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We develop a first-principles theory of relativistic fluid turbulence at high Reynolds and Péclet numbers.
We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of
the principle of renormalization-group invariance. We obtain results very similar to those for nonrelativistic
turbulence, with hydrodynamic fields in the inertial range described as distributional or “coarse-grained”
solutions of the relativistic Euler equations. These solutions do not, however, satisfy the naive conservation
laws of smooth Euler solutions but are afflicted with dissipative anomalies in the balance equations of
internal energy and entropy. The anomalies are shown to be possible by exactly two mechanisms, local
cascade and pressure-work defect. We derive “4=5th-law” type expressions for the anomalies, which allow
us to characterize the singularities (structure-function scaling exponents) required for their not vanishing.
We also investigate the Lorentz covariance of the inertial-range fluxes, which we find to be broken by our
coarse-graining regularization but which is restored in the limit where the regularization is removed, similar
to relativistic lattice quantum field theory. In the formal limit as speed of light goes to infinity, we recover
the results of previous nonrelativistic theory. In particular, anomalous heat input to relativistic internal
energy coincides in that limit with anomalous dissipation of nonrelativistic kinetic energy.
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I. INTRODUCTION

Relativistic hydrodynamics has a growing range of
applications in current physics research, including ener-
getic astrophysical objects such as gamma-ray bursts [1]
and pulsars [2], high-energy physics of the early Universe
and heavy-ion collisions [3], condensed matter physics of
graphene [4,5] and strange metals [6,7], and black-hole
gravitational physics via the fluid-gravity correspondence
in AdS/CFT [8–11]. The ubiquity of relativistic hydro-
dynamics is natural, given that it represents a universal low-
wave-number description of relativistic quantum field
theories at scales much larger than the mean-free-path
length. When the global length scales of such relativistic
fluid systems are even larger, as measured by the dimen-
sionless Reynolds number, then turbulent flow is likely.
There is observational evidence for relativistic turbulence in
high-energy astrophysical systems; e.g., gamma-ray bursts

accelerate relativistic jets to Lorentz factors γ ≳ 100 and
contain internal fluctuations with δγ ∼ 2 [12]. Numerical
simulations of relativistic fluid models have verified the
occurrence of turbulence at high Reynolds numbers
[13,14]. Relativistic turbulence is also observed in numeri-
cal solutions of conformal hydrodynamic models [15–17],
and an analogous phenomenon is seen in their dual AdS
black-hole solutions [18].
Despite the importance of relativistic fluid turbulence at

high Reynolds number for many applications, there have
been only a handful of theoretical efforts to elucidate the
phenomenon [19–21]. Using a point-splitting approach,
Fouxon and Oz [19] derived statistical relations for rela-
tivistic turbulence that, in the incompressible limit, reduce
to the famous Kolmogorov “4=5th law” [22,23]. However,
in the relativistic regime, their relations have nothing to do
with energy of the fluid. This seems to suggest a profound
difference between relativistic and nonrelativistic turbu-
lence or, even more radically, an essential flaw in our
current understanding of nonrelativistic turbulence. As
concluded by Fouxon and Oz [19], “The interpretation
of the Kolmogorov relation for the incompressible turbu-
lence in terms of the energy cascade may be misleading.”
We develop here the first-principles theory of relativistic

