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The fluctuation theorems, and in particular, the Jarzynski equality, are the most important pillars of
modern nonequilibrium statistical mechanics. We extend the quantum Jarzynski equality together with the
two-time measurement formalism to their ultimate range of validity—to quantum field theories. To this
end, we focus on a time-dependent version of scalar ϕ4. We find closed-form expressions for the resulting
work distribution function, and we find that they are proper physical observables of the quantum field
theory. Also, we show explicitly that the Jarzynski equality and Crooks fluctuation theorems hold at one-
loop order independent of the renormalization scale. As a numerical case study, we compute the work
distributions for an infinitely smooth protocol in the ultrarelativistic regime. In this case, it is found that
work done through processes with pair creation is the dominant contribution.
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I. INTRODUCTION

In physics there are two kinds of theories to describe
motion: microscopic theories whose range of validity is
determined by a length scale and the amount of kinetic
energy, such as classical mechanics or quantum mechanics;
and phenomenological theories, such as thermodynamics,
which are valid as long as external observables remain close
to some equilibrium value.
Over the past two centuries, microscopic theories have

undergone a rapid development from classical mechanics
over special relativity and quantum mechanics to quantum
field theory. While quantum field theories were originally
developed for particle physics and cosmology, this approach
has also been shown to be powerful in the description of
condensed matter systems. Examples include quasiparticle
excitations in graphene, cavity quantum electrodynamics,
topological insulators, and many more [1–4].
In contrast to the evolution of microscopic theories, the

development of thermodynamics has been rather stagnant
—until only two decades ago when the first fluctuation
theorems were discovered [5–8]. Conventional thermody-
namics can only fully describe infinitely slow, equilibrium

processes. About all real, finite-time processes the second
law of thermodynamics asserts only that some amount of
entropy is dissipated into the environment, which can be
expressed with the average, irreversible entropy production
as hΣi ≥ 0 [9]. The (detailed) fluctuation theorem makes
this statement more precise by expressing that negative
fluctuations of the entropy production are exponentially
unlikely [5–8,10]:

Pð−ΣÞ ¼ expð−ΣÞPðΣÞ: ð1Þ

The most prominent (integral) fluctuation theorem [11]
is the Jarzynski equality [12], which holds for all systems
initially prepared in equilibrium and undergoing isothermal
processes,

hexpð−βWÞi ¼ expð−βΔFÞ; ð2Þ

where β is the inverse temperature,W is the thermodynamic
work, and ΔF is the free-energy difference between the
instantaneous equilibrium states at the initial and final
times. In its original inception the Jarzynski equality Eq. (2)
was formulated for classical systems with Hamiltonian [12]
and Langevin dynamics [13]. Thus, W is essentially a
notion from classical mechanics, where work is given by a
force along a trajectory. The advent of modern fluctuation
theorems for classical systems [5–8,10,12–14] has spurred
the development of a new field, which has been dubbed
stochastic thermodynamics [15–20].
In stochastic thermodynamics one focuses on the fluc-

tuating properties of the central quantities such as work and
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heat, which are defined for single realizations of processes
operating far from equilibrium. Thus, in the study of
nanoscale systems out of thermal equilibrium, it is natural
to ask in what regimes quantum effects become significant
and how fluctuation theorems apply to quantum systems
[21–34]. Nevertheless, it took another decade before it was
clearly stated that in quantum mechanical systemsW is not
a quantum observable in the usual sense [35]. This means
that there is no Hermitian operator, whose eigenvalues
are the classically observable values of W. This is the
case because thermodynamic work is a path-dependent
quantity—a nonexact differential. Hence, thermodynamic
work is rather given by a time-ordered correlation function
[24,25,35].
To gain more insight into the underlying statistics of

quantum work, the two-time measurement formalism
[36,37] has proven powerful: In this formulation, a quan-
tum system is prepared in contact with a heat bath of
inverse temperature β. The system is then decoupled from
the environment and a projective measurement onto the
initial energy eigenbasis is performed. Then, the system is
let to evolve before another projective measurement of the
energy is performed. As the system is isolated, the work
performed on the system is identical to the change in
energy. Despite its success, this formalism has several
limitations [38], including the lack of thermodynamic
accounting for the measurement process [39] and its
inapplicability to coherently controlled quantum systems
[40]. Nevertheless, it is important to remark that in
complete analogy to how classical mechanics is contained
in quantum mechanics (in the appropriate limits), the two-
time measurement formalism produces work distribution
functions which correspond to those of classical systems in
semiclassical approximations [41–45].
To date another decade has gone by, yet quantum

stochastic thermodynamics is still rather incomplete. How
to describe thermodynamic work and entropy production in
open quantum systems is still hotly debated [46–56], and
with a few exceptions [57–66] most of the literature is
restricted to standard Schrödinger quantum mechanics.
The purpose of the present analysis is to significantly

broaden the scope of stochastic thermodynamics and to
take the next, important step—extend quantum stochastic
thermodynamics to interacting quantum field theories.
Conventional thermodynamics is a phenomenological
theory that has no knowledge of the underlying micro-
scopic dynamics. In small systems, the dynamics are
governed by fluctuations, and in particular, heat and work
become fluctuating quantities. The magnitude and charac-
teristics of these fluctuations, however, are determined
by the underlying dynamics and it crucially matters
whether one studies a classical, a quantum-mechanical,
or a quantum field theoretic model. Therefore, “stochastic
thermodynamics of quantum field theories” studies the
fluctuations of the standard thermodynamic quantities as

arising from a quantum field theory in contrast to classical,
thermal noise.
In the following, we demonstrate that the two-time

measurement formalism can be systematically used to
investigate the work distribution functions of a restricted
class of quantum field theories, focusing on a time-
dependent version of λϕ4. Closed-form expressions for
these work distributions are found at leading order, includ-
ing loop corrections, through the use of a new diagram-
matic technique and a mapping between finite-time
transition amplitudes and infinite-time scattering ampli-
tudes. It is found that to the perturbative order considered,
the work distribution function does not run with the
renormalization scale, indicating that the distribution is
an observable of the quantum field theory. We verify that
the quantum Jarzynski and Crooks fluctuation theorems
hold exactly and are independent of the renormalization
scale. Because of the form of the work distributions, it is
straightforward to show that the fluctuation theorems hold
if one removes the loop corrections (as would be the case
for a classical field theory) and also in the nonrelativistic
limit.
These results demonstrate that quantum fluctuation

theorems and stochastic thermodynamics can be extended
to include quantum field theories, our most fundamental
theory of nature. Thus, our results open the door for future
application of fluctuation theorems to the study of problems
at the forefronts of physics—in condensed matter physics,
particle physics, and cosmology.
This paper is organized as follows. In Sec. II, we review

the two-time measurement formalism and the quantum
Jarzynski equality. We define a restricted class of quantum
field theories in Sec. III for which the work distribution
function can be calculated. The energy projection operators
for a generic real scalar field theory are calculated in
Sec. IV and a method for calculating finite-time transition
amplitudes from infinite-time scattering amplitudes is
introduced. The mathematical details of this relationship
between finite-time and infinite-time amplitudes are
detailed in Appendix A. In Sec. V, we specialize to a
time-dependent version of λϕ4 and discuss its renormali-
zation. Then, Sec. VI discusses how closed-form expres-
sions for the work distribution function can be calculated at
leading order using a graph theoretic technique. The details
of the derivation can be found in Appendix B while the
closed-form expressions for the work distribution function
are in Appendix C. We discuss the analytic properties of the
work distribution function in Sec. VII and analytically
verify both the Crooks fluctuation theorem and quantum
Jarzynski equality at leading order for time-dependent λϕ4.
In Sec. VIII, we numerically evaluate the work distribution
function for a relativistic bath and a particular driving
protocol and verify the fluctuation theorems. Interestingly,
we find that the dominant process in the work distribution
function is particle pair production through a loop diagram,
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an effect found only in a quantum field theory. We conclude
in Sec. IX with a few remarks.

