move points in

space around, very general and powerful ways of under-
standing SPT and SET phases have been formulated in
terms of mathematical notions such as group cohomology
[17], category theory [7], and cobordisms [21,27]. On the
other hand, such techniques have not, so far, been extended
to the case of space-group symmetries. We refer to these
topological phases enriched by space-group symmetries as
topological crystalline phases. This is a significant omis-
sion because any system that arranges itself into a regular
crystal lattice is invariant under one of 230 space groups in
three dimensions. Fermionic phases of matter protected
by space-group symmetries are called topological crystal-
line insulators or topological crystalline superconductors
depending on whether or not charge is conserved [28–33].
Progress towards a general classification in free-fermion
systems has been made [34–40], and some understanding
of the effect of interactions has been achieved [41–45].
Meanwhile, intrinsically strongly interacting phases
protected by spatial symmetries have also been found
[3,7,46–54]. In particular, Ref. [55] gave an approach
for deriving the general classification of interacting SPT
phases protected by a group of spatial symmetries that leave
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a given point invariant. However, for SETs and/or general
space groups, there is so far no systematic theory analogous
to the one that exists for internal symmetries, except in one
dimension [56]. Our goal in this paper is to fill this gap.
We adopt two complementary and related viewpoints

to the classification. The first viewpoint is in terms of
topological quantum field theories (TQFTs), which are
believed to describe the low-energy physics of topological
phases. We state and motivate a proposal for how to
implement a spatial symmetry in a TQFT.
Our second, more concrete, viewpoint is based on the

idea of understanding the SPT or SET order of a system by
studying its response to a gauge field. For example, SPTs
in (2þ 1) dimensions protected by an internal Uð1Þ
symmetry can be identified by the topological response
to a Uð1Þ gauge field. All such possible responses are
described by the Chern-Simons action

S ¼ k
4π

Z
A ∧ dA: ð1:1Þ

The coefficient k has a physical interpretation as the
quantized Hall conductance. Because it is quantized, the
only way to get between systems with different values
of k is if Uð1Þ symmetry is broken or the gap closes.
Furthermore, since this is the only term that may appear,
we learn that the different Uð1Þ SPTs in 2þ 1D are
labeled by this integer. We call this procedure of coupling
a G-symmetric system to a background G gauge field
“gauging” the G symmetry, though, strictly speaking, we
do not consider making the gauge field dynamical. Stricter
terminology would call the dynamical gauge theory the
result of gauging, and our procedure would be the first
step, called equivariantization or pregauging. Many of the
general approaches to SPT and SET phases can be
formulated in terms of gauging [6,7,57,58].
We want to apply similar approaches to the study of

systems with spatial symmetry. Thus, we ask the following
question: What does it mean to gauge a spatial symmetry?
We give what we believe to be the definitive answer to this
question, motivated by the intuition of “gauge fluxes,”
which for spatial symmetries are crystallographic defects
such as dislocations and disclinations. There seems to be a
natural generalization to symmetries that act on spacetime
as well, such as time-reversal symmetry or time translation.
We briefly mention this generalization and how the
classification extends to these spacetime symmetries, where
it agrees with known group cohomology classifications of
time-reversal-invariant and Floquet SPTs, respectively.
Using the two viewpoints mentioned above, we elucidate

the general theory of crystalline topological phases. Our
results are based on a key physical assumption, namely, that
the phases of matter under consideration are crystalline
topological liquid, which roughly means that, although
crystalline, they preserve a certain degree of “fluidity” in

the low-energy limit. The idea is motivated by the notion
of “topological liquids,” which have an IR limit that is
described by a TQFT; i.e., the long-range physics is only
sensitive to the topology of the background manifold. This
is in contrast to “fracton” topological phases [59–62] where
no such topological IR limit exists [63]. Crystalline
topological liquids are a generalization of topological
liquids to systems with crystal symmetries.
The main result of this paper is the following crystalline

equivalence principle: The classification of crystalline topo-
logical liquids with spatial symmetry groupG is the same as
the classification of topological phases with internal sym-
metry G. Compare Ref. [64], where a similar principle was
conjectured for symmetry groups containing time-translation
symmetry. This result holds for systems living on a contract-
ible space, i.e., Euclidean space in d dimensions. On other
manifolds, for example, Euclidean space with some holes,
some new things happen. We note for this correspondence
orientation-reversing symmetries in the space group must
correspond to antiunitary symmetries in the internal group.
We emphasize that the crystalline equivalence principle

is expected to hold for both bosonic and fermionic [65]
systems, and for both SPT and SET phases. As an example
of results that one can deduce from this general principle,
we find that bosonic SPT phases protected by orientation-
preserving unitary spatial symmetry G are classified by
the group cohomology Hdþ1ðG;Uð1ÞÞ since that is the
classification of internal SPTs with symmetry G (see
Appendix A for more details on the definition of H).
This agrees with a recent classification of a class of tensor
networks with spatial symmetries [54]. In (3þ 1)-D, for
space groups containing orientation-reversing transforma-
tions, this classification is expected to be incomplete, just as
it is for internal symmetry groups containing antiunitary
symmetries [21]. Applying the principle to fermionic
systems, one obtains a partial classification of fermionic
SPTs protected by space-group symmetries from “group
supercohomology” [22] and a complete classification of
fermionic crystalline SPTs from cobordism theory [27],
with some caveats. We attempt this in Sec. VIII B for
crystalline topological superconductors and insulators.
Our results allow for the classification to be explicitly

computed in many cases. For example, Table I shows
the classification of bosonic SPT phases protected by
space-group symmetry in (2þ 1)-D as obtained from
group cohomology. For more details of how Table I
was computed, and the (3þ 1)-D version of the table,
see Appendix B.
At a precise level, our results our based on a conjecture

about the form of the TQFT that describes the low-energy
physics of a crystalline topological phase. We conjecture
that, at least for some such phases (i.e., the crystalline
topological liquids), the low-energy physics is described by
a “spatially dependent TQFT,” or, in other words, a map
from the physical space X in which the system lives
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(usually we would take X ¼ Rd) into the space Θ of
TQFTs. For such spatially dependent TQFTs, the crystal-
line equivalence principle is a mathematical theorem that
can be rigorously proven.
The outline of our paper is as follows. In Sec. II, we

introduce the notion of a crystalline topological liquid. Then,
in Sec. III, we introduce the key ideas involved in gauging a
spatial symmetry. Specifically, in Sec. III A, we discuss our
definition of a crystalline gauge field. Then, in Sec. III B, we
argue that crystalline topological liquids naturally couple
to such crystalline gauge fields. In Sec. III C, we use the
gauging picture to derive the crystalline equivalence prin-
ciple, which applies to the physically relevant case of phases
of matter in contractible space Rd. In Sec. III D, we discuss
extensions to noncontractible spaces and a general classi-
fication result for crystalline gauge fields.
In Sec. IV, we give a construction of many crystalline

topological liquids from ordinary topological liquids by
considering systems that carry both a spatial G symmetry
and an internal G symmetry.
In Sec. V, we describe our approach towards classifying

crystalline topological liquids using topological response.
In Sec. VA, this is defined in terms of fusion and braiding
of symmetry fluxes. In Sec. V B, it is described in terms
of effective topological actions. Finally, in Sec. VI C, we
give many examples of crystalline gauge backgrounds and
compute the resulting partition functions in exactly solv-
able models. This section is particularly important, as it
elucidates where some of the familiar features of ordinary
SPT phases appear in crystalline SPT phases.

In Sec. VI, we describe how our methods can be placed
into a general context of a position-dependent topological
limit and discuss implications of emergent Lorentz invari-
ance or lack thereof.
In Sec. VII, we derive several general structural results

about the classification of crystalline SPTs (invertible
crystalline topological liquids).
We give generalizations of our methods in Sec. VIII,

including Floquet phases in Sec. VIII A and phases beyond
ordinary equivariant cohomology in Sec. VIII B, including
fermions. In Sec. VIII C, we discuss how our methods
apply to topological terms of sigma models.
In Sec. IX, we describe some ways in which our

crystalline topological liquid assumption can fail and
include some comments about fracton phases.
In Sec. X, we discuss questions for future work.
We hope this paper will inspire the discovery of many

curious quantum crystals.

II. TOPOLOGICAL LIMIT OF A CRYSTALLINE
TOPOLOGICAL PHASE

In this section, we briefly outline the arguments based on
TQFT, which lead to the crystalline equivalence principle.
The mathematical details are left to Sec. VI. The underlying
physical concept is that of a smooth state. A smooth state is a
ground state of a lattice Hamiltonian that is defined on a
lattice which is much finer than the unit cell with respect
to the translation symmetry, such that the lattice spacing l
and the correlation length ξ are much smaller than the
minimum radius R of spatial variation within the unit cell
(Fig. 1). The condition ξ, l ≪ a (where a is the unit cell size)
was discussed as an assumption for classifying crystalline
phases in Ref. [66]; our “smooth state” assumption is
slightly stronger since we require ξ, l ≪ R. This implies
the condition of Ref. [66] sinceR < a, but the converse need
not be true if there are regions in the unit cell where spatial
variation happens rapidly (so that R ≪ a).
A smooth state might not seem like the kind of system

one would normally consider; a physical example would be
a graphene heterostructure in which a lattice mismatch
between two layers results in a Moire pattern with a very
large unit cell [67]. Nevertheless, it is reasonable to expect
that the classification of smooth states would be the same
as the classification of states in general. We will leave a
rigorous proof for future work; here, we merely state it as a
conjecture and examine the consequences.
A very important property of a smooth state is that it can

be coarse grained while preserving the spatial symmetries.
This is allowed only as long as the coarse-grained lattice
is still small compared to the unit cell size, but given the
assumption ξ ≪ a, this still allows us to reach a “topo-
logical limit,” by which we mean that ξ becomes much
smaller than the coarse-grained lattice spacing. Importantly,
since the RG can take place in the neighborhood of any
given point in the unit cell, the effective field theory that

TABLE I. The classification of bosonic SPT phases in (2þ 1)-
D protected by space-group symmetries, for each of the 17 2D
space groups (sometimes known as “wallpaper groups”).

Number Name Classification

1 p1 0
2 p2 Z×4

2

3 pm Z×2
2

4 pg 0
5 cm Z2

6 p2mm Z×8
2

7 p2mg Z×3
2

8 p2gg Z×2
2

9 c2mm Z×5
2

10 p4 Z2 × Z×2
4

11 p4mm Z×6
2

12 p4gm Z×2
2 × Z4

13 p3 Z×3
3

14 p3m1 Z2

15 p31m Z2 × Z3

16 p6 Z×2
2 × Z×2

3

17 p6mm Z×4
2

GAUGING SPATIAL SYMMETRIES AND THE … PHYS. REV. X 8, 011040 (2018)

011040-3



we obtain in this topological limit will still be spatially
dependent. (For this reason, we avoid referring to the
topological limit as an “IR limit,” which would be
misleading since the unit cell size—but not the lattice
spacing—is still an important length scale.)
We expect that this topological limit will be described by

a TQFT as in the case of systems without spatial sym-
metries. In fact, given the aforementioned spatial depend-
ence, it should be described by a spatially dependent TQFT.
We give the precise mathematical definition of this concept
in Sec. VI.
Hence, we give the following definition.
Definition 1. A crystalline topological liquid is a phase

of matter that is characterized by a spatially dependent
TQFT acted upon by spatial symmetries.
We expect that this class of systems is quite large.

Certainly, it includes ordinary topological liquids (which,
by definition, have no explicit spatial symmetries and can
be characterized by a spatially constant TQFT). Moreover,
spatially dependent TQFTs can capture a wide range of
other topological crystalline phenomena, as we shall see.
In Sec. VI, we sketch a proof that, on contractible spaces,

spatially dependent TQFTs with spatial symmetries are in
one-to-one correspondence with spatially constant TQFTs
with internal symmetries. Since the latter are expected to
characterize topological phases with internal symmetries,
the crystalline equivalence principle follows. In the follow-
ing sections, we discuss how to understand this result in
more concrete ways without resorting to the highly abstract
formalism of TQFTs.

III. CRYSTALLINE GAUGE FIELDS

A. Gauge fluxes and crystal defects

In order to understand crystalline topological phases, we
study what it might mean to couple to a background gauge
field for a symmetry groupG involving some transformation
of space itself.More generally, we believe a framework exists
where one can also consider symmetries that transform
spacetime. However, for simplicity and to maintain contact
with Hamiltonian models, we focus on purely spatial sym-
metries.We call our object of study the crystallinegauge field.
A special case of a background gauge field is an isolated

gauge flux. Isolated gauge fluxes are familiar objects for
internal symmetries. They are objects in space of codimen-
sion 2 (i.e., points in 2D, curves in 3D),which are labeled by a
group element g ∈ G, and a particle moving all the way
around one is acted upon by g. Actually, for a non-Abelian
group, only the conjugacy class of g is gauge invariant.
Gauge fluxes for spatial symmetries are also labeled by

conjugacy classes of G. They are also well known but not
under that name; they are more commonly referred to as
crystal defects. For example, a gauge flux for translational
symmetry is a dislocation, and a gauge flux for a rotational
symmetry is a disclination (Fig. 2). In 3D, the direction of

dislocation does not have to be in the plane perpendicular to
the defect, as in a screw dislocation. A defect for reflection
symmetry is like the Möbius band (a cross cap). For a glide
reflection, we also insert a shift in the lattice as we go
around the band. We see how this zoo of defect configu-
rations is tamed by topology.

(a) Smooth state (b) Topological limit

FIG. 1. (a) In a smooth state, the lattice spacing and the
correlation length ξ are much less than the unit cell size a and
the radius of spatial variation. (b) The topological response of a
crystalline topological liquid is captured by a spatially dependent
TQFT that captures the spatial dependence within each unit cell
but “forgets” about the lattice.

FIG. 2. An angular defect of 90 degrees in a vertex-centered
square lattice and an angular excess of 120 degrees in a face-
centered kagome lattice.
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Generalizing these examples, we can give a systematic
definition of crystalline gauge flux and, more generally, of a
crystalline gauge field. For motivation, one can look again
at Fig. 2. The original lattice Λ is a regular square or the
kagome lattice. The crucial property of the defect lattice Σ
is that, away from the singular point in the middle, it looks
locally the same as Λ, meaning that in a neighborhood of
every face except the central one, there is an invertible map
sending Σ to Λ. However, there is no globalmap sending Σ
to Λ. Indeed, if we try to extend the domain of our map, we
will eventually create a discontinuity after encircling the
singularity. This is shown in Fig. 3. For the 90-degree
angular defect, the discontinuity is a branch cut such that
the limits on either side are related by a 90-degree rotation.
For a crystal defect, this discontinuity is always by a G
transformation, and it labels the symmetry flux of the
defect.
To further motivate the definition, let us recall the

definition of a gauge field for an internal (discrete)
symmetry. Gauge fields for discrete symmetries are some-
what more esoteric than gauge fields for continuous groups

(like the familiar electromagnetic vector potential Aμ). One
way to think about them is that they encode “twisted
boundary conditions.” For example, threading a nontrivial
gauge flux for an Ising symmetry through a system living
on a circle means that we make a cut and identify spin-up
on one side of the cut with spin-down on the other side
of the cut (“antiperiodic boundary conditions”). In general,
to specify a gauge field on a manifold M, we can build up
M out of “patches.” The boundaries between patches
(“domain walls”) are “twisted” by an element g ∈ G of
the symmetry group (“transition functions”), which tells us
how to identify the patches. A discrete gauge field must be
“flat,” which is to say there can be no nontrivial holonomy
around a vertex where several patches intersect, as shown
in Fig. 4. In other words, there is no G-flux through the
vertices (or along such linelike junctions in a 3D picture).
There is some inherent gauge freedom: First, we can merge
or split patches, provided that the boundaries thus created
or destroyed are twisted by the trivial element 1 ∈ G;
second, we can apply an element gp ∈ G of the symmetry

FIG. 3. A 90-degree disclination maps discontinuously to the
square lattice, as indicated with the colored quadrants. The red
line is the branch cut across which the image rotates by
90 degrees. Because the discontinuity is by a rotation in G, this
map descends to a continuous map from the disclination to the
quotient of the square lattice by G.

(a) (b)

(c)

(d)

FIG. 4. The “patches” picture of a gauge field for an internal
symmetry. (a) The manifold M is divided up into patches,
and the boundaries between patches are twisted by a group
element g ∈ G. (b) The flatness constraint implies that the
holonomy around a vertex must be trivial. (c,d) We identify
configurations that differ by dividing patches or by acting on a
patch with some g ∈ G.

GAUGING SPATIAL SYMMETRIES AND THE … PHYS. REV. X 8, 011040 (2018)

011040-5



group to a given patch p, which has the effect of
multiplying the twist carried by the boundaries of this
patch by gp. This gauge freedom relates two different
representations of the same gauge field. More abstractly
(but equivalently), we can define a gauge field as a principal
G bundle over M [68].
As an example, we can consider a g-flux at the origin

of the plane. This g-flux is defined as a G gauge field on
the plane minus the origin. It may be defined using a
single (simply connected) patch that meets itself along a
domain wall extending from the origin to infinity. This
domain wall is labeled with the transition function g,
indicating that a point charge taken along a path
encircling the origin will return to its original position
with any internal degrees of freedom transformed by the
symmetry g. The similarity between the internal sym-
metry flux and the crystal defect is striking. It leads us to
identify the role of the branch cut in the latter with the
domain wall of the former.
With this identification in hand, we are ready to state our

definition of a crystalline gauge field by directly general-
izing the patches picture of internal symmetry gauge fields.
An important novelty is that the lattice geometry is defined
by the crystalline gauge background. In other words, we fix
our physical space X containing the lattice Λ. Note that X is
usually Rd, a torus, or some related spacetime, and G acts
on X preserving Λ. The lattice with defects Σ will be
embedded in a different space M. For example, in the
disclination, M is the plane minus the origin.
To specify a crystalline gauge field, we start with the

same data we had before: a collection of patches Ui

dividing M ¼ ⋃iUi, with domain walls between intersect-
ing patchesUi∩Uj≠0 labeled by elements gij ¼ g−1ji ∈ G,
with the flatness condition

Q
i gi;iþ1 ¼ 1 imposed over all

contractible loops. This is the definition of an internal
symmetry G gauge field, but it is not the end of the story
because, as we saw in the examples above, there is an extra
feature of crystalline gauge fluxes that needs to be captured:
a map f∶M → X. This represents the (continuum limit)
of the identification between the lattices Σ embedded in M
and Λ embedded in X. Inside each patch Ui, this map
f∶Ui → X is continuous, but on the boundaries between
intersecting patches Ui ∩ Uj ≠ 0, we impose the twisted
continuity condition that, for anym ∈ Ui ∩ Uj, the limit of
fðm0Þ as m0 → m in Ui and the limit of fðm0Þ as m0 → m
in Uj are related in X from the former to the latter by
application of gij. For example, in Fig. 3, the different
colored quadrants are patches on M (which, in this case,
is the punctured plane R2nf0g), and the thick red line
denotes a boundary between patches, which is twisted by a
90-degree clockwise rotation as we pass from the teal patch
to the violet patch. We impose the same gauge freedom as
before [Figs. 4(c) and 4(d)], except that when we act on a

patch by g, as shown in Fig. 4(d), then inside the patch we

replace the function f according to fðmÞ → gfðmÞ.
There is a final condition we need to impose, related to

the orientation (or lack thereof) of the manifold M. It is
standard lore that a topological phase that is not reflection
invariant cannot be put on an unorientable manifold and,
moreover, that for a reflection-invariant system, putting it
on an unorientable manifold is essentially threading a
“flux” of the reflection symmetry. So in order to enforce
compatibility with these notions, we define μðgÞ ¼ −1 if g
acts in an orientation-reversing way on X, and μðgÞ ¼ 1
otherwise. For any closed loop γ in M, we can define
the flux gγ , which is the product of the twist over each
boundary crossed by γ. We also define λðγÞ ¼ �1 depend-
ing on whether going around the loop γ would reverse the
orientation on M. We require that λðγÞ ¼ μðgγÞ.
For completeness, we also formulate a more abstract

mathematical definition. Basically, we are specifying some
extra data on top of a principal G bundle.
Definition 2. A crystalline gauge field is a pair ðπ; f̂Þ,

where π∶P → M is a principalG bundle, and f̂∶P → X is a
continuous map satisfying f̂ðgpÞ ¼ gf̂ðpÞ for all p ∈ P,
g ∈ G. We require that the homomorphism μ∶G → Z2

