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We consider the ground-state properties of an impurity particle (“polaron”) resonantly interacting with a
Bose-Einstein condensate (BEC). Focusing on the equal-mass system, we use a variational wave function
for the polaron that goes beyond previous work and includes up to three Bogoliubov excitations of the
BEC, thus allowing us to capture both Efimov trimers and associated tetramers. We find that the length
scale associated with Efimov trimers (i.e., the three-body parameter) can strongly affect the polaron’s
behavior, even at densities where there are no well-defined Efimov states. However, by comparing our
results with recent quantum Monte Carlo calculations, we argue that the polaron energy is a universal
function of the Efimov three-body parameter for sufficiently low boson densities. We further support this
conclusion by showing that the energies of the deepest bound Efimov trimers and tetramers at unitarity are
universally related to one another, regardless of the microscopic model. On the other hand, we find that the
quasiparticle residue and effective mass sensitively depend on the coherence length ξ of the BEC, with the
residue tending to zero as ξ diverges, in a manner akin to the orthogonality catastrophe.
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I. INTRODUCTION

Universality is a powerful concept in physics, allowing
one to construct physical descriptions of systems that are
independent of the precise microscopic details or energy
scales. A prime example is the dilute two-component Fermi
gas at unitarity [1], where the scattering length a → �∞
and the interparticle spacing greatly exceed the range of the
interactions. Here, the large separation of length scales
means that the unitary Fermi gas is independent of an
interaction length scale, thus resulting in universal proper-
ties that describe systems ranging from atomic gases at
microkelvin temperatures to the inner crust of neutron stars.
Indeed, highly controlled cold-atom experiments have
successfully determined its universal equation of state
[2–4], pairing correlations [5–12], and transport properties
[13]. More recently, cold-atom experiments have started to
probe Bose gases in the unitary regime [14–20]. Even
though the strongly interacting Bose gas is expected to be
unstable, there are regimes where the system appears to be
sufficiently long-lived to observe well-defined static and
dynamical properties [14,16]. However, it remains an open

question whether the unitary Bose system can also display
universal behavior that has relevance to a range of different
physical systems.
In contrast to the Fermi case, bosonic systems at unitarity

always support few-body Efimov bound states [21–26],
whose energy and size depend on short-distance parameters
such as the interaction range r. Thus, there is an additional
interaction length scale that can impact the behavior of the
unitary Bose system and potentially make it sensitive to
microscopic details. Indeed, the deepest bound trimers and
larger few-body clusters typically cannot be universally
related to each other without invoking a specific model for
the short-range interactions [24,25].
To investigate the universality of a Bose system at

unitarity, we consider an impurity immersed in a Bose-
Einstein condensate (BEC), where the boson-impurity
interactions can be tuned to unitarity while the rest of
the system remains weakly interacting. This so-called
“Bose polaron” has received much theoretical attention
[27–41] and has very recently been observed in cold-atom
experiments [15,16]. Moreover, it has been extended to
impurities with more complex internal structure [42–44],
and it has potential relevance to polaron problems in solid-
state systems—for instance, the limit of weak impurity-
boson interactions can be directly mapped to the Fröhlich
model [27,45]. For stronger interactions, two recent works
investigated the possibility of coupling the polaron to
Efimov trimers [32,40]. However, there has yet to be a
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systematic study of the effect of Efimov physics on the
Bose polaron at unitarity.
The Bose polaron is a promising system to search for

universal behavior since the Efimov trimers consisting of
the impurity and two bosons are orders of magnitude larger
than the short-distance scale r (provided the impurity mass
is not too small) [46,47]. If we parametrize the size of the
deepest Efimov trimer by ja−j, where a− is the scattering
length at which the trimer crosses the three-atom con-
tinuum (see Fig. 1), then the hierarchy of length scales at
unitarity is r ≪ n−1=3 ≪ ja−j for the typical densities n in
experiment [15,16]. This suggests that there is a regime
where Efimov physics is irrelevant, such that the ground-
state properties of the polaron only depend on the density,
like in the case of an impurity resonantly interacting with a
Fermi gas [48–52].
In this paper, we address this question using impurities

that have a mass equal to that of the bosons—a situation
that has already been realized in the 39K atomic gas
experiments in Ref. [16]. We first investigate the few-body
limit and determine the Efimov trimer and associated
tetramer states that involve the impurity. For vanishing
boson-boson interactions, we show that the ratios of the
binding energies for the deepest bound states are universal,
unlike the case of three and four resonantly interacting
identical bosons. We then include this Efimov physics in
the many-body system by constructing a variational wave

function for the ground-state Bose polaron which recovers
both three- and four-body equations in the limit of zero
density. Strikingly, we find that the polaron properties at
unitarity sensitively depend on the Efimov scale ja−j, even
in the regime where ja−j far exceeds the interparticle
spacing. However, we show that the ground-state polaron
energy is a universal function of n1=3ja−j that is model
independent in the regime n1=3r ≪ 1. We corroborate this
finding by comparing our results with recent quantum
Monte Carlo (QMC) calculations [33,36].
In the nonuniversal, high-density limit n1=3r ≫ 1, we

consider the case of a narrow Feshbach resonance, and we
derive perturbative expressions for the polaron energy and
contact at unitarity. This allows us to demonstrate, for the
first time, that the Bose polaron at unitarity can be
thermodynamically stable even in the limit of vanishing
boson-boson interactions. On the other hand, we find that the
quasiparticle residue and effective mass sensitively depend
on the BEC coherence length. For the case of an ideal BEC,
the effective mass converges to a finite value as we increase
the number of excitations of the condensate, while the
residue vanishes in a manner reminiscent of the orthogon-
ality catastrophe for a static impurity in a Fermi gas [53].

II. MODEL AND VARIATIONAL APPROACH

We consider an impurity atom immersed in a weakly
interacting homogeneous Bose-Einstein condensate at zero
temperature. The interactions in the medium are charac-
terized by the boson-boson scattering length aB, and we
thus require n0a3B ≪ 1, with n0 the condensate density
(which essentially equals the total density n in this regime).
This allows us to treat both the ground state and the
excitations of the BEC within Bogoliubov theory [54].
Note that we always implicitly assume aB > 0 to ensure the
stability of the condensate.
The presence of the impurity in the medium adds two

length scales associated with the impurity-boson interaction.
The first of these is the scattering length a between the
impurity and a boson from the medium. We disregard this
length scale since we focus on the strong-coupling unitary
regime close to a Feshbach resonance, where jaj greatly
exceeds all other length scales; i.e., we generally consider
1=a ¼ 0. Here, we assume short-range contact interactions,
a scenario that is well realized in current cold-atom
experiments.
The second additional length scale is the so-called three-

body parameter, which characterizes the size of the smallest
(ground-state) Efimov trimer consisting of two bosons and
the impurity. To demonstrate the model independence of
our results, we fix this Efimov length scale in two differ-
ent ways:

(i) r0 model—We introduce an effective range r0,
which directly relates the three-body parameter to
the two-body interaction [55].
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FIG. 1. Few-body energy spectrum calculated from Eqs. (7)–
(9). The ground (first excited) trimer is shown as a red solid curve,
which first appears at a negative scattering length a− ðað1Þ− Þ and
then dissociates into the atom-dimer continuum (delimited by the

black solid line) at a positive scattering length a� ðað1Þ� Þ, where a�
is outside the plotted region. We only show the ground and first
excited trimers, but there exists an infinite series of higher excited
trimers with an accumulation point at unitarity, 1=a ¼ 0. We also
find two tetramer states (blue dashed lines) tied to the ground
Efimov trimer. The excited tetramer is very weakly bound, but it
persists at unitarity and disappears into the atom-trimer con-
tinuum at the positive scattering length a≃ 9 × 103jr0j.
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(ii) Λ model—We take r0 → 0 and instead apply an
explicit ultraviolet cutoff Λ to the momenta involved
in Efimov physics, which is equivalent to including a
three-body repulsion [56].