fluid turbulence at high Reynolds and Péclet numbers,
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which reaches a very different conclusion. We establish the
existence of a relativistic energy cascade in the traditional
sense and an even more fundamental entropy cascade. The
appearance of thermodynamic entropy is not surprising,
considering its central role in the theory of dissipative
relativistic hydrodynamics [8,10,24–26]. Our analysis fol-
lows a pioneering work of Onsager [27,28] on incompress-
ible fluid turbulence, who proposed that turbulent flows at
very high Reynolds numbers are described by singular or
distributional solutions of the incompressible Euler equa-
tions. In 1945, Onsager derived the first example of a
conservation-law anomaly, showing by a point-splitting
argument that the zero-viscosity limit of Navier-Stokes
solutions can dissipate fluid kinetic energy for a critical
1=3 Hölder singularity of the fluid velocity [29]. Polyakov
has pointed out the formal analogy of Kolmogorov’s 4=5th
law and its point-splitting derivation to axial anomalies in
quantum gauge field theories [30,31]. However, Onsager’s
analysis is deeper than the ensemble theory of Kolmogorov
[22,32,33] or “K41” because it applies to individual flow
realizations. It is also formally exact and requires no
statistical hypotheses, such as isotropic or homogeneous
ensembles, or mean-field arguments ignoring space-time
intermittency. Onsager’s proposals were not understood
at the time, and he never published full proofs of his
assertions. Thus, the theory went ignored until Onsager’s
1=3Hölder condition for anomalous energy dissipation was
rederived [34]. This triggered a stream of work in the
mathematical PDE community that has improved upon
the analysis, notably in Refs. [35–37]. More recently,
concepts originating in the Nash-Kuiper theorem and
Gromov’s h-principle have been applied to mathematically
construct dissipative Euler solutions of the type conjectured
by Onsager [38,39]. This new circle of ideas has led to a
proof that Onsager’s 1=3 criticality condition for energy
dissipation is sharp [40].
Onsager’s theory of dissipative Euler solutions and its

application to fluid turbulence is still essentially unknown
to the wider physics community, however. This is unfortu-
nate because it is the most comprehensive theoretical
framework for high Reynolds turbulence and generally
applicable not only to kinetic-energy dissipation in incom-
pressible fluid turbulence but also to cascades in magneto-
hydrodynamic turbulence [41,42], to dissipative anomalies
of Lagrangian invariants such as circulations [43] and
magnetic fluxes [44], and to cascades in compressible
Navier-Stokes turbulence [45–48]. Furthermore, Onsager’s
analysis is based on very intuitive physical ideas. As we
discussed in our earlier paper on nonrelativistic compress-
ible Navier-Stokes turbulence [47] (hereafter, paper I),
Onsager’s argument is essentially a nonperturbative appli-
cation of the principle of renormalization-group (RG)
invariance [49–51] (see Ref. [52], Sec. IV, for a concise
and insightful review of perturbative RG). High Reynolds
turbulence is characterized by ultraviolet divergences of

gradients of the velocity and other thermodynamic fields,
referred to as a “violet catastrophe” by Onsager [27].
Regularizing these divergences introduces a new arbitrary
length scale l upon which objective physics cannot
depend, and exploiting this invariance yields the main
conclusions of the theory on fluid singularities, inertial
range, local cascades, etc.
Onsager’s unpublished work in 1945 employed a point-

splitting approach [29], but here we exploit a more power-
ful coarse graining or “block-spin” regularization [35,53]
for relativistic fluid turbulence. Many essential steps were
already taken in paper I on nonrelativistic compressible
turbulence, such as the identification of (neg)entropy as a
key invariant and the development of appropriate non-
perturbative tools of analysis, such as cumulant expansions
for space-time coarse graining and mathematical distribu-
tion theory. Relativistic turbulence brings in some com-
pletely new difficulties, however. First, kinetic energy is
usually given the central role in the theory of nonrelativistic
energy cascade, but kinetic energy is a less natural quantity
in relativity theory. We show here that internal energy is the
appropriate basis for the theory of relativistic energy
cascade. Another distinction of the relativistic theory is
that our nonperturbative coarse-graining regularization
preserves Galilean symmetry of nonrelativistic fluid mod-
els, but it breaks Lorentz symmetry. This is reminiscent of
the lattice regularization of relativistic quantum field
theories [54], which breaks Lorentz symmetry for finite
lattice spacing a but recovers it in the continuum limit
a → 0. The situation here is similar, as we show that
Lorentz symmetry is restored as our regularization param-
eter l → 0, leading to a covariant description by relativistic
Euler equations. Further differences exist, such as the unit
normalization of relativistic velocity vectors, which leads to
new terms in flux or anomaly formulas that do not appear
nonrelativistically. An important caveat about the present
work is that we consider only special-relativistic fluid
turbulence in flat Minkowski space-time. General-relativ-
istic (GR) fluids in curved space-times bring in additional
technical difficulties. These seem tractable, but it makes
sense to develop the theory first in Minkowski space-time,
as the simplest setting possible. For remarks on full GR,
conclusion Sec. VIII.
In this paper, we consider the D ¼ dþ 1-dimensional