[where μðgÞ ¼ −1 if g has orientation-reversing action
on X] reduces π to the orientation bundle of M. We say
that two pairs ðπ; f̂Þ, ðπ0; f̂0Þ represent the same crystalline
gauge field if the principal G bundles π∶P → M and
π0∶P0 → M are isomorphic by a map σ∶P → P0 such that
f̂0∘σ ¼ f̂.
The map f̂ in the definition above always induces a map

g from P=G ¼ M into X=G. Hence, we have the following
commutative diagram:

ð3:1Þ

It should be clear, from the disclination example, that
crystalline gauge fields can describe the crystal defects,
which were our original motivation. However, now that we
have given a general definition, we need to ask whether all
crystalline gauge fields admit such a physical interpreta-
tion. In particular, there should be a well-defined sense of
what it means to couple to a general crystalline gauge field.
For internal symmetries, we know how to couple to a

gauge field, at least when that gauge field lives on M ¼ X.
Given a gauge field A for a (discrete) internal symmetry G,
described using patches and transition functions, and given a
Hamiltonian H that commutes with the symmetry, we
can define a Hamiltonian H½A� that describes the system
coupled to the gauge field. To do this, we assume thatH can
be written as a sum of local terms. Then, H½A� contains a
local term for each local term in H. The terms in H that act
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only within a patch carry over to H½A� without change.
However, for terms inH that act inmultiple patches,wemust
first perform a gauge transformation so that the term acts in a
single patch; we then add it to the Hamiltonian and reverse
that gauge transformation. See, for example, Ref. [7].
Now suppose that we do the same thing for crystalline

gauge fields. For crystal defects (for example, the discli-
nation in Fig. 3), it should be clear how to do this; locally,
the defect lattice looks the same as the original lattice, so we
just pull local terms in X back into M. On the other hand,
this construction does not necessarily work for a general
crystalline gauge field. We have to impose a condition that
we call rigidity.
Definition 3. A crystalline gauge field (expressed in

terms of patches, twisted boundary conditions, and a map
f∶M → X) is rigid if, near any pointm ∈ M that maps into
a lattice point in X under f, there exists a local neighbor-
hood U containing m such that, after making a gauge
transformation such that U is contained in a single patch,
f is injective (one to one) when restricted to U; moreover,
the image of U under f contains all lattice points that are
coupled to fðmÞ by a term in the Hamiltonian [69].
This somewhat technical definition is best understood by

considering examples of crystalline gauge fields that are not
rigid. An extreme example is the case where f∶M → X is
the constant function: There is some x� ∈ X such that
fðmÞ ¼ x� for all m ∈ M. In other words, every point inM
gets identified with a single point in X. If the Hamiltonian
in X has terms coupling x� with some other nearby point,
then there is no way to define corresponding terms acting in
M since the nearby point does not correspond to any point
inM. More generally, rigidity fails when there are points at
which f is not locally invertible; if f is a smooth map
between manifolds, this is equivalent to saying that there
are points at which its Jacobian vanishes.
For a rigid crystalline gauge field, on the other hand,

there is always a well-defined procedure to couple it to the
Hamiltonian. The idea is that rigidity guarantees that the
local neighborhood is always sufficiently well behaved
that it makes sense to pull terms in the Hamiltonian from X
back into M. This is illustrated in Appendix C.
Finally, let us remark on an interesting property of the

definition of the crystalline gauge field: In the case where
the whole symmetry group acts internally (that is, the action
of G on X is trivial), we might expect the definition to
reduce to the usual notion of a gauge field for an internal
symmetry. However, this is evidently not the case because
there is still the map f∶M → X (which, in this case, must be
globally continuous). We believe that, in fact, this may be a
more complete formulation of a gauge field for an internal
symmetry.

B. Crystalline topological liquids

From the discussion in the preceding discussion, it might
seem that we should only consider rigid crystalline gauge

fields. Now, however, we argue that this is too restrictive.
One indeed should require a crystalline gauge field A to
be rigid if one wants to go from a Hamiltonian H to a
Hamiltonian H½A� coupled to A. But such a microscopic
lattice Hamiltonian is a property of the system in the
ultraviolet (UV). On the other hand, when classifying
topological phases, what we actually care about is the
low-energy limit. The central conjecture of this work is that
it is well defined to discuss the low-energy topological
response to any crystalline gauge field (not just a rigid one).
One reason for this is that a spatially dependent TQFT

that is invariant under a spatial symmetry can be expressed
as a single TQFT coupled to a background field, which is
precisely our crystalline gauge background of Definition 2
(with no rigidity constraints). This should be compared
with the result for internal G symmetry, which says that
a G action on a (single) TQFT is equivalent to a TQFTwith
an ordinary background G gauge field. In other words,
topological field theories can be gauged, and the resulting
topological gauge theory retains all the information of the
original theory and its symmetry action [70,71]. We discuss
this further in Sec. VI.
Such considerations provide the mathematical basis for

our conjecture about the gauge response. Nevertheless,
since these arguments are very abstract and potentially
unappealing to readers not familiar with TQFTs, we also
give amore concrete prescription for coupling smooth states
(recall that we introduced this concept in Sec. II) to a general
crystalline gauge field. For simplicity, we only consider the
case where there are no orientation-reversing symmetries,
although we expect that this restriction can be lifted.
The idea is that there is a simple set of data that one can

use to specify a smooth state. First, in the neighborhood of
every point in space, we need to specify the orientation of
the fine lattice; this can be specified through a framing
of the manifoldM (i.e., a continuous choice of basis for the
tangent space at every point). Moreover, in the neighbor-
hood of every point in space, the state looks like it respects
the (orientation-preserving) spatial symmetries of the fine
lattice (globally, of course, this is not the case). Hence,
there is a map ψ∶M → Ω, where Ω is the space of all
ground states invariant under the spatial symmetries of the
fine lattice. (For our arguments, it is not important to
characterize Ω precisely.) For a smooth state, we require
this map to be continuous.
As a warm-up, we first show how to define coupling to a

gauge field for an internal discrete unitary symmetry G in
terms of smooth states. Let Ω be a space of ground states,
with G acting on Ω as a tensor product over every site, with
the action at a given site described by the representation
uðgÞ. Let ψ ∈ Ω be a G-invariant state. Now, given a
framed manifold M and a G gauge field A (i.e., collection
of patches on M with a G-twisted boundary condition;
alternatively, a principal G bundle over M), we show how
to define a smooth state ψ ½A�∶M → Ω. For each g, we
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define a continuous path uðg; tÞ; t ∈ ½0; 1� such that
uðg; 0Þ ¼ I and uðg; 1Þ ¼ uðgÞ. Given that ψ is G invariant,
acting with ½uðg; tÞ�⊗N on ψ defines a loop ψgðtÞ ∈ Ω, such
that ψgð0Þ ¼ ψgð1Þ ¼ ψ . Then, inside each patch, we just
set ψ ½A�ðmÞ ¼ ψ . But we decorate patch boundaries
twisted by a group element g ∈ G by the corresponding
loop. In other words, we require that, as m crosses such a
boundary, ψ ½A�ðmÞ goes through the loop described by
ψgðm; tÞ. One might wonder whether this procedure is well
defined at the intersections between patch boundaries. For
example, an obstruction would occur if the composition
of the paths ψg1 , ψg2 , and ψ ðg1g2Þ−1 defines a noncontractible
loop, i.e., a nontrivial element in the fundamental group
π1ðΩÞ. In Appendix D, we show that such obstructions can
never arise, provided that we sufficiently enlarge the on-site
Hilbert space dimension. We also give a more rigorous
formulation in terms of the classifying space BG.
Now we return to the case of a crystalline gauge field,

but by way of simplification, we first consider the case
where there is no symmetry. Then, a crystalline gauge
field A on a manifold M is simply a continuous map
f∶M → X. In general, there is no way to define the
HamiltonianH½A�. But for a smooth state ψ∶X → Ω, there
is a well-defined way to define a corresponding smooth
state ψ ½A�∶M → Ω, which describes ψ coupled to A.
Indeed, we just define ψ ½A�ðmÞ ¼ ψðfðmÞÞ. (To com-
pletely specify the state, we also have to choose a framing
on M.) This should be compared with Kitaev’s “weak
symmetry-breaking” paradigm [72], where our Ω plays
the role of Kitaev’s Y.
Finally, we can combine the ideas from the previous

two paragraphs to give a prescription for coupling a smooth
state to a crystalline gauge field for a symmetryG acting on
X, living on a manifold M. The crystalline gauge field is
specified (according to the discussion in Sec. III A) by a
collection of patches on M with twisted boundaries and a
function f∶M → X respecting the twisted boundary con-
ditions. We assume the symmetry action takes the form
UðgÞ ¼ SðgÞ½uðgÞ�⊗N , where SðgÞ is a unitary operator
that simply permutes lattice sites around according to the
spatial action, and ½uðgÞ�⊗N is an on-site action. Then, we
define a path uðg; tÞ for t ∈ ½0; 1� such that uðg; 0Þ ¼ I,
uðg; 1Þ ¼ uðgÞ. By acting with ½uðg; tÞ�⊗N , we obtain a path
ψgðx; tÞ in M. It is not a loop this time though; instead,
G invariance of ψ implies that ψgðx; 0Þ ¼ ψðxÞ, ψgðx; 1Þ ¼
ψðgxÞ. Now, we can define the coupled state ψ ½A� as
follows. Inside each patch, we have ψ ½A�ðmÞ ¼ ψðfðmÞÞ.
Then, for patches connected by boundaries twisted by
g ∈ G, we connect up the ψ ½A� in the respective patches by
means of the paths ψgðx; tÞ. The previously noted endpoints
of these paths are consistent with the fact that fðmÞ jumps
to gfðmÞ as one crosses the boundary. Again, we defer the
proof that this procedure is well defined at the intersection
of boundaries to Appendix D.

At this point, the careful reader might raise an objection.
In our statement of the conjecture about coupling to a
crystalline gauge field, we did not require the manifold M
to be framed, only orientable (the orientability condition
comes from our stipulation that there are no orientation-
reversing symmetries, and from the compatibility condition
between the orientation bundle of M and the crystalline
gauge field discussed in Sec. III A and again in Sec. VI).
But so far, our smooth-state arguments only showed how to
couple to crystalline gauge fields on framed manifolds.
There are two questions that still need to be addressed:

(i) Does the topological response depend on the choice
of framing?

(ii) Can the topological response be defined on oriented
manifolds that do not admit a framing?

These questions need to be addressed in any formulation of
the continuum limit. For bosonic systems, we expect that the
continuum limit, if it exists, can be defined on any oriented
manifold and does not depend on any extra structure. For
fermionic systems, it also can depend on a spin or spinc

structure. There are, of course, systems that, while gapped,
still exhibit some metric or framing dependence in the IR,
e.g., Witten’s famous framing anomaly of Chern-Simons
theory [73]. We later approach these questions in the TQFT
framework of Sec. VI. For now, let us discuss these questions
from the perspective of smooth states.
For question 1, we observe that changing the framing

corresponds to changing the fine lattice, and generally
speaking, most topological phases have a “liquidity”
property that ensures that the ground states on different
lattices can be related by local unitaries. Since the states live
on different lattices, this requires bringing in and/or
removing additional ancilla spins that are not entangled
with anything else, as is standard protocol when defining
local equivalence of quantum states. Such a liquidity
property will be necessary for the crystalline topological
liquid condition to be satisfied. There are some notable
exceptions, such as fracton phases [61], of which a simple
example is a stack of toric codes. We do not expect such
fracton phases to be crystalline topological liquids.
As for question 2, we believe that the answer is probably

“yes.” To illustrate the issues at play, consider the 2-sphere.
This is an orientable 2-manifold that does not admit a
framing. As a consequence, there is no way to put a regular
square lattice on a 2-sphere; there must be at least a singular
face that is not a square or a singular vertex that is not
4-valent. Thus, one cannot strictly define a smooth state.
However, we expect that there are ways to “patch up” such
singular points so that they do not affect the long-range
topological response. For example, the toric code is usually
defined on a square lattice, which cannot be placed on the
sphere, but it is easy to put a toric-code-like state on the
sphere by allowing a few nonsquare faces.
We emphasize that coupling to nonrigid crystalline

gauge fields is what allows us to establish the crystalline
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equivalence principle. For example, for internal sym-
metries, one could consider braiding symmetry fluxes
around each other. Does this make sense in the case of,
for example, disclination defects? If the disclinations were
interpreted strictly as lattice defects, this would not be
possible since there is no continuous deformation of a
lattice containing two disclinations such that the two
disclinations move around each other with the lattice
returning to its original configuration. But if we interpret
disclination defects as special cases of (generally nonrigid)
crystalline gauge fields, then this braiding process is
allowed. The physical interpretation is that, in the course
of the braiding process, additional sites get coupled to, and
superfluous sites decoupled from, the system by means of
local unitaries (as discussed above in the context of the
framing dependence). In other words, the lattice geometry
changes along the path.
In conclusion, this discussion motivates our terminology

of crystalline topological liquids: Although such systems
are “crystalline” in the sense that they have spatial
symmetries, they are also “topological liquids” in the sense
that the lattice is not fixed but can be transformed into other
geometries by means of local unitaries (with ancillas). This
is also consistent with our picture from Sec. II that the
topological response of crystalline topological liquids
“forgets” about the lattice.

C. Crystalline equivalence principle

We are mainly interested in topological crystalline
phases in Euclidean space X ¼ Rd. Moreover, the topo-
logical response should only depend on the deformation
class of the crystalline gauge field. It turns out that for
X ¼ Rd, there is a very simple characterization of the
collapsible homotopy classes of crystalline gauge fields.
Theorem 1. If X is contractible (e.g., X ¼ Rd), then the

deformation classes of crystalline gauge fields are in one-
to-one correspondence with internal gauge fields.
In other words, in the “patches” formulation of crystalline

gauge fields, the deformation classes remember only the
twisted boundary conditions and not the function f∶M → X.
This theorem is a corollary of the more general classification
theorem for crystalline gauge fields. See Theorem 6.
However, here we remark on an elementary way to see
one part of Theorem 1: namely, that homotopy classes can
only depend on the twisted boundary conditions. (For the
moment, we will not attempt to prove the other part, namely,
that any configuration of twisted boundary conditions has at
least one function f respecting it.) Although the proposition
holds more generally, for simplicity, we consider the case
where X ¼ Rd and where the G action on X is affine linear:

gx ¼ Agxþ bg; ð3:2Þ

where Ag is a (d × d) matrix and bg is a length d vector. We
then observe that given a patch configuration on M with

twisted boundary conditions, and two maps f0∶M → X and
f1∶M → X respecting the same twisted boundary condi-
tions, there is a continuous interpolation

fs ¼ ð1 − sÞf0 þ sf1; ð3:3Þ

which respects the same twisted boundary conditions all the
way along the path.
Theorem 1 allows us to deduce the most important result

of this paper: It shows that deformation classes of crystal-
line gauge fields are in one-to-one correspondence with
principal G bundles. On the other hand, deformation
classes of gauge fields for an internal symmetry also
correspond to principal G bundles. Topological phases
are distinguished by their response to background gauge
fields. Therefore, we conclude the crystalline equivalence
principle: the classification of crystalline topological
liquids on a contractible space with spatial symmetry group
G is the same as the classification of topological phases
with internal symmetry G. To be precise, the orientation-
reversing symmetries on the spatial side are identified
with the antiunitary symmetries on the internal side.
Furthermore, in fermionic systems, reflections with
R2 ¼ 1 correspond to time reversal with T2 ¼ ð−1ÞF and
vice versa. (These statements are not clear from the above
treatment since we have not discussed gauging antiunitary
symmetries. However, they follow from the general TQFT
picture, as discussed in Sec. VI A.)

D. Beyond Euclidean space

Before we delve into the details of how to classify
crystalline topological liquids by their topological response
to gauge fields, we recall that the above considerations refer
to topological phases that exist in Euclidean space Rd. In
principle, one can consider the more exotic problem of
classifying topological phases on noncontractible spaces:
for example, the d-sphere, the d-torus, or a Euclidean space
with holes [74]. The practical relevance of this problem
may be a bit obscure, but from a theoretical point of view,
we find it more enlightening to formulate the problem we
are interested in—Euclidean space—as a special case of the
more general problem. It also illustrates an important
conceptual point because, as we shall see, the crystalline
equivalence principle does not hold on noncontractible
spaces (see, for example, Sec. VII). Thus, the crystalline
equivalence principle is not something that a priori has to
be true. Rather, it is a consequence of the fact that systems
of physical interest live in Euclidean space.
On contractible spaces, we have Theorem 1 for crystal-

line gauge fields. This classification theorem is a special
case of the more general result (see Appendix E and
Theorem 6) that deformation classes of crystalline gauge
fields M → X are classified by homotopy classes of maps
from M into the “homotopy quotient” X==G, pronounced
“X mod G.” For X contractible, X==G is homotopic to the
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“classifying space” BG, so we recover Theorem 1 if we
invoke the well-known fact that principalG bundles overM
are classified by homotopy classes of maps M → BG.

IV. EXACTLY SOLVABLE MODELS

It is of course important to show that we can explicitly
construct Hamiltonians realizing topological crystalline
phases classified in this work. We do this using a “boot-
strap” construction. This is really a metaconstruction, in the
sense that it is a prescription for going from a construction
for an SPT or SET phase with internal symmetry to a
construction for a topological crystalline phase. A similar
idea was used by one of us to construct phases of matter
protected by time-translation symmetry in Ref. [64].
For simplicity, we consider the case where the entire

symmetry groupG acts spatially; i.e., the internal subgroup
is trivial. We also consider the case where G does not
contain any orientation-reversing transformations, and we
work in Euclidean space, X ¼ Rd. First of all, let φ be a
surjective homomorphism from the symmetry group G to a
finite group Gf. We use one of the many approaches to
construct a topological liquid with an internal symmetry
Gf. In most of these approaches, there is no obstacle to
construct the Hamiltonian to also have a spatial symmetry
G, which commutes with Gf so that the full symmetry
group is ~G ¼ G × Gf (for example, in the case of bosonic
SPTs, this can be shown explicitly using the construction of
Ref. [17], as detailed in Appendix F). We then can imagine
deforming the Hamiltonian to break the full symmetry
group ~G down to the diagonal subgroup

G0 ¼ fðg;φðgÞÞ ∈ ~Gg ≅ G: ð4:1Þ

We expect that this model will be in the topological
crystalline phase that corresponds to the internal sym-
metry-protected phase we started with via the crystalline
equivalence principle. Indeed, we can do this construction
on a lattice with lattice spacing much less than the unit
cell size (thus giving a smooth state) and verify that, for
the original model (without the ~G-breaking perturbation),
following the prescription given in Sec. III A to couple to a
crystalline gauge field for the diagonal subgroup G0 gives
the same result as coupling to an internal gauge field for the
internal subgroup G. (A similar argument can be given in
the spatially dependent TQFT picture of Sec. VI.)
Let us briefly sketch how to extend the above con-

struction to symmetry groups G containing orientation-
reversing transformations. A general topological phase is
not reflection invariant, so the above argument needs to be
modified. We expect that a topological liquid can always
be made invariant under a spatial symmetry G if we make
the orientation-reversing elements of G act antiunitarily;
we suggestively call this the “CPT principle.” [75]; We
prove this explicitly for bosonic SPT phases in Appendix F.