As we explicitly show in Sec. III, for an impurity of the
same mass as the medium atoms—the scenario considered
here—the precise manner of regularizing Efimov physics is
unimportant, owing to the large separation of scales
between the short-range physics and Efimov physics.
Given the above considerations, we model the system

using a two-channel description of the Feshbach resonance
[57], which corresponds to the Hamiltonian (setting ℏ and
the volume to 1):

Ĥ ¼
X
k

½Ekβ
†
kβk þ ϵkc

†
kck þ ðϵdk þ ν0Þd†kdk�

þ g
ffiffiffiffiffi
n0

p X
k

ðd†kck þ H:c:Þ þ g
X
k;q

ðd†qcq−kbk þ H:c:Þ:

ð1Þ

Here, b†k and c†k are the creation operators of a boson and
the impurity, respectively, with momentum k and single-
particle energy ϵk ¼ k2=2m, where the mass m of a boson
and of the impurity are taken to be equal.
In writing the Hamiltonian (1), we already applied the

Bogoliubov approximation for the single-particle excita-
tions of the weakly interacting condensate: The operator β†k
creates a Bogoliubov excitation and is related to the bare
boson operator b†k by the transformation

b†k ¼ ukβ
†
k − vkβ−k: ð2Þ

The coherence factors are uk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðϵk þ μÞ=Ek þ 1�=2p
and vk¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðϵkþμÞ=Ek−1�=2p
, the Bogoliubov dispersion

is Ek ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵkðϵk þ 2μÞp

, and the boson chemical potential is
μ ¼ 4πn0aB=m≡ 1=ð2mξ2Þ, where ξ is the coherence
length of the condensate. Note that Eq. (1) is defined with
respect to the energy of the BEC in the absence of the
impurity.
The interaction between a boson and the impurity is

described by the terms in the second line of Eq. (1), where
the first of these arises from explicitly extracting the
condensate k ¼ 0 contribution from the second term. For
clarity, we write the interaction part of the Hamiltonian in
terms of the original boson operator, but note that we
always use Eq. (2) to relate this to a Bogoliubov excitation.
Within the two-channel model, a boson and the impurity
interact by forming a closed-channel dimer created by d†k,
with ϵdk ¼ ϵk=2. The interchannel coupling g and the bare
detuning ν0 are chosen such that they reproduce the
two-body scattering amplitude in vacuum at relative
momentum k:

fðkÞ ¼ −
1

a−1 − 1
2
r0k2 þ ik

: ð3Þ

Carrying out the renormalization procedure with high-
momentum cutoff k0, one obtains [58,59]

a ¼ mg2

4π

1
g2mk0
2π2

− ν0
; r0 ¼ −

8π

m2g2
; ð4Þ

which relates the physical low-energy observables—the
scattering length a and effective range r0 ≤ 0—to the bare
parameters of the model. In all calculations, we take the
limit k0, ν0 → ∞ for a given set of values for the
observables. We emphasize that our two-channel model
describes the exact impurity-boson interaction without any
approximations arising from the presence of the conden-
sate. It thus goes beyond the Fröhlich model, which ignores
terms where both incoming and outgoing bosons in a
scattering process are Bogoliubov excitations. Such terms
have been demonstrated to be important beyond the weak-
coupling regime [31]. In our model, we recover the single-
channel model (where r0 ¼ 0 and the interaction part of the
Hamiltonian has the form

P
k;k0;qb

†
k0c†q−k0cq−kbk) by tak-

ing g → ∞ while keeping a fixed.
To explore the ground-state properties of the unitary

Bose polaron, we apply the variational principle using a
wave function consisting of terms jψNi with an increasing
number N of Bogoliubov modes excited from the con-
densate by the impurity:

jΨi ¼ jψ0i þ jψ1i þ jψ2i þ jψ3i: ð5Þ

Explicitly, we have

jψ0i ¼ α0c
†
0jΦi;

jψ1i ¼
�X

k

αkc
†
−kβ

†
k þ γ0d

†
0

�
jΦi;

jψ2i ¼
�
1

2

X
k1k2

αk1k2
c†−k1−k2

β†k1
β†k2

þ
X
k

γkd
†
−kβ

†
k

�
jΦi;

jψ3i ¼
�
1

6

X
k1k2k3

αk1k2k3
c†−k1−k2−k3

β†k1
β†k2

β†k3

þ 1

2

X
k1k2

γk1k2
d†−k1−k2

β†k1
β†k2

�
jΦi; ð6Þ

with jΦi the ground-state wave function of the weakly
interacting BEC. Including up to three excitations allows us
to investigate the effect of both Efimov trimers and
tetramers on the unitary Bose polaron. This goes beyond
previous works on the Bose polaron: The effect of dressing
the impurity by a single excitation was investigated in
Ref. [28] using a T-matrix approach and in Ref. [29] with a
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variational approach. Furthermore, two of us previously
used two-excitation dressing to investigate the relationship
between polaronic and Efimov physics [32], as well as to
successfully compare with the experimentally obtained
polaron spectral function [16] (see also Ref. [60]).
To investigate the properties of the ground-state Bose

polaron, we determine the variational parameters by the
stationary condition ∂α�;γ�hΨjðĤ − EÞjΨi ¼ 0, where the
energy E can be viewed as the Lagrange multiplier that
ensures normalization. This yields a set of coupled equa-
tions, from which we can eliminate the α coefficients and
obtain coupled integral equations for the γ’s only. The
resulting equations are given in Appendix A. In the r0
model, we keep the effective range r0 in the two-body
interaction, while in the Λ model, we set r0 ¼ 0 and apply
the cutoff Λ to the momenta in the γ coefficients.

III. UNIVERSAL FEW-BODY EFIMOV STATES

Before proceeding to the many-body polaron physics, it
is important to first discuss the few-body limit since—as we
explicitly demonstrate in Sec. IV—this plays a crucial role
in understanding the polaron properties. To determine the
few-body spectrum, we use wave functions of the form (6)
in the limit n → 0, such that jΦi now corresponds to the
Fock vacuum. Here, the state jψNi with N excitations is
identified as a few-body state containing N bosons and the
impurity. Consequently, the variational approach is exact
and the sectors of different particle numbers completely
decouple. Ignoring the trivial equation arising from the
single-particle problem, the resulting few-body equations
take the form

T −1
0 ðE; 0Þ ¼ 0; ð7Þ

T −1
0 ðE − ϵk;kÞγk ¼

X
q

γq
E − ϵkq

; ð8Þ

T −1
0 ðE−ϵk1

−ϵk2
;k1þk2Þγk1k2

¼
X
q

γk1qþγqk2

E−ϵk1k2q
; ð9Þ

which may be obtained as the zero-density limit of the
polaron equations in Appendix A. Here, we have defined
ϵk1k2

≡ ϵk1
þ ϵk2

þ ϵk1þk2
and ϵk1k2q ≡ ϵk1

þ ϵk2
þ ϵq þ

ϵk1þk2þq, while T 0 is the vacuum two-body T matrix,

T −1
0 ðE;kÞ¼ m

4πa
−
m2r0
8π

ðE−ϵdkÞ−
m

3
2

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵdk−E− i0

q
: ð10Þ

Equation (7) gives the condition for a two-body bound
state, while the solutions of Eqs. (8) and (9) yield,
respectively, the trimer spectrum and associated tetramers
[61]. Note that boson-boson interactions are neglected in
this limit since they are only included via a density-
dependent mean-field shift in the boson chemical potential.