Minkowski space-time for any space dimension d ≥ 1. This
generality is motivated not only by the wider perspective
it affords but also by fluid-gravity correspondence in
AdS/CFT, which holds for general D [11,55]. We adopt
the signature −þ � � � þ of the Minkowski metric gμν.
We follow standard relativistic notations, but we include
explicit factors of speed of light c, e.g., space-time coordi-
nates xμ ¼ ðx0;xÞ ¼ ðct;xÞ, velocity vectors Vμ ¼
γð1; v=cÞ, etc., rather than use natural units with c ¼ 1.
This facilitates taking the limit c → ∞ for comparison with
the results of paper I.
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II. RELATIVISTIC DISSIPATIVE FLUID MODELS

We consider here a relativistic fluid with conserved
stress-energy tensor Tμν,

∂νTμν ¼ 0; ð1Þ

and with one conserved current Jμ,

∂νJν ¼ 0: ð2Þ

The latter may be interpreted as a particle number current
(e.g., baryon number), and the fluid models that we
consider reduce in the limit c → ∞ and at zeroth order
in gradients to the nonrelativistic compressible Euler
equations. This choice allows us to compare our results
here to those derived in paper I for nonrelativistic com-
pressible turbulence. However, our analysis carries over
straightforwardly to other fluid systems without the addi-
tional conserved current Jμ (e.g., zero chemical potential
sectors and conformal fluids) and to multicomponent
systems with more than one conserved current (e.g.,
two-fluid models of relativistic superfluids).
Even with the restrictions to Eqs. (1) and (2), there are

many possible fluid models. Unlike the nonrelativistic case,
where the compressible Navier-Stokes equations have a
more canonical status and are employed almost universally
in the fluid regime, there are still many dissipative
relativistic fluid models competing as descriptions of the
same physical system (e.g., see Ref. [56], Sec. 14, or
Ref. [57], Chap. 6). We consider a broad class of dissipative
relativistic fluid theories, which includes the traditional
theories of Eckart [58] and Landau-Lifshitz (LL) [59] and
the Israel-Stewart (IS) theory [24,25], in which the number
current and stress tensor have the general form

Jμ ¼ nVμ þ σN̂μ; ð3Þ

Tμν ¼ pΔμν þ ϵVμVν þ Πμν;

Πμν ¼ κðQ̂μVν þ Q̂νVμÞ þ ζτ̂Δμν þ 2ητ̂μν: ð4Þ

Here, n is number density, p ¼ pðϵ; nÞ the pressure, and
ϵ ¼ uþ ρc2 the total energy density, with ρ ¼ nm the rest-
mass density for particle mass m and u the internal-energy
density. The velocity vector Vμ, to be specified below, is
future timelike and VμVμ ¼ −1. The quantity Nμ ¼ σN̂μ is
a dissipative number current, Qμ ¼ κQ̂μ a dissipative heat
current, and Πμν

visc ¼ τΔμν þ τμν a dissipative (viscous)
stress tensor with τ ¼ ζτ̂ and τμν ¼ 2ητ̂μν. Here, we have
defined Δμν ¼ gμν þ VμVν as the projection onto the space
direction in the fluid rest frame, and the various dissipative
terms satisfy

VμN̂
μ ¼ VμQ̂

μ ¼ Vμτ̂
μν ¼ 0; ð5Þ

with τ̂μν also traceless and symmetric. We have made an
unconventional choice to factor out the overall depend-
ences on particle conductivity σ, thermal conductivity κ,
bulk viscosity ζ, and shear viscosity η, in order to make
clearer some of our arguments below. So-called particle- or
Eckart-frame theories have N̂μ ¼ 0, so Vμ is the timelike
unit vector in the Jμ direction and n ¼ −JμVμ. On the other
hand, energy- or Landau-Lifshitz-frame theories have
Q̂μ ¼ 0, so Vμ and ϵ are specified by the eigenvalue
condition TμνVν ¼ −ϵVμ, with a timelike unit eigenvector.
In the class of models that we consider in detail, there is
also an entropy current Sμ (discussed further below) that
satisfies a balance equation of the form