We then proceed as before, starting from a ðG ×GfÞ-
symmetric topological phase, where the internal symmetry
φðgÞ ∈ Gf acts antiunitarily if g is orientation reversing.
Eventually, the symmetry gets broken down to the diagonal
subgroup G0, which contains spatial symmetries, possibly
orientation reversing, but all acting unitarily (since the
orientation-reversing elements of G, which we have taken
to act antiunitarily, get paired with antiunitary elements of
Gf). We expect that this gives the topological crystalline
phase corresponding to the original internal symmetry-
protected phase via the crystalline equivalence principle,
but explicitly determining the topological response would
involve explaining what it means to gauge an antiunitary
symmetry, which we will not attempt to do here (but
see Ref. [76]).

V. TOPOLOGICAL RESPONSE
AND CLASSIFICATION

In this section, we discuss how our understanding of
what it means to gauge a spatial symmetry allows us to
classify topological phases by their topological responses.
Basically, any approach to understanding topological
phases with internal symmetries which relies on gauging
the symmetry can be applied equally well to space-group
symmetries by coupling to crystalline gauge fields.
Moreover, in Euclidean space, Theorem 6 should imply
that we obtain the same classification as for internal
symmetries, in accordance with the crystalline equivalence
principle. In noncontractible spaces, we may obtain a
different classification.
There are two main approaches to thinking about

topological response. The first is a bottom-up approach
where one starts with a Hamiltonian in a lattice model and
attempts to work out all the topological excitations. For
example, in 2þ 1D, one has anyons and symmetry fluxes,
and one can ask about how they interact. This is tabulated
mathematically in a G-crossed braided fusion category
[7,77], and one can try to work out a classification of these
objects or at least find some interesting examples and then
look for lattice realizations.
The second approach is a top-down type where one first

assumes the existence of a low-energy and large-system-
size (IR) limit of the gapped system. This is a TQFT of
some sort, and one can try to guess what it is from the
microscopic symmetries, entanglement structure (short-
range vs long-range), and so on. One can make a bold
statement that all possible IR limits are of a certain type
of TQFT and then try to classify all of those. Despite its
obvious lack of rigor, this approach has proven successful.
One reason for this is that it is often possible to bridge the

two perspectives. For example, a G-SPT can be understood
in terms of an effective action ω ∈ HDþ1ðBG;ZÞ [17,57]
leading ultimately to a TQFT. But considering the fusion of
symmetry fluxes also leads to an element of HDðG;Uð1ÞÞ
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through a higher associator of symmetry fluxes (in
2þ 1-D, it is the F symbol). These are equivalent
under the isomorphism HDþ1ðBG;ZÞ ¼ HDðG;Uð1ÞÞ
(see Appendix A for more explanation of this isomor-
phism). In general, defects such as anyons and symmetry
fluxes can be described in the TQFT framework through
the language of “extended TQFT.”
Let us now discuss how these methods can be extended

to the case of spatial symmetries.

A. Flux fusion and braiding for SET phases
in (2 + 1)-D with spatial symmetry

To classify symmetry-enriched phases in (2þ 1)-D
phases, we can consider the “bottom-up” approach of
Ref. [7]. There, one has a topological phase with an
internal symmetry G, and one envisages coupling to a
classical background gauge field. In particular, one can
consider gauge field configurations in which the gauge
fluxes are localized to a discrete set of points. One can then
consider the algebraic structure of braiding and fusion of
such gauge fluxes, which is an extension of the braiding
and fusion of the intrinsic excitations (anyons) that exist
without symmetry. This structure is argued to be described
by a mathematical object called a “G-crossed braided
tensor category.” For a crystalline topological liquid on
Euclidean space, we expect that the equivalence between
crystalline gauge fields and G connections allows the
arguments to carry over without significant change. (We
leave a detailed derivation for future work.) On noncon-
tractible spaces, presumably a generalization of the argu-
ments of Ref. [7] should be possible, but we will not
explore this.

B. Topological response as effective action

Another way to compute topological response, which
does not involve braiding or fusing fluxes, is by computing
twisted partition functions. In other words, given a back-
ground gauge field (ordinary or crystalline) A on a
spacetime M, we can compute the partition function of
ZðM;AÞ and compare it to the untwisted partition function
ZðMÞ. The assumption is that

ZðM;AÞ=ZðMÞ

tends to a complex number of modulus 1 in the limit thatM
becomes very large compared to the correlation length.
In favorable situations, such as a crystalline topological
liquid, the limiting phase is a topological invariant of M
and its gauge background A. We call this the topological
response of our system to A and its log the effective
action for the gauge background A. In some cases, like
M ¼ Y × S1, ZðM;AÞ can be interpreted as some kind of
“twisted trace” of symmetry operators, as we will soon
discuss. In general, there is such an interpretation, but it
involves topology-changing operators [78,79]. What is

most important for classification of phases is that it is a
number that captures some (or all) of the data in a spatially
dependent TQFT, which we introduce in Sec. VI as the
mathematical way to describe a crystalline topological
liquid phase of matter.
For internal symmetries of bosonic systems, we know

that in this case, the limiting ratio can be written

ZðM;AÞ=ZðMÞ → exp

�
2πi

Z
M
ωðAÞ

�
; ð5:1Þ

where ωðAÞ is a gauge-invariant top form made out of the
gauge field. In the case of a crystalline gauge field
A ¼ ðP;M; π; f̂Þ, we also assume that the topological
response is an exponentiated integral:

ZðX; AÞ=ZðXÞ → exp

�
2πi

Z
M
ωðα; f̂Þ

�
; ð5:2Þ

where ωðα; f̂Þ is a top form on M made of the twisting
field α ∈ H1ðM;GÞ which classifies the cover P and the
map f̂, used to pull back densities from X. In the case
where G is purely internal, α plays the role of A
in Eq. (5.1).
As discussed in Ref. [57], responses of the form (5.1) are

the same as cocycles in group cohomology, defined as
cohomology of the classifying space HDðBG;Uð1ÞÞ [80],
where D is the dimension of spacetime X. This reproduces
the classification of internal-symmetry bosonic SPTs in
Ref. [17]. To construct the effective action of A, we use the
fact that the gauge field A itself is the same as a map
A∶X → BG, and given a D-cocycle on BG, we can pull it
back along this map to get ωðAÞ over X.
Analogously, we can think of our crystalline gauge field

as a map A∶M → X==G (see Appendix E) and take any
form in HDðX==G;Uð1ÞÞ, pull it back along this map toM
to get a ωðα; f̂Þ, and integrate it (see Appendix G). We just
need to be a little careful with coefficients. We intend to
integrate ωðαÞ over M, but if G contains orientation-
reversing elements like mirror and glide reflections (or
time reversal), then M may likely be unorientable.
Integration on an unorientable M is done by choosing a
local orientation: orienting M away from some hypersur-
face N and performing the integration on M − N with
its orientation. To ensure the integral does not depend
on this local orientation, we need our top form ωðαÞ to
switch sign when the local orientation is reversed.
Mathwise, this means that ωðαÞ should live in cohomology
HDðM;Uð1ÞorÞ with twisted coefficients Uð1Þor. Luckily,
if X is orientable, then the unorientability of M is
entirely due to orientation-reversing elements of G, so if
we use twisted cohomology HDðX==G;Uð1ÞorÞ where
orientation-reversing elements of G act on Uð1Þ by
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θ ↦ −θ, then the coefficients will pull back properly. This
cohomology group is well known in algebraic topology as
the equivariant cohomology of X, and it is written

HD
GðX;Uð1ÞorÞ ≔ HDðX==G;Uð1ÞorÞ:

Another subtlety comes from considering the identity
map M ¼ X → X as a crystalline gauge field. Any non-
trivial topological response to the identity cover is equiv-
alent to a shift of all the partition functions by a phase. We
may as well consider only the subgroup of all equivariant
cohomology classes, which, pulled back along the identity
map, are trivial. This is called reduced cohomology and is
denoted with a tilde, ~H.
Summarizing [and recalling the subtlety about replacing

Uð1Þ → Z, increasing the degree by 1, as discussed in
Appendix A), we obtain the following theorem.
Theorem 2. Homotopy-invariant effective actions in

D ¼ dþ 1 spacetime dimensions for crystalline gauge
fields A∶M → X==G, which may be written as integrals
over M, are in correspondence with “twisted reduced
equivariant cohomology”:

~HDþ1
G ðX;ZorÞ:

In the following section, we give examples of crystalline
SPT states and show how to compute the topological
response as a class in equivariant cohomology.
Finally, even though these are all the effective actions,

from what we have learned from the case of time-reversal
symmetry [21] and consideration of thermal Hall response,
we know that these are very unlikely to be all the phases.
There are some criteria, like homotopy invariance, that pick
out these phases based on their effective action, but we do
not have a microscopic characterization of which phases
come from group cohomology and which phases are from
beyond. We say “bosonic” because we have learned the
importance of including spin structure in a careful way
[27]. We discuss the relationship between topological
actions and phases in Appendix A.

C. Examples of topological response

Let us explain, with some examples, how the topological
response (5.2) manifests itself physically and how it can be
computed starting from an SPT state. These examples were
constructed using the techniques in Appendix F.

1. Reflection SPT in 1+ 1D

We consider a system of spin-1=2’s lying along the x axis
at integer coordinates x ¼ j. We use the X basis for these
spins and consider the state

� � � j←i ⊗ j←i ⊗ ðj→i − j←iÞ ⊗ j→i ⊗ j→i � � � :

There is no reflection-symmetric perturbation (keeping the
gap) that can take that central minus sign to a plus. This is
because it can be understood as an odd charge for an
internalZ2 symmetry induced by reflection at the reflection
center. This odd charge is the signature of this SPT phase.
Let us see how to compute it as a topological response.
Observe that this odd charge can be detected using a

trace

charge at reflection center ¼ lim
β→∞

TrRe−βH
0 ¼ −1; ð5:3Þ

where H is a gapped Hamiltonian with ground state as
above andR is the reflection operator. Traces are computed
by path integrals with a periodic time coordinate. The
insertion ofRmeans that, as we traverse this periodic time,
we come home reflected. This means that the geometry of
the spacetime whose path integral computes this trace is a
Möbius strip.
We can represent this geometry as a crystalline gauge

field over

X ¼ Rx × S1t ¼ fðx; tÞjx ∈ R; t ∈ ½0; 1�; ðx; 0Þ ¼ ðx; 1Þg;

the usual domain for background gauge fields used to
compute twisted traces. We write the Möbius strip

M ¼ fðm; sÞjm ∈ R; s ∈ ½0; 1�; ðm; 0Þ ¼ ð−m; 1Þg:

We get a continuous map

fðm; sÞ ¼ ðjmj; sÞ∶M → X=R;

where

X=R ¼ fðx̄; tÞjx ∈ R; t ∈ ½0; 1�; ðx̄; 0Þ
¼ ðx̄; 1Þ; ðx̄; tÞ ¼ ð−x̄; tÞg:

There is no continuous lift of this map to X, so we insert a
branch cut along s ¼ 0 inM. This defines a covering space

P ¼ fðm; s0Þjm ∈ R; s0 ∈ ½0; 2�; ðm; 0Þ ¼ ðm; 2Þg

with covering map π∶P → M defined by

πðm; s0Þ ¼
� ðm; s0Þ 0 ≤ s0 ≤ 1

ð−m; s0 − 1Þ 1 ≤ s0 ≤ 2:

Here, the map f̂∶P → X is defined by

f̂ðm; s0Þ ¼
� ðm; s0Þ 0 ≤ s0 ≤ 1

ðm; s0 − 1Þ 1 ≤ s0 ≤ 2:

We summarize with a diagram [cf. Eq. (3.1)]
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ð5:4Þ

The trace (5.3) is therefore interpreted as a topological
response −1 to this crystalline gauge field à la Eq. (5.2),
and we would like to write it in the form

R
ωðαÞ for

some ω ∈ H2ðBZ2; Uð1ÞorÞ, where α is our double cover
π∶P → M interpreted as a Z2 gauge field, which tells us
where the branch cuts are. It turns out that there is a unique
nontrivial class ωðαÞ ¼ 1

2
α2, and indeed, if we compute

(with particular boundary conditions)

exp

�
2πi

1

2

Z
M
α2
�

¼ −1;

we reproduce the trace (5.3).
Before we move on to richer examples, let us make some

comments for the mathematically inclined on the evalu-
ation of this integral. To obtain the answer, we used the one-
point compactification of M, where we add a single point
at infinity, collapsing the boundary to a point. The one-
point compactification of M is the projective plane RP2

and the usual integral
R
RP2 α2 ¼ 1. However, there is no

rigid crystalline gauge field over X with M ¼ RP2 since X
is noncompact. However, if we imposeR-symmetric, time-
independent boundary conditions on our crystal, then each
end of our cylindrical spacetime Rx × S1t collapses to a
point and becomes a sphere. The reflection group continues
to act on this sphere, and there is a rigid crystalline gauge
field with M ¼ RP2 over S2.
In computing more complicated examples of this same

SPT phase (examples that are not already disentangled),
indeed one finds it necessary to choose some boundary
conditions in Eq. (5.3) to get a nonzero trace. What if we
use periodic boundary conditions? In that case, there is
always a reflection center at ∞, and periodicity implies
that the reflection center will also carry an odd charge.
Therefore, the trace with periodic boundary conditions
will receive a contribution from both reflection centers,
and it will be ð−1Þ2 ¼ 1. We can see this with our
crystalline gauge fields. Indeed, with periodic boundary
conditions, spacetime becomes a torus S1x × S1t , and if we
insert a reflection twist in the time direction, we obtain
M as a Klein bottle. We identify α with the orientation
class in H1ðM;Z2Þ ¼ Z2 ⊕ Z2, and for this class,
α2 ¼ 0, as expected. On the other hand, one can use
Möbius bands centered at either reflection center to see
the odd charge at each one. Gluing them along their
overlap gives us the Klein bottle again, and the partition
functions multiply [81]. We see this in more detail in the
following example.

2. Reflection and translation in 1+ 1D

Next, we consider a one-dimensional system with a
translation and a reflection symmetry, in particular, the state

⨂
j∈Z

ðj←i þ ð−1Þjj→iÞ:

This state is symmetric under reflection around 0,R0ðxÞ ¼
−x, and also under reflection around 1,R1ðxÞ ¼ 2 − x. The
product R1R0 ¼ T2 is a translation by two units. In the
language of the previous example, even sites carry even
charges and odd sites carry odd charges. These charges are
detected by computing traces

lim
β→∞

TrRje−βH ¼ ð−1Þj:

The spacetime geometries of the two traces correspond
to two different crystalline gauge backgrounds over
X ¼ Rx × S1t . Depending on whether we twist by R0 or
R1, our test manifold M is a Möbius band centered over
x ¼ 0 or x ¼ 1.
Because we have a translation symmetry, we can also

consider a trace in periodic space. If the length of the spatial
circle is an odd number of unit cells (for a total length
4N þ 2), then every reflection symmetry passes through an
odd and an even site, so all the traces

lim
β→∞

TrS1Rje−βH ¼ −1: ð5:5Þ

The spacetime geometry M of this trace is a torus with
a reflection twist as we go around the time circle, i.e., a
Klein bottle.
We can describe this trace as a topological response

to a crystalline gauge background over X ¼ Rx × S1t . We
need to insert branch cuts along both cycles of the Klein
bottle M. Along the spatial direction, this is because we
are trying to map S1 → Rx. If we coordinatize S1 using
y ∈ ½−2N − 1; 2N þ 1�, we can consider the map fðyÞ ¼ y
with a branch cut from 2N þ 1 to −2N − 1, where we
translate by T2Nþ1

2 . Denoting the compatible twisting for
translations by τ, a Z gauge field on M, we therefore haveR
τ ¼ 2N þ 1 around the spatial cycle. As before, we also

have to twist around the time direction by a reflection, say,
R0. If we denote by α0 the corresponding compatible
twisting, a Z2 gauge field on M, then we have

R
α0 ¼ 1

(mod 2) around the time cycle. Summarizing, we have

ð5:6Þ

Wewrite the trace (5.5) as a topological response (5.2) of
the form
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exp 2πi
Z
M
ωðα0; τÞ ¼ −1:

There are two choices that work, namely,

ω1ðτ; α0Þ ¼
1

2
τα0; ω2ðτ;α0Þ ¼

1

2
ðτα0 þ α20Þ:

On the other hand, because of the α20 term in ω2, the
second choice describes a nontrivial response to a
Möbius band centered over 0. We have argued that the
partition function in this background computes the sign
of the trace of R0, which, for our SPT state above, is
positive. Therefore, our state must correspond to the
class ω1 ∈ H2

GðR; Uð1ÞorÞ ¼ Z2 ⊕ Z2.
As a consistency check, we show that this cocycle

correctly produces the negative trace over R1. Using the
formula R1 ¼ T2R0, we see that the Möbius strip over 1
has the twisting

R
t α0 ¼

R
t τ ¼ 1 (mod 2). Then, adding the

proper boundary conditions, we indeed find

exp

�
2πi

1

2

Z
M
τα0

�
¼ −1 ¼ lim

β→∞
TrR1e−βH:

Note that the same caveats about this integral and boundary
conditions on the trace we discussed in the previous
example apply.
From what we have computed so far, we see that ω2

corresponds to having odd charges on even sites and even
charges on odd sites, and ω0 ¼ 1

2
α20 corresponds to having

an odd charge on every site, the simplest translation-
symmetric extension of our state in the previous example.

3. Rotation SPT in 2+ 1D

Now, we consider another simple system, this time
on the square lattice with a C2 rotation symmetry Rπ.
This system has an odd C2 charge, e.g., j←i − j→i at the
rotation center, and is a symmetric product state elsewhere.
As with the reflection examples, we can see the odd charge
at the rotation center using a trace:

lim
β→∞

TrRπe−βH ¼ −1:

The geometry of this trace is a mapping cylinder M ¼
R2

x;y × S1π , where we transform by Rπðx; yÞ ¼ ð−x;−yÞ as
we go around the circle. The unique nontrivial effective
action ωðαÞ ¼ 1

2
α½ðdαÞ=2� indeed has

exp

�
2πi

Z
M

1

2
α
dα
2

�
¼ −1;

so this is our phase [82].
The equivalent internal Z2-symmetry SPT is well known

to be characterized by flux fusion: Two π fluxes fuse to an

odd charge. This can be easily read off from the Chern-
Simons form of its effective action 1

2
A½ðdAÞ=2�, where A is

the (ordinary) background Z2 gauge field. Indeed, if we
read dA=2 as the density of 2π fluxes, we can read the
effective action as a source term for A, saying precisely that
2π fluxes carry odd charge.
The crystalline equivalent 1

2
α½ðdαÞ=2� has the same form.

Thus, can we read it in the same way? It turns out that we
can if we identify a gauge flux with the C2 disclination and
use the careful definition given in Sec. III A. We expect to
find a half-C2 charge of the disclination, so we rotate it
twice by 180 degrees and see if we pick up a minus sign. As
shown in Fig. 5, indeed we do.
Note that for an internal Z2 symmetry (it is less clear

how it would work for a spatial symmetry), we can promote
the gauge field to a dynamical quantum variable; then, the
gauge fluxes become deconfined excitations with semionic
statistics [58]. A semion has a topological spin (phase
picked up under 2π rotation) of i. One might ask how this is
consistent with the above statement that the symmetry
defect picks up a phase of −1 under two 180-degree
rotations. However, we note that this is a rotation in X,
whereas the rotation that defines topological spin does not
take place in X but rather in M.

4. Crystalline topological insulators

Now, let us discuss 3þ 1D phases protected by time-
reversal symmetry or reflection symmetry and a Cm
rotation symmetry (typically m ¼ 2, 4, or 6; odd m has
no nontrivial phase). For bosons, these have a Z2 classi-
fication, with topological response resembling a θ ¼ π
topological term

ωðαÞ ¼ 1

2

�
dα
m

�
2

;

where α is the Cm twist of the crystalline gauge back-
ground. These phases are interesting because this topo-
logical term is only nonzero on nonorientable manifolds
[83]. This is where time-reversal or reflection symmetry
becomes important. We consider the reflection-symmetry
example, which acts across the x-y plane: z ↦ −z. We
combine this with a C2 subgroup of Cm, which may be
written x, y ↦ −x, −y, while z ↦ z. The combined
symmetry is a “parity” symmetry:

P∶x; y; z ↦ −x;−y;−z:

Our topological response will be a trace of P. To
describe this as a path integral, we begin with a cube
½−L;L�3x;y;z × ½−T; T�t and glue t ¼ −T to t ¼ T with a P
twist. Then, we choose P-symmetric, t-independent boun-
dary conditions at x, y, z ¼ −L, L. The resulting path
integral is over a spacetime RP4, with α the generator of
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H1ðRP4;ZmÞ. We therefore expect, for these special states,
the topological response

lim
β→∞

TrPe−βH ¼ exp

�
2πi

Z
RP4

ωðαÞ
�

¼ −1:

Let us give an example of a state with this topological
response. We can actually obtain it from dimensional
induction from our C2 symmetric state discussed above.