However, this approximation is reasonable when the
Efimov states are insensitive to aB, i.e., when the micro-
scopic length scale determining the three-body parameter
greatly exceeds aB.
In Fig. 1, we show the spectrum of bound states obtained

by solving Eqs. (7)–(9) within the r0 model. For a positive
scattering length, a single two-body bound dimer exists,
with energy

εB ¼ −
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2r0=a
p

− 1Þ2
mr20

; ð11Þ

as found by solving Eq. (7). The three-body problem
described by Eq. (8) is distinctly different: For strong
interactions, the impurity and two bosons can form an
infinite series of three-body bound states, even in the
absence of the two-body bound state. Remarkably, these
so-called Efimov trimers [21,62] satisfy a discrete scaling
symmetry whereby the energy E of one trimer can be
mapped onto the next via the discrete transformation
E → λ−2l0 E and a → λl0a, with l an integer and λ0 a scaling
parameter that depends on the particular three-body prob-
lem (for reviews, see Refs. [22,24–26]). In our case of two
noninteracting identical bosons with the same mass as the
third particle, the scaling factor is found from a transcen-
dental equation to be λ0 ¼ eπ=s0 ≃ 1986.1 [62]. Because of
this large scaling factor, we only show the two lowest trimer
states in the figure (indeed, for realistic experimental
parameters, the size of the first excited Efimov trimer is
of order 1 cm).
Below the ground-state Efimov trimer, we predict the

existence of two tetramer states, even at unitarity (see
Fig. 1). This mirrors previous results for four identical
bosons, where it was found, both theoretically [63–66] and
experimentally [67], that there are two lower-lying tet-
ramers associated with the ground-state trimer. The present
scenario more closely resembles studies of a light atom
resonantly interacting with three identical heavy atoms
[47,68,69]. Our findings are generally consistent with the
results of these previous works, although no excited
tetramer was reported for small mass imbalance [70].
Note that, within our theory, we do not require an additional
length scale to fix the positions of the tetramers relative to
the Efimov trimers [65].
A crucial point is that the few-body physics described

here is essentially universal, in the sense that the entire
spectrum is independent of the details of the short-range
physics. This universality originates from the large separa-
tion of scales between the short-distance physics, charac-
terized here by the effective range r0, and the typical size of
the ground-state Efimov trimer. The latter may be conven-
iently characterized by the “critical” scattering length a− at
which the trimer crosses into the three-atom continuum. In
our model, we have a−=r0 ≃ 2467 [72] (see Table I for a
summary of the length scales and energy scales associated
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with Efimov physics). This large ratio ensures that the
energy of the ground-state Efimov trimer at unitarity is far
smaller than that required to probe the short-range physics.
Indeed, we see that the ratio of critical scattering lengths for
the excited- and ground-state trimers, i.e., að1Þ− =a− ≃ 1991,
is very close to the predicted scaling factor of 1986.1.
Likewise, at unitarity, the ratio of the ground-state trimer
energy to that of the excited state is E−=Eð1Þ

− ≃ ð1986.1Þ2;
i.e., it matches the universal prediction to 5 significant digits.
This is in remarkable contrast to the situation for three
identical bosons, where deviations from the universal
scaling factor of 22.7 are usually on the order of
10%–20% because of finite-range corrections [22,24,73].
To test the model independence of the few-body physics,

we also consider the Λ model, where r0 ¼ 0 and we apply
an explicit cutoffΛ to the momentum sums in the three- and
four-body equations (8) and (9). Here, we find that after
fixing the three-body parameter, the spectrum is essentially
indistinguishable from that in Fig. 1, in the sense that the
differences are within the thickness of the lines [74].
The agreement between the two models is also evident
in the summary of length scales and energy scales in
Table I. Thus, we conclude that our description of the few-
body spectrum can be accurately characterized by universal
Efimov theory.
Further evidence of the universality of our few-body

results is found when comparing the ratio of our ground-
state tetramer and trimer energies with recent QMC results

[33]. There, this ratio was reported to be Eð1Þ
4B;−=E− ≃ 9.7,

while we find Eð1Þ
4B;−=E− ≃ 9.35 and 9.43, respectively, for

the r0 and Λ models (Table I). Importantly, the QMC
calculation used a completely different model involving a
hard-sphere boson-boson interaction, characterized by the
scattering length aB, and attractive square-well interactions
between the impurity and the bosons. The range of the
square well was taken to be much smaller than aB, and
consequently, the energies of the ground-state Efimov
trimer and associated tetramers are set by aB. The univer-
sality of the spectrum thus means that we can relate the
three-body parameter in the QMC calculation to the boson-
boson scattering length [76]:

aðQMCÞ
− ≃ −2.09ð36Þ × 104aðQMCÞ

B : ð12Þ
The agreement between the results from the different
models also reinforces the point that we do not need a

four-body parameter to fix the tetramer relative to the
trimer. This is consistent with theoretical results for
identical bosons [63,64,66] and for heteronuclear systems
[47,68,69].
We end this section by contrasting the few-body uni-

versality found here with the so-called van der Waals
universality of Efimov physics [77–81]. The latter refers to
the phenomenon where the Efimov states of various atomic
species are universally related to their van der Waals length,
e.g., a− ≃ −ð9.1� 1.5ÞrvdW. This behavior, however, is
rather different from that predicted by universal zero-range
Efimov theory, in particular, for the ground-state trimer.
Indeed, the ratio að1Þ− =a− ≃ 20.7 found in van der Waals
universal theory [81] significantly deviates from the
universal ratio 22.7, in contrast to the scenario considered
here.

IV. POLARON ENERGY AT UNITARITY

We now turn to the many-body system and investigate
the zero-temperature equation of state for the polaron at
unitarity. Since we wish to properly describe Efimov
physics within our models, we focus on the regime where
the boson-boson scattering length aB is always much
smaller than all other length scales. To test the accuracy
of our variational approach outlined in Eqs. (5) and (6), we
consider wave functions with up to one, two, or three
Bogoliubov excitations, corresponding to jψ0i þ jψ1i,
jψ0i þ jψ1i þ jψ2i, and jΨi, respectively. For each model,
we convert the short-distance scale (e.g., r0 or Λ−1)
into the dimensionless three-body parameter n1=3ja−j in
order to expose the role of universal Efimov physics. The
numerical results are displayed in Fig. 2, and, in the
following, we analyze the different regimes defined by
particle density.