II. PRELIMINARIES: TWO-TIME
MEASUREMENT FORMALISM

We begin by reviewing the two-time measurement
formalism to establish notions and notation [25]: A
quantum system is initially, at t ¼ t1, in thermal equilib-
rium with a classical heat bath of inverse temperature β
[67]. At t ¼ t1 þ 0þ the system is disconnected from the
heat bath and the energy of the system is projectively
measured to be E1. The system then evolves according to a
time-dependent protocol until time t ¼ t2. At this time, the
energy of the system is measured to be E2.
Let ĤðtÞ be the Hamiltonian at time t and let Uðt2; t1Þ be

the time evolution operator from t1 to t2, and Π̂E is the
energy projection operator onto the (potentially degenerate)
subspace of eigenstates with energy E. This projection
operator is time dependent due to the time-dependent
Hamiltonian, but for compactness of notation, this depend-
ence will be implicit.
As the system starts in equilibrium, the initial state of the

system is given by the thermal density matrix:

ρ̂0 ¼
exp½−βĤðt1Þ�

trfexp½−βĤðt1Þ�g
: ð3Þ

The probability of measuring energy E1 at time t1 is then
given by

PðE1Þ ¼ trfΠ̂E1
ρ̂0g; ð4Þ

with the normalized postmeasurement state

ρ̂E1
¼ Π̂E1

ρ̂0Π̂E1

trfΠ̂E1
ρ̂0Π̂E1

g : ð5Þ

After being projected into the E1 energy subspace, the
system is evolved according to a time-dependent protocol.
The conditional probability of measuring energy E2 is

PðE2jE1Þ ¼ trfΠ̂E2
Uðt2; t1Þρ̂E1

Uðt1; t2Þg: ð6Þ

Importantly, the system is isolated from, or at least very
weakly coupled to, the heat bath during its evolution. As
such, the work performed by the experimenter on the
system can be identified with the change in system energy,
W ≡ E2 − E1. One may then define the work distribution
function:

PðWÞ ¼
XZ
E1;E2

δðW − E2 þ E1ÞPðE1; E2Þ: ð7Þ

Using the definition of the joint probability distribution and
Eqs. (3)–(7),

PðWÞ ¼
XZ
E1;E2

δðW − E2 þ E1Þ
trfΠ̂E1

ρ̂0g
trfΠ̂E1

Π̂E1
ρ̂0g

× trfΠ̂E2
Uðt2; t1ÞΠ̂E1

ρ̂0Π̂E1
Uðt1; t2Þg: ð8Þ

This expression differs from what has been previously
shown in the literature due to the presence of the ratio of
traces of the projection operators. This is because in
previous works the quantum system of interest was
assumed to have a discrete energy eigenspectrum. As a
consequence, the energy projection operator can be thought
of as an idempotent matrix, i.e., Π̂E1

Π̂E1
¼ Π̂E1

, and thus
this additional term is trivial. However, for systems with a
continuum of states the projection operator involves a δ
function which is not idempotent and has nonzero mass
dimension. As such, this additional term is essential for
proper normalization of the work distribution when one
considers a quantum system with a continuum of states.
If the time evolution of system is at least unital [68], the

quantum Jarzynski equality [35–37,70–73] follows from
Eq. (7): Z

dWPðWÞ expð−βWÞ ¼ expð−βΔFÞ: ð9Þ

In this expression, ΔF is the change in free energy from the
instantaneous equilibrium distribution at time t1 to time t2.

III. RESTRICTED FIELD THEORIES

The work distribution function Eq. (8) and correspond-
ing quantum Jarzynski equality Eq. (9) are natural objects
to consider in the context of nonequilibrium statistical
physics. The work distribution function fully classifies all
fluctuations involving energy transfer and the quantum
Jarzynski equality strongly constrains the form of these
fluctuations [74]. However,PðWÞ, Eq. (8), is not phrased in
a natural manner for studying a quantum field theory. The
work distribution function requires one to know the energy
projection operators Π̂E for the Hamiltonian at the initial
and final times. For a generic quantum field theory, the
calculation of these operators may prove intractable.
Furthermore, Eq. (8) is a fundamentally finite-time object
as one is performing energy projection measurements at
times t1 and t2. Usually, quantum field theory is applied to
infinite-time scattering processes as is commonly done in
particle physics [75]. This approximation is valid in the
context of particle physics because observations are made
on time scales significantly greater than the characteristic
time scale of particle dynamics. However, nonequilibrium
work distributions are of greatest interest when these time
scales are comparable.
Given the difficulties associated with the general case,

we restrict the class of quantum field theories and driving
protocols that we consider. Working in the rest frame of the
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experimenter and heat bath, we assume that the system is
governed by a Hamiltonian of the formHðtÞ ¼ H0 þHIðtÞ,
where H0 is the Hamiltonian for a free-field theory. The
interacting part of the Hamiltonian is assumed to be
sufficiently smooth and have the general form

HIðtÞ ¼
�
HIðtÞ for t ∈ ðt1; t2Þ
0 otherwise:

ð10Þ

It should be noted that these restrictions disallow gauge
theories where the matter fields have fixed gauge charges.
This is because even in the absence of a classical background
field, charged particles self-interact and interact with each
other through the exchange of gauge bosons.
Imposing these requirements, it follows that the energy

projection operators needed at the beginning and end
of the experiment are just those for a free-field theory.
Furthermore, as we show in Sec. IVand Appendix A, it will
be possible to map the finite-time transition probability
onto an infinite-time process because the theory is free at
the initial and final times.
These assumptions are essential for our approach in

finding the work distribution function. However, we make
an additional set of assumptions for both simplicity and
definiteness. For the remainder of this paper, we restrict
ourselves to theories of a single real scalar field ϕ

with nonzero mass m. Such theories are described by
the Lagrangian

L ¼ −
1

2
∂μϕ∂μϕ −

1

2
m2ϕ2 þΩ0 þ Lint; ð11Þ

where the constant Ω0 is included to cancel the zero-
point energy. Note that we have chosen to work in units
where ℏ ¼ c ¼ 1 and are using the Minkowski metric
ημν ¼ diagð−1;þ1;þ1;þ1Þ.
Despite their simplicity, such field theories Eq. (11) have

applications across a wide variety of energy scales [75–77]:
from phonons [78,79], the Ginzburg-Landau theory of
superconductivity [80], Landau’s theory of second-order
phase transitions [81], and critical phenomena more gen-
erally [82] to the study of spontaneous symmetry breaking
[83,84], the Higgs mechanism [85,86], and inflationary
cosmology [87].

IV. PROJECTION OPERATORS AND
FINITE-TIME TRANSITIONS

Given the form of the interaction Eq. (10), the energy
projection operators are the free-theory projection opera-
tors. Note that the free Hamiltonian commutes with the
number operator. Hence, we can express energy projection
operators as a sum over projections with definite energy E
and particle number n. They can be written as

Π̂E;n ¼
Z gd3k1…gd3knδðE − ω1 − � � � − ωnÞ

1

n!
jk1;…; knihk1;…; knj; ð12Þ

where ωj ¼ ðm2 þ k2jÞð1/2Þ is the energy of the jth particle and gd3kj ¼ d3kj/ð2πÞ32ωj is the Lorentz invariant measure [76].

Summing over energetically degenerate subspaces we can further write Π̂E ¼ P
nΠ̂E;n. Even though the field theory has a

mass gap, this general form holds for all energy projection operators, including the ground state projection with E ¼ 0.
Returning to the work distribution function Eq. (8) and making use of these definitions for the energy projection

operators, we obtain

PðWÞ ¼
X
n1;n2

Z Yn1
i

Yn2
j

gd3ki gd3k0j δ
�
W þ

Xn1
l¼1

ωl −
Xn2
l¼1

ω0
l

����� hk01;…; k0n2 jUðt2; t1Þjk1;…; kn1iffiffiffiffiffiffiffiffiffiffiffiffiffi
n2!n1!

p
����2 expð−β

Pn1
l¼1 ωlÞ

trfexpð−βĤ0Þg
: ð13Þ

The distribution Eq. (13) is normalized by the free energy of
the free-field theory, trfexp ð−βĤ0Þg ¼ exp ð−βF0Þ. The
momenta of the incoming and outgoing particles are inte-
grated over in a Lorentz invariant manner and thus the
integrationmeasure is frame independent. Furthermore, each
incoming particle is associated with a Boltzmann weight
expð−βωÞ. The single δ function ensures conservation of
energy. Lastly, the quantity hk01;…; k0n2 jUðt2; t1Þjk1;…; kn1i
is the finite-time transition amplitude for the time-dependent
system.
To make use of the machinery of quantum field theory, it

will be necessary to rewrite this finite-time amplitude in

terms of an infinite-time scattering process. The math-
ematical details are in Appendix A, but a high-level
description and the intuition for the mapping are provided
here.
Because of the restrictions placed on the form of the

interaction Hamiltonian Eq. (10), the quantum field theory
is free at the initial and final times. One can imagine
extending the finite-time experiment outside of the interval
½t1; t2� by assuming the Hamiltonian remains noninteracting
before and after the projective energy measurements. As
the Hamiltonian is time independent for t ≤ t1 and t ≥ t2,
no additional work is performed and the work distribution
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function is identical to the finite-time process. Furthermore,
as the projective measurements place the system in an
energy eigenstate of the free theory at the initial and final
times, these states can be evolved arbitrarily far into the past

or future, respectively, in the Schrödinger picture at the cost
of an overall, yet irrelevant, phase. Thus, we map the finite-
time transition amplitude onto an infinite-time scatttering
process, and we find

jhk01;…; k0n2 jUðt2; t1Þjk1;…; kn1ij

¼
����
Z

d3x10d3x1… expð−ik10x10Þ expðik1x1Þ…∂0x1
0

↔ ∂0x1

↔
… · IhΩjT½UIð∞;−∞ÞϕIðx01Þ…ϕIðx1Þ…�jΩiI

����: ð14Þ

In this expression, the subscript I is used to indicate
operators in the interaction picture. The state jΩiI is defined
as the vacuum state of the free theory, i.e., Ĥ0jΩiI ¼ 0. We

also have f∂μ

↔
g≡ fð∂μgÞ − ð∂μfÞg; see Ref. [76].