We place this state along the x-y plane, where it is pinned
by the reflection symmetry across that plane. The above
trace reduces to a trace of the rotation symmetry x, y ↦ −x,
−y on this state, which has an odd charge at the rotation
center, yielding −1.

5. Sewing together a pair of pants
and internal-symmetry SPT

So far we have discussed how to consider 1þ 1D twisted
traces as crystalline backgrounds over either X ¼ S1x ×Rt
or X ¼ Rx × Rt in the case where translation is an explicit
symmetry. Other partition functions of interest must be
computed on higher genus surfaces, and a basic building
block of these is a pair of pants. Indeed, every orientable
closed surface is glued together from discs and pairs of
pants. Physically, the path integral over the pair of pants
computes a sort of fusion process from HðS1Þ ⊗ HðS1Þ to
HðS1Þ. Let us discuss how the pair of pants is realized as a
crystalline gauge background over X ¼ Rx × Rt in a
system with a unit translation symmetry Tx.
We construct M starting with ½−L;L�x × ½−T; T�t, map-

ping by inclusion into X with a cut along the negative t axis
from t ¼ −T to t ¼ 0, which doubles the t axis into ð0�; tÞ
for t < 0. We glue the x → 0− side to x ¼ −L and the
x → 0þ side of the branch cut to x ¼ L also with TL

x .
For t ≥ 0, we glue x ¼ −L to x ¼ L. This gives M the
topology of the pair of pants. We build a crystalline
gauge field M → X==G by mapping the open domain
ð−L;LÞx × ð−T; 0Þ ∪ ð0; TÞ ⊂ M into X ¼ R2

x;t by inclu-
sion. We extend this to a Tx-twisted map on all of M by
inserting branch cuts so that x ¼ �L, t < 0 is glued to
x ¼ 0�, t < 0with a twist TL

x and x ¼ −L, t > 0 is glued to
x ¼ L, t > 0 with a twist T2L

x . In terms of the translation
twisting field τ, we thus have

R
τ ¼ L on the two “incom-

ing” circles at t ¼ −T and
R
τ ¼ 2L on the “outgoing”

circle at t ¼ T.
The path integral over the pair of pants is computed by

stitching together propagators from the two legs into the
waist. These propagators are computed on the cylinder with
translation-twisted boundary conditions. For example, on
the incoming circle from x ¼ −L to x ¼ 0, we restrict the
Hamiltonian from Rx [84] and use boundary conditions so
that, in the product state basis of the on-site Hilbert space
H−L ⊗ H−Lþ1 ⊗ � � � ⊗ H0, we restrict to the subspace
spanned by product states such that the state at H0 is the
same as TL

x applied to the state at H−L. Translation
symmetry ensures that the Hamiltonian preserves this
subspace. We compute e−TH as an operator from this
subspace to H−L ⊗ � � � ⊗ H0. We do the same for the
other incoming circle, as an operator landing in
H0 ⊗ � � � ⊗ HL. Then, we concatenate the two states
and project so that the H0 parts agree. We are in the
subspace of H−L ⊗ � � � ⊗ HL where the −L part agrees
with T−2L

x applied to the þL part. This is the Hilbert space

FIG. 5. An example of a C4 disclination is shown undergoing a
full rotation. Our Hilbert space is a product of C4 spins on each
site, and we depict the transformation of a particular basis
element. The star indicates the missing quadrant of Sec. III A,
across which spins (green) away from the rotation center (red) are
glued by a 90-degree rotation (see also Appendix C). For
convenience, we have used an orange domain wall to indicate
the boundaries between regions of homogeneous spin (compare
Fig. 6). The rotation itself is a two-step process which must be
performed 3 times. The first step (black arrows) is to simply rotate
the picture around the rotation center counterclockwise by
90 degrees. The second step (white arrows) is a gauge trans-
formation (compare Fig. 7) that moves the missing quadrant to its
original position. At the end of the process, all green spins have
returned to their original configuration, while the spin at the
rotation center has been rotated one unit. If there is a charge at the
rotation center, the disclination thus picks up that charge as a
phase after a full rotation.
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of the outgoing circle, and we can apply e−TH on this
subspace to obtain the complete pair-of-pants operator from
the Hilbert space of the two incoming circles to the Hilbert
space of the big outgoing circle.
If we also have an internal symmetry G with associated

background gauge field A, then we can also have G twists
around these circles encoded in the G × Tx crystalline
gauge background. We denote the twists around the two
incoming circles as

R
1;2 A ¼ g1, g2 and around the outgoing

circle as
R
3 A ¼ g3. We find that for continuity, they must

satisfy g1g2 ¼ g3. This describes a G-flux-fusion process
occurring inside the pair of pants (see Fig. 6). If we choose
representative ground states jgi in each sector g ∈ G, the
path integral over M [topological response (5.2) with
boundary conditions] will be some phase cðg1; g2Þ. The
crystalline topological liquid assumption implies that if we
glue two such pairs of pants together in two different ways,
we get equal response, at least in the large M limit. This
implies that cðg1; g2Þ is a group 2-cocycle, encoding the
possibility of projective flux fusion. On the other hand,
since the phases of our states are unphysical, if we rephase
them each jgi ↦ eiϕðgÞjgi, then c ↦ cþ δϕ changes at
most by an exact cocycle, so c ∈ H2ðG;Uð1ÞÞ is well
defined in group cohomology.
Let us show how this is computed in an example. We

consider a very simpleG ¼ Z2 × Z2 symmetric SPT. There
are two associated on-site Z2 degrees of freedom that we
denote ϕ1;2. We consider the state

j0i ¼
X

ϕ1;ϕ2∈C0ðRx;ZÞ
ð−1Þσðϕ1;ϕ2Þjϕ1;ϕ2i:

The sum is over all labelings of vertices j ∈ Z ⊂ Rx

by a pair ðϕj
1;ϕ

j
2Þ ∈ Z2 × Z2, and the relative phase factor

σðϕ1;ϕ2Þ is the number of edges j → jþ 1 where ϕj
1 ¼ 1

(mod 2) and ϕjþ1
2 − ϕj

2 ¼ 1 (mod 2). The unit translation
symmetry Tx∶j ↦ jþ 1 is manifest. The G ¼ Z2 × Z2 is
less manifest but still a symmetry; it acts by shifting the
respective Z2 variables ϕ1;2 by a global constant. It can be
seen by writing

σðϕ1;ϕ2Þ ¼
Z
Rx

ϕ1dϕ2;

which is invariant under a constant shift ϕ2 ↦ ϕ2 þ 1 and
invariant up to boundary terms under ϕ1 ↦ ϕ1 þ 1.
We must determine the propagator for which this state

is the unique ground state. This can be done by using
tensor network techniques or, in this case, merely by
inspection. We find that this state is computed by the path
integral over a strip Rx × ½−T; 0�t with fixed boundary
conditions ϕ1;2ðx;−TÞ ¼ 0 and free boundary conditions
at t ¼ 0, using the path integral weight eiS which is −1 to
the number of intersection points between ϕ1 and ϕ2

domain walls.
Now, for each g ∈ G ¼ Z2 × Z2, we choose a gauge-

fixed reference state for the twisted ground state on S1g,
which means that we have to decide where the domain
walls go. There is, at most, one domain wall for ϕ1 at
x ¼ −L=2 and one for ϕ2 at x ¼ L=2, where the circle is
coordinatized by x ∈ ½−L; L�. Then, we see that all the pairs
of pants have a trivial phase factor except for the one where
the left incoming circle has ϕ2 twist and the right has ϕ1

twist. In this case, the domain walls have to cross (see
Fig. 7), so we get a phase −1. This gives us a function
c∶G × G → Z2, which turns out to be a group 2-cocycle
classifying the non-Abelian extension

Z2 → D4 → Z2 × Z2;

where D4 is the dihedral group of the square. Extending
coefficients to Uð1Þ, we get the corresponding SPT cocycle
c ∈ H2ðG;Uð1ÞÞ. A similar construction of a translation-
symmetric state can be made for any G-SPT phase.

x = -L x = +L

t = -T

t = 0

t = T

x = 0

FIG. 6. The pair of pants as a crystalline gauge background.
The branch-cut gluings are indicated with colored arrows. Here,
ðx; tÞ ¼ ð0; 0Þ is a singularity of the smooth structure but not the
continuous structure. It can be smoothed out into a high-curvature
region but does not affect our calculations.

FIG. 7. A ϕ2 flux and a ϕ1 flux fuse with a minus sign,
computed as a path integral over the pair of pants with an
unavoidable domain-wall crossing.
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6. Weak SPTs and Lieb-Schultz-Mattis theorem

Now, we consider a 2þ 1D system with internal
symmetryG and unit translation symmetry in one direction,
say, Tx. We fix a 1þ 1D G SPT cðAÞ ∈ H2ðBG;Uð1ÞÞ and
consider infinitely many copies of this SPT laid side by side
along x ∈ Z. The edge of this system has a projective G
symmetry c per unit cell. We assemble a crystalline gauge
background that distinguishes the bulk from the trivial
phase. Thus, we derive the Lieb-Schultz-Mattis (LSM)
theorem as the anomalous edge constraint of this crystal-
line SPT.
As we discussed, any 1þ 1D SPT cocycle cðAÞ is

detected using the pair of pants (Fig. 6), interpreted as a
projective fusion of fluxes. In our case, this flux threads
a circle in the y direction, so we must assume there is also a
Ty symmetry or at least an emergent one that we can use to
roll up the system in that direction. There are various ways
to make such a construction. Given a G-SPT state,

jcisingle layer ¼
X

ϕ∈C0ðRy;GÞ
exp

�
2πi

Z
Ry

c1ðϕÞ
�
jϕi;

where c1ðϕÞ is some 1-form density depending on ϕ
(compare previous example) [85], we can write the layered
SPT state as

jcimany layered ¼
X

ϕ∈C0ðR2
x;y;GÞ

exp

�
2πi

Z
dxc1ðϕÞ

�
jϕi;

where dx integrates to 1 across the x direction of any unit
cell. This is equivalent to

jcimany layered ¼ ⨂
x∈Z

jcisingle layer:

We can use this to write a state on a torus S1x × S1y as

jg; c1i ¼
X

ϕ∈C0ðS1x×S1y;GÞ
exp

�
2πi

Z
S1x×S1y

τxc1ðA;ϕÞ
�
jϕi;

where τx is the Tx twisting around S1x, with
R
τx ¼ L the

length of S1x;
R
S1y
A ¼ g is the G twisting around S1y;

and c1ðA;ϕÞ is a 1-form density encoding c1ðϕÞ and its
coupling to the backgroundG gauge field A [87]. There is a
gauge where

R
τx ¼ 1 across each unit cell in the x

direction. This most closely matches our jcimany layered

above, with L copies of jcisingle layer arranged around the
circle S1x. In a gauge with a single branch cut, all L copies
are piled up at the branch cut.
We see that the proper crystalline gauge background for

computing cðAÞ is given by taking
R
τx (the size of S1x)

coprime to the order of c and assembling the pair of pants
using the remaining coordinates y, t. With incoming twists

R
1;2 A ¼ g1;2, one can compute the topological response
cðg1; g2Þ using the state above. Essentially, this crystalline
gauge background is a kind of compactification along S1x.
Of course, since we are already in the topological limit, this
S1x need not be small. Its size need only be coprime to the
order of c. If G is finite, then it suffices to be coprime to the
order of G.
Generalizing to the case where the d-dimensional unit

cell carries the projective G representation with 2-cocycle
c, the topological response is

Z
M
τ1 � � � τdcðAÞ;

where τj are the twists corresponding to the unit translation
Tj in the jth lattice coordinate. To check for this topological
response, we can take our test spacetime M to be a d-torus
(of size coprime to the order of c or G) times a pair of pants
with G twists.

VI. SPATIALLY DEPENDENT TQFTS

Here, we explain our proposal for the description of the
low-energy limit of a crystalline topological phase in terms
of a TQFT. In this setting, our results, such as the crystalline
equivalence principle, and the fact that the low-energy limit
can be coupled to an arbitrary crystalline gauge field, can be
proven mathematically. We focus here on the physical
motivations; however, we give enough detail that the full
mathematically rigorous treatment should be apparent to
TQFT experts.
Recall that the starting point is that a phase of matter

should have a spatially dependent “topological limit”,
which we expect to be described by a spatially dependent
TQFT. Indeed, we define the following.
Definition 4. A (dþ 1)-dimensional spatially depen-

dent TQFT on a space X is a continuous map σ∶X → Θ,
where Θ is the space of all (dþ 1)-dimensional TQFTs.
Now, what exactly do we mean by “space of all TQFTs?”

Familiar notions of TQFTs (at least in 2þ 1D) look quite
rigid, suggesting that any such space would be discrete.
However, we argue that there is a natural way to think about
TQFTs as living in a richer topological space Θ. First of
all, we note that for classifying phases of matter, it will not
be necessary to specify Θ exactly, only up to homotopy
equivalence. Let us discuss a physical motivation for the
homotopy type of Θ.
Generally, specifying the homotopy type of a topological

space involves identifying points, paths between points,
deformations between paths, and so on. The idea is that the
structure of Θ should represent features of ground states
of quantum lattice models. Thus, the points in Θ should
correspond to ground states of quantum lattice models,
the paths in Θ should correspond to continuous paths of
ground states of quantum lattice models, and so on. There is
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another way to interpret these statements. A path in the
space of ground states of quantum lattice models can also
be implemented spatially, giving rise to an interface of
codimension 1. Similarly, deformations between paths give
rise to interfaces of codimension 2 between interfaces of
codimension 1, and so on (see Fig. 8).
Therefore, roughly speaking, the idea is that Θ should

have the homotopy type of a cell complex with vertices v
labeled by (dþ1)-dimensional TQFTs TðvÞ. Edges
e∶v→w are labeled by invertible d-dimensional topological
defects DðeÞ between TðvÞ and TðwÞ. The 2-cells f with

∂f ¼ v1→
e12
…vn→

en1v1 are labeled by invertible d − 1-dimen-
sional junctions between the defects Dðe12Þ…Dðen1Þ. This
continues all the way down to zero-dimensional defects,
which for topological field theories with a unique ground

state on a sphere, are a copy of the complex numbers [88]. In
Ref. [77], this space was considered for d ¼ 3 in the tensor
category framework and was referred to as the Brauer-Picard
3-groupoid.
A version of the bulk-boundary correspondence says that

the set of boundary conditions and boundary operators
determines the bulk topological field theory (see Ref. [89]
for some perspective on this in general dimensions and
Refs. [90–92] in 2þ 1D in particular). For theories admitting
gapped (therefore, topological in the IR) boundary condi-
tions, this is the Baez-Dolan-Lurie cobordism theorem
(sometimes “hypothesis”) [78,93], which characterizes pos-
sible boundary data as special objects in a dþ 1-category C.
This characterization can be used to construct Θ in a
mathematically precise way. (Specifically, it is a spacewhose
homotopy type is described by the core of the category C.)
Let us now consider the effect of symmetries. There is a

natural way to define aG action on a TQFT. From the Baez-
Dolan-Lurie framework, one can show that a TQFT with
symmetry G is equivalent to a TQFT coupled to a back-
ground G gauge field. What we mean by the latter is the
following. A (dþ 1)-dimensional TQFT assigns topologi-
cal invariants to manifolds; for example, it assigns complex
numbers (the partition function) to (dþ 1)-dimensional
manifolds and finite-dimensional Hilbert spaces (the state
space) to d-dimensional manifolds. A (dþ 1)-dimensional
TQFT coupled to a background G gauge field assigns
invariants to G-manifolds: manifolds decorated with G
gauge fields. Physically, this is supposed to describe the
topological response of the system to background gauge
fields. We want to extend this result to systems with spatial
symmetries.
Let us first review the case of a TQFT θ ∈ Θ with an

internal unitary G action. Indeed, we define the following.
Definition 5. A G action on a TQFT is a collection

of isomorphisms ϕg∶θ → θ for each g ∈ G, with consis-
tency data.
In fact, in the Baez-Dolan-Lurie framework discussed

above, isomorphisms are just paths in the space Θ. These
have the interpretation of defects of codimension 1. In fact,
these are just symmetry twist branch cuts (e.g., see
Ref. [7]), such that particles moving through them are
acted upon by the symmetry G. What we mean by
“consistency data” is that the implementation of the
relations of G are also data in the G action (see, for
instance, Ref. [94]). These data describe the codimension-2
junctions where domain walls fuse, the codimension-3
singularities where two junctions slide past each other, and
so on. In fact, a more succinct way to formulate this
definition is that a (anomaly-free, see below) TQFTwith G
symmetry is a continuous map ϕ∶BG → Θ. The statement
about equivalence between TQFTs with G action and
TQFTs coupled to a background gauge field then follows
from the following general consequence of the Baez-
Dolan-Lurie framework (see Theorem 2.4.18 of Ref. [93]):

(a)

(b)

FIG. 8. (a) Specifying the homotopy type of the space Θ of all
TQFTs involves specifying points in this space, paths between
arrows (single arrows), deformations between paths (double
arrow), and so on. We want these to capture features of the
space of quantum ground states. (b) These features can also be
interpreted as interfaces. We show a spatial configuration
of interfaces in a two-dimensional system, with two one-
dimensional interfaces separated by a junction of dimension 0.
We can imagine that these interfaces are smoothed out such that
the spatial variation occurs on scales that are large compared to
the lattice spacing (thus, we have a smooth state as discussed in
Secs. II and III B). Traversing a path inR2 from the left half-plane
to the right half-plane, the local quantum state goes through the
path γ0 or γ1 depending on whether the path in R2 goes through
the upper one-dimensional interface or the lower one. As one
deforms the path in R2 through the zero-dimensional junction
(black dot), the corresponding path in the space of quantum states
goes through the deformation described by d.
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Lemma 1. For any space W, a continuous map
f∶W → Θ is equivalent to a TQFT for manifolds equipped
with maps into W.
Indeed, we set W ¼ BG and note that maps into BG are

the same as G gauge fields.
Finally, we are ready to consider the general case of a

spatially dependent TQFT with a spatial symmetry G. We
use the following definition.
Definition 6. A (dþ 1)-dimensional spatially depen-

dent TQFT with symmetryG on a space X is an action of the
group G on X along with a G-equivariant map σ∶X → Θ,
meaning that, for all x and g, we have a choice of
isomorphism

ϕg;x∶σðg · xÞ≃ σðxÞ

(with consistency data).
Note that the isomorphisms should be taken to be unitary

or antiunitary for orientation-preserving or orientation-
reversing symmetries. respectively.
Once all the appropriate consistency data have been

taken into account, we find that a spatially dependent
TQFT with an orientation-preserving spatial symmetry G
corresponds to a map from the homotopy quotient X==G
(discussed in Sec. III D and Appendix E) into Θ. (We
discuss the orientation-reversing case later in Sec. VI A).
Applying Lemma 1, we find the following theorem.
Theorem 3. A (dþ 1)-dimensional, spatially dependent

TQFT on X with symmetry G is equivalent to a TQFT for
(dþ 1) manifolds M equipped with a (homotopy class of)
map M → X==G, where X==G is the homotopy quotient
we have discussed in Sec. III D.
This statement suggests that we can consider any map

M → X==G as a crystalline gauge background, whereas in
Sec. III Awe only showed how to couple a Hamiltonian to a
rigid crystalline gauge background. Indeed, spatially de-
pendent TQFT mathematically formalizes our notion of
smooth states in Sec. III B and Appendix D. Furthermore,
restricting to the case where X is contractible, X==G is
homotopy equivalent to BG, so we find the same classi-
fication whether G acts internally or on X.