A. Low-density limit

In the limit of vanishing densityn1=3ja−j → 0, the ground-
state polaron energy should reduce to that of the deepest
bound few-body cluster. If the polaron variational wave
function only includes one Bogoliubov excitation, the
largest few-body state it can describe is the dimer, which
has zero binding energy at unitarity. Thus, as shown inFig. 2,
we obtain an energy that simply tends to zero with
decreasing density, i.e., E ¼ −ð4πnÞ2=3=m≃ −5.4n2=3=m

TABLE I. Comparison of few-body data for the r0 and the Λmodels. While the overall length scale set by a− depends on the details of
the models, the dimensionless ratios characterizing the few-body spectra agree to an accuracy of 1% or less. These quantities include the
scattering lengths at which the few-body bound states cross into the continuum, as well as their energies at unitarity, and are illustrated in
Fig. 1.

ja−j ma2−jE−j að1Þ− =a−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E−=Eð1Þ

−

p
a−=a

ð1Þ
4B;− Eð1Þ

4B;−=E− a−=a
ð2Þ
4B;− Eð2Þ

4B;−=E−

r0 model 2467jr0j 9.913 1991 1986.126 2.810 9.35 1.060 1.0030(3)
Λ model 1354Λ−1 9.950 1987 1986.127 2.814 9.43 1.061 1.0036(1)
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[28,29]. Note that this is independent of the microscopic
model we use since the interparticle spacing greatly exceeds
any length scale of the impurity-boson interactions.
For polaron wave functions with up to two (three)

Bogoliubov excitations, the low-density limit recovers
the deepest bound universal trimer (tetramer) state dis-
cussed in Sec. III. Here, the density drops out of the
problem, and we have polaron energy E ¼ −η=ðmja−j2Þ,
where η is a universal, model-independent constant that
depends on the Efimov cluster size (see Fig. 2).
We also expect there to be larger bound clusters beyond

the tetramer, similar to the case of identical bosons where
larger clusters associated with the Efimov effect have been
predicted [82–84] and, indeed, experimentally observed
[85]. For the impurity case, recent QMC calculations
already demonstrate the existence of a pentamer with η≃
300 [33]. However, since there is a high-energy cutoff in the
problem (e.g., set by Λ or r0), the system cannot support
arbitrarily deeply bound Efimov clusters, and the deepest
bound state should be universal as long as η ≪ 106. Indeed,
as suggested by the QMC calculations [33], it is possible
that there is no bound cluster larger than the pentamer for
the equal-mass impurity case. First, the pairwise attraction
between the impurity and the bosons scales with N rather
than NðN − 1Þ, unlike the case for N identical bosons [25],
so larger bound states will be less favored. Second, an
effective short-range repulsion between bosons could mean

that the pentamer has a closed-shell structure, where any
additional bosons must occupy higher-energy orbitals,
similar to what has been argued for mass-imbalanced
fermions [86,87]. Such an effective repulsion naturally
emerges in both the r0 and the Λmodels: In the former, this
arises from the fact that only one boson at a time can
occupy the closed-channel dimer, while in the latter, it is
due to the three-body cutoff being equivalent to a three-
body repulsion [56].
From the above considerations, it is reasonable to

conclude that the low-density limit is universal.
Moreover, since there is a maximum size to the deepest
bound Efimov cluster, we expect the polaron energy to have
a well-defined thermodynamic limit, where mE=n2=3 is
finite for nonzero density.

B. High-density limit

To further support the claim that the polaron energy is
finite at unitarity, we consider the opposite limit of high
density, n → ∞. Here, the interparticle spacing becomes
smaller than the range of the interactions, and thus, the
system will depend on the microscopic details of the model.
However, in the case of the r0 model, it allows us to
perform a controlled perturbative expansion in the inter-
channel coupling g (or, equivalently, 1=n1=3jr0j) at unitarity
[88]. Physically, this corresponds to the limit of a narrow
Feshbach resonance, a scenario that has already been
successfully investigated for an impurity in a Fermi sea,
both theoretically [89–91] and experimentally [92,93].
Our starting point is the self-energy of the unitary Bose

polaron, which, in the limit g → 0 and aB → 0, consists
of the lowest-order diagrams shown in Fig. 3. Such
diagrams are included in the self-consistent T-matrix
approach to the Bose polaron [28]. For an impurity with
momentum p and frequency ω, the self-energy in this limit
is explicitly

FIG. 2. Energy equation of state for the Bose polaron at unitarity
1=a ¼ 0, obtained using the variational wave function with one
(gray lines), two (red lines), and three (blue lines) Bogoliubov
excitations for vanishing boson-boson interactions aB → 0. We
show the results of the r0 model (dashed lines) and the Λ model
(solid lines). In the low-density limit, the dotted straight lines
correspond to the Efimov trimer and associated tetramer energies,

with E−¼−9.91=mja−j2 and Eð1Þ
4B;−¼−92.7=mja−j2, respec-

tively. The black dotted line in the high-density regime shows
the result of a perturbative expansion, Eq. (14). The gray shaded
region depicts the low-density few-body dominated regime, while
the blue shaded region corresponds to the high-density regime
jr0j, Λ−1 > n−1=3, where Efimov physics is suppressed and the
system is sensitive to the microscopic model.

(a)

(c)

(b)

FIG. 3. Lowest-order diagrams for the unitary ground-state
polaron in the high-density limit n1=3jr0j ≫ 1, where (a) and (b)
give, respectively, the first- and second-order terms for the
polaron energy in a weakly interacting BEC. Here, the dashed
lines correspond to particles emitted or absorbed from the
condensate, the blue solid line is the boson propagator, the wavy
lines represent closed-channel molecule propagators, and the
filled circles correspond to the interchannel coupling g. The black
double line, defined in (c), represents the dressed impurity to
lowest order, where the black single line is the bare impurity
propagator.
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Σðp;ωÞ≃ n0g2

ω− ϵdp
þ n0g4

ðω− ϵdpÞ2

×
X
k

�
1

ω− ϵkþp− ϵk −
n0g2

ω−ϵdkþp−ϵk

þ 1

2ϵk

�
; ð13Þ

where the first and second terms correspond to the
diagrams in Figs. 3(a) and 3(b), respectively. The
ground-state polaron energy is then determined by taking
the zero-momentum pole of the impurity propagator, which
gives E ¼ Σð0; EÞ. Note that we must include self-energy
insertions in the impurity propagator even at lowest order
(see Fig. 3) since we cannot simply take ω ¼ 0 at the pole
when aB → 0. This is in contrast to previous perturbative
treatments of the weakly interacting Bose polaron which
focused on aB > 0 [31].
In the regime of weak boson-boson interactions, where

na3B ≪ aB=jr0j ≪ 1, we obtain the ground-state polaron
energy

E≃ −
1

m

ffiffiffiffiffiffiffiffi
8πn
jr0j

s
þ 1

m

ffiffiffi
3

7

r �
8πn
jr0j5

�
1=4

: ð14Þ

This demonstrates that the energy is well defined and
bounded from below in this limit, even when the boson-
boson interactions are vanishingly small. Such behavior
arises from the fact that only one boson at a time can scatter
into the closed channel, thus producing an effective boson-
boson repulsion that restricts the density of bosons that can
cluster around the impurity. As shown in Fig. 2, the
perturbative expression correctly reproduces the energy
for the r0 model in the high-density limit. Note that the one-
excitation wave function only captures the leading-order
term in Fig. 3(a), while the wave functions with two or three
excitations correctly describe the next order correction
in 1=n1=3jr0j.
In the case of the Λ model, the high-density limit

corresponds to n1=3=Λ → ∞, which is equivalent to taking
the cutoff Λ to zero. Therefore, within our variational
approach, only two-body correlations survive, and we
obtain the equations for the wave function with one
excitation (see Appendix A). For vanishing boson-boson
interactions, this yields E ¼ −ð4πnÞ2=3=m, which is the
polaron energy of the one-excitation wave function across
all densities, as shown in Fig. 2.