V. RENORMALIZATION OF TIME-DEPENDENT
THEORIES

For nontrivial work to be performed on the system, the
interaction Hamiltonian Eq. (10) must be time dependent.
This time dependence breaks Lorentz invariance by sin-
gling out a preferred frame, the experimenter’s frame. Thus,
quantities such as energy and time are always measured
with respect to this frame. This differs significantly from
the usual approach to quantum field theory where Lorentz
invariance is essential [75]. As such, significant care must
be taken in the definition and renormalization of the
quantum field theory.
Formulation.—Generally, we may choose any time-

dependent interaction in Eq. (11); however, we focus on
a time-dependent variant of λϕ4, and we have

Lint ¼ −
1

4!
λðtÞϕ4: ð15Þ

The time-independent λϕ4 is a renormalizable field theory
[75–77], which can be shown rigorously through Dyson-
Weinberg power counting arguments [88,89]. Being renor-
malizable, the theory only requires a finite number of
counterterms to cancel divergences due to loop corrections
and is valid at all energy scales, up to considerations of
strong coupling. However, these power counting arguments
rely on the Lorentz invariance of the field theory’s
Lagrangian density. As Lorentz invariance is broken in
Eq. (15), it is not clear that this theory can be renormalized
with a finite number of counterterms.
A mathematically equivalent, but more intuitive

approach, is to rewrite this field theory as a nonrenorma-
lizable effective field theory with a classical source. This is
done by promoting λ to a classical, nondynamical, scalar
field χcl with mass M. This mass scale is assumed to be
much greater than any other energy scale in the system and
sets the cutoff scale for this effective field theory. As
a bookkeeping mechanism, it is convenient to introduce

a dimensionless parameter g ¼ 1 to keep track of the
perturbative expansion as the theory no longer has an
explicit coupling constant. The Lagrangian density then
becomes

L ¼ −
1

2
∂μϕ∂μϕ −

1

2
m2ϕ2 þΩ0 −

g
4!M

χclϕ
4: ð16Þ

Additional interaction terms induced by the breaking of
Lorentz invariance are suppressed by increasing powers of
ðg/MÞ. Equation (16) can be thought of as the leading-order
expression of Eq. (15) as an effective field theory. The
interaction term in this theory has mass dimension five and
thus this theory is nonrenormalizable [75]. Being non-
renormalizable, an infinite set of counterterms is required to
cancel divergences and the theory may only be applied at
energy scales up to its cutoff, M. For present purposes, the
counterterms of interest may be expressed as

Lctr ¼ −
X
j;k

cj;k
gj

Mj χ
j
clϕ

k: ð17Þ

One key advantage of the effective field theory Eq. (16)
over Eq. (15) is that the classical field χcl can be thought of
as a work reservoir [9,90]. This reservoir sources all
interactions and the χcl field carries this energy into or
out of the system. In the present case, this leads to more
intuitive Feynman diagrams where energy is conserved at
every vertex as opposed to the theory described in Eq. (15)
where vertices include only ϕ, and hence do not conserve
energy. Note, however, that the two approaches are math-
ematically fully equivalent and we may freely switch
between them by identifying g/MχclðtÞ ¼ λðtÞ.
Renormalization.—We will be working to leading order

in the perturbative parameter g ¼ 1. However, even at this
order, we must consider loop diagrams which are formally
divergent. We use dimensional regularization in d ¼ 4 − ϵ
dimensions to parametrize the divergences and work within
the framework of the MS renormalization scheme at an
energy scale μ to systematically assign values to the
counterterms; see, e.g., Refs. [75–77]. At leading order,
there are only two divergent diagrams we need to consider.
The first is the loop correction to the ϕ propagator, Fig. 1.
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The second is the vacuum energy diagram sourced by the
classical field χcl, Fig. 2. In these diagrams, the scalar field
ϕ is denoted by a solid line while the classical background
field χcl is represented by a dotted line.
We first consider the corrections to the ϕ propagator

shown in Fig. 1. At leading order, the propagator is modified
by a loop correction, Fig. 1(a), whose divergent part is
canceled by a counterterm, Fig. 1(b). The relevant counter-
term from the Lagrangian Eq. (17) is c1;2ðg/MÞχclϕ2.
Working in d ¼ 4 − ϵ dimensions, the MS renormalization
scheme requires us to fix

c1;2 ¼
1

2

�
m
4π

�
2 1

ϵ
: ð18Þ

In the limit of χcl being a time-independent background, the
remaining finite part of the loop diagrammatcheswith that of
regular λϕ4 theory.
The diagrams in Fig. 2 are used to calculate the change in

vacuum energy of the ϕ field due to the classical back-
ground field χcl. The two-loop diagram in Fig. 2(a) is the
vacuum bubble induced by the χcl background. Figure 2(b)
includes the contribution of the counterterm fixed by the
loop corrections to the propagator while Fig. 2(c) corre-
sponds to the contribution of the c1;0ðg/MÞχcl counterterm.

As the counterterm in Fig. 2(b) is already fixed by the
propagator, the MS scheme requires the choice

c1;0 ¼
1

2

�
m
4π

�
4 1

ϵ2
: ð19Þ

The remaining finite part of the diagrams in Fig. 2 is
given by

… ¼ −
i
8

�
m
4π

�
4
Z

d4z
g
M

χclðzÞ: ð20Þ

The expression Eq. (20) involves the integral over all space
and time of the background field χcl. This quantity will be
formally infinite unless the system is restricted to a large
but finite spatial volume V. As χcl is spatially uniform in the
experimenter’s frame, it then follows that

… ¼ −
i
8

�
m
4π

�
4

V
Z

dt
g
M

χclðtÞ: ð21Þ

Disconnected vacuum diagrams.—In the standard
framework of quantum field theory, one assumes that all
interactions are switched on and off adiabatically in the
distant past and future. Consequently, for a field theory

FIG. 1. Leading-order corrections to the propagator of the scalar field ϕ. The interactions are sourced by insertions of the classical,
nondynamical field χcl.

FIG. 2. Vacuum energy contributions of χcl. The interactions are sourced by insertions of the classical, nondynamical field χcl.
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with a mass gap, one can use the adiabatic theorem to show
that the disconnected vacuum diagrams only contribute an
irrelevant overall phase to any scattering amplitude [91,92].
However, nonequilibrium evolution requires that the inter-
action parameters are varied nonadiabatically. As such, one
must include the disconnected vacuum diagrams in the
calculation of scattering amplitudes.
Consider an n-point correlation function of the

form hΩjT½UIð∞;−∞ÞϕIðx1Þ…�jΩi. For a contributing
Feynman diagram, we call any part of the diagram that can
be traced to an external field source ϕIðxiÞ connected. The
contributions of all such connected diagrams are denoted
by hΩjT½UIð∞;−∞ÞϕIðx1Þ…�jΩiC. Any other component
of the diagram is considered a disconnected vacuum
subdiagram. Note that all such vacuum diagrams neces-
sarily involve the background field χcl as it sources all
interactions. The contribution of the set of disconnected
vacuum diagrams is given by hΩjUIð∞;−∞ÞjΩi.
The n-point correlation function factorizes into

the product of the connected n-point diagrams,
hΩjT½UIð∞;−∞ÞϕIðx1Þ…�jΩiC, and the vacuum dia-
grams, hΩjUIð∞;−∞ÞjΩi. The vacuum diagram contri-
bution hΩjUIð∞;−∞ÞjΩi has the property that it can be
expressed as the exponential of the sum of all unique
vacuum diagrams. This is due to the fact that if multiple
copies of the same vacuum subdiagram are present in a
Feynman diagram, one must divide by the number of
possible rearrangements of these identical diagrams. Thus,

hΩjT½UIð∞;−∞ÞϕIðxÞ…�jΩi

¼ exp

�X
vacuum diagrams

�
× hΩjT½UIð∞;−∞ÞϕIðxÞ…�jΩiC: ð22Þ

As was shown in Eq. (21), the leading-order vacuum
diagram is purely imaginary. Therefore, the disconnected
vacuum diagrams only contribute an overall phase at
leading order, and thus one only needs to consider diagrams
connected to the field sources.
From a thermodynamic perspective, the failure of dis-

connected vacuum diagrams to contribute to the work
distribution function is expected. Disconnected vacuum
diagrams by definition cannot involve field sources of ϕ
and thus cannot involve the transfer of energy into or out of
the system.