A. Spatially dependent TQFTs for
orientation-reversing symmetries and fermions

Let us now discuss how to extend the above results to
systems with orientation-reversing symmetries and/or fer-
mions. First, we need to be more specific about the nature
of the TQFTs we are discussing. TQFTs come in different
flavors (framed TQFTs, spin TQFTs, and so on), depending
on what structures we impose on the manifolds to which the
TQFT assigns invariants. For bosonic systems with ori-
entation-preserving symmetries, the natural choices are
TQFTs for either framed manifolds or oriented manifolds.
Choosing the oriented manifolds amounts to assuming
that the low-energy limit of our physical system has an

emergent Lorentz symmetry, which becomes an
SOðdþ 1Þ Euclidean symmetry after Wick rotating to
Euclidean spacetime [95]. Henceforth, we always assume
that such an emergent Lorentz symmetry is present, though
we do not know how to justify this microscopically.
The situation gets interesting when there is also micro-

scopicG symmetry. Indeed, besides the simplest possibility
of a total SOðdþ 1Þ × G symmetry, there is also the
possibility that G acts on SOðdþ 1Þ or there is some
kind of extension. The former happens especially when G
contains orientation-reversing symmetries. Let us suppose
X is orientable. Whether G preserves or reverses the
orientation of X describes a group homomorphism
G → Z2. We expect this Z2 to act nontrivially on any
emergent SOðdþ 1Þ symmetry generators, so the total
symmetry algebra contains Oðdþ 1Þ.
Let us see this in a simple example, a glide reflection

acting on X ¼ R2 ×Rt, G ¼ Z. We assume that the
infrared limit of such a system will be a field theory of
a map M → X==G. As we have discussed, in the case of
group actions without special Wyckoff positions (i.e., free
actions), the homotopy quotient X==G is equivalent to the
ordinary quotient X=G, which in this case is a Möbius band
(cross the time coordinate). Our claim is that the continuum
limit of this system is a “sigma model,” a 2þ 1D field
theory whose only field is a map ϕ∶M → X=G. What does
it take to write an action for this field theory? The usual
sigma model action is the volume of the image of ϕ, or

SðϕÞ ¼
Z
M
ϕ�volðX=GÞ;

where volðX=GÞ is a volume form on X=G. The issue is
that X=G is not orientable, so the volume form cannot
be globally defined. Rather, it is a 3-form valued in the
orientation line bundle Lor, a real line bundle whose
sections switch sign when one follows them around the
Möbius band. When we pull back the volume form using ϕ,
the result is a 3-form valued in ϕ�Lor. In order to integrate
this overM, the fundamental class ½M� ∈ H3ðMÞ must also
be valued in ϕ�Lor. This occurs iff ϕ�Lor is isomorphic to
the orientation line ofM. This means that if a 1-cycle of M
encircles the Möbius band,M must be unorientable around
that cycle. In the gauge theory description, these are cycles
with odd G ¼ Z holonomy, which have a nontrivial image
under the map G → Z2 that we have just discussed. We
discuss more about sigma models in Sec. VIII C.
Another way of saying this, which makes sense in

general, is that the tangent bundle of X gives rise to a
bundle TGX over X==G, and rather than TM being
oriented, the orientation is on TM ⊕ A�TGX. This sort
of phenomenon is also familiar in the internal symmetry
case, and it is especially crucial once fermions are con-
sidered [27]. For this reason, we expect that this is the form
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that emergent Lorentz symmetry takes in crystalline topo-
logical liquids [96].
To proceed, let us recall more about the case where G

acts trivially on X [27]. The data that specify the group of
fermionic SPT phases are a map w1∶G → Z2 encoding
which elements ofG are time-reversing elements and also a
group extension w2 ∈ H2ðG;Z2Þ encoding how the rela-
tions ofGmay be extended by fermion parity ð−1ÞF. As the
notation suggests, both may be encoded in a bundle ξ over
BG, with w1 ¼ w1ðξÞ and w2 ¼ w2ðξÞ. We call this the
characteristic bundle. It may be interpreted in field theory
as the G representation of the fermion bilinears. The low-
energy limit of a gapped theory with such a symmetry is
expected to be a theory defined on manifolds M with a
gauge field A∶M → BG and a spin structure on TM ⊕ A�ξ.
The cobordism group of such manifolds only depends on ξ
through w1ðξÞ and w2ðξÞ. Since X==G is itself a bundle
over BG, any characteristic bundle ξ also defines a bundle
over X==G. This leads to the following theorem.
Theorem 4. A bosonic (fermionic) crystalline

topological liquid with microscopic symmetryG, character-
istic bundle ξ, and emergent Lorentz symmetry has a
topological limit defined on manifolds M with a map
A∶M → X==G and an orientation (spin structure) on
TM ⊕ A�TGX ⊕ A�ξ.
As an example, if G ¼ C2 acts on X ¼ R2 ×Rt by π

rotation of space, TGX is a plane bundle over BZ2. In terms
of the tautological line bundle λ (corresponding to the
sign representation), this bundle is λ ⊕ λ. One computes
w1ðλ ⊕ λÞ ¼ w1ðλÞ þ w1ðλÞ ¼ 0 and w2ðλ ⊕ λÞ ¼ w1ðλÞ2,
which generates H2ðBZ2;Z2Þ, corresponding to the exten-
sionZ4 ofZ2. In the absence of any nontrivial ξ, this means
that the π rotation squares to the fermion parity. This result
is what we typically expect of rotations of fermions.
On the other hand, if there is an internal symmetry

squaring to the fermion parity, such as a charge-conjugation
(unitary) symmetry, C2 ¼ ð−1ÞF, then we can combine this
with the rotation symmetry to obtain a unitaryZ2 symmetry
squaring to 1. By the crystalline equivalence principle,
or by Theorem 3, we expect such phases to give rise to
topological field theories for manifolds M with a spin
structure on TM and a Z2 gauge field A∶M → BZ2.
Let us see how the conjecture above encodes this.
As explained in Ref. [27], a unitary Z2 representation
with C2 ¼ ð−1ÞF corresponds to the characteristic bundle
ξ ¼ λ ⊕ λ over BZ2 (recall that λ is the bundle of the
sign representation Z2↻R). Since ξ of the C2 rotation
symmetry is trivial, this is also ξ of the composite
symmetry. The conjecture above says that we will
obtain, in the infrared, a theory of manifolds M with
A∶M→BZ2 and a spin structure on TM⊕A�TGX⊕A�ξ¼
TM⊕A�ðλ⊕λ⊕λ⊕λÞ. It turns out that TGX ⊕ ξ ¼
λ ⊕ λ ⊕ λ ⊕ λ has both w1 ¼ 0 and w2 ¼ 0. This means
that we may choose a spin structure on this bundle and
thereby form an isomorphism between spin structures on

TM and spin structures on TM ⊕ A�ðTGX ⊕ ξÞ, and there
is no contradiction.
Given this conjecture, we can state the crystalline

equivalence principle more precisely:
Theorem 5. If X ¼ Rd, then any G action on X defines

a vector bundle TGX over X==G ¼ BG. The G action on
internal degrees of freedom defines another bundle ξ over
BG. SETs with this sort of crystalline symmetry are
isomorphic to SETs with internal symmetry G and char-
acteristic bundle TGX ⊕ ξ.
The most important aspect of this theorem is the

identification of orientation-reversing symmetries like
reflection with antiunitary symmetries like time reversal
in the classification of topological phases. Indeed, for
bosonic systems with G ¼ Z2, all that matters about
TGX ⊕ ξ is the determinant of the G representation (i.e.,
w1), which is multiplicative over a direct sum. Thus, a
time-reversal symmetry, which has detðξÞ ¼ λ and TGX
trivial, is equivalent to a reflection symmetry, which has
detðTGXÞ ¼ λ and ξ trivial.
An important caveat about this in fermionic systems is

that reflection with R2 ¼ 1 corresponds to T2 ¼ ð−1ÞF.
Indeed, the former leads us to consider TQFTs for mani-
folds M with A∶M → BZ2 and a spin structure on
TM ⊕ A�λ. This result is equivalent to a Pinþ structure
onM, which in Refs. [27,97] is what needs to be considered
for the classification of T2 ¼ ð−1ÞF phases. This is because
our spacetimes M are Euclidean, and Wick rotation
changes the behavior of orientation-reversing symmetries.

B. Comments on anomalies

In the beginning of this section, we made an identifi-
cation between TQFTs with a G symmetry and TQFTs
parametrized by BG. This identification is actually only
possible when the G symmetry is anomaly free.
An instructive example is 0þ 1D. Such TQFTs describe

the ground states of quantum-mechanical particles, so the
space of 0þ 1D TQFTs Θ can be described as the space
of finite-dimensional Hilbert spaces Θ ¼ ⨆

n
BUðnÞ (here,

n is the dimension of the ground-state degeneracy). The
ground states of a quantum-mechanical particle with
symmetry G are characterized by a unitary representation
of G. This representation defines a vector bundle over BG
whose fibers can be considered different 0þ 1D TQFTs,
and it has a classifying map BG → Θ ¼ ⨆nBUðnÞ.
In quantum mechanics, however, there is the possibility

that the G action on the space of ground states is projective.
In 0þ 1D, this counts as an anomaly. In this case, we do
not get a vector bundle over BG but rather a projective
vector bundle. Such a bundle does not have a classifying
map BG → Θ. Rather, the anomaly α is characterized
by a bundle ΘðαÞ over BG with fiber Θ, and the anomalous
theory can be described as a section of this bundle.
For group cohomology anomalies, α ∈ H2ðBG;Uð1ÞÞ
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classifies bundles over BG with fiber BUð1Þ. This defines a
bundleΘðαÞ by the diagonal map BUð1Þ → Θ. The story in
all dimensions is a direct generalization with no new
ingredients, though in practice it is difficult to work out
the details [98,99].
We expect that there could be an analogous phenomenon

for the spatially dependent TQFTs. In other words, we
defined a crystalline topological liquid as a system with a
topological limit described by a map X → Θ. However, it
could be that there are “anomalous” crystalline topological
liquids, characterized by a section of a bundle ΘðαÞ over X
with fiberΘ. With symmetries, this would become a section
of such a bundle over X==G.
The anomaly itself would be characterized by the bundle

ΘðαÞ. The simplest examples would come from ordinary
equivariant cohomology HDþ1ðX==G;Uð1ÞÞ, where D is
the spacetime dimension of the anomalous theory. This
suggests a kind of crystalline-anomaly in-flow mechanism,
which would be interesting to study. We leave this to
future work.

VII. CLASSIFICATION OF PHASES
IN NONCONTRACTIBLE SPACE

As mentioned in Sec. III D, our framework, in principle,
can be applied to the classification of topological phases
with spatial symmetries on any space X, not just X ¼ Rd.
In this section, we discuss a few examples of this
classification to indicate the general flavor, and we state
some general properties. We emphasize that, although our
classification can be applied to any space X (for example,
a compact manifold), our results are only expected to be
physically valid when the size of this manifold is much
greater than the lattice spacing and the correlation length;
otherwise, we cannot define the topological limit discussed
in Sec. II, which underlies our arguments.

A. Properties of the classification

All of these statements are derived from properties of the
homotopy quotient X==G discussed in Appendix E.

1. Properties that hold in general

The following statements are valid for the classification
of crystalline phases in full generality. We let CGðXÞ denote
the classification of crystalline topological phases with
symmetry G acting on a space X. We let CGð�Þ denote the
classification of crystalline topological phases with internal
symmetry G.

(i) Crystalline equivalence principle.—If X ¼ RD,
then CGðRdÞ ≅ CGð�Þ. For orientation-preserving
symmetries, we find an isomorphic classification
with those phases protected by an internal unitary
symmetry. For orientation-reversing symmetries,
we find, for example, that inversion-symmetric

phases have the same classification as time-
reversal-symmetric phases.

(ii) Rolling and unrolling.—If G contains a normal
subgroup H that acts freely on X, then we can
quotient X by H and obtain an equivalent rolled-up
phase: CGðXÞ ≅ CG=HðX=HÞ. We can also unroll a
phase along any circular coordinates to get an
equivalent phase with a translation symmetry in
the unrolled direction, so these classifications are
isomorphic. In particular, if G is the space group
of a crystal, then the translations are a normal
subgroup acting freely, and we may instead study
the point group acting on the quotient torus. This
method works even for nonsymmorphic symmetries,
as observed in Ref. [100]: Even if there is no
symmetry center, the point group will act on the
fundamental torus. However, this residual group
G=H can still contain things like glide reflections
(and certainly will if we are in a nonsymmorphic
situation).

2. Properties that hold for in-cohomology
bosonic SPTs

The following statements hold for the in-cohomology
bosonic SPTs discussed in Sec. V B, which are classified
by the equivariant cohomology CGðXÞ ¼ HDþ2

G ðX;ZorÞ.
(i) No translation SPTs.—If G acts freely on X, e.g.,

translations on Rd, then by rolling up along all
the translations, we get an equivalent phase on a
torus without any symmetries: HDþ1

G ðX;ZorÞ ¼
HDþ1ðX=G;ZorÞ. In particular, since X=G is a
manifold, the reduced cohomology in the top degree
is always zero, so there are no nontrivial phases.

(ii) New internal SPTs protected by topology.—On the
other hand, if G is an internal symmetry, meaning it
does not act on X, then X==G¼X×BG. This means
HDþ1

G ðX;ZorÞ¼⨁jþk¼Dþ1H
jðBG;HkðX;ZÞÞ. If we

require that ω has no dependence on X, we
find the usual group cohomology classification for
internal-symmetry SPTs [17]. However, we see the
possibility for new equivariant cohomology SPT
phases which are protected by the topology of X as
well as G symmetry. These all look like lower-
dimensional G SPT phases wrapped perpendicular
to noncontractible cycles of X.

(iii) Finitely many phases in each symmetry class
ðX;GÞ.—In fact, all phases originate in some
element of E2 ¼ ⨁jþk¼Dþ1H

jðBG;HkðX;ZorÞÞ.
We discuss how this works in Appendix G. Because
we can roll up our phases to equivalent ones with
finite symmetry G, the only piece of E2 that can
contribute infinite order elements is the j ¼ 0 piece
H0ðBG;HDþ1ðX;ZorÞÞ. Luckily, since X is D di-
mensional, this piece always vanishes, so E2 is
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finite; therefore, there are only finitely many phases
in each symmetry class ðX;GÞ.

B. Examples of phases on noncontractible spaces

1. Reflection acting on a circle and unrolling

Consider a system on a circle with a reflection symmetry
θ ↦ −θ. By the arguments of Ref. [55], there should be a
Z2 ⊕ Z2 classification corresponding to the residual Z2

charges at the two fixed points (see Fig. 9). For our
classification, these phases live in ~H2

Z2
ðS1; Uð1ÞorÞ. The

cohomology groups in the descent sequence (Appendix G)
that contribute are

H2ðBZ2; Uð1ÞorÞ ¼ Z2; generated by
1

2
α2;

H1ðBZ2; H1ðS1; Uð1ÞÞorÞ ¼ Z2; generated by α
dθ
π
;

where α is the (degree-one) generator of cohomology of
BZ2 and dθ=π is the element of H1ðS1; Uð1ÞÞ ¼ Uð1Þ that
integrates to 1=2 over the circle. It is the unique fixed
element under the Z2 action.
We observe the similarity with 1

2
α20 and 1

2
τα0 in

Sec. V C 2, where we considered a system with a reflection
(corresponding to α0) and translation (corresponding to τ)
symmetry. Indeed, taking the quotient of that system by the
translation symmetry, we obtain the circle with reflection
action. The translation part of the crystalline gauge field τ
becomes the volume form dθ=2π of the quotient S1.
Identifying the topological response, we find that 1

2
α2

has an odd reflection charge at both fixed points, while
α½ðdθÞ=π� has a single odd reflection charge at a fixed
point. Which fixed point, in particular, depends on the
choice of cocycle representing ðdθÞ=π and can be traced
to the choice of the preferred reflection center of the
unrolled system. The state with the odd reflection charge

at the other fixed point will correspond to the topological
response 1

2
α2 þ α½ðdθÞ=π�.

2. Orientable G actions on spheres

Another interesting case is when space is a sphere Sd

with G acting via ρ∶G → SOðdþ 1Þ. The descent tells
us that all such phases are a combination of those in
Hdþ1ðBG;Uð1ÞÞ, the ordinary G SPT phases, and
H1ðBG;HdðSd; Uð1ÞÞÞ ¼ H1ðBG;Uð1ÞÞ, which corre-
spond to a system whose ground state on Sd has a
(Abelian) G charge with character χ ∈ H1ðBG;Uð1ÞÞ.
These phases are not independent, but they are related
by the Gysin sequence [101]. If we write V for the volume
form on Sd with unit volume

R
Sd V ¼ 1, then the classes in

H1ðBG;HdðSd; Uð1ÞÞÞ may be written χV. These classes
are not necessarily well defined on Sd==G. This is because
dV is no longer necessarily zero, but instead, it can be

dV ¼ wdþ1 ∈ Hdþ1ðBG;ZÞ:

This is the top Stiefel-Whitney class (often called the
“Euler class”) of the associated Rdþ1 bundle over BG of
which Sd==G is the unit sphere bundle. Physically, this
equation says that the “Skyrmion number”

R
Σ AðtÞ�V is

not conserved in the presence of instantons A�wdþ1, where
Σ is a (2D) time slice and A∶Σ × Rt → Sd==G is the
crystalline gauge field. The topological response χV tells
us that Skyrmions carry G charge χ, so for G charge
to be conserved, we need to satisfy the anomaly vanishing
formula dðχVÞ ¼ χwdþ1 ¼ 0 ∈ Hdþ2ðBG;Uð1ÞÞ. On the
other hand, one can show that Hdþ1ðBG;Uð1ÞÞ →
Hdþ1ðSd==G;Uð1ÞÞ is always injective. We believe this
to be related to the fact that one can obtain all SPT
phases from sigma models on the sphere [102] (see also
Sec. VIII C below). To summarize, the group of phases on
Sd sits in an exact sequence

0 → Hdþ1ðBG;Uð1ÞÞ → Hdþ1ðSd==G;Uð1ÞÞ;

⟶

R
Sd− H1ðBG;Uð1ÞÞ ⟶

−∪wdþ1

Hdþ2ðBG;Uð1ÞÞ: ð7:1Þ

The first map is the inclusion of ordinary SPT phases, the
second measures the G charge of the ground state on Sd,
and the third is the anomaly map.