C. Many-body universal regime

In the intermediate regime r ≪ n−1=3 ≪ ja−j (where r
can represent jr0j or Λ−1), the interparticle distance is well
separated from all length scales associated with the inter-
actions. If the medium were fermionic rather than bosonic,
then the polaron energy at unitarity, in the limit r → 0, would
be a universal value that only depends on the medium

density, i.e., Epol≃−4.6n2=3=m [48]. Remarkably, for the
Bose polaron, we see in Fig. 2 that the energy strongly
depends on n1=3ja−j at intermediate densities. This suggests
that there exist resonant three-body interactions, such that
there are strong three-body correlations in the system even
when the trimer binding energy is comparatively small.
Even though the energy of the Bose polaron cannot be

assigned a universal value at unitarity, we argue that it is, in
fact, a universal function of n1=3ja−j away from the high-
density regime. We have previously argued that the low-
density limit of the polaron energy universally depends on
n1=3ja−j because of the universal behavior of the few-body
states demonstrated in Sec. III. In Fig. 2, we clearly see that
this universality extends to the intermediate-density regime.
Moreover, even for the higher densities shown in Fig. 4, we
see that different microscopic models of the Bose polaron
can essentially be collapsed onto the same curve when the
ground-state energy is plotted versus n1=3ja−j. Note that the
small difference between the curves of the Λ and the r0
models is due to n1=3jr0j corrections to the two-body
scattering properties. Such a deviation from universality
would also be present in the unitary Fermi system at these
densities [89–91].
Crucially, both the results for the Λ and the r0 models

are consistent with the QMC calculation from Ref. [36]
when Eq. (12) is used to plot the QMC data in terms of
the Efimov three-body parameter. This demonstrates
that the polaron energy can be universally described in
terms of n1=30 ja−j, regardless of the microscopic details.
Furthermore, it suggests that our variational approach with
three Bogoliubov excitations captures the dominant corre-
lations in the full many-body problem, and that the Efimov

FIG. 4. Comparison of different models for the unitary Bose
polaron in the regime r ≪ n−1=3 ≪ ja−j, where r is the range of the
interactions.We show the results for the polaron energy from theΛ
model (solid line) and the r0 model (dashed line), which include up
to three excitations of the condensate and which take aB → 0. The
QMC results of Ref. [36] are shown as the gray dots. The recent
Aarhus experiment [16] is estimated to have n1=3ja−j≃100.
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three-body parameter plays a more important role in the
polaron energy than the coherence length of the condensate
(see Appendix B). We emphasize that our comparison in
Fig. 4 constitutes a complete reinterpretation of the QMC
results of Ref. [36] since that work did not consider the
possibility that the variation of the polaron energy with
boson-boson interaction was due to Efimov physics.

V. CHARACTERIZATION OF THE POLARON

Having shown that the polaron energy is a universal
function of n1=3ja−j for sufficiently low densities, we now
turn to the other quasiparticle properties that characterize
the polaron: the residue, effective mass, and contact. We
generally focus on the r0 model, which is the more physical
model and which allows a perturbative analysis in the high-
density limit.

A. Residue

The residue Z is the squared overlap of the polaron wave
function with the noninteracting state c†0jΦi. Making
reference to the wave function in Eq. (6), this is

Z ¼ jα0j2; ð15Þ

where we assume hΨjΨi ¼ 1 for normalization (see
Appendix C). The residue can be accessed directly in
experiment; indeed, in the case of the Fermi polaron, it has
been measured using both radio-frequency spectroscopy
[94] and Rabi oscillations [92].
In Fig. 5 we show our results for the polaron residue at

unitarity as a function of the three-body parameter, where
the boson-boson interactions are taken to be vanishingly

small. We find that there are clear differences between the
results depending on the number of Bogoliubov excitations
used in the variational approach, and also between the
different models. Within the r0 model, the residue takes the
value 1=2 in the high-density regime where the polaron
wave function is an equal superposition of the impurity and
the closed-channel dimer. However, while the residue
within the one-excitation approximation is seen to increase
from 1=2 to 2=3with increasing density, we observe a rapid
decrease of Z towards the low-density regime when
including several excitations. On the other hand, for the
Λ model, the residue is 2=3 if we consider only one
Bogoliubov excitation. By increasing the number of
Bogoliubov excitations, it is suppressed not only in the
few-body dominated regime but also in the high-density
limit, where the residue takes the values 1=3 and 1=9,
respectively, when two and three excitations are taken into
account. Thus, unlike the energy, the polaron residue does
not appear to converge to a universal function of the three-
body parameter.
The origin of this behavior can be understood within

perturbation theory for the r0 model in the high-density
limit. Considering again the diagrams in Fig. 3 and the
explicit expression for the self-energy in Eq. (13), we find,
at small g,

Z−1 ¼ 1 −
∂Σð0;ωÞ

∂ω
����
ω¼E

≃2 −
ffiffiffi
3

7

r
2

ð8πnjr0j3Þ1=4
þ L
jr0j

; ð16Þ

where L is a low-energy length scale that provides an
infrared cutoff of low momenta. In the thermodynamic
limit, this is set by the coherence length of the BEC; i.e., we
have L ∝ ξ. Thus, we find that the residue vanishes when
the coherence length ξ → ∞, and consequently, the polaron
wave function is orthogonal to the noninteracting impurity
state in the case of an ideal BEC. This feature cannot
properly be captured within our variational approach since
this requires an infinite number of Bogoliubov excitations,
hence the observed lack of convergence in Fig. 5. On the
other hand, when aB ≠ 0, we find that the wave functions
with two and three excitations both give the same leading-
order correction to Z:

Z −
1

2
∝

ffiffiffiffiffiffiffi
aB
jr0j

r
; ð17Þ

in the limit n1=3aB ≪ 1 and n1=3jr0j → ∞ [95]. Thus, in
this case, the residue is finite and initially increases
with decreasing jr0j. Note, however, that the residue
always vanishes in the low-density regime, as shown in
Fig. 5, since the polaron evolves into a few-body bound
state which has zero overlap with the noninteracting
impurity state.

FIG. 5. Polaron residue Z at unitarity 1=a ¼ 0 as a function of
the dimensionless three-body parameter. We show the results for
the Λ model (solid line) and the r0 model (dashed line) for
aB → 0. In order of decreasing residue, the results are obtained
for wave functions including up to one, two, or three excitations
of the condensate. The grey and blue shaded regions are the same
as in Fig. 2, i.e., the low- and high-density regimes, respectively.
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The simultaneous convergence of the energy and sup-
pression of the residue in the ideal BEC arises from the fact
that the impurity affects the condensate at arbitrarily large
distances and thus excites an infinite number of low-energy
modes in the condensate. This result is akin to the
orthogonality catastrophe for a static impurity in a Fermi
gas. Indeed, in that case, the orthogonality of the interacting
and noninteracting impurity wave functions is also apparent
in perturbation theory, already at lowest order beyond
mean-field theory [96]. We also note that the vanishing
residue of the Bose polaron is not confined to the strongly
interacting impurity at unitarity: Even for weak impurity-
boson interactions, the residue of the attractive polaron was
found within perturbation theory to approach zero as 1=ξ
when aB → 0 [31].