VI. WORK IN QUANTUM FIELD THEORIES

Trivial and nontrivial scattering.—As seen in Sec. IVwith
details provided in Appendix A, the finite-time transition
probability can be calculated from an infinite-time scattering
process. From Eq. (14) it can be shown that this requires the
evaluation of an n-point correlation function in the inter-
action picture. This can naturally be done by perturbatively
expanding the time evolution operator in terms of the Dyson

series and subsequently applyingWick’s theorem to evaluate
the resulting free-field correlation functions.At leading order
in perturbation theory we have

UIð∞;−∞Þ ¼ T >

�
exp

�
−i

Z
∞

−∞
HintðtÞdt

��

≈ 1 − i
Z

∞

−∞
dtHintðtÞ: ð23Þ

In this expressionHintðtÞ is the interactionHamiltonian in the
interaction picture. Explicitly, it is given by

Hint ¼
Z

d3x
�

g
4!M

χclðxÞϕ4
I ðxÞ

þc1;0
g
M

χclðxÞ þ c1;2
g
M

χclðxÞϕ2
I ðxÞ

�
: ð24Þ

Using Eq. (23) in the scattering amplitude Eq. (14) sche-
matically yields an expression of the form jhoutjinij2þ
jhoutjHjinij2. This is the sum of two terms with distinct
physical origins. The first term, jhoutjinij2, is the scattering
amplitude for the trivial process where the perturbation does
not enter and nowork is performedon the system.Asnowork
is performed, this will contribute a δ function to the work
distribution. The second term, jhoutjHjinij2, involves non-
trivial scattering through the time-dependent perturbation.
The combined probability distributions of these two proc-
esses, however, will not integrate to unity. This is a
consequence of working at finite order in the Dyson series,
Eq. (23). The approximation violates unitarity, which gen-
erally has to be imposed by hand; see, for instance, Ref. [93].
That unitarity does not hold can be seen as a consequence of
the optical theorem [75,76]. The loop corrections to the
propagator that enter at order g2 were not calculated but are
needed for unitarity to hold if we consider scattering
processes of order g.
In the present case, however, it is possible to sidestep this

issue since the Jarzynski equality holds separately for the
nontrivial component of the work distribution ρðWÞ. The
full work distribution has the general form PðWÞ ¼
aδðWÞ þ ρðWÞ, where a ¼ 1 −

R
dWρðWÞ is a positive

constant chosen to impose unitarity. This mirrors the
expected contribution from the neglected loop diagrams
required for unitarity by the optical theorem. Given
the restrictions on the interaction Hamiltonian imposed
by Eq. (10), the system starts and ends as a free-field
theory and thus ΔF ¼ 0. From the Jarzynski equality,
1 ¼ R

dWPðWÞ expð−βWÞ, we can write

1 − a ¼
Z

dWρðWÞ expð−βWÞ

⇒
Z

dWρðWÞ ¼
Z

dWρðWÞ expð−βWÞ: ð25Þ
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In conclusion, the Jarzynski equality Eq. (2) holds for the
normalized, nontrivial part of the work distribution.
Therefore, as the trivial component of the scattering process
only contributes a δ function to the work distribution and
does not impact the Jarzynski equality, it suffices to
consider the nontrivial part of PðWÞ.
Calculational approach.—Several complications arise in

the treatment of the nontrivial scattering term. The inter-
action Hamiltonian Eq. (24) is composed of terms which
involve the scattering of at most four incoming or outgoing
particles. As the general work distribution function,
Eq. (13), involves any number of incoming or outgoing
particles, the Feynman diagrams that describe these proc-
esses will be composed of several disconnected subdia-
grams. One must sum over all possible permutations of
these subdiagrams before squaring the resulting amplitude.
This is in stark contrast to the usual procedure in quantum
field theory where one is only interested in fully connected
diagrams and their permutations. To further complicate the
matter, even once one has the square of the amplitude of all
permutations, one still must integrate over all momenta and
sum over all possible particle numbers as proscribed in
Eq. (13). Carrying out this procedure in generality proves a
formidable challenge to a direct application of existing field
theoretic techniques.
In this work, we instead pioneer a graph theoretic

approach which allows us to classify the products of
Feynman diagrams in such a manner that the infinite sums
over particle number can be carried out exactly. This leads
to closed-form expressions for the leading-order work
distribution where only a few kinematic integrals must
be performed. The details of this procedure are in
Appendix B, but a brief description is provided here.
While jhoutjHjinij2 can be thought of as the square of
the sum of all permutated diagrams, it will be more helpful
to think of it in terms of the sum over the cross terms of two
permutated diagrams. The incoming and outgoing field
sources of each diagram are labeled by integers up to n1 and
n2, respectively. One proceeds to “glue” the two diagrams
together by identifying the corresponding field sources in
each diagram. The resulting “glued” diagram can then be
classified in terms of its graph topology, specifically the
topology of the connected subgraph(s) which contain
insertions of the interaction Hamiltonian. Rephrased in

this language, the combinatorics of the sum over permu-
tations and subsequent sum over particle number becomes
tractable.
Ultimately, one finds that the work distribution function

is naturally written as the sum of five distributions: the work
distribution for when the particle number is unchanged, the
distributions for when the particle number increases or
decreases by two, and the distributions for when the particle
number increases or decreases by four. These are denoted
by the distributions ρn→nðWÞ, ρn→n�2ðWÞ, and ρn→n�4ðWÞ,
respectively. It should be stressed that the subscript n in
these distributions does not correspond to a specific particle
number as the particle number has been summed over.
Closed-form, unnormalized, expressions for these five
distributions are given in Appendix C.

VII. ANALYTIC PROPERTIES

Form of the work distributions.—As an example for the
five contributions to PðWÞ, we discuss ρn→nþ2ðWÞ in detail
as it illustrates all key properties. This distribution may be
decomposed into two components:

ρn→nþ2ðWÞ ¼ ρtreen→nþ2ðWÞ þ ρloopn→nþ2ðWÞ; ð26Þ

where ρtreen→nþ2ðWÞ is the distribution of work arising from

tree-level processes and ρloopn→nþ2ðWÞ originates from dia-
grams involving a loop. In a loose sense, ρtreen→nþ2ðWÞ can be
thought of as “classical” contributions to the work distri-
bution as tree-level diagrams satisfy the classical equations
of motion. The distribution ρloopn→nþ2ðWÞ corresponds to
processes which violate the classical equations of motion
and are purely a result of second quantization. Only the
distributions ρn→nþ2ðWÞ and ρn→n−2ðWÞ have contribu-
tions from loop diagrams at this order.
We begin with the tree-level contribution. While both the

incoming and outgoing states will potentially involve many
particles, the relevant subdiagram generated by the inter-
action Hamiltonian is shown in Fig. 3(a). This is simply the
tree-level process where one particle becomes three. The
distribution of resulting work done on the system is given
by [94]

ρtreen→nþ2ðWÞ ¼ V
3!

����
Z

dtλðtÞ expðiWtÞ
����2
Z gd3k1 gd3k10 gd3k20 gd3k30 δðW þ ω1 − ω1

0 − ω2
0 − ω3

0Þ

× ð2πÞ3δ3ðk1 − k10 − k20 − k30Þ
�

1

expðβω1Þ − 1

��
1þ 1

expðβω1
0Þ − 1

�

×

�
1þ 1

expðβω2
0Þ − 1

��
1þ 1

expðβω3
0Þ − 1

�
: ð27Þ
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While this expression appears rather involved, each
factor has a clear physical interpretation. The combinatorial
factor of 3! accounts for the symmetry of the three identical
outgoing particles. The probability of doing a particular
amount of work scales with volume of the system; the
implications of this are discussed shortly. The magnitude
squared of the Fourier transform of the time-dependent
coupling is the spectral density and can be thought of as a
measure of how much the system is being driven in energy
(frequency) space.
Finally, we have a kinematic integral which is a function

of the work performed. The integration measure is the
Lorentz invariant momentum measure fd3k for each incom-
ing and outgoing particle. The two sets of δ functions
impose conservation of energy and momentum including
the contributions of the time-dependent background. The
incoming particle is associated with the Bose-Einstein
statistics factor, 1/½expðβωÞ − 1�. This is the density of
states for a thermal system of bosons which should be
expected because the system was initially prepared in
thermal state. The outgoing particles, however, are asso-
ciated with the unusual factor 1þ 1/½expðβωÞ − 1�. This is
the appropriate density of states because the original
occupancy number for a given energy level is just
1/½expðβωÞ − 1�, but due to the scattering process, the
occupancy of this level must go up by one.
These observations can be generalized to a set of rules