VIII. GENERALIZATIONS

A. Floquet SPTs and gauged Floquet SPTs

The TQFTs defined by our topological actions do not
have a preferred axis of time. In a sense, there is no
difference between a discrete space translation and a
discrete time translation. This suggests that all of the
crystalline topological phases we have discussed with a
discrete spatial translation symmetry can be thought of

FIG. 9. A reflection acting on a circle. The reflection axis is
shown in red, and the fixed points are marked with blue circles.
SPT phases of this symmetry setup are classified by a Z2 charge
at each fixed point. There are more phases in this geometry than
on a line with a single reflection center.
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as Floquet crystalline topological phases [64,103–109],
which appear in a driven system with time-periodic
Hamiltonian HðtÞ, with Hðtþ TÞ ¼ HðtÞ. (To make sense
of this, we should take the space X on which the symmetry
G acts to be spacetime rather than just space). However, we
do not attempt to explain how one arrives precisely at a
topological action describing such a driven system, nor
even what it actually means to “gauge” a discrete time-
translation symmetry.
For example, in 1þ 1D the H3ðBG × Z;ZÞ ¼

H3ðBG;ZÞ ⊕ H2ðBG;ZÞ phases can be interpreted as
Floquet phases with internal G symmetry. For finite G,
this is H2ðBG;Uð1ÞÞ ⊕ H1ðBG;Uð1ÞÞ, and it agrees with
the classification in Ref. [104]. The first group represents
bulk SPT order, and the second group represents a charge
being pumped each time step.
We mention that H2ðBUð1Þ;ZÞ ¼ Z, so there seems

to be a topological response analogous to these charge
pumping phases but with symmetry Uð1Þ. Though it is
possible to construct finely tuned models that do this,
they all seem to transport some nontrivial quantum
information; thus, we remain skeptical that they exist
in real systems.
There are also phases that mix Floquet and crystalline

symmetry; for example, in 2þ 1D on X ¼ Rx;y ×Rt

with a translation symmetry x ↦ xþ 1 and a Floquet
symmetry t ↦ tþ 1, there is a phase in H2ðBG;
H2ðBZ × BZ;ZÞÞ ¼ H2ðBG;ZÞ. The interpretation is that
the system pumps a G charge per unit cell per time step on
the boundary. This phase can be rolled up into a Floquet
system on a cylinder which pumps aG charge per time step
to the boundary circle.
It is possible to also pump higher-dimensional SPT

phases to the boundary. In a sense, this is because
SPT phases are themselves generalized Abelian charges.
These phases live in HDðBG;H1ðBZ;ZÞÞ, which is
HD−1ðBG;Uð1ÞÞ for finite G. For example, in 3þ 1D,
we are talking about H4ðBG;ZÞ, which for connected Lie
groupsG classifies Chern-Simons actions. The correspond-
ing 3þ 1D phases pump a G Chern-Simons theory to the
boundary each time step. For G ¼ Uð1Þ, these are integer
quantum Hall states.
We pause here to note that if we can build a Floquet

system that pumps (internal) G SPT phases to the
boundary, then we can think about coupling to a dynami-
cal G gauge field. Generically, this makes the G SPT
phase no longer invertible. For example, a trivial Z2 SPT
in 2þ 1D becomes the toric code, which is topologically
ordered. However, this does not mean that we pump any
nontrivial degrees of freedom to the boundary every time
step. Rather, we have a G gauge theory at the boundary,
and at each time step, we pump a topological term. For
example, the 3þ 1D Floquet phase with internal Z2,
which pumps the Z2 group cohomology SPT to the
boundary each time step, has, in the gauged picture, a

Z2 gauge theory on the boundary that at one time step is a
toric code and at the next is a double semion and then a
toric code again. It is as though half a Z2 charge is pumped
to the fluxes, and they become semions. If one considers
this situation using a Walker-Wang model, then the fluxes
on the boundary are themselves the boundaries of strings
that reach into the bulk. It is as though these strings are
decorated with half the nontrivial 1þ 1D Z2 Floquet SPT,
something that pumps half a Z2 charge each time step.
Finally, let us note that, according to the “unrolling”

principle in Sec. VII, a TQFT in a spacetime with discrete
time-translation symmetry is formally equivalent to a
TQFT in a spacetime with a compactified time dimension.
One might wonder how this differs from a system at finite
temperature, which also can be interpreted in terms of a
compactified time dimension. The difference is that the
latter system still has a continuous time-translation sym-
metry, whereas Floquet systems do not.

B. Fermions and beyond group cohomology

Although we have mainly been talking about bosonic
systems, the general framework of our paper is applicable
to fermionic systems as well. Indeed, the notion of a
crystalline gauge field is independent of whether the system
is bosonic or fermionic, and in Sec. VI A, we explained
how to define fermionic versions of spatially dependent
TQFTs. Here, we discuss more about fermionic crystalline
SPT phases.
We note that this section is not really a generalization

since it falls within our general framework. It is, however, a
generalization of the equivariant cohomology formulation
of bosonic SPT phases discussed in Sec. V B. We can go
beyond equivariant cohomology by considering equivariant
cobordism. This is where the invariants discussed in
Ref. [110] live. The definition of the most general equiv-
ariant cobordism is delicate, but by the crystalline equiv-
alence principle, we can assume that fermion phases for
spacetime symmetries are like fermion phases for internal
symmetries. Using what we have learned from Ref. [27],
the data we need in order to define spin cobordism include a
homomorphism w1∶G → Z=2, which tells us which ele-
ments of G are orientation reversing, and a group extension
w2 ∈ H2ðG;ZÞ, which tells us how G is extended by
fermion parity. Then, there is a corresponding equivariant
spin cobordism group Ωd

spinðG;w1; w2Þ. These two classes
can be nicely encoded in a single G representation ξ called
the characteristic bundle (see Sec. VI). Then, we write
Ωd

spinðG; ξÞ. These are equivariant cobordism invariants
of d manifolds X with a spin structure on TX ⊕ A�ξ,
where A is the G gauge field. For example, the ordinary
topological insulator in 3þ1D lives in Ω4

spinðUð1Þ⋊Z2;ξÞ,
where ξ is the fundamental 2D representation of
Uð1Þ ⋊ Z2 ¼ Oð2Þ on R2 plus two copies of the sign

representation Oð2Þ→det Z2 ¼ Oð1Þ on R. This corresponds
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to the Z2 being orientation reversing and squaring
to ð−1ÞF. Details are given in Ref. [27]. Note that
Ω4

spinðUð1Þ ⋊ Z2; ξÞ ¼ Z2.
Let us give a concrete example of a 2þ 1D fermionic

crystalline SPT with C4 symmetry (not extended by
fermion parity), which is related to an internalZ4 fermionic
SPT that carries a Majorana zero mode at a symmetry flux

[27,111–113]. This model is very simple. It exists on a
square lattice with p4 symmetric Kastelyn orientation
and four Majorana operators per site, each associated with
one of the four edges incident there (see Fig. 10). The
Kastelyn orientation is used to define a Kitaev-wire-type
Hamiltonian that dimerizes the Majoranas and will be at
least p4 symmetric. One sees that at a disclination, there is
a vertex with just three bonds incident, so one Majorana is
left unpaired (Fig. 11); thus, in a sense, the disclinations
will carry non-Abelian statistics.
If we add to the ordinary TI a reflection symmetry R,

then the new cobordism group we need to compute is
Ω4

spinðUð1Þ ⋊ ZT
2 × ZR

2 ; ξ ⊗ σÞ, where σ is the sign rep of
ZR

2 acting on R. This group contains at least a Z2 ⊕ Z8,
with the first term being the ordinary TI invariant and the
second being the η invariant of the Pincþ structure made
out of the reflection symmetry. Indeed, a system with a
Uð1Þ symmetry and a reflection symmetry is a lot like the
Uð1Þ × ZCT

2 TI. Indeed, for our classification, there is no
difference in the group data. As is well known, this has
a Z8 invariant. Thus, we know that these are cobordism
invariants; we just have to determine whether or not they
are nontrivial. From Ref. [114], we know that in Pincþ

bordism, CP2 and RP4 are independent. Furthermore,
they each also have a Pin~cþ structure, so they define
independent classes in Ω4

spinðUð1Þ ⋊ ZT
2 × ZR

2 ; ξ ⊗ σÞ.
We know from, e.g., Ref. [27] that the Uð1Þ ⋊ T invariant
is order 2 on both CP2 and RP4, and the Uð1Þ × CT
invariant is order 2 and order 8 on them, respectively. This
proves that Ω4

spinðUð1Þ⋊ZT
2 ×ZR

2 ;ξ⊗σÞ⊃Z2⊕Z8. In
particular, since all the free-fermion phases are classified
by cyclic groups (see Ref. [45]), some of these must be
inherently interacting fermionic phases.
We can, of course, also consider situations where the

space group G is a nontrivial extension of time-reversal
(there are 1651 magnetic space groups in 3D [115]) and
charge symmetries. This gives the possibility of an endless
zoo of topological superconductors and insulators, most of
which will likely be beyond free fermions.
We can also go beyond cohomology in bosonic

phases. For phases with orientation-reversing sym-
metries, this is very important. As we learned from
Ref. [21], we need to consider the unoriented bordism
group. If K denotes the subgroup of G whose symmetries
are orientation preserving, then by the crystalline equiv-
alence principle, the most general bosonic phases on
spacetime RD will be classified by ΩD

OðKÞ. For these
phases, we can use the Stiefel-Whitney classes in our
topological terms [21,116].

C. Coupling a QFT to TQFT and sigma models

One very important use of (invertible) topological field
theories besides classifying (short-range-entangled) gapped
Hamiltonians is in forming twisted versions of dynamical

FIG. 10. A p4 (actually p4m) symmetric Majorana
Hamiltonian. At each site, there are four Majorana operators
(blue dots), which are hybridized along the teal bonds. An arrow
from Majorana ci to Majorana cj is a term −ði=2Þcicj in the
Hamiltonian. The arrows are chosen to be a p4 symmetric
Kastelyn orientation, which is necessary for the ground state
to be free of fermion parity π fluxes (see Refs. [111,128]). The C4

rotation centers are highlighted in beige. The other sites are C2

rotation centers.

FIG. 11. A 90-degree disclination defect in the Majorana lattice
above. The green curves denote Majoranas that are equivalent in
the projected Hilbert space (see Appendix C). In particular,
c2 ¼ c3 ¼ c0 on the defect Hilbert space. This means that the
rightward and downward bonds from the singular vertex combine
into a single term −ði=2Þðc0 þ c1Þc0 in the Hamiltonian, meaning
c0 − c1 is an unpaired Majorana zero mode. Likewise, one can
show that a 180-degree disclination carries two unpaired Major-
ana zero modes. These cannot be paired in a symmetric way.
However, we expect that a fusion of four 90-degree disclinations
will have four unpaired Majorana zero modes, which can be
paired in a C4 symmetric way.
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theories. Indeed, the partition function of a quantum field
theory often splits into a sum over topological sectors,

Z ¼
X
α

ZðαÞ:

A usual example is when Z is a gauge theory and α
is the topological class of the gauge bundle. In this
situation, the theory may be twisted by a SPT ω to obtain
a new theory

Z ↦
X
α

ZðαÞ exp
Z

ωðαÞ:

In Refs. [117–119], the authors described how these
twists change the categories of line and surface operators
in the gauge theory. In Ref. [120], this technique was
employed to symmetry-breaking critical points to define
interesting CFTs.
Another example of a class of theories with topological

sectors are the “sigma models.” A sigma model on a
D-dimensional spacetime MD has an n-dimensional target
space Xn and counts among its degrees of freedom a map
σ∶M → X. The partition function splits as a sum over
homotopy classes of this map. When n > 0, such models
are typically gapless and depend on a choice of metric on X.
Indeed, a typical Lagrangian is proportional to the volume
of σðMÞ. However, it is also possible to study topological
sigma models, which depend only on the homotopy class
of σ. An invertible such theory, i.e., one whose partition
function is just a phase Ωð½σ�Þ ∈ Uð1Þ, can be used to
define the twisted-sigma-model partition function

Z ↦
X
½σ�

Ωð½σ�Þ
Z
σ∈½σ�

Dσ exp iS;

where [σ] denotes a homotopy class of map σ∶M → X
and S is the action of the dynamical sigma model (and we
have suppressed other degrees of freedom).
The theories Ωð½σ�Þ are among the ones we have already

studied in the case G ¼ 1. We have described how those
Ωð½σ�Þ that can be written as an exponentiated integral of a
local density exp ðRM σ�ωÞ come from ω ∈ HDðX;Uð1ÞÞ.
However, in light of the previous section, we should expect
that, to account for all possible twists, we should use the
cobordism of X instead: either ΩD

SOðXÞ in the bosonic case
or ΩD

spinðXÞ in the fermionic case.
For example, if X ¼ S2 and D ¼ 3, there is a Z2

possibility of topological terms for a fermionic system,
classified by Ω3

spinðS2Þ¼H2ðS2;Ω1
spinÞ¼H2ðS2;Z2Þ¼Z2,

while for bosons, there is no nontrivial topological term.
This topological term was discussed in Refs. [121,122] and
references therein. When M ¼ S3, it equals minus 1 to the
Hopf index of the map σ∶S3 → S2.
It is interesting to include G symmetry in the picture as

well. Suppose first that G is an internal symmetry, in that it

does not act on the spacetime M but does act on the target
space X. When we couple to a backgroundG-gauge field, σ
becomes a map to X==G. Recall that this is a fiber bundle
over BG with fiber X. The gauged model will be topo-
logical in the BG directions but may be dynamical in the
fiber direction. It can be twisted by a topological sigma
model with target X==G. These are the theories we have
studied, and they are classified by ΩD

SOðX==GÞ in the
bosonic case and ΩD

spinðX==GÞ in the fermionic case [123].
For example, if X ¼ S2 and D ¼ 2, with G ¼ Z2 acting

by the antipodal map of S2, then S2==Z2 ¼ RP2 and
H2ðRP2; Uð1ÞÞ ¼ Z2. This can be understood beginning
from the ungauged model, which has an integer topological
invariant, the degree of the map M → S2. The only
G-symmetric values of the corresponding θ angle are
θ¼0, π, corresponding to this Z2 cohomology. The special
point θ ¼ π coincides with the spin-1=2 Haldane
chain [124].

IX. BEYOND CRYSTALLINE
TOPOLOGICAL LIQUIDS

In Sec. VI, we discussed a picture of a limit of crystalline
topological liquids, which looks like cells occupied by
topological orders and boundaries between cells carrying
invertible topological defects. It is interesting to consider the
generalization where these domain defects are not neces-
sarily invertible. For instance, a chiral Chern-Simons theory
forms a topological defect between a Walker-Wang model
and a trivial vacuum. The ground-state degeneracy prevents
this defect from being invertible; indeed, its tensor product
with its parity inverse is a nonchiral Chern-Simons theory,
which carries some ground-state degeneracy and therefore
is not isomorphic to the trivial defect.
In order to account for the noninvertible of these defects,

we need to co-orient the boundaries between cells of X (as
well as the higher codimension junctions). Along with an
orientation of the ambient space(time) X, this defines an
orientation of all the domain walls, allowing them to support
parity-sensitive theories like Chern-Simons. We call a space
X with a cellular decomposition and co-orientations of all
cell junctions a directed space. One can study spatially
dependent TQFTs over a directed space X.
A directed space can be most concisely discussed as a

sort of category, although this involves passing to the
dual cellulation with orientations. For example, a circle
with a directed edge can be thought of as a category with
one object and an endomorphism for every non-negative
integer. This integer tells us how many times one winds
around the circle, but we can only go one way. For
example, if X ¼ S1t ×R2 with a preferred time direction,
then it would be possible to describe a family of TQFTs
which says the system pumps a toric code every time
step since now time evolution need not be invertible.
Perhaps something like this is possible in a system with
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an emergent arrow of time. The circular direction could
also be a direction of space, and this is a quotient of the
stack of toric codes we talked about before. Thus, this
exotic phase is not beyond TQFT after all, but the
directed space structure is very important. This structure
tells us whether we stack toric codes or the CPT
conjugate of toric codes. These edge directions in space
might be used to describe “fracton” excitations [59,61]
that can only move in certain directions. We do not know
whether more general fracton phases can be encoded this
way, but while we suspect it is possible, it is probably
not enlightening.
There are some types of directed space structures that

have already appeared in physics, an important one being
the Kastelyn orientation of a surface. A Kastelyn orienta-
tion (relative to a dimer configuration) is equivalent to a
choice of spin structure. Perhaps spatially dependent
TQFTs on Kastelyn-oriented surfaces are related to spin
TQFTs. One can think about the maximum of this
structure: a branching structure. It seems that a branching
structure plays the role of a framing in the Baez-Dolan-
Lurie cobordism theorem. Indeed, it gives one all the proper
orientations to decorate the cell structure of X with line
operators, surface operators, etc., and co-orient them
properly so that they can be consistently fused.

X. OPEN PROBLEMS

In this work, we have presented a general framework for
understanding the classification of interacting topological
crystalline phases, for both bosons and fermions. An
important question for future work is to understand the
physical signatures of these phases.
The classic signature of an SPT phase is the protected

gapless modes on the boundary (though, in strongly
interacting systems, the boundary can also spontane-
ously break the symmetry or be topologically ordered).
One would expect similar statements to hold for crys-
talline SPT phases, but there are some caveats. First, of
course, a boundary will, in general, explicitly break the
spatial symmetry down to a subgroup, and one only
expects protected modes when the phase is still non-
trivial with respect to this subgroup. But even then there
are exceptions. For example, a SPT protected in 1D by
inversion symmetry about x ¼ 0 does not have a pro-
tected degeneracy when placed on the interval ½−L; L�,
even though the entire boundary (comprising two points)
is in fact invariant under the symmetry [10]. Another
example is a phase in 2D with a C4 rotation symmetry,
which can be constructed using the techniques of
Ref. [55]. A ground state in this phase is equivalent,
by a local unitary, to a product state, with a C4 charge
pinned to the origin; therefore, there will not be any
nontrivial edge states for any choice of boundary. Thus,
it is still an open question to determine what criterion
ensures protected boundary modes. A way to answer

this question would be to extend our spatial symmetry
gauging procedure to systems with a boundary.
However, this is beyond the scope of the present work.
Another question is the robustness of the topological

crystalline phases that we have discussed to disorder, which
explicitly breaks the spatial symmetries. There are some
topological crystalline phases that have been argued to be
robust to disorder, so long as the spatial symmetry is
respected on average [40]. It would be interesting to
determine the general circumstances under which this
happens.
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APPENDIX A: TOPOLOGICAL TERMS VS
TOPOLOGICAL PHASES

Let us discuss Dijkgraaf and Witten’s construction of
the topological action in more detail. The important
observation is the existence of a classifying space BG:
Homotopy classes of gauge fields for discrete internal
symmetry group G are in one-to-one correspondence with
continuous maps from M → BG. Note that BG may be
constructed as a quotient EG=G, where EG is any
contractible space on which G acts freely, i.e., by trans-
lations. Therefore, EG and hence BG are often infinite
dimensional; in fact, this is necessary ifG has any torsion.
This result allows nontrivial SPT phases in infinitely
many dimensions. From this definition, one easily veri-
fies that the homotopy class of BG is determined only by
the group G. Moreover, the cohomology of the group can
be defined as the cohomology of the classifying space
(but see below for some subtleties for infinite groups)
H�ðBGÞ [125].
Given ω ∈ HDðBG;Uð1ÞÞ on BG, we write the action

S½A� ¼ 2π

Z
M
A�ω; ðA1Þ

where A is a gauge field on M considered as a map A∶M→
BG and A�ω is the pullback of forms. Because ω has
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coefficients defined onlymod integers,S½A� is definedmodulo
2π times integers since the physical quantity is really eiS.
For infinite discrete groups, one cannot subsequently

sum over the gauge field in the path integral to obtain a
gauge theory because there are infinitely many gauge
equivalence classes of the gauge field. However, it still
makes sense to consider these gauge fields as backgrounds,
if not dynamical, in which case again the topological terms
that can be written as local integrals of just the gauge field
are classified by HDðBG;Uð1ÞÞ.
An important caveat is that the topological terms in

HDðBG;Uð1ÞÞ do not necessarily correspond to topologi-
cal phases. For example, with Uð1Þ symmetry in 3þ 1D,
one can have a theta angle for the Uð1Þ gauge field, but this
does not mean there is an entire circle of different
topological phases. Instead, the existence of the theta term
descends to the existence of the Chern-Simons term in
2þ 1D, whose coefficients are quantized, as phases of
matter should be. The famous relationship is

dCSðAÞ ¼ F ∧ F; ðA2Þ

where CSðAÞ is the Chern-Simons form of A.

For connected symmetry groups G like Uð1Þ or SUð2Þ
(and indeed for any group), the proper cohomology to
consider actually lives one dimension higher than space-
time and over the integers, i.e., HDþ1ðBG;ZÞ. Let us
remark that physicists often prefer [17] to write the
classification as HDðG;Uð1ÞÞ, where H� denotes the
“measurable” or “Borel” group cohomology. This can be
proven to be isomorphic to HDþ1ðBG;ZÞ.
For finite G, HDðBG;ZÞ coincides with HDðBG;Uð1ÞÞ.