B. Effective mass

The interactions between the impurity and the bosonic
medium also modify the mobility of the impurity and give
rise to an effective mass m�. This can be derived from the
impurity’s self-energy as follows:

m
m� ¼ Z

�
1þm

∂2Σðq; EÞ
∂q2

����
q¼0

�
: ð18Þ

Note that this givesm� ¼ m for the noninteracting impurity
state, as required. Our calculation of m� within the
variational approach is described in Appendix C, and the
results for aB → 0 at unitarity are plotted in Fig. 6. Because
of the complexity of the calculation, we restrict ourselves to
wave functions with up to two Bogoliubov excitations.
For the case of an ideal BEC, we have residue Z → 0,

and thus one might conclude from Eq. (18) that the
effective mass diverges. However, if we once again

consider the high-density limit of the r0 model and use
the self-energy in Eq. (13), we obtain

m
m� ≃ Z

�
3

2
−

ffiffiffi
3

7

r
1

ð8πnjr0j3Þ1=4
þ α

L
jr0j

�
; ð19Þ

where α is a constant that must be determined from a proper
finite-aB perturbative analysis. Thus, we see that there is a
term proportional to L that cancels the corresponding term
in the residue in Eq. (16), implying that the effective mass is
finite.
Indeed, in the low-density few-body regime, we already

have the situation where the residue vanishes, while the
effective mass remains finite with m� ¼ ðN þ 1Þm, where
N is the number of bosons bound to the impurity. This
behavior is captured by both r0 and Λ models, as shown in
Fig. 6, where the wave function with two Bogoliubov
excitations has m�=m → 3 as n → 0. Likewise, we expect
the wave function with three excitations to recover the mass
of the tetramer in this limit. For higher densities, we find
that the results of our variational approach become sensitive
to the specific model used, as well as to the number of
excitations of the ideal BEC considered. Here, in the many-
body limit, one requires an infinite number of low-energy
excitations to correctly describe the effective mass for
aB → 0, similarly to the case of the residue.
For a BEC with 0 < n1=3aB ≪ 1, the behavior of the

effective mass in the high-density limit of the r0 model can
once again be captured using just two Bogoliubov excita-
tions of the BEC. In the limit jr0j → ∞, the polaron
effective mass m�=m → 4=3, which corresponds to twice
the reduced mass of the impurity and closed-channel dimer.
Moreover, we find that the leading-order correction
behaves as

m
m� −

3

4
∝

ffiffiffiffiffiffiffi
aB
jr0j

r
: ð20Þ

Thus, the effective mass, in this case, initially decreases
with decreasing density before increasing towards the mass
of the deepest bound few-body cluster.

C. Contact

Another quantity of interest is the unitary Tan contact,
which is defined from the polaron energy as [97,98]

C ¼ m2g2
∂E
∂ν

����
ν¼0

: ð21Þ

Here, we have used the physical detuning ν≡ −g2m=4πa,
which can be related to the bare detuning ν0 using Eq. (4).
Physically, the contact gives a measure of the density of
pairs at short distances. For the two-channel Hamiltonian in

FIG. 6. Inverse effective mass of the Bose polaron at unitarity,
1=a ¼ 0, for aB ¼ 0. We calculate it with the Λ model (solid
lines) and the r0 model (dashed lines), taking into account one
(gray lines) and two (red lines) Bogoliubov excitations. The grey
and blue shaded regions are the same as in Fig. 2.
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Eq. (1), one can show that the contact is proportional to the
population of closed-channel dimers [98]:

C ¼ m2g2
X
k

hΨjd†kdkjΨi: ð22Þ

Within our variational ansatz, this corresponds to

C ¼ m2g2
�
jγ0j2 þ

X
k

jγkj2 þ
1

2

X
k1k2

jγk1k2
j2
�
: ð23Þ

Note that the limit g → ∞ is well defined, and thus this
expression also captures the single-channel Λ model.
Figure 7 displays the contact at unitarity for both Λ and

r0 models in the case of vanishing boson-boson inter-
actions. Similarly to the polaron energy, we find that the
contact in the high-density limit is well converged with
respect to the number of Bogoliubov excitations. For the r0
model, we can evaluate the contact perturbatively for large
n1=3jr0j using the self-energy in Eq. (13). Here, we simply
shift the closed-channel dispersion from ϵdp to ϵdp þ ν and
then determine the ground-state energy from the equation
E ¼ Σð0; EÞ as a function of detuning ν. Applying Eq. (21)
then yields the high-density expression

C≃ 8π

jr0j
�
1

2
−
29

28

ffiffiffi
3

7

r
1

ð8πnjr0j3Þ1=4
�
: ð24Þ

We find that this perturbative result is correctly reproduced
by both two- and three-excitation approximations in the
high-density limit. The leading-order term is independent
of density since the closed-channel fraction tends to 1=2 at
unitarity as jr0j → ∞ (or, equivalently, as g → 0); see
Eq. (16).

For lower densities n1=3ja−j≲ 103, the contact becomes
insensitive to the underlying model and thus appears to be a
universal function of the dimensionless three-body param-
eter (see Fig. 7). In the limit of vanishing density n → 0, we
recover the contact of the deepest bound few-body cluster,
where Cja−j is a universal number. For the Efimov trimer,
we have Cja−j≃ 171.4 in the r0 model and Cja−j≃ 172.2
in the Λmodel, while for the associated tetramer, we obtain
Cja−j≃ 535.5 (r0 model) and 542.6 (Λ model).

VI. CONCLUSIONS AND OUTLOOK

Using a variational approach, we have investigated the
ground state of the Bose polaron with unitarity limited
impurity-boson interactions. For sufficiently low boson
densities, we have demonstrated that the polaron equation
of state is a universal function of the three-body parameter
associated with Efimov physics. This is a highly nontrivial
result since the regime of universality extends to densities at
which the binding energies of the few-body states are
several orders of magnitude smaller than the polaron
energy. Our findings are corroborated by the fact that we
observe the same behavior for two different microscopic
models and by the fact that our calculations agree well with
recent QMC results [33,36] when they are appropriately
reinterpreted in terms of the three-body parameter. We have
also demonstrated that the few-body spectrum of Efimov
trimers and associated tetramers is model independent,
further highlighting the universality of our results.
In the nonuniversal, high-density limit, we have per-

formed a controlled perturbative analysis of the r0 model,
and we have derived new analytic expressions for the
unitary Bose polaron at a narrow Feshbach resonance. Our
results demonstrate that even when we take the ideal Bose
gas limit, the polaron energy and contact can remain well
defined thermodynamically. This is a consequence of the
fact that only one boson at a time can occupy the closed-
channel dimer state, which thus generates an effective
repulsion between bosons that acts to stabilize the system.
We expect a similar scenario for the Λ model since the
high-momentum cutoff in the three- and four-body terms of
the variational equations is equivalent to an explicit three-
body repulsion [56]. However, in general, it is not clear that
a well-defined thermodynamic limit exists for treatments of
the Bose polaron that focus on single-channel Hamiltonians
and neglect Efimov physics [39,99].
While the polaron equation of state at unitarity is

relatively insensitive to boson-boson interactions, we find
that the quasiparticle residue and effective mass strongly
depend on the coherence length of the BEC. In particular,
the residue vanishes as ξ → ∞, a feature that resembles the
orthogonality catastrophe [53]. Thus, an interesting remain-
ing question is how the residue tends to zero with the
number of excitations of the condensate included in the
wave function. A related question is as follows: What finite