∂μSμ ¼ σ
N̂μN̂μ

T2
þ κ

Q̂μQ̂μ

T2
þ ζ

τ̂2

T
þ 2η

τ̂μντ̂μν
T

; ð6Þ

whose right-hand side, when all of the transport coefficients
σ, κ, ζ, η are positive, is non-negative as required by the
second law of thermodynamics. The specific assumptions
made above are mostly to simplify our proof in the next
section that effective coarse-grained equations obtained in
the limit σ, κ, ζ, η → 0 correspond to distributional Euler
solutions. With some appropriate corresponding assump-
tions, our analysis will apply to any dissipative fluid model
consistent with the thermodynamic second law. In fact, our
inertial-range analysis is completely general and applies to
any distributional solution of the relativistic Euler equa-
tions, regardless of the dissipative model limits used to
obtain the particular solution (or even to solutions con-
structed by other means).
Defining total internal-energy current (including the rest-

mass contribution)

Eμ ¼ −TμνVν ¼ ϵVμ þ κQ̂μ ð7Þ

and the internal-energy current

Uμ ¼ Eμ −mc2Jμ ¼ uVμ þ κQ̂μ − ðσmc2ÞN̂μ; ð8Þ

it is straightforward to obtain from Eqs. (1) and (2), for all
of the class of models we consider, the balance equations of
the two internal-energy currents as

∂μEμ ¼ ∂μUμ

¼ −ð∂μVνÞTμν ¼ −pð∂μVμÞ þQdiss ð9Þ

with the dissipative “heating” of the fluid given by

Qdiss ≔ −κQ̂μAμ − ζτ̂θ − 2ητ̂μνσμν: ð10Þ

Here, Aμ ¼ DVμ is the acceleration vector, with D ¼ Vμ∂μ

the material derivative for an observer moving with the
fluid,
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θ ¼ Δμν∂νVμ ¼ ∂μVμ ð11Þ

is the relativistic dilatation, and

σμν ¼ ∂hμVνi ≡ ∂⊥
ðμVνÞ −

θ

d
Δμν

¼ ∂ðμVνÞ þ AðμVνÞ −
θ

d
Δμν ð12Þ

is the relativistic strain, for ∂⊥
μ ¼ Δα

μ∂α. Here, we use
standard notations for relativistic fluids [56,57], in particu-
lar, with CðμνÞ ¼ 1

2
ðCμν þ CνμÞ the symmetrization on μ, ν,

so σμν is symmetric and traceless, and σμνVν ¼ 0.
The traditional theories of Eckart [58] and Landau-

Lifshitz [59] have dissipative fluxes proportional to the
following tensors:

N̂μ ¼ −T2∂μ
⊥λ; ð13Þ

Q̂μ ¼ −ð∂μ
⊥T þ TAμÞ; ð14Þ

τ̂ ¼ −θ; τ̂μν ¼ −σμν; ð15Þ
which are first order in gradients, with particle conductivity
σ ¼ 0 for Eckart and thermal conductivity κ ¼ 0 for
Landau-Lifshitz, so

Qdiss ¼ κAμ∂μT þ κAμAμ þ ζθ2 þ 2ησμνσμν: ð16Þ

In particular, Qdiss ≥ 0 for the Landau-Lifshitz theory.
Above, we have used the standard relativistic thermody-
namic potentials, the temperature T (or its inverse β¼1=T),
and λ ¼ μ=T for the chemical potential μ. For reviews of
relativistic thermodynamics, see Ref. [60], and also
Ref. [56], Sec. V, or Ref. [57], Sec. 2.3.7. Here, we note
only that the relativistic chemical potential differs from
its Newtonian counterpart μN by a rest-mass contribution,
μ ¼ μN þmc2. The entropy current of the Eckart and
Landau-Lifshitz theories is defined in terms of the entropy
density per volume sðϵ; nÞ and the thermodynamic poten-
tials as

Sμ ¼ sVμ þ βQμ − λNμ: ð17Þ
Using the thermodynamic second law ds ¼ βdϵ − λdn and
Eqs. (2) and (9), it is then easy to check that Eq. (6) holds.
However, as is well known, the Eckart and Landau-Lifshitz
theories are unstable and acausal in both linear [61] and
nonlinear [62] regimes. In fact, these traditional parabolic
theories can be formally ill posed for general initial data on
noncharacteristic hypersurfaces, including surfaces of
simultaneity in arbitrary inertial reference frames [63].
Although this problem might be avoided by specifying
initial data only on characteristic hypersurfaces or by
imposing suitable restrictions on initial data for general
Cauchy surfaces, it is not currently understood how to use