for constructing any of the tree-level work distributions.
One associates each incoming particle with the density of
states 1/½expðβωÞ − 1� and each outgoing particle with
1þ 1/½expðβωÞ − 1�. One then integrates over these kin-
ematic factors in a Lorentz invariant manner and includes δ

functions for conserving energy and momentum. This is
multiplied by the spectral density of the driving protocol
and a factor of the volume. Appropriate symmetry factors
for the incoming and outgoing particles are then included.
In principle, one could arrive at these rules from a simple
thermodynamic treatment of the density of states and
subsequent use of classical field theory. We stress that this
is not the approach that we used and that these expressions
for the work distributions were derived by summing an
infinite collection of Feynman diagrams in a fully quantum
treatment.
As mentioned earlier, the work distribution function is

proportional to the volume of the system. This leads to
restrictions on the applicability of the work distributions in
Appendix C to systems with large volume. As explained in
Sec. VI, unitary is not manifest at finite order in the Dyson
series. This was sidestepped by noting that the Jarzynski
equality still held for just the nontrivial component of the
work distribution alone. However, it was assumed that the
total work distribution function could be expressed as
PðWÞ ¼ aδðWÞ þ ρðWÞ, where a ¼ 1 −

R
dWρðWÞ is a

positive constant and ρðWÞ is the nontrivial part of the work
distribution. Since ρðWÞ is proportional to the volume, a
will become negative for large systems. At this point,
our leading-order approximation is no longer valid.
Therefore, the range of validity of the present treatment
is
R
dWρðWÞ < 1. It may be possible, however, to extend

the range of validity by working to higher orders in
perturbation theory.
We now turn our attention to the component of

the work distribution function which arises from loop
diagrams:

ρloopn→nþ2ðWÞ ¼ V
2

����
Z

dtλðtÞ expðiWtÞ
����2
�
1þ 1

expðβW/2Þ − 1

�
2 1

W

�Z fd3kδðW − 2ωÞ
�

×

�Z fd3k 1

expðβωÞ − 1
þ 1

2

�
m
4π

�
2
�
1þ log

�
μ2

m2

���
2

: ð28Þ

FIG. 3. Diagrams that contribute to the work distribution function ρn→nþ2ðWÞ.
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In this expression, μ is the renormalization scale in theMS
scheme; see, e.g., Refs. [75–77]. Once again, we see that the
work distribution is proportional to the volume and spectral
density of the driving. In this process, there are two outgoing
particles, each carrying half of the work put into the system,
which is reflected in f1þ 1/½expðβW/2Þ − 1�g2. The next
two terms in Eq. (28) are a measure of the phase space
available to the outgoing particles. It should be noted that
because the particles have nonzero mass,W ≥ 2m, one does
not need to worry about the singular behavior of 1/W.
The final term in Eq. (28) results from the interference

of two Feynman diagrams. The first diagram, shown in
Fig. 3(b), is the one-loop process by which two particles
can be created. This one-loop diagram, however, interferes
with the tree-level diagram given in Fig. 3(c). This tree-
level process involves the production of two particles where
the initial particle is merely a spectator and experiences no
change in energy. The renormalization parameter μ then
controls the relative size of the contribution from each
diagram.
Loop diagrams do not exist in classical field theory

and are the hallmark of second quantization. In a classical
field theory Eq. (28) would vanish and thus it may be
thought of as the change in the work distribution func-
tion due to second quantization. Note, however, that PðWÞ
may be dominated by these contributions, as we see in
Sec. VIII.
As the work distribution Eq. (28) explicitly depends on

the renormalization scale μ, this raises the question whether
the work distribution is an observable quantity in quantum
field theory. To be a physical, observable quantity, the work
distribution should be independent of the renormalization
scale and remain invariant under renormalization group
flow. Beyond the explicit dependence on μ, the coupling
constant and mass have implicit dependence on μ due to
renormalization. Using the β function for this theory, it can
be shown that the running of the work distribution enters at
Oðλ3Þ. This is a higher-order effect and may be modified by
terms beyond leading order. To leading order the work
distribution does not depend on the renormalization scale
and therefore we conclude that the work distribution is,
indeed, a physical observable. This can also be seen as a
consequence of the form of Eq. (13). The work distribution
function can be constructed fromknowledge of the scattering
amplitudes, which are observables of the field theory.
Therefore, the work distribution must also be an observable.
Fluctuation theorems.—We now investigate how fluc-

tuation theorems manifest in a quantum field theory.
Throughout this section, we will always refer to the work
distribution functions which are normalized such that the
total work distribution integrates to unity. To make this
normalization clear, we utilize P instead of ρ.
We first consider the Crooks fluctuation theorem [10,25].

Assuming no change in free energy, the Crooks fluctuation
theorem states that the probability distribution for a forward

process, PA→BðWÞ, is related to the distribution for the
reversed process, PB→Að−WÞ, through

PB→Að−WÞ
PA→BðWÞ ¼ expð−βWÞ: ð29Þ

Accordingly, for the time-dependent field theory, we
have

Pn→n−4ð−WÞ
Pn→nþ4ðWÞ ¼ Pn→n−2ð−WÞ

Pn→nþ2ðWÞ

¼ Pn→nð−WÞ
Pn→nðWÞ ¼ expð−βWÞ: ð30Þ

Using the explicit form of the work distribution functions
from Appendix C, we verify Eq. (30) analytically. Again,
this holds independently of the renormalization scale μ. The
key property of the work distribution functions which
allows for a proof of Eq. (30) is that each incoming state
is associated with the factor 1/½expðβωÞ − 1� while each
outgoing state is associated with 1þ 1/½expðβωÞ − 1� ¼
expðβωÞ/½expðβωÞ − 1�. The latter is nothing else but an
expression of local detailed balance.
More surprisingly, it can be shown that, independent of

renormalization scale,

Ptree
n→n−2ð−WÞ
Ptree
n→nþ2ðWÞ ¼ Ploop

n→n−2ð−WÞ
Ploop
n→nþ2ðWÞ ¼ expð−βWÞ: ð31Þ

Thus, the Crooks fluctuation theorem holds both with and
without the contribution from loop diagrams. Without loop
diagrams, one simply has a classical field theory and the
validity of the fluctuation theorem is well established for
classical systems. Moving to a quantum field theory, loop
diagrams must be included, but the Crooks fluctuation
theorem still holds. This requires that order-by-order loop
corrections must enter in a pairwise manner such that the
fluctuation theorem holds at every order. That the Crooks
fluctuation theorem still holds once loop corrections are
introduced is a consequence of the fact that the theorem
depends only on unitarity and local detailed balance.
As the Crooks fluctuation theorem has been verified for

our time-dependent field theory, the Jarzynski equality
immediately follows as a consequence. This can quickly be
shown throughZ

dWPðWÞ expð−βWÞ ¼
Z

dWPð−WÞ ¼ 1: ð32Þ

Aswas true for theCrooks fluctuation theorem, the Jarzynski
equality holds independent of the renormalization scale and
will hold with or without the loop contributions.
In conclusion, we have analytically verified that the

Crooks fluctuation theorem and Jarzynski equality hold
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independent of renormalization scale for a time-dependent
quantum field theory at leading order. However, the
quantum Jarzynski equality made no assumptions of
perturbativity and only required the mild assumption of
unital dynamics in Eqs. (8) and (9). Thus, while not verified
analytically, these fluctuation theorems should hold to any
order perturbatively and may even hold nonperturbatively.