FIG. 7. Contact of the Bose polaron at unitarity, 1=a ¼ 0, for
aB ¼ 0. The solid and dashed curves correspond to the Λ and r0
models, respectively. We show the results obtained using wave
functions with up to one (gray line), two (red line), and three
(blue line) excitations. The grey and blue shading indicates the
same regions as in Fig. 2.
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result does the effective mass converge towards as ξ → ∞,
and is it a universal function of the three-body parameter?
We emphasize that the (two-channel) r0 model faithfully

describes the physics of an actual Feshbach resonance in an
ultracold atomic gas [57], and thus we expect our results to
accurately describe current and future cold atom experi-
ments. Furthermore, we expect the universal behavior
presented here to also exist for heavy impurities, a scenario
that can be realized by choosing atomic species with a large
mass ratio or by pinning the impurity in an optical lattice. In
the particular case of a static impurity, there are no Efimov
few-body states, and therefore, it would be of great interest
to understand how the system behaves in the limit
n1=3jr0j ≪ 1 of the two-channel model.
Our results may be probed in experiments similar to

those carried out recently at JILA [15] and in Aarhus [16].
In particular, our results directly apply to the latter experi-
ment, which used 39K as both the impurity and host atoms.
Furthermore, we estimate that n1=3ja−j≃ 100 in that
experiment, which indicates that it is already in a regime
where the nontrivial dependence on the interparticle spac-
ing is strongly pronounced. Indeed, in a recent JILA
experiment [19], the density of the Bose gas was changed
by 2 orders of magnitude, and thus an experimental
investigation of the density dependence of the unitary
Bose polaron appears to be well within reach.
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APPENDIX A: COUPLED INTEGRAL
EQUATIONS

To obtain the integral equations for the r0 model, we first
take the derivative h∂ΨjðĤ − EÞjΨi ¼ 0with respect to α0,
αk, αk1k2

, αk1k2k3
, γ0, γk, and γk1k2

for our variational wave
function in Eq. (5). This yields the following linear
equations:

Eα0 ¼ g
ffiffiffiffiffi
n0

p
γ0 − g

X
k

vkγk; ðA1Þ

ðE − ϵk − EkÞαk ¼ gukγ0 þ g
ffiffiffiffiffi
n0

p
γk − g

X
q

γkqvq; ðA2Þ

ðE − Ek1k2
Þαk1k2

¼ gðγk1
uk2

þ γk2
uk1

Þ þ g
ffiffiffiffiffi
n0

p
γk1k2

;

ðA3Þ

ðE− Ek1k2k3
Þαk1k2k3

¼ gðγk1k2
uk3

þ γk2k3
uk1

þ γk1k3
uk2

Þ;
ðA4Þ

ðE − ν0Þγ0 ¼ g
ffiffiffiffiffi
n0

p
α0 þ g

X
k

ukαk; ðA5Þ

ðE − ϵdk − ν0 − EkÞγk ¼ g
ffiffiffiffiffi
n0

p
αk − gvkα0 þ g

X
k0

uk0αkk0 ;

ðA6Þ

ðE − ϵdk1þk2
− ν0 − Ek1

− Ek1
Þγk1k2

¼ g
ffiffiffiffiffi
n0

p
αk1k2

− gðαk1
vk2

þ αk2
uk1

Þ þ g
X
k3

αk1k2k3
uk3

;

ðA7Þ

where Ek1k2
¼ Ek1

þ Ek2
þ ϵk1þk2

and Ek1k2k3
¼ Ek1

þ
Ek2

þ Ek3
þ ϵk1þk2þk3

. Using the first four equations to
remove the α coefficients, we obtain

T −1ðE; 0Þγ0 ¼
n0
E
γ0 þ

ffiffiffiffiffi
n0

p X
k

�
ukγk

E − ϵk − Ek
−
vkγk
E

�
−
X
kq

ukvqγkq
E − ϵk − Ek

; ðA8Þ

T −1ðE − Ek;kÞγk ¼ ffiffiffiffiffi
n0

p �
uk

E − ϵk − Ek
−
vk
E

�
γ0 þ

n0
E − ϵk − Ek

γk þ
X
q

�
ukuqγq
E − Ekq

þ vkvqγq
E

�

þ ffiffiffiffiffi
n0

p X
q

�
uqγkq
E − Ekq

−
vqγkq

E − ϵk − Ek

�
; ðA9Þ
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T −1ðE − Ek1
− Ek2

;k1 þ k2Þγk1k2
¼ n0

E − Ek1k2

γk1k2
þ
�� ffiffiffiffiffi

n0
p �

uk1
γk2

E − Ek1k2

−
vk1

γk2

E − ϵk2
− Ek2

�
−

uk1
vk2

γ0
E − ϵk1

− Ek1

þ
X
q

�
uk1

uqγk2q

E − Ek1k2q
þ vk1

vqγk2q

E − ϵk2
− Ek2

�	
þ ðk1 ↔ k2Þ

�
: ðA10Þ

Here, the two-body T matrix T ðE;kÞ in the BEC medium is

T −1ðE;kÞ ¼ m
4πa

−
mr0
8π

ðE − ϵdkÞ −
X
q

�
u2q

E − Eq − ϵkþq
þ 1

2ϵq

�

¼ T −1
0 ðE;kÞ þ

X
q

�
1

E − ϵq − ϵkþq
−

u2q
E − Eq − ϵkþq

�
; ðA11Þ

where the vacuum T matrix T 0ðE;kÞ was defined in
Eq. (10).
The coupled integral equations for the Λ model have the

same form except that we take r0 → 0with a fixed in the T
matrix and impose a UV cutoff Λ on the integrals on the
right-hand side of Eqs. (A8)–(A10). The UV cutoff is
necessary because otherwise the coupled integral equations
are ill posed and the three-body parameter cannot be
fixed [56]. Note that the coupled integral equations with
r0 → 0 also follow from the single-channel model,
which has a density-density coupling of the formP

k;k0;qb
†
k0c†q−k0cq−kbk but no terms involving the closed-

channel molecules. In the latter case, we again need to
introduce a finite cutoffΛ by hand to have a fixed three-body
parameter.
In this paper, we show results obtained from variational

wave functions, which include 1, 2, or 3 excitations of the
condensate; see Eq. (6). These approximations correspond
to solving Eq. (A8) with γk ¼ γkq ¼ 0, Eqs. (A8) and (A9)
with γkq ¼ 0, and all of Eqs. (A8)–(A10), respectively.