The problem is infinite-order elements in the homology
of BG with which one can define theta angles. These were
encountered in Refs. [21,27], and the solutionwas to use only
the torsion part of homology,HDðBGÞtors, and consider maps
from that group to Uð1Þ: HomðHDðBGÞtors; Uð1ÞÞ. Since
Abelian groups always split between their torsion and free
part, there is an inclusion of this inHDðBG;Uð1ÞÞ but, more
importantly, also inHDþ1ðBG;ZÞ, bymeasuring thewinding
number of the form, much like in Eq. (A2). These are the sort
of gappable-edge SPT phases are encountered in studying
finite symmetries. The nontorsion pieces in homology define
Chern-Simons terms, which descend from 4D integer char-
acteristic classes like the first Pontryagin class p1 or second
Chern class c2 and their corresponding theta terms θp1, θc2.
Our belief is that the universal coefficient sequence [101]

ðA3Þ

This is discussed also in Ref. [27], where the inclusion of
infinite-order homology elements in shifted degrees cor-
responds to thermal Hall-type gravitational response, and in
Ref. [97], where it is related to the Baez-Dolan-Lurie
cobordism theorem and the Anderson dual of the sphere
spectrum, which in topology plays the role of Uð1Þ, the
Pontryagin dual of Z.

APPENDIX B: COMPUTING THE
BOSONIC CLASSIFICATION

A nice feature of our results, at least in the case of
bosonic crystalline SPTs (in Euclidean space), is that the
classification is readily computable. According to the
general discussion of Sec. V B, we see that the classifica-
tion in d space dimensions for a given space group G is
given by Hdþ2ðBG;ZorÞ. Computing this object turns out

to be within the capabilities of the GAP computer algebra
program [126]. We show the results in Table I for the
ð2þ 1ÞD case and in Table II for the ð3þ 1ÞD case. There
were three space groups in ð3þ 1ÞD for which the
classification took too long to compute and is not shown.
We recall that this classification is expected to be

complete in ð2þ 1ÞD and for the Sohncke groups (those
not containing any orientation-reversing elements) in
ð3þ 1ÞD. What about explicit constructions of these
phases? Let us fix some element ω ∈ Hdþ2ðBG;ZorÞ.
Suppose that there exists a finite group Gf and a
group homomorphism φ∶G → Gf such that ω is in the
image of the map Hdþ1ðGf;Uð1ÞorÞ ≅ Hdþ2ðBGf;ZorÞ →
Hdþ2ðBG;ZorÞ induced by φ. Then, indeed, we have an
explicit construction of the crystalline SPT corresponding
to ω, using the bootstrap argument of Sec. IV (leveraging,
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TABLE II. The 230-fold way. This table shows the classifica-
tion of bosonic crystalline SPT phases in ð3þ 1ÞD for each of the
3D space groups. For space groups 227, 228, and 230, the
classification has not been computed.

Number Name Classification

1 P1 0
2 P1̄ Z×8

2

3 P2 Z×4
2

4 P21 0
5 C2 Z×2

2

6 Pm Z×4
2

7 Pc 0
8 Cm Z×2

2

9 Cc 0
10 P2=m Z×18

2

11 P21=m Z×6
2

12 C2=m Z×11
2

13 P2=c Z×6
2

14 P21=c Z×4
2

15 C2=c Z×5
2

16 P222 Z×16
2

17 P2221 Z×4
2

18 P21212 Z×2
2

19 P212121 0
20 C2221 Z×2

2

21 C222 Z×9
2

22 F222 Z×8
2

23 I222 Z×8
2

24 I212121 Z×3
2

25 Pmm2 Z×16
2

26 Pmc21 Z×4
2

27 Pcc2 Z×4
2

28 Pma2 Z×4
2

29 Pca21 0
30 Pnc2 Z×2

2

31 Pmn21 Z×2
2

32 Pba2 Z×2
2

33 Pna21 0
34 Pnn2 Z×2

2

35 Cmm2 Z×9
2

36 Cmc21 Z×2
2

37 Ccc2 Z×3
2

38 Amm2 Z×9
2

39 Aem2 Z×4
2

40 Ama2 Z×3
2

41 Aea2 Z2

42 Fmm2 Z×6
2

43 Fdd2 Z2

44 Imm2 Z×8
2

45 Iba2 Z×2
2

46 Ima2 Z×3
2

(Table continued)

TABLE II. (Continued)

Number Name Classification

47 Pmmm Z×42
2

48 Pnnn Z×10
2

49 Pccm Z×17
2

50 Pban Z×10
2

51 Pmma Z×17
2

52 Pnna Z×4
2

53 Pmna Z×10
2

54 Pcca Z×5
2

55 Pbam Z×10
2

56 Pccn Z×4
2

57 Pbcm Z×5
2

58 Pnnm Z×9
2

59 Pmmn Z×10
2

60 Pbcn Z×3
2

61 Pbca Z×2
2

62 Pnma Z×4
2

63 Cmcm Z×10
2

64 Cmce Z×7
2

65 Cmmm Z×26
2

66 Cccm Z×13
2

67 Cmme Z×17
2

68 Ccce Z×7
2

69 Fmmm Z×20
2

70 Fddd Z×6
2

71 Immm Z×22
2

72 Ibam Z×10
2

73 Ibca Z×5
2

74 Imma Z×13
2

75 P4 Z2 × Z×2
4

76 P41 0
77 P42 Z×3

2

78 P43 0
79 I4 Z2 × Z4

80 I41 Z2

81 P4̄ Z×3
2 × Z×2

4

82 I4̄ Z×2
2 × Z×2

4

83 P4=m Z×12
2 × Z×2

4

84 P42=m Z×11
2

85 P4=n Z×3
2 × Z×2

4

86 P42=n Z×4
2 × Z4

87 I4=m Z×8
2 × Z4

88 I41=a Z×3
2 × Z4

89 P422 Z×12
2

90 P4212 Z×4
2 × Z4

91 P4122 Z×3
2

92 P41212 Z2

93 P4222 Z×12
2

94 P42212 Z×5
2

95 P4322 Z×3
2

96 P43212 Z2

97 I422 Z×8
2

98 I4122 Z×5
2

99 P4mm Z×12
2

100 P4bm Z×4
2 × Z4

101 P42cm Z×6
2

102 P42nm Z×5
2

(Table continued)
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TABLE II. (Continued)

Number Name Classification

103 P4cc Z×3
2

104 P4nc Z2 × Z4

105 P42mc Z×9
2

106 P42bc Z×2
2

107 I4mm Z×7
2

108 I4cm Z×4
2

109 I41md Z×4
2

110 I41cd Z2

111 P4̄2m Z×13
2

112 P4̄2c Z×10
2

113 P4̄21m Z×5
2 × Z4

114 P4̄21c Z×2
2 × Z4

115 P4̄m2 Z×13
2

116 P4̄c2 Z×7
2

117 P4̄b2 Z×5
2 × Z4

118 P4̄n2 Z×5
2 × Z4

119 I4̄m2 Z×9
2

120 I4̄c2 Z×6
2

121 I4̄2m Z×8
2

122 I4̄2d Z×2
2 × Z4

123 P4=mmm Z×32
2

124 P4=mcc Z×13
2

125 P4=nbm Z×13
2

126 P4=nnc Z×8
2

127 P4=mbm Z×15
2 × Z4

128 P4=mnc Z×8
2 × Z4

129 P4=nmm Z×13
2

130 P4=ncc Z×5
2

131 P42=mmc Z×24
2

132 P42=mcm Z×18
2

133 P42=nbc Z×8
2

134 P42=nnm Z×13
2

135 P42=mbc Z×8
2

136 P42=mnm Z×14
2

137 P42=nmc Z×8
2

138 P42=ncm Z×10
2

139 I4=mmm Z×20
2

140 I4=mcm Z×14
2

141 I41=amd Z×9
2

142 I41=acd Z×5
2

143 P3 Z×3
3

144 P31 0
145 P32 0
146 R3 Z3

147 P3̄ Z×4
2 × Z×2

3

148 R3̄ Z×4
2 × Z3

149 P312 Z×2
2

150 P321 Z×2
2 × Z3

151 P3112 Z×2
2

152 P3121 Z×2
2

153 P3212 Z×2
2

154 P3221 Z×2
2

155 R32 Z×2
2

156 P3m1 Z×2
2

157 P31m Z×2
2 × Z3

158 P3c1 0

(Table continued)

TABLE II. (Continued)

Number Name Classification

159 P31c Z3

160 R3m Z×2
2

161 R3c 0
162 P3̄1m Z×9

2

163 P3̄1c Z×3
2

164 P3̄m1 Z×9
2

165 P3̄c1 Z×3
2

166 R3̄m Z×9
2

167 R3̄c Z×3
2

168 P6 Z×2
2 × Z×2

3

169 P61 0
170 P65 0
171 P62 Z×2

2

172 P64 Z×2
2

173 P63 Z×2
3

174 P6̄ Z×4
2 × Z×3

3

175 P6=m Z×10
2 × Z×2

3

176 P63=m Z×4
2 × Z×2

3

177 P622 Z×8
2

178 P6122 Z×2
2

179 P6522 Z×2
2

180 P6222 Z×8
2

181 P6422 Z×8
2

182 P6322 Z×2
2

183 P6mm Z×8
2

184 P6cc Z×2
2

185 P63cm Z×2
2

186 P63mc Z×2
2

187 P6̄m2 Z×9
2

188 P6̄c2 Z×3
2

189 P6̄2m Z×9
2 × Z3

190 P6̄2c Z×3
2 × Z3

191 P6=mmm Z×22
2

192 P6=mcc Z×9
2

193 P63=mcm Z×9
2

194 P63=mmc Z×9
2

195 P23 Z×4
2 × Z3

196 F23 Z3

197 I23 Z×2
2 × Z3

198 P213 Z3

199 I213 Z2 × Z3

200 Pm3̄ Z×14
2 × Z3

201 Pn3̄ Z×4
2 × Z3

202 Fm3̄ Z×6
2 × Z3

203 Fd3̄ Z×2
2 × Z3

204 Im3̄ Z×8
2 × Z3

205 Pa3̄ Z×2
2 × Z3

206 Ia3̄ Z×3
2 × Z3

207 P432 Z×6
2

208 P4232 Z×6
2

209 F432 Z×4
2

210 F4132 Z2

211 I432 Z×5
2

212 P4332 Z2

213 P4132 Z2

214 I4132 Z×4
2

(Table continued)
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for example, the construction of Ref. [17] for the SPT
protected by Gf acting internally). We conjecture that
there will always be some such Gf for any element
of Hdþ2ðBG;ZorÞ.

APPENDIX C: COUPLING A HAMILTONIAN
TO A RIGID CRYSTALLINE GAUGE FIELD

In this appendix, we explain how to couple a finite-range
Hamiltonian to a crystalline gauge field. To fix the notation,
X will be the physical space withG action,Λ the crystalline
lattice therein, and M the test space, divided into patches
⋃iUi ¼ M with local homeomorphisms f∶Ui → X and
transition functions gij ∈ G such that for all x ∈ Ui ∩ Uj,
fiðxÞ ¼ gijfjðxÞ. We use the shorthand A to denote the
whole crystalline gauge field.
We begin by defining the Hilbert space on M, assuming

that the Hilbert space of X is local to the lattice Λ; that is,
there is a space Hx for every x ∈ Λ and HX ¼ ⨂x∈ΛHx.
We define the pulled-back lattice Σ ¼ ⋃jf

−1
j Λ and assign

to each m ∈ f−1j Λ the Hilbert space HmðAÞ ≔ HfjðmÞ. The
total Hilbert space may be written HðAÞ ¼ ⨂m∈ΣHmðAÞ.
Next, we discuss (rigid) gauge transformations, of

which there are three types. The first are homotopies of
the maps fj (fixing the boundary). We suppose that the
patches are transverse to the lattice (this is generic) so that
each m ∈ Σ lies in a unique Uj ≕ UjðmÞ. In the rigid case,
these are simply continuous deformations of the lattice in
M [127].
The second type are given by the action of a group

element gj ∈ G on a Uj and are analogous to ordinary
gauge transformations. To define these, we need to assume
the symmetry action on HX is “ultralocal,” meaning that
it is a tensor product operator UðgÞ ¼ ⨂x∈ΛUðgÞx, where
UðgÞ∶Hx → Hgx. Then, we can isolate the part acting on

fjðUjÞ, UðgjÞj ¼ ⨂x∈Λ∩fjðUjÞUðgÞx and apply this to
HðAÞ. This takes us to a different Hilbert space HðAgjÞ,
where Agj is the crystalline gauge field obtained from A by
replacing fj with gjfj and gij with gijg−1j for all adjacentUi

to Uj.
The third type involves moving the patches themselves.

This type is actually a combination of the previous type of
gauge transformation as well as splitting or joining patches.
A patch U becomes split into U1 ∪ U2 with f1, f2 defined
by restricting f and g12 ¼ 1. Likewise, if there are any
adjacent patches Ui;j with gij ¼ 1, then fi and fj can be
joined to a continuous function across both patches, which
can then be considered a single patch Ui ∪ Uj. In both
cases, the adjacent transition functions do not change.
Moving a domain wall can then be achieved by first
splitting a patch, applying a G element to the new patch,
and joining patches again.
Now, we discuss how to couple a Hamiltonian to this

crystalline gauge field. For each m ∈ Σ and each term h in
the Hamiltonian H acting on fjðmÞ, we have a correspond-
ing term in the Hamiltonian HðAÞ acting on HðAÞ. If
the support of h lies entirely inside fjðUjÞ, then it acts on
⨂x∈fjðUjÞ∩ΛHx¼⨂m∈Uj∩ΣHm, which is a tensor factor of
HðAÞ so we can include h in HðAÞ with no issue.
It becomes difficult when the support of h is not

contained inside any one fjðUjÞ. Then, we have to use
the rigidity assumption. We assume that it is possible to
move the patch Uj by a gauge transformation so that h is
contained in fjðUjÞ (the Hamiltonian built so far gets
transformed by the appropriate gauge transformation oper-
ator). Then, we add h to the Hamiltonian and perform the
inverse gauge transformation to return to the original gauge
field configuration. Compare Appendix E, especially
Fig. 15.
As a simple example of this technique, consider a

1þ 1D spin-1=2 Ising model, focusing on a specific edge
12 with the Hamiltonian term X1X2 and global Z2 sym-
metry ⨂jZj, where X, Z denote Pauli spin operators.
Suppose that 1 and 2 belong to different patches with a
nontrivial transition function. Then, rather than adding
X1X2 to the Hamiltonian, we first perform a gauge trans-
formation Z2, which pushes the domain wall off to the right,
and we get the term −X1X2. Note, because Z2 is a
symmetry, it does not matter which way we push the
domain wall off. Using Z1 would result in the same term.
We end this appendix with a second method for

describing the Hamiltonian coupled to a crystalline gauge
field, which is equivalent to the first method but does not
require one to perform gauge transformations to obtain all
the terms in the Hamiltonian. In this version, the patchesUj

are taken to be an open covering of M and are allowed to
overlap. Then, a lattice (hence a Hilbert space) is first
defined on the disjoint union ⨆jUj by ~Σ ≔ ⨆jf

−1
j Λ. We

denote the associated Hilbert space H ~M ¼ ⨂jHUj
, where

TABLE II. (Continued)

Number Name Classification

215 P4̄3m Z×7
2

216 F4̄3m Z×5
2

217 I4̄3m Z×5
2

218 P4̄3n Z×4
2

219 F4̄3c Z×2
2

220 I4̄3d Z2 × Z4

221 Pm3̄m Z×18
2

222 Pn3̄n Z×5
2

223 Pm3̄n Z×10
2

224 Pn3̄m Z×10
2

225 Fm3̄m Z×13
2

226 Fm3̄c Z×7
2

227 Fd3̄m ???
228 Fd3̄c ???
229 Im3̄m Z×13

2

230 Ia3̄d ???

RYAN THORNGREN and DOMINIC V. ELSE PHYS. REV. X 8, 011040 (2018)

011040-30



HUj
¼⨂m∈Σ∩Uj

Hm. Note that the map⨆jUj→⋃jUj¼M

sends ~Σ to Σ. Then, rigidity means that, for each m ∈ Σ,
and for each term h acting on fðmÞ, there is some Uj ∋ m
such that the support of h is contained in fjðUjÞ. We
choose h to act on the Uj part of the Hilbert space H ~M.
Next, we project everything to HM by identifying dupli-
cated vertices m ∈ Uj;m0 ∈ Uk in the disjoint union by the
transition maps UðgijÞ∶HUj

→ HUk
. A simple example is

shown in Fig. 12.
This method is particularly convenient for describing

crystal defects. In the case of a single defect in Rd

supported along ∂H, where H is a d − 1-dimensional
branch cut (which, fixing ∂H, is a choice of gauge), the
defect space M ¼ Rd − ∂H can be covered with a single
patch U given by a thickening of Rd −H, which intersects
itself in M along a neighborhood of H. In other words, the
degrees of freedom near the branch cut are doubled (see
Figs. 3, 5, and 11), coupled to either side of the branch cut,
and then reglued by a projection map twisted by the crystal
symmetry.

APPENDIX D: COUPLING SMOOTH STATES
TO GAUGE FIELDS

Here, we prove the claims made in Sec. III B about the
well-definedness of the construction to couple smooth
states to gauge fields. We first consider the case of an
internal symmetry G. We adapt an argument from Kitaev
(Appendix F of Ref. [72]). We assume that our original
ground state ψ lives on a lattice with a spin of Hilbert
space dimension d at each site. However, we define the
space Ω, which our smooth states target to be the space
of states with Hilbert space dimension m > d per site.
Of course, given a choice of isometric embedding

e∶Cd → Cm, we could think of our original state ψ as
living in Ω, too. The resulting state depends on e, and we
call it eðψÞ.
Recall that the symmetry is assumed to act on site, with

the action on each site described by a representation
uðgÞ ∈ UðdÞ. For each g ∈ G, we also considered a path
uðg; tÞ, t ∈ ½0; 1� such that uðg; 0Þ ¼ I and uðg; 1Þ ¼ uðgÞ.
Then, (at least locally) we can reformulate the prescription
in Sec. III B for defining the smooth state ψ ½A�∶M → Ω as
follows in terms of a spatially dependent isometric embed-
ding em∶Cd → Cm, according to ψ ½A�ðmÞ ¼ emðΨÞ. We
then require that when passing over a patch boundary
twisted by g ∈ G, em goes through the continuous path
obtained by acting with uðg; tÞ. But now we see that there
are no obstructions to making this process well defined due
to noncontractible loops (or higher nontrivial homotopy
groups) at intersections between patch boundaries, pro-
vided that we take m sufficiently large. This is because, in
the limit m → ∞, the space Embðd;mÞ of all isometric
embeddings Cd → Cm is contractible; i.e., all of its homo-
topy groups are trivial.
A more rigorous (and succinct) way to think about the

above construction is obtained by using the classifying
space BG. Indeed, since EG ≔ limm→∞ Embðd;mÞ is a
contractible space with a free action of G, it follows that
EG=G is a model for BG, and we find that there is a
continuous map BG → Ω. A G gauge field over M is the
same as a principal G bundle over M, which can be
represented by a continuous map M → BG. Hence, by
composing these two maps, we obtain a smooth state
ψ ½A�∶M → Ω.
The “patch” version of the argument for a crystalline

gauge field proceeds similarly, and we will not write it out
again. Let us simply note that a rigorous version of the
construction can be formulated in terms of the homotopy
quotient X==G. Indeed, given a smooth state ψ∶X → Ωd
(where Ωd is the space of ground states with Hilbert
space dimension d per site), there is a map from
X × Embðd;mÞ → Ω defined by ðx; eÞ ↦ eðψðxÞÞ. This
map is invariant under the diagonal action of G.
Therefore, taking the limit m → ∞, we find a map from
ðX × EGÞ=G ¼ X==G → Ω. A crystalline gauge field on
M can be represented by a map from M → X==G. Again,
composing these two maps, we obtain a smooth state
ψ ½A�∶M → Ω.