these theories as predictive evolutionary models of rela-
tivistic turbulent fluids [64].
The class of models that we consider also contain better-

behaved models, however, such as the extended hydro-
dynamic theory of Israel-Stewart [24,25]. This is, itself, an
entire class of models, each of which uses a different
definition of the off-equilibrium fluid velocity. The particle-
frame and energy-frame versions have both been shown to
be stable, causal, and hyperbolic in the linear [65,66] and
nonlinear [67–69] regimes, with somewhat better stability
properties in the energy frame. In these models, the entropy
current is not given by Eq. (17) but instead is modified by
the addition of terms that are quadratic in the dissipative
fluxes Nμ, Qμ, τ, and τμν. The form of the entropy current
may be illustrated by the expression that holds in the
energy-frame Israel-Stewart theory [68,69]:

Sμ ¼ sVμ − λNμ −
1

2T
ðβ0τ2 þ β1NαNα þ β2ταβτ

αβÞVμ

þ α0
T
τNμ þ α1

T
τμνNν: ð18Þ

The new term proportional to Vμ can be regarded as an off-
equilibriummodification of the rest-frame entropy density s,
and thus the coefficients βi, i ¼ 1, 2, 3 (not to be confused
with β ¼ 1=T), are required to be positive to ensure that
nonvanishing gradients lower the entropy. The other two
terms proportional to αi, i ¼ 1, 2, are purely spatial in the
fluid rest frame and describe second-order contributions to
dissipative entropy transport. All of the α and β coefficients
are assumed to be smooth functions of ϵ, ρ. Imposing the
second law of thermodynamics in the form of Eq. (6)
constrains the dissipative fluxes [70]. For example, for
the energy-frame Israel-Stewart theory, one finds

τ ¼ ζτ̂ ¼ −ζ½θ þ β0Dτ þ � � ��; ð19Þ

Nμ ¼ σN̂μ ¼ −σT½T∂μ
⊥λþ β1ðDN⊥Þμ þ � � ��; ð20Þ

τμν ¼ 2ητ̂μν ¼ −2η½σμν þ β2ðDτÞhμνi þ � � ��; ð21Þ

with ðDN⊥Þμ ¼ ΔμνDNν and with ðDτÞhμνi ¼ Dτμν þ
τμλAλVν þ τνλAλVμ the part of Dτμν symmetric, traceless,
andorthogonal toVμ. Here, ð� � �Þ indicates various terms that
are second order in gradients, involving the fluxesNμ, τ, τμν,
and the thermodynamic potentials. We note that, in the case
of the particle-frame Israel-Stewart model, nearly identical
equations hold but with Nμ → Qμ and, in Eq. (20), σ → κ
and T∂μ

⊥λ → ∂μ
⊥T=T þ Aμ. Unlike the original Eckart-

Landau-Lifshitz theories, the relations (19)–(21) are not
simple constitutive relations for the dissipative fluxes but are
instead evolutionary equations that must be solved in time
together with the conservation laws (1) and (2) in order to
determine both the local thermodynamic variables and the
dissipative fluxes.
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It is a curious fact that in the IS theories, the “energy
dissipation” Qdiss in Eq. (9) may possibly be negative and
thus may not act to heat the fluid. Indeed, out of the entire
class of models that we consider in this paper, only the (ill-
posed) Landau-Lifshitz theory guarantees that Qdiss ≥ 0. It
is generally argued that negative values of Qdiss cannot be
realized within the physical regime of validity of a fluid
description. Since the dissipative fluxes in the energy-frame
IS model differ from those in the LL theory only by terms
second order in gradients, it is plausible that, for most
circumstances, the dissipative fluxes obtained by solving
the IS model will be nearly the same as those given by the
LL constitutive relations, when evaluated with the IS model
solutions. More generally, Geroch [72] and Lindblom [73]
have argued that this close agreement with the Landau-
Lifshitz or Eckart constitutive relations will hold in the
energy or particle frame, respectively, for a wide set of
extended dissipative relativistic fluid models that are
hyperbolic, causal, and well posed. Thus, we typically
expect to have Qdiss ≥ 0 in energy-frame fluid models.
Unfortunately, the arguments of Refs. [72,73] fail in the
presence of shocks with near discontinuities extending
down to lengths of the order of the mean free path. In fact,
the IS fluid models and other broad classes of hyperbolic,
causal, well-posed models of dissipative relativistic fluids
do not even possess continuous solutions corresponding to
strong shocks [68,74]. Thus, perhaps even more than for
the nonrelativistic case, a better microscopic starting point
for a theory of relativistic fluid turbulence might be
relativistic kinetic theory or a relativistic quantum field
theory rather than a dissipative fluid model. Fortunately,
our principal results do not depend upon any particular
model of dissipation but only require the general conser-
vation laws (1) and (2), a fluid description with variables
given by local thermodynamic equilibrium, and the second
law of thermodynamics.
In this paper, we examine the hypothesis that the entropy