APPENDIX B: EFFECT OF FINITE
COHERENCE LENGTH AND NUMBER

OF BOGOLIUBOV EXCITATIONS

In Sec. IV C, we compared the results of our variational
approach with those obtained in quantum Monte Carlo
calculations by Peña Ardila and Giorgini [36], and we
found very good agreement across more than an order of
magnitude in interparticle spacing (see Fig. 2). In this
comparison, we highlighted the fact that the dependence of
the polaron energy on the three-body parameter a− is much
stronger than the dependence on aB, and to emphasize this,
we took aB ¼ 0. However, as we have argued in Sec. III, in
the QMC calculation the ratio between a− and aB was kept

fixed at a value of aðQMCÞ
− ≃ −2.09ð36Þ × 104aðQMCÞ

B as
identified in Eq. (12). Therefore, we now consider the
residual effect of keeping a−=aB fixed in the same manner
as in the QMC. Our results for the polaron energy within

the Λ model are shown in Fig. 8. We see that the polaron
energy is almost unaffected in the low-density, few-body
dominated regime, while aB becomes more important with
increasing density. However, throughout the range plotted,
i.e., the universal many-body regime, the relative change in
energy arising from the change in n1=3ja−j clearly greatly
exceeds that from the increase in n1=3aB. We furthermore
see that both sets of results are consistent with our
reinterpretation of the QMC results in terms of a three-
body parameter.
In the inset of Fig. 8, we furthermore illustrate the

convergence of the polaron energy calculated within both
interaction models as a function of (inverse) number of

FIG. 8. Polaron energy calculated within the Λ model as a
function of n1=3ja−j for aB ¼ 0 (solid line) and for aB ¼
2.1 × 104ja−j (dashed line). The latter choice of aB ensures that
we take the same ratio of a− and aB as in the QMC calculation
(gray dots) [see Eq. (12)], and the corresponding scale for aB is
shown on the top x axis. Inset: Polaron energy at unitarity as a
function of inverse number N of Bogoliubov excitations for
aB ¼ 0. We present the results of the Λ model (solid) and r0
model (open) for n1=3ja−j ¼ 100 (blue circles) and n1=3ja−j ¼
500 (red triangles).
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Bogoliubov excitations included in our variational
approach. In the many-body dominated regime, at
n1=3ja−j ¼ 500, we see that the convergence appears to
be nearly linear, with a slope (and extrapolation to an
infinite number of excitations) that is consistent with the
difference between the finite aB dotted line and the QMC
results in the main figure. Closer to the few-body domi-
nated regime at n1=3ja−j ¼ 100, our approach converges
more slowly because of the strong few-body correlations
induced by the trimer and tetramer bound states. However,
it is likely that including four Bogoliubov excitations in our
approach to account for the hypothesized pentamer (see
Sec. IVA) would yield a nearly converged result. We
expect a small residual difference between the results of the
two interaction models, even in the N → ∞ limit, because
of the different manners in which the two-body physics is
implemented. A similar effect would be present for an
impurity in a Fermi gas.

APPENDIX C: CALCULATION
OF OBSERVABLES

Once the wave function jΨi is obtained, we can calculate
physical quantities of interest. In the following, we assume
that the variational wave function is normalized, hΨjΨi¼1.
When we solve the renormalized equations (A8)–(A10),
this implies that

1 ¼ jα0j2 þ
X
k

jαkj2 þ
1

2

X
k1k2

jαk1k2
j2

þ 1

6

X
k1k2k3

jαk1k2k3
j2 þ jγ0j2 þ

X
k

jγkj2 þ
1

2

X
k1k2

jγk1k2
j2:

ðC1Þ
Since we solve for γ0, γk, and γk1k2

, we relate the α
coefficients to these through Eqs. (A1)–(A4).

1. Effective mass

For a system with rotational symmetry, the inverse
effective mass is defined as

1

m� ¼
∂2EðPÞ
∂P2

; ðC2Þ

where EðPÞ is the energy dispersion of the Bose polaron.
The variational ansatz can be easily extended to a Bose
polaron with a finite momentum, but solving the resulting
integral equations becomes numerically expensive because
the equations do not have rotational symmetry. Here,
following a line of argument similar to Ref. [90], we present
a method to calculate the effective mass without solving the
integral equations for a finite-momentum Bose polaron.
In general, the coupled integral equations for γ’s for a

finite-momentum polaron have the following structure
[similar to Eqs. (A1)–(A4)]:

X̂½EðPÞ;P�jγi ¼ 0: ðC3Þ

Here, jγi is an ordered set of γ0, γk, and γk1k2
, and the

center-of-mass momentum can be taken to be Pez without
loss of generality. While the matrix X̂ is not the
Hamiltonian, it is still Hermitian. The energy dispersion
EðPÞ is determined by the zero crossing of the lowest (or
highest, depending on the sign convention) eigenvalue of
X̂. Therefore, for a small P, we can expand X̂ up to OðP2Þ
and evaluate the lowest eigenvalue in the same way as the
Rayleigh-Schrödinger perturbation theory. It is straightfor-
ward to show that

X̂½EðPÞ; P� ¼ X̂0 þ PX̂P þ P2

2
ðX̂PP þ ð1=m�ÞX̂EÞ

þOðP3Þ; ðC4Þ

where

X̂0 ¼ X̂½Eð0Þ; 0�; X̂P ¼ ∂X̂
∂P ½E;P�

���
P¼0

E¼Eð0Þ
;

X̂PP ¼ ∂2X̂
∂P2

½E;P�
���

P¼0
E¼Eð0Þ

; X̂E ¼ ∂X̂
∂E ½E;P�

���
P¼0

E¼Eð0Þ
: ðC5Þ

Then, the lowest eigenvalue λðPÞ of X̂½EðPÞ; P� can be
expressed as a series expansion in terms of P,

λðPÞ ¼ λ0 þ λ1Pþ λ2P2 þOðP3Þ; ðC6Þ

and its coefficients λi are determined perturbatively:

λ1 ¼ hγð0ÞjX̂Pjγð0Þi ¼ 0; ðC7Þ

λ2¼
1

2
hγð0ÞjðX̂PPþð1=m�ÞX̂EÞjγð0Þiþ

X
i>0

jhγðiÞjX̂Pjγð0Þij2
λð0Þ0 −λðiÞ0

:

ðC8Þ

Here, λðiÞ0 and jγðiÞi are the ith eigenvalue and its corre-
sponding eigenvector of X̂0, and i ¼ 0 corresponds to the

state that satisfies X̂0½Eð0Þ; 0�jγð0Þi ¼ λð0Þ0 jγð0Þi ¼ 0. Note
that λ1 ¼ 0 follows from the rotational invariance of jγð0Þi.
Now, recalling that the energy dispersion is found by zero
crossing of the lowest eigenvalue of X̂½EðPÞ; P�, we can set

λðPÞ ¼ λð0Þ0 ¼ 0; ðC9Þ

which, in turn, implies that λ2 ¼ 0. From this, the inverse
effective mass is obtained as follows:
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1=m� ¼ hγð0ÞjX̂Ejγð0Þi−1

×

�X
i>0

2

λðiÞ0
jhγðiÞjX̂Pjγð0Þij2 − hγð0ÞjX̂PPjγð0Þi

�

ðC10Þ

¼ hγð0ÞjX̂Ejγð0Þi−1½2hγð0ÞjX̂PQ̂X̂−1
0 Q̂X̂Pjγð0Þi

− hγð0ÞjX̂PPjγð0Þi�; ðC11Þ

where Q̂ ¼ 1 −
P

i>0jγðiÞihγðiÞj.
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