VIII. EXAMPLE: NUMERICAL CASE STUDY

We conclude the analysis with a numerical case study.
Throughout this section, we work in units such that m ¼ 1.
To accentuate the contributions of particle creation and
annihilation, we work with a relativistic bath and driving
protocol. We assume that the bath has inverse temperature
comparable to the particle mass, β ¼ 1. As driving proto-
col, we consider the infinitely smooth but nonanalytic
“bump” function:

λðtÞ ¼
�
λ0 expð −t21−t2Þ for jtj ≤ 1

0 otherwise:
ð33Þ

This function is chosen to avoid any potential issues with
continuity of derivatives at the start and end of the protocol.
The overall scale of the driving protocol λ0 will ultimately
drop out when the work distribution function is normalized.
We only require that λ0 is sufficiently small that the theory
is perturbative and our expressions for the work distribution
are valid.
We numerically evaluate the work distribution functions

of Appendix C and subsequently normalize the combined
PðWÞ. This yields the total work distribution of Fig. 4(a)
and the work distributions for the various subprocesses
shown in Fig. 4(b). Both Figs. 4(a) and 4(b) show the
characteristic “exponential asymmetry” which is indicative
of the Jarzynski equality. It is found that both the quantum
Jarzynski equality and Crooks fluctuation theorem hold to
within numerical precision. The dominant contribution to
the work distribution function is from Pn→nþ2ðWÞ with
over 80% of trials resulting in particle pair production.
Surprisingly, within Pn→nþ2ðWÞ, over 95% of the distri-
bution is from the loop diagram contributions, Ploop

n→nþ2ðWÞ.
Thus, for this protocol and bath, the majority of the work
distribution comes from loop diagrams which pair produce
particles, an effect which only exists in a quantum field
theory. Not including these loop diagrams would produce a
markedly different PðWÞ.
Figure 4(c) gives a zoomed-in view of the tail of the work

distribution functions. It can immediately be seen that all of
the work distribution functions experience the same type of
oscillatory behavior. This is a result of the spectral density
of the time-dependent coupling vanishing at these energies
(frequencies) and is not kinematic in origin. Figure 4(c)
also shows that Pn→nþ4ðWÞ is dominant over Pn→nþ2ðWÞ
but only at large values of work (W ≳ 20 mass units).

IX. CONCLUDING REMARKS

Two decades ago, the Jarzynski equality was formulated
for classical systems. It required another decade to for-
malize the concept of work in the quantum regime.
However, quantum mechanics is not our most complete
description of nature. This is quantum field theory, and
another decade later quantum fluctuation theorems have
now been extended to their ultimate limit.
For the sake of accessibility and specificity, we consid-

ered a time-dependent variant of λϕ4, for which we found
closed-form expressions for the work distribution func-
tions. While this is only one particular quantum field
theory, these distribution functions demonstrate a variety

FIG. 4. Work distribution function and its decomposition into
subprocesses for β ¼ m ¼ 1 with driving protocol specified in
Eq. (33).
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of features which should be anticipated in other field
theories. It should be emphasized that our work is thus
more general than a mere case study, since the developed
methodology can be directly applied to other field theories.
In the present case, it was shown that the work

distribution functions do not run with the renormalization
scale through the perturbative order considered, implying
that these distributions are physical observables of the field
theory. It was also found that both the Crooks fluctuation
theorem and Jarzynski equality hold independent of the
renormalization scale, both with and without loop correc-
tions. Remarkably, the contribution of loop diagrams to the
work distribution function can be substantial and thus
essential in the proper description of work fluctuations of
quantum field theories in the relativistic regime.
Until now, particle pair production and loop effects had

not been incorporated in any study of quantum fluctuation
theorems. These effects become dominant in the relativistic
regime. Our results were presented in units of the particle
mass which can obscure physical intuition for the system
and protocol being considered. To get better insight,
consider a hypothetical condensed matter system that is
described by the time-dependent λϕ4 theory with an
effective mass m ∼ 1 eV. Our work distributions describe
the behavior of such a system with an effective temperature
of T ∼ 106 K with a driving time of Δt ¼ 10−15 s. For a
particle with mass comparable to the electron, m ∼ 1 MeV,
this corresponds to temperatures of T ∼ 1012 K and driving
times of Δt ¼ 10−21 s, conditions relevant for the study of
quark-gluon plasma. This is well beyond the original
regime in which the fluctuation theorems were conceived
and outside previous treatments in the literature.
It should be stressed that these results were directly

calculated from in-out scattering amplitudes which are the
natural building block for the quantum Jarzynski equality.
In particular, we did not need to utilize the Schwinger-
Keldysh in-in formalism at any point in the calculation.
This was only possible because we were able to find a
mapping between finite-time transition amplitudes and
infinite-time amplitudes, and were able to show that
disconnected vacuum diagrams did not alter the scattering
amplitude. Because of the form of the work distribution
function, a new diagrammatic technique had to be devel-
oped so that the infinite sum over particle number and sum
over permutations of disconnected Feynman diagrams can
be performed analytically. This technique relies on the
topological properties of “glued Feynman diagrams” to
classify permutations and enables the rephrasing of the sum
over particle number in terms of a sum over graph theoretic
properties of the glued diagrams.
In the present work, field theoretic calculations were

carried out using in-out scattering amplitudes; however,
future studies may wish to make use of other approaches
to nonequilibrium quantum field theory, such as the

Schwinger-Keldysh in-in formalism. The greatest strength
of the Schwinger-Keldysh formalism is that it has been
extensively studied and the technical machinery for dealing
with renormalization of time-dependent fields and unitarity
is well understood; see, e.g., Refs. [95,96]. Its shortcoming
in the present context is that the two-time measurement
formalism is not amenable to an in-in interpretation. The
trace form of the work distribution, Eq. (8), appears to be a
natural fit for the Schwinger-Keldysh approach; however,
the energy projection operators generally cannot be
expressed in terms of field valued operators. It still may
be possible to address this with a method similar to what is
used in determining the full counting statistics in the
Schwinger-Keldysh formalism, but further research would
be required in this direction. An alternative would be to
rewrite the work distribution function in terms of scattering
amplitudes as done in Eq. (13), but these scattering
amplitudes are explicitly in-out objects. This would require
one to find the correlation functions in the Schwinger-
Keldysh formalism and then calculate the in-out scattering
amplitudes from them. Given these limitations, a fully in-
out approach was preferable for our study despite the
technical difficulties addressed in this paper. However, the
Schwinger-Keldysh approach could be useful in future
investigations, particularly if Eq. (8) can be recast in a form
compatible with the in-in formalism.
While this work focused primarily on time-dependent

λϕ4, these techniques should be applicable to any quantum
field theory. Even with the restriction that the system begins
and ends as a free-field theory, this vastly expands the realm
of applicability for quantum fluctuation theorems. One
example of an interesting system which fits within this
paradigm is a cyclic engine acting on a quantum field
working medium. Previous investigations [97] calculated
the average behavior of such an engine; however, tech-
niques outlined in this work should allow for a full
treatment of the work fluctuations.
This opens new frontiers for the use of fluctuation

theorems; from the relativistic charge carriers of graphene
to the quark gluon plasma produced in heavy ion collidors
to the evolution of the early universe, fluctuation theorems
can provide insight into the short time scale behavior of
nonequilibrium systems. While we may now begin apply-
ing quantum fluctuation theorems to the most extreme
conditions found in nature, there is still more progress to be
made. The most immediate challenge is to generalize the
approach presented here to make it applicable to a wider
variety of quantum field theories. This would enable the
study of gauge fields and more interesting protocols.
Twenty years after the advent of the Jarzynski equality
and ten years after its quantum equivalent, fluctuation
theorems can finally be applied across the full range of
energy and length scales understood in modern physics, but
more work is still left to be done.
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APPENDIX A: FINITE-TIME AMPLITUDE TO
INFINITE-TIME AMPLITUDE MAPPING

In calculating the work distribution function Eq. (13) for
a quantum field theory, one must address the finite-time
transition amplitude hk01;…; k0n2 ; t2jUðt2; t1Þjk1;…; kn1 ; t1i.
This finite-time amplitude must be rewritten in terms of an
infinite-time scattering process so that the full machinery of
quantum field theory can be used.
In general, the initial and final states of the system will be

multiparticle states; however, we specialize to the case of

single-particle states for notational simplicity. The gener-
alization to multiparticle states is straightforward.
To distinguish operators in different quantummechanical

pictures, all states and operators in the Schrödinger
picture are denoted by a subscript S, and those in the
interaction picture have a subscript I. We start by defining
the initial and final states in terms of the creation
and annihilation operators as jk; t1iS ¼ a†SðkÞjΦin; t1iS
and jk0; t2iS ¼ a†Sðk0ÞjΦout; t2iS. In these expressions,
jΦin; t1iS and jΦout; t2iS are the incoming and outgoing
vacuum states. These states are defined such that
H0jΦin; t1iS ¼ H0jΦout; t2iS ¼ 0. Using these definitions,

Shk0; t2jUðt2; t1Þjk; t1iS
¼ ShΦout; t2jaSðk0ÞUðt2; t1Þa†SðkÞjΦin; t1iS: ðA1Þ

We now define a time τ ≫ max ðjt1j; jt2jÞ with the
intention of eventually taking the limit τ → ∞. As the
system is assumed to be free at times t1 and t2, one may
trivially extend the finite-time experiment by assuming that
the system remains free outside of the interval t ∈ ðt1; t2Þ.
This cannot change the work distribution function as no
work is performed keeping the Hamiltonian fixed. Then,