production is anomalous in relativistic fluid turbulence.
Thus, we assume, in the ideal limit σ, κ, η, ζ → 0, that
distributional limits of the entropy production exist:

Σ ¼ D-limσ;κ;η;ζ→0

�
σN̂μN̂μ

T2
þ κQ̂μQ̂μ

T2

þ ζτ̂2

T
þ 2ητ̂μντ̂μν

T

�
¼ Σcond þ Σtherm þ Σbulk þ Σshear > 0: ð22Þ

We then show that any strong limits ϵ, ρ, Vμ of the local
equilibrium fields are weak solutions of the relativistic
Euler equations, under very mild additional assumptions.
The anomalous entropy production of these Euler solutions
is shown to occur by a nonlinear cascade mechanism, and
we characterize the type of singularities required for
nonvanishing entropy cascade. As in the nonrelativistic

case, the ideal limit is really a limit of large Reynolds and
Péclet numbers introduced by a nondimensionalization of
the fluid equations. Because the fluid velocity Vμ is already
nondimensional in natural units based on the speed of light
c and is assumed to be of order unity, the Reynolds
numbers are Reη ¼ ρ0c2L0=η and Reζ ¼ ρ0c2L0=ζ as
given by the shear and bulk viscosities [75], and the
particle and thermal Péclet numbers are Peσ ¼
ρ0L0=σT0ðmcÞ2 and Peκ ¼ ρ0c3L0=κT0. Here, ρ0c2 is a
typical energy density, L0 a length characterizing the
injection scale of the flow (as well as the turnover time
L0=c in natural units), and T0 a temperature scale such as
Tðρ0c2; ρ0Þ. There are additional dimensionless groups that
multiply the terms of the dissipative fluxes that are second
order in gradients, but no assumption needs to be made in
our analysis about their magnitudes.
In addition to formulating a theory of the turbulent

entropy balance, we also derive a turbulent internal-energy
balance and describe, with precise formulas, the relativistic
energy cascade. Although internal energy plays the primary
role in this cascade, we show that a “relativistic kinetic
energy” can also be defined and is dissipated by the
turbulent cascade process. Conditions for the nonvanishing
of the energy flux are very similar to those obtained in
paper I for nonrelativistic flow, and the relativistic energy
flux reduces in the limit c → ∞ to the nonrelativistic
kinetic-energy flux. An Onsager condition for the non-
vanishing energy-dissipation anomaly is obtained, assum-
ing positivity of the dissipative heating. Our main result on
the entropy production anomaly requires no such additional
assumption, and the proof requires only modest changes to
that for nonrelativistic fluids, as we demonstrate in
detail below.

III. RELATIVISTIC COARSE GRAINING

In our analysis, we employ a coarse-graining regulari-
zation very similar to that used in our nonrelativistic study
in the companion paper I. Just as in the nonrelativistic case,
nonvanishing dissipative anomalies as in Eq. (22) require
that gradients ∂⊥

μ Vν, ∂⊥
μ T, ∂⊥

μ λ must diverge as σ, κ, η,
ζ → 0, and this makes it impossible to interpret the fluid
dynamical equations in the naive sense in the ideal limit. As
in the nonrelativistic problem, we can remove the ultra-
violet divergences by space-time coarse graining. An
essential difference, however, is that coarse graining with
a spherically symmetric filter kernel guarantees invariance
of turbulent fluxes in nonrelativistic flows under the full
Galilean symmetry group, but there is no possible space-
time coarse graining that can preserve Lorentz symmetry.
For example, consider a general space-time filtering oper-
ation of the velocity field