APPENDIX E: LATTICE CRYSTALLINE
GAUGE FIELDS

The cellular description we give in this section is dual to
the patch picture we gave in Sec. III A, where g elements
labeled codimension-1 walls between volumes in the
crystal. Here, in order to compare with the usual definition
of a lattice gauge field, we label edges with g elements.
Recall that, for a discrete group G, a lattice gauge field

has a very nice description, where each edge e gets a

FIG. 12. In this approach to defining the Hamiltonian coupled
to a crystalline gauge field, patches are allowed to overlap to
include some vertices. In this particular example, Uleft ∩ Uright
includes vertex 2, which gets duplicated. Hamiltonian terms
(denoted by solid edges) lying entirely inside Uleft or Uright are
taken to act on those Hilbert spaces. Then, spurious degrees of
freedom are eliminated by applying a projection operator, which,
in a product state basis, identifies the state at 2 with g applied to
the state at 2’. This is indicated by the green curve labeled by g
cutting the dashed vertical line from 2 to 2’.
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group label ge ∈ G and any 2-face τ imposes a flatness
constraint

Y
e∈∂τ

ge ¼ 1; ðE1Þ

where the multiplication is performed in the order the edges
are encountered in a circular traversal of the boundary. This
conservation law allows us to express these labels as a
configuration of domain walls running about our manifold.
The conservation law says that a g1 and a g2 fuse to a g1g2.
The domain walls are codimension 1, so fusion can be
noncommutative in this way.
Let us imagine drawing a configuration like this on X,

where the G elements act nontrivially on X. Does this make
sense? We look at a particular edge in Fig. 13. It looks like
an edge from x → y, but if we push the domain wall out of
the way, we see from the actual data that there is an edge
(actually path; see below) from x to gy. This means that,
while our underlying manifold has points labeled by points
in X, it is perhaps a different spaceM. To see what data are
assigned to a face or higher facet, one performs a similar
procedure, pushing all the domain walls off and collecting g
labels. The flatness condition on G implies that this is
always unambiguous. At a symmetry defect like the core of
a disclination, the flatness condition is violated, and it is
impossible to unambiguously assign a face of X to the core
of the defect. When this happens, the underlying space M
may have different topology from X. In fact, we may end up
with a space M whose labels do not even close up onto a
map to X. In such a case, we end up with only a map
P → X, where P is the G cover corresponding to the g
labels (equivalently, the G gauge bundle).
Note that if X is contractible, the extra information

beyond the G gauge field, the X labels, contributes no
nontrivial data up to homotopies of this map. Indeed, this is
basically another proof of the crystalline equivalence
principle.
Let us try to be more systematic about the construction.

We start with a warm-up, just describing cellular maps
f̂∶M → X in a lattice gauge theory-esque way. A cellular
map means that the n-skeleton of M is sent to the
n-skeleton of X for every n. This means every vertex

m ∈ M gets a vertex f̂ðmÞ ∈ X, every edge e∶m1 → m2 ∈
M gets a path f̂ðeÞ∶f̂ðm1Þ ⇝ f̂ðm2Þ ∈ M, every plaquette
τ gets a chain f̂ðτÞ with ∂f̂ðτÞ ¼ f̂ð∂τÞ, every volume gets
a 3-chain with a prescribed boundary, and so on. These data
describe a general partial covering M → X (i.e., a map that
gives a rigid crystalline gauge field with trivial transition
functions).
To account for maps that are not locally homeomor-

phisms, we need to include, in this definition, the degen-
erate facets of X. For example, if we have the constant
map M ↦ x ∈ X, this definition only makes sense if there
is a hidden edge id: x → x, hidden faces x → x → x,
x → x → y, and so on. All higher degenerate facets should
be included as well.
Thus, any map f̂∶M → X is homotopic to one given first

by refinement of the lattice in M and then by labeling
vertices, edges, faces, etc., of the refinement with vertices,
edges, faces, etc., possibly degenerate ones) of X (Fig. 14).
This should be intuitive since the cell structure in M is not
really physical. It is just a way to encode the topology ofM
combinatorially.
Now, let us consider maps with G-twisted continuity

conditions. As before, we assign vertices of X to vertices of
M. To an edge inM, we assign a path x ⇝ y connecting the
X labels x and y of the end points. These paths can pass
through domain walls, resulting in something we call a
G-path:

x1 ⇝ y1 →
g1 x2 ⇝ � � �→gk yk:

FIG. 13. When the g domain wall is pulled off of this edge, it is
revealed to be an edge from x → gy. Note the similarity with the
Hamiltonian coupling procedure in Appendix C.

FIG. 14. Here, we depict a piece ofM (northwest) mapping to a
piece of X (southeast). We have given the vertices of X unique
labels and labeled the vertices ofM with their image vertices in X.
Note that vertex 2 has two adjacent preimages. This edge of M is
mapped to a degenerate edge, and the triangle it lies on (grey) is
mapped to a degenerate face 122 in X. Note also that vertex 5 ∈ X
has no preimage, and to map faces to faces, we must refine the
lattice of M, depicted by the dotted blue lines.
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Around the boundary of a face τ ∈ M, we get a G-path by
concatenating the G-paths on each edge. Our conservation
law

Y
j

gj ¼ 1

must be supplemented by the condition that the boundary
G-path forms a G loop:

yk ¼ x1:

If this is the case, then we can push all the g’s to the right,
acting on the paths as we do to obtain an honest path
x1 ⇝ g−1k …g−11 x1. If theG conservation law holds, then this
path is a loop in X. This is just like pushing the domain
walls off τ towards vertex 1. We require that τ be assigned a
chain with boundary equal to this loop. A picture of this is
depicted in Fig. 15.
Now, we discuss homotopies of these data (collapsible

crystalline gauge transformations). Such a homotopy
Að0Þ ↦ Að1Þ is itself a crystalline gauge field AðtÞ but
on the prism M × ½0; 1� with boundary conditions equal to
Að0Þ and Að1Þ on each copy of M.
As a first warm-up, let us consider ordinary G gauge

fields. (See Fig. 16.) There is a cell complex of M × ½0; 1�
with one inner pþ 1-cell for every p-cell ofM. These inner
cells are the only ones where the boundary conditions do

not fix the data. For an ordinary G gauge field, we must
specify the G labels on the inner edges. These correspond
to vertices of M, so the data are like an element of G for
each vertex of M. The flatness condition on the inner faces
determines how these must act on the edge variables.
A second warm-up is to consider homotopies of a map

M → X. This is the case with no symmetry, G ¼ 1. This
case gets quite complicated, but it is possible to
divide homotopies into elementary pieces, where all the
inner p-cells are degenerate except one, τp, meaning the
map M → X does not change away from τp. The map
h∶M × ½0; 1� → X identifies τp with a p-chain hðτpÞ, and
because all other inner cells in M × ½0; 1� are degenerate,
∂hðτpÞ is divided into two p − 1-chains in the image of the
boundaries: ∂hðτpÞ ¼ hðN0Þ⊔hðN1Þ, where Nj⊂M×fjg
are p − 1-chains in M. In fact, these are the same p − 1-
chains, and hðτpÞ tells us how they move inside X during
the homotopy h. A general gauge transformation of A is
essentially a combination of these two ingredients.
Just as the cellular description of G gauge fields reflects

a convenient cellular structure of BG, what we have
described above amounts to a cellular structure on the
homotopy quotient X==G. One can see what we have
written as a simultaneous construction of X==G and a proof
of the following theorem.
Theorem 6. A crystalline gauge field is the same as a

cellular map A∶M → X==G, with the cell structure induced
by the action ofG on a compatible cell structure of X. Thus,
gauge equivalence classes of crystalline gauge fields are the
same as homotopy classes of maps A∶M → X==G.
A good way to understand the homotopy type of X==G

is as follows. Recall from, e.g., Ref. [101], that BG, the
classifying space for ordinary G-gauge fields and the

FIG. 15. The conservation law for G labels allows us to draw
them as G domain walls in X. Then, in any contractible patch of
M, we can describe our local map M → X by pushing off the
domain walls. Then, we look at the northwest picture of our patch
in M. Note how the vertices have been transformed, as have the
edges. Then, we fill in the transformed picture with faces of X as
we would in describing an ordinary map M → X. This always
requires a choice of base point. Here, our base point is 4, and we
have pushed all the domain walls (green) straight to the east. The
choice of base point is like a local choice of gauge. It should be
compared with the construction for coupling to Hamiltonians in
Appendix C.

FIG. 16. A prismM × ½0; 1�mapping to BGmeans assigning G
labels also to the interior edges. These correspond to the vertices
of M, so we can think of them as a function g∶M0 → G, where
M0 is the set of vertices of M. Then, the conservation law on the
internal faces of the prism forces a constraint between corre-
sponding edge labels in each M. The constraint is that the top
labels are the gauge transformation of the bottom labels by g. The
direction is fixed by an orientation of the internal prism edges. If
we reverse all of them, it takes g ↦ g−1 (and locally as well).
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special case of our construction when X is a point, is itself
constructed as an ordinary quotient EG=G, where EG is
some (usually very large) contractible space on which G
acts freely. For discrete groups, EG can be constructed as a
simplicial complex, where vertices are group elements
g ∈ G, edges are pairs, triangles are triples, and so on.
The gluing maps use the G multiplication. For example,
an edge ðg0; g1Þ is glued to g1 and to g0g1; a triangle
ðg0; g1; g2Þ is glued to ðg1; g2Þ, ðg0; g1g2Þ, and ðg0g1; g2Þ;
and so on. This space has a G action that acts on all
the labels simultaneously, and it is also contractible. The
quotient structure is the usual structure on BG. Likewise,
we can invent a cell structure on the space EG × X so that
the quotient structure is the one we described on X==G.
This proves X==G ¼ EG × X=G, where G acts diagonally.
In fact, to preserve the homotopy type of X==G, we just
need any space EX that is homotopy equivalent to X and on
which G acts freely. An example is EG × X, but if G
already acts freely on X, then X itself is an example and the
homotopy quotient reduces to the ordinary quotient
X==G ¼ X=G. In the other extreme, in which G is a
purely internal symmetry, X==G ¼ BG × X.

APPENDIX F: EXPLICIT CONSTRUCTIONS
FOR BOSONIC SPTS

In Ref. [17], a prescription was given to construct a
ground-state wave function for a SPT phase protected by a
finite internal symmetry group Gint. As stated in the main
text, we want to leverage this construction in a “bootstrap”
procedure to construct a wave function for a SPT phase
protected by a spatial symmetry, as outlined in Sec. IV.
For our current discussion, the important requirement is
that we must be able to choose the wave function to be
invariant under both an internal symmetryGint and a spatial
symmetry Gspatial. Ultimately, the symmetry protecting the
crystalline SPT phase will be the diagonal subgroup Gphys.
Recall that we take orientation-reversing elements ofGspatial

to also act antiunitarily, in accordance with the CPT
principle. (Thus, the orientation-reversing symmetries in
Gphys are a composition of two antiunitary operators and
end up being unitary.)
Let us briefly review the construction of Ref. [17]. This

construction starts from an element of the group cohomol-
ogy group Hdþ1ðGint;Uð1ÞÞ. This cohomology class is
represented by a (dþ 1)-cocycle in homogeneous form,
which is a function ν∶G×dþ1

int → Uð1Þ satisfying

g · νðg1;…; gdþ1Þ ¼ νðgg1;…; ggdþ1Þ ∀ g ∈ Gint ðF1Þ

Ydþ2

i¼0

νð−1Þiðg0;…; gi−1; giþ1;…; gdþ2Þ ¼ 1; ðF2Þ

where g · ν denotes the action of Gint on Uð1Þ; i.e.,
antiunitary elements of Gint act by inversion.

To construct the wave function on some d-dimensional
spatial manifold, one first chooses a triangulation of the
manifold. The spins live on the vertices of this triangula-
tion, and they each carry a Hilbert space with basis
fjgi∶g ∈ Gintg, on which Gint acts by left multiplication:

jhi→g jghi. Then, one chooses a branching structure, which
is a choice of direction on the edges of the triangulation,
such that there are no directed cycles on any d-simplex. A
branching structure allows us to define an ordering of the
vertices on any d-simplex. The wave function of Ref. [17]
is then defined as a superposition

jΨi ¼
X
fgig

�Y
Δ
αΔðgΔÞ

�
jfgigi; ðF3Þ

where the sum is over all configurations fgig of group
elements g ∈ Gint for every vertex, and the product is over
all d simplices. The phase factor αΔ associated with a d-
simplex Δ is defined by

αΔðgΔÞ ¼ νsðΔÞðg�; g1;…; gdÞ; ðF4Þ

where g1;…; gd are the group elements living on the
vertices of the simplex (ordered according to the branching
structure), g� ∈ Gint is some fixed group element that is
chosen to be the same for every d-simplex (the resulting
wave function does not depend on g� on any closed
manifold), and sðΔÞ ¼ �1 is the orientation of the d-
simplex (see Ref. [17] for further details). It can be verified
that the wave function jΨi defined in this way is indeed
invariant under the action of Gint.
Now, we show that jΨi can also be taken to be invariant

under the action of a spatial symmetry Gspatial. We take the
action of Gspatial on the Hilbert space of the spins to be
inherited from its action on the space manifold; that is, it
simply permutes the spins. (For orientation-reversing ele-
ments of Gspatial, this is followed by complex conjugation,
in accordance with our stipulation that orientation-
reversing elements of Gspatial should act antiunitarily.)
Evidently, this is the case when the locations of the vertices,
the triangulation, and the branching structure are all
invariant under the action of Gspatial. (For orientation-
revering elements, note that the effect of the complex
conjugation is canceled by the reversal of the orientation of
the simplices.) To achieve this, we can start from a Gspatial-
invariant cellulation of the spatial manifold (which can be
obtained, for example, via the Wigner-Seitz construction);
then, we take its barycentric subdivision, which gives a
Gspatial-invariant triangulation. Moreover, one can show that
there is always a Gspatial-invariant branching structure on
this triangulation. The resulting triangulation and branch-
ing structure are illustrated in Fig. 17 for the case d ¼ 2 and
Gspatial ¼ p4m (the symmetry group of the simple square
lattice).
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APPENDIX G: COCYCLES

In this appendix, we delve a little deeper into what the
equivariant cocyclesmean.We find that they nicely formulate
what it means for the cocycle (and hence the topological
response) to be spatially dependent. One can see this as
another derivation of the equivariant cohomology classifica-
tion. Importantly, we learn how to integrate these cocycles.

1. Derivatives

We consider spacetime X with its lattice as a CW space.
We want to define a “cocycle that depends on position”:

ω0ðx; g1;…; gdÞ ∈ CDðBG;C0ðX;Uð1ÞorÞÞ:

Here, D is the dimension of X. The local coefficients
Uð1Þor exist because we want our cocycle to be a
pseudoscalar function so that orientation-reversing ele-
ments of G conjugate the phase. This is important for
getting the correct action of G on C0 and the correct
classification in the case of time-reversal symmetry and
other orientation-reversing spacetime symmetries. In the
rest of this section, we take this coefficient system to be
understood and simply write CjðXÞ. Note that we cannot
exchange the order of X and BG above and get the right
answers. In a sense, what we have is a group cochain valued
in pseudoscalar functions on X, i.e., volume forms on X.
We can define two differentials for such an object. The

first measures a change in ω0 under a gauge transformation:

dGω0ðx; g1;…; gDþ1Þ
¼ ω0ðx · g1; g2;…; gDþ1Þ−ω0ðx; g1g2; g3;…; gDþ1Þ
þω0ðx; g1; g2g3;…; gDþ1Þ þ ð−1Þdþ2ω0ðx; g1;…; gdÞ;

where, in the first term, we have used the action of G on X,
which we write as a right action. This reflects that when we
write CDðBG;C0ðXÞÞ, we are considering C0ðXÞ as a local
coefficient system on BG induced by the action of G on X.
To have a gauge-invariant cocycle, we need

dGω0 ¼ 0:

This means we have a group cocycle valued in volume
forms on X.
There is another differential that measures whether the

integral of this volume form defines a topological invariant
of X:

dXω0ðx; y; g1;…; gdÞ ¼ ω0ðy; g1;…; gdÞ−ω0ðx; g1;…; gdÞ:

For ω0, dXω0 ¼ 0 means that our cocycle is constant.
However, it makes more sense to say that it is constant up to
a gauge transformation. Thus, we should instead require

dXω0 ¼ −dGω1

for some

ω1 ∈ CD−1ðBG;C1ðXÞÞ:

It might not be possible to solve this equation. Indeed, we
are asking that

d1ω0 ≔ ½dXω0� ∈ HdðBG;H1ðX;Uð1ÞorÞÞ

be zero. If it is, then we can find ω1 and make a redefinition
of our cocycle:

ω ¼ ω0 þ ω1:

To say that a homotopy of X with its G action can be
compensated by a gauge transformation (and vice versa),
we need to say ðdG þ dXÞω ¼ 0. Inspecting what we have
so far, we find

ðdG þ dXÞω ¼ dXω1;

so we would like to find an ω2 ∈ Cd−2ðBG;C2ðXÞÞ with

dXω1 ¼ −dGω2:

The obstruction is

d2ω0 ≔ ½dXω1� ∈ Hd−1ðBG;H2ðX;Uð1ÞorÞÞ:

The pattern continues until the last obstruction,

dd ∈ H0ðBG;HDþ1ðX;Uð1ÞorÞÞ:

FIG. 17. A p4m-invariant triangulation and branching structure.
The black dots are the vertices of the original p4m-invariant
cellulation (the simple square lattice), and the red dots are the
vertices that had to be added (through the barycentric subdivision) to
get a p4m-invariant triangulation and branching structure.
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If we can solve all of these descent equations, then we
obtain a cocycle for both dX and dG, i.e., both topological
and gauge invariant:

ω ¼ ω0 þ � � � þ ωD:

This is called an equivariant cocycle, and it defines a class
in ordinary equivariant cohomology HD

GðXÞ.
Note we did not have to start with ω0 ∈ CDðBG;C0ðXÞÞ;

we could have instead started with a class in any of these
groups:

ω0 ∈ CpðBG;CqðXÞÞ

with pþ q ¼ D. Indeed, given any class ½ω0� ∈ HpðBG;
HqðX;Uð1ÞorÞÞ, we can compute these differentials. If they
all vanish, ω0 defines a class in equivariant cohomology
HD

GðX;Uð1ÞorÞ. All classes in equivariant cohomology
arise this way; however, there may be new relations
between classes, and the group structure of HD

GðXÞ may
be some extension, with classes inHpðBG;HqðX;Uð1ÞorÞÞ
combining into a class that comes from Hpþ1ðBG;
Hq−1ðX;Uð1ÞorÞÞ. The extension is always in that direction
and is always Abelian.
The groups

Ep;q
2 ≔ HpðBG;HqðX;Uð1ÞorÞÞ

have a very nice interpretation in terms of decorated
domain walls. They describe how codimension p sym-
metry defects are decorated with q-forms.

2. Integrals

In this section, we discuss how one computes the
topological response, Eq. (5.2) of Sec. IV B,

Z
M
A�ω

for A∶M → X==G and ω ∈ HD
GðXÞ, a cocycle described

using the descent sequence of the previous section.
The integral is a sum over integrals for each D-facet of

M. In order to evaluate the pullback A�ω on aD-facet inM,
we decompose ω ¼ ω0 þ ω1 þ � � � þ ωD, where ωj ∈
CD−jðBG;CjðXÞÞ and evaluate each ωj and sum. The
evaluation of ωj works just like the cup product [101]. This
is simplest to describe in a simplical refinement of the cell
structure on M. All simplicies in M are assumed to have
ordered vertices. The first D − jþ 1 vertices with the G
labels on edges between them form a D − j-simplex in BG
on which we evaluate ωj to obtain an element of CjðXÞ.
The last jþ 1 vertices with their edges and faces as given
above are

xD−j ⇝ yD−j →
gD−j

xD−jþ1 ⇝ � � � →gD yD;

where we can push all the g’s to the right to obtain a j-chain
in X on which we evaluate that cochain to obtain a number.
The sum of these numbers is the value of A�ω on this D-
simplex of M.
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