Shk0; t2jUðt2; t1Þjk; t1iS ¼ ShΦout; τjUðτ; t2ÞaSðk0ÞUðt2; t1Þa†SðkÞUðt1;−τÞjΦin;−τiS: ðA2Þ

Note, as HðtÞ ¼ H0 for t ∉ ðt1; t2Þ, it is still true that H0jΦin;−τiS ¼ H0jΦout; τiS ¼ 0.
We now define some reference time t0 ∉ ðt1; t2Þ when the Schrödinger and interaction pictures coincide. Passing to the

interaction picture,

Shk0; t2jUðt2; t1Þjk; t1iS ¼ ShΦout; τjU0ðτ; t0ÞUIðτ; t2ÞaIðk0; t2ÞUIðt2; t1Þa†I ðk; t1ÞUIðt1;−τÞU0ðt0;−τÞjΦin;−τiS: ðA3Þ

In this expression, U0 is the time evolution operator
under the free Hamiltonian while UI is the evolution
operator in the interaction picture. As jΦout; τiS and
jΦin;−τiS are vacuum states of the free theory,

ShΦout; τjU0ðτ; t0Þ ¼ ShΦout; τj and U0ðt0;−τÞjΦin;−τiS ¼
jΦin;−τiS. Furthermore, as both states are annihilated by
the free Hamiltonian and the ground state is unique, they
may differ by at most a phase from the ground state jΩ; t0iI .
As the scattering amplitude will be squared in the final
calculation, these phase factors are irrelevant. Rewriting the
scattering amplitude as a time-ordered product,

jShk0; t2jUðt2; t1Þjk; t1iSj
¼ jIhΩjT½UIðτ;−τÞaIðk0; t2Þa†I ðk; t1Þ�jΩiIj: ðA4Þ

Using the mode expansion of the free scalar field and the
definition of time evolution for operators in the interaction
picture, it is straightforward to show

expðiωtÞaIðk; tÞ ¼ i
Z

d3x expð−ikxÞ∂0

↔
ϕIðxÞ; ðA5Þ

expð−iωtÞa†I ðk; tÞ ¼ −i
Z

d3x expðikxÞ∂0

↔
ϕIðxÞ: ðA6Þ

In these relations, the operator ∂μ

↔
is defined such that

f∂μ

↔
g ¼ fð∂μgÞ − ð∂μfÞg; see Ref. [76].

Making use of Eqs. (A5) and (A6), it is possible to
rewrite Eq. (A4) purely in terms of field operators in the
interaction picture. As noted before, we are only interested
in the magnitude of Eq. (A4) as any overall phase
disappears in Eq. (13). Thus, up to an overall irrelevant
phase, we find
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jShk0; t2jUðt2; t1Þjk; t1iSj ¼
����
Z

d3x0d3x expð−ik0x0Þ expðikxÞ∂0x0

↔ ∂0x

↔

IhΩjT½UIðτ;−τÞϕIðx0ÞϕIðxÞ�jΩiI
����: ðA7Þ

In this expression, it is understood that the time components of the four-vectors x and x0 are to be evaluated at t1 and t2,
respectively.
We may now formally take the limit as τ → ∞. Generalizing to the case of multiparticle initial and final states,

jhk01;…; k0n2 jUðt2; t1Þjk1;…; kn1ij

¼
����
Z

d
3

x10d3x1… expð−ik10x10Þ expðik1x1Þ…∂0x1
0

↔ ∂0x1

↔
… · IhΩjT½UIð∞;−∞ÞϕIðx01Þ…ϕIðx1Þ…�jΩiI

����: ðA8Þ

APPENDIX B: DIAGRAMMATIC TECHNIQUE

As mentioned in Sec. VI, when calculating the work
distribution function from the Dyson series one runs into
technical difficulties. The interaction Hamiltonian Eq. (24)
is composed of terms which involve at most four field
sources while the general work distribution function
Eq. (13) involves any number of incoming or outgoing

particles. As a result, the Feynman diagrams which
describe these processes will be composed of several
disconnected subdiagrams. One must sum over all possible
permutations of these subdiagrams before squaring the
resulting amplitude, unlike the usual procedure in quantum
field theory where one is only interested in fully connected
diagrams and their permutations.

FIG. 5. An incomplete collection of possible Feynman diagrams which contribute to the nontrivial part of the work distribution for
n → n scattering. For visual clarity, propagators which are not part of the four-point function are represented with dashed lines and
insertions of the background field χcl are omitted.
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To motivate our procedure for calculating this sum, it is
necessary to introduce notation for describing the permu-
tations of Feynman diagrams. From Eq. (13) it can be seen
that the scattering amplitude will depend on the momenta
of the incoming and outgoing particles and all of these
momenta are integrated over in a Lorentz invariant manner.
Let K denote the collection of all momenta and let dK
denote the Lorentz invariant measure. We let D correspond
to a Feynman diagram of interest, such as the one shown in
Fig. 5(a). Let S be the set of all permutations of the
Feynman diagram which do not interchange incoming for
outgoing particles and let σ ∈ S be a particular permuta-
tion. Now define fðW;KÞ to be all the terms that appear in
Eq. (13) that are not the scattering amplitude, i.e., the
energy conserving δ function, Boltzmann factors, and
normalization constant. Then, Eq. (13) can schematically
be rewritten as

PðWÞ ¼
Z

dKfðW;KÞ
����X
σ2∈S

ðσ ∘DÞðKÞ
����2 ðB1Þ

¼
X

σ1;σ2∈S

Z
dKfðW;KÞ ðσ1 ∘DÞ†ðKÞðσ2 ∘DÞðKÞ

ðB2Þ

¼
X

σ1;σ2∈S

Z
dKfðW;KÞ D†ðKÞðσ2 ∘ σ−11 ∘DÞðKÞ

ðB3Þ

¼ jSj
X
σ∈S

Z
dKfðW;KÞD†ðKÞðσ ∘DÞðKÞ; ðB4Þ

where jSj is the total number of permutations of the
diagram D. In moving from Eq. (B1) to Eq. (B2) we have
rewritten the square of the sum as the sum over cross terms.
In Eq. (B3) we have chosen to relabel the momenta K such
that the first diagram D† appears unpermuted. Lastly, in
Eq. (B4) we have identified the composition of permuta-
tions as a permutation and performed the sum over the
redundant permutation. In these expressions, we have
suppressed the sum over incoming and outgoing particle
number and have ignored potential complications arising
from a process mediated by more than one type of Feynman
diagram. Using Eq. (B4), the work distribution function can
be calculated by integrating over the momenta of the
product of an “unpermuted” Feynman diagram and its
possible permutations.
Since we are studying a variant of λϕ4, at leading order

the particle number may either stay the same, change by
two, or change by four. Diagrams with different numbers of
incoming or outgoing particles do not interfere and thus can
be considered separately, as mentioned in Sec. VI. For

concreteness, we will now consider processes involving n
particles where the particle number is unchanged.
For processeswhere the particle number is unchanged, the

only Feynman diagrams that contribute at leading order are
permutations of Fig. 5(a). This particular diagram is drawn
forn ¼ 6, and for clarity the insertion of the background field
χcl is not shown. We choose this diagram to represent the
unpermuted Feynman diagram D. In principle, any other
valid diagram could be chosen as the unpermuted reference,
but Fig. 5(a) is chosen for convenience. Three possible
permutations of this diagram are shown in Fig. 5. Note that
these permutations only interchange incoming particles
amongst themselves or outgoing particles amongst them-
selves. It should also be noted that the exchange 1 ↔ 2 is not
considered a unique permutation because it leaves the overall
diagram unchanged.
Before Eq. (B4) may be utilized to calculate the work

distribution function, one needs to define a scheme for
enumerating possible permutations of Fig. 5(a). We now
demonstrate that the three permutations shown in
Figs. 5(b)–5(d) define three classes of permutation which
will uniquely categorize any permutation of Fig. 5(a).
Consider Eq. (B4). One is interested in the product

of two Feynman diagrams: D†ðKÞ, the conjugate of
the unpermuted diagram, and ðσ ∘DÞðKÞ, a permuted
Feynman diagram. In each Feynman diagram, the incoming
and outgoing momenta are the same. It is only how these
momenta are connected to one another through δ functions
and four-point functions which differs. As the momenta are
identical, it will be helpful to define a “glued” Feynman
diagram which is built from the two Feynman diagrams by
treating the field sources for each diagram as identical. For
example, in Figs. 5(a) and 5(b), the momentum associated
with particle 1 in each diagram is the same. As such,
these diagrams can be connected by “gluing” the diagrams
together at this point. Repeating this for each incoming and
outgoing field source yields Fig. 6(a). For each permuted
diagram in Fig. 5, the corresponding “glued diagram” is
shown in Fig. 6.
Deep properties of the permutations shown in Fig. 5which