V̄μðxÞ ¼
Z

dDrGlðrÞVμðxþ rÞ; ð23Þ
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with GlðrÞ ≔ l−DGðr=lÞ. Then, it is easy to check that
Lorentz transformations Vμ0ðx0Þ ¼ ΛμνVνðΛ−1x0Þ for
Λ ∈ SOð1; dÞ when applied to the coarse-grained field in
Eq. (23) correspond to a coarse graining of the transformed
field Vμ0ðx0Þ but with a different kernel,

G0ðr0Þ ¼ GðΛ−1r0Þ: ð24Þ
The kernels in the two frames are the same if and only if the
coarse-graining kernel satisfies, for all r in Minkowski
space and all Λ ∈ SOð1; dÞ,

GðΛrÞ ¼ GðrÞ: ð25Þ
This relation requires GðrÞ to depend upon the separation
vector rμ only through the relativistic proper-time interval
R2 ¼ −rμrμ. In that case, however, the space-time integral
of the kernel must diverge,Z

dDrGðrÞ ¼
Z þ∞

−∞
dR2GðR2Þ

Z
HR2

ddr
jr0j ¼ þ∞; ð26Þ

because of the noncompactness of the hyperboloids
HR2 ¼ fr∶ − rμrμ ¼ R2g. In contrast, in the nonrelativistic
case, the orbits of the rotation group SOðdÞ in its action on
space are the spheres Sρ ¼ fr∶jrj ¼ ρg, which are compact
and have finite area. Because of the divergence in Eq. (26),
it is impossible to define a coarse-graining operation
that commutes with Lorentz transformations and whose
kernel satisfies the properties of positivity GðrÞ ≥ 0 and
normalization Z

dDrGðrÞ ¼ 1: ð27Þ

Together with rapid decay and smoothness, these properties
are necessary so that coarse graining is a regularizing
operation that represents a local space-time averaging. As
we see below, this leads to a breaking of Lorentz covariance
of the coarse-grained fluid equations at finite l and possible
observer dependence of quantities such as turbulent cas-
cade rates. However, we see that there is restoration of
Lorentz symmetry in the limit l → 0 (similar to the
restoration of Lorentz invariance in lattice field theories
in the limit of lattice spacing a → 0).
The effect of Lorentz transformation on a filter kernel

can be made more concrete by considering a pure boost in
the 1-direction, with rapidity φ related to the relative
velocity w by w ¼ c tanhφ. Using standard light-front
coordinates x� ¼ ðx0 � x1Þ= ffiffiffi

2
p

in 0-1 planes [76], the
boost transformation becomes

x0� ¼ e�φx�; ð28Þ

with all other spatial variables x2;…; xd remaining
unchanged. A filter kernel Gl is thus transformed into

G0
lðr0Þ ¼ Glðe−φr0þ; eþφr0−; r02;…; r0dÞ: ð29Þ

Effectively, the coarse-graining scale is changed for the
comoving observer to lþ ¼ eþφl in the þ direction and to
l− ¼ e−φl in the − direction, and it is unchanged in the
remaining spatial directions 2;…; d. This discussion of the
pure boost transformation underlines the fact that the notion
of “scale” will be different for different observers.
While any filter kernel that is smooth and rapidly

decaying in space-time can be adopted, it is also possible
to use more singular kernels that will still regularize the
equations of motion. For example, as in the nonrelativistic
case, it is possible to filter only spatially at fixed instants of
time [77]:

GlðrÞ ¼ GlðrÞδðr0Þ; ð30Þ

where GlðrÞ ¼ l−dGðr=lÞ is a smooth kernel rapidly
decaying in physical space. Such a coarse graining does
not, of course, remain instantaneous in other reference
frames. For example, for an observer moving with relative
velocity w in the 1-direction, the kernel in Eq. (30) trans-
forms into