are not immediately apparent in the Feynman diagrams are
made manifest in the glued diagrams of Fig. 6. For each type
of permutation considered, the resulting graph topology in
Fig. 6 is different. The permutation of Fig. 5(b) results in the
glued diagram of Fig. 6(a), where the four-point interac-
tions are in distinct subgraphs. This is in contrast to the
permutations of Figs. 5(c) and 5(d) and their glued diagrams,
Figs. 6(b) and6(c),which feature both four-point interactions
in the same subgraph with a particular topology. In Fig. 6(b),
colloquially, two of the legs of each four-point interaction
are connected to themselves, resulting in “capped ends.”
Topologically, there exist closed cycles one can draw on the
graphwhich pass throughonlyone four-point function. In the
case of Fig. 6(c), each leg of one four-point interaction is
connected to a leg of the other four-point interaction.
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Topologically, this requires any closed cycle to pass through
both four-point functions. The three topologies presented in
Figs. 6(a)–6(c) are the only types possible for subgraphs
constructed with exactly two four-point functions. As such,
we can use these three possible topologies to categorize all
possible permutations of Fig. 5(a).
While the topological approach of the glued diagrams

has already proven useful in categorizing permutations, its
greatest value is in making the sum over particle number in
Eq. (13) tractable. While left implicit in Eq. (B4), the sum
over particle number is troublesome because it requires one
to first find a closed-form expression for the n → n work
distribution function in terms of the particle number n
and then find a closed-form expression for the infinite
sum. This must be done in such a manner that the
cancellation of the potentially divergent normalization
factor trfexp ð−βĤ0Þg ¼ exp ð−βF0Þ is manifest. The
glued diagram approach has the advantage of rephrasing
the sum over particle number in terms of a sum over certain
simple properties of the glued diagram.
The actual mathematical manipulations that go into the

procedure are tedious and uninformative, but a high level
description is provided here instead. Consider the Feynman
diagram in Fig. 5(d) and the glued diagram Fig. 6(c). For
n > 6, Fig. 5(d) will include additional field sources and
propagators. In the glued diagram, these propagators either
will enter the subgraph containing the four-point functions,
lengthening the paths in the graph but not changing the
topology, or will create cycle graphs made entirely of
propagators. With appropriate combinatorial factors, the
sum over particle number can then be rephrased in terms of
a sum over the length of paths in the subdiagram of the
four-point functions, a sum over the number of discon-
nected cycles of propagators, and a sum over the length of

each of these cycles. Importantly, the sum over the length of
paths in the subgraph Fig. 6(c) is independent of the sums
over the number and length of cycles of disconnected
propagators. This sum over disconnected cycles of propa-
gators is just the sum over all possible “trivial” scatterings
where the four-point function never appears. Carrying
out this sum ultimately yields the normalization factor
trfexp ð−βĤ0Þg. One may then evaluate the sum over path
lengths in Fig. 6(c) by noting that each propagator is a δ
function and each incoming field source is associated with
a Boltzmann weight exp ð−βωÞ. This gives a set of geo-
metric series which can be summed into Bose-Einstein
statistics factors. While not shown here, it can be demon-
strated that, due to their subgraph topology, Figs. 6(a)
and 6(b) are proportional to δðWÞ and thus make trivial
contributions to the work distribution function. While the
exact diagrammatics differ, this scheme applies equally
well to n → n� 2 and n → n� 4 processes.

APPENDIX C: WORK DISTRIBUTION
FUNCTIONS

In the calculation of the work distribution function
Eq. (13) for the time-dependent field theory Eq. (16), it
was found that the distribution factored into five distinct
parts. These correspond to realizations of the experiment
where the particle number is unchanged, the particle
number increases or decreases by two, or the particle
number increases or decreases by four. These are denoted
by the distributions ρn→nðWÞ, ρn→n�2ðWÞ, and ρn→n�4ðWÞ,
respectively. As explained in Sec. VI, these distributions
are not normalized and this must be done by hand.
The work distribution functions for when the particle

number is constant or changes by four are given by

FIG. 6. Glued diagrams generated by identifying the field sources of one Feynman diagram in Fig. 5 with the field sources of another
and then connecting the diagrams. For visual clarity, propagators which are not part of the four-point function are represented with
dashed lines and field sources are denoted by a small square. Insertions of the background field χcl are omitted.
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ρn→n−4ðWÞ ¼ 1

4!
V

����
Z

dtλðtÞ expðiWtÞ
����2
Z gd3k1 gd3k2 gd3k3 gd3k4 δðW þ ω1 þ ω2 þ ω3 þ ω4Þð2πÞ3δ3ðk1 þ k2 þ k3 þ k4Þ

×

�
1

expðβω1Þ − 1

��
1

expðβω2Þ − 1

��
1

expðβω3Þ − 1

��
1

expðβω4Þ − 1

�
; ðC1Þ

ρn→nðWÞ ¼ 1

4
V

����
Z

dtλðtÞ expðiWtÞ
����2
Z gd3k1 gd3k2 gd3k01 gd3k02 δðW þ ω1 þ ω2 − ω0

1 − ω0
2Þð2πÞ3δ3ðk1 þ k2 − k01 − k02Þ

×

�
1

expðβω1Þ − 1

��
1

expðβω2Þ − 1

��
1þ 1

expðβω0
1Þ − 1

��
1þ 1

expðβω0
2Þ − 1

�
; ðC2Þ

ρn→nþ4ðWÞ ¼ 1

4!
V

����
Z

dtλðtÞ expðiWtÞ
����2
Z gd3k1 gd3k2 gd3k3 gd3k4 δðW − ω1 − ω2 − ω3 − ω4Þð2πÞ3δ3ðk1 þ k2 þ k3 þ k4Þ

×

�
1þ 1

expðβω1Þ − 1

��
1þ 1

expðβω2Þ − 1

��
1þ 1

expðβω3Þ − 1

��
1þ 1

expðβω4Þ − 1

�
: ðC3Þ

In the calculation of these work distributions, only tree-level diagrams enter. Thus, even though particle number is not
conserved, these work distributions can be calculated from the classical equations of motion. This should be contrasted with
the work distributions for when the particle number changes by two. Loop diagrams contribute to these work distributions
and their contributions can be separated out:

ρn→n�2ðWÞ ¼ ρtreen→n�2ðWÞ þ ρloopn→n�2ðWÞ: ðC4Þ

The tree-level contributions to the work distributions are given by

ρtreen→nþ2ðWÞ ¼ 1

3!
V

����
Z

dtλðtÞ expðiWtÞ
����2
Z gd3k1 gd3k01 gd3k02 gd3k03 δðW þ ω1 − ω0

1 − ω0
2 − ω0

3Þð2πÞ3δ3ðk1 − k01 − k02 − k03Þ

×

�
1

expðβω1Þ − 1

��
1þ 1

expðβω0
1Þ − 1

��
1þ 1

expðβω0
2Þ − 1

��
1þ 1

expðβω0
3Þ − 1

�
; ðC5Þ

ρtreen→n−2ðWÞ ¼ 1

3!
V

����
Z

dtλðtÞ expðiWtÞ
����2
Z gd3k1 gd3k2 gd3k3 gd3k01 δðW þ ω1 þ ω2 þ ω3 − ω0

1Þð2πÞ3δ3ðk1 þ k2 þ k3 − k01Þ

×
�

1

expðβω1Þ − 1

��
1

expðβω2Þ − 1

��
1

expðβω3Þ − 1

��
1þ 1

expðβω0
1Þ − 1

�
: ðC6Þ

These tree-level contributions follow the same pattern as the work distributions [Eqs. (C1)–(C3)]. The contributions which
arise from the loop diagrams are

ρloopn→nþ2ðWÞ ¼ 1

2
V

����
Z

dtλðtÞ expðiWtÞ
����2
�
1þ 1

expðβW/2Þ − 1

�
2 1

W

�Z fd3kδðW − 2ωÞ
�

×

�Z fd3k 1

expðβωÞ − 1
þ 1

2

�
m
4π

�
2
�
1þ log

�
μ2

m2

��	
2

; ðC7Þ

ρloopn→n−2ðWÞ ¼ 1

2
V

����
Z

dtλðtÞ expðiWtÞ
����2
�

1

expð−βW/2Þ − 1

�
2 1

−W

�Z fd3kδðW þ 2ωÞ
�

×

�Z fd3k 1

expðβωÞ − 1
þ 1

2

�
m
4π

�
2
�
1þ log

�
μ2

m2

��	
2

: ðC8Þ

In these expressions, μ is the MS renormalization scale. These expressions do partially include contributions from tree-level
diagrams because the loop and tree diagrams interfere.
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