G0
lðr00;r01;…;r0dÞ
¼ γ−1ðwÞGlðr01=γðwÞ;r02;…;r0dÞδðr00þwr01=cÞ; ð31Þ

with Lorentz factor γðwÞ ¼ ð1 − w2=c2Þ−1=2 according to
the general transformation formula (25). To the relatively
moving observer, the filtering kernel has become non-
instantaneous and, furthermore, is elongated along the
1-direction with modified spatial scale l0 ¼ γðwÞl in that
direction. Such elongation corresponds to the well-known
fact that a stationary blob of fluid at an instant in the
original frame is length contracted by the factor 1=γðwÞ in
the relatively moving frame but also sweeps through a
distance larger by a factor γðwÞ as it moves in that frame.
Once again, the notion of “scale” is seen to be different for
different observers.
Another singular kernel of some interest is a spatially

weighted average over the past light cone:

GlðrÞ ¼ GlðrÞδðr0 þ jrjÞ: ð32Þ

This is a natural average that can be, in principle, computed
at each point independently from incoming light signals
[78]. It may also have some utility for numerical modeling
of relativistic fluid turbulence by the large-eddy simulation
(LES) methodology [79–81] since such averages can be
computed on arbitrary spacelike Cauchy surfaces using
only precomputed (past) values of simulated fields. For the
observer moving with relative velocity w in the 1-direction,
the light-cone average transforms into another light-cone
average with a different spatial kernel:
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G0
lðr0Þ ¼ δðr00 þ jr0jÞ

×

�
fGlðfr01; r02;…; r0dÞ for r01 > 0

f−1Glðf−1r01; r02;…; r0dÞ for r01 < 0;

ð33Þ

for f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc − wÞ=ðcþ wÞp ¼ e−φ. In this particular case,
the spatial kernel is elongated or contracted depending
upon the relative signs of w and r01, and an initially
reflection-symmetric kernel will not remain so in a boosted
frame.
A property of the space-time coarse-graining operation

(23) that must be kept in mind is that the coarse-grained
fluid velocity vector V̄μ, while it remains future timelike, is
not generally a unit vector with respect to the Minkowski
pseudometric. Under coarse graining,

Vμ ¼ γðvÞð1; v=cÞ ⇒ V̄μ ¼ γðvÞð1; v̂=cÞ; ð34Þ

where we introduced the γ-weighted space-time average

v̂ ¼ γðvÞv=γðvÞ; γðvÞ ¼ ð1 − v2=c2Þ−1=2: ð35Þ

By convexity of the spatial Euclidean norm-square,

jv̂j2 ≤ djvj2 < c2: ð36Þ

Thus,

V̄μV̄μ ¼ −γðvÞ2=γðv̂Þ2 < 0; ð37Þ

with v̂ ¼ jv̂j, and V̄μ remains future timelike. However,
generally γðvÞ ≠ γðv̂Þ and thus V̄μV̄μ ≠ −1. Nonunit nor-
malization of V̄μ introduces new terms into the coarse-
grained equations of motion in the relativistic case, which
have no counterpart nonrelativistically.
The most important feature of the space-time coarse

graining is that, for a fixed scale l, all of the dissipative
transport terms in the coarse-grained conservation laws

∂νT̄μν ¼ 0; ∂νJ̄ν ¼ 0 ð38Þ

become negligible in the ideal limit σ, κ, η, ζ → 0. As in the
nonrelativistic case, this negligible direct effect of dissipa-
tion leads to the crucial concept of the inertial range of
scales. Because of the key importance of this result, here we
give a careful demonstration for the class of dissipative
fluid theories treated in this paper. For simplicity, we
consider only filter kernels that are entirely smooth in
space-time, as more singular kernels (such as instantaneous
or light-cone averages) would introduce additional purely
technical complications. See Ref. [48] for further discus-
sion. Furthermore, we assume that the kernel is C∞,
compactly supported in space-time, and it is thus a standard

test function for space-time distributions, which further
simplifies the proofs.
We illustrate the argument with the number conservation

law, which contains the single dissipative term

∂μσN̂
μðxÞ ¼ −

1

l

Z
dDrð∂μGÞlðrÞσðxþ rÞN̂μðxþ rÞ;

ð39Þ

where an integration by parts has been performed.
Introducing, as a factor of unity, T · ð1=TÞ ¼ 1, the
Cauchy-Schwartz inequality gives

j∂μσN̂
μðxÞj ≤ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
suppðGlÞ

dDrðσT2Þðxþ rÞ
s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
dDr

σ

T2
ðxþ rÞjð∂μGÞlðrÞN̂μðxþ rÞj2

s
:

ð40Þ

The first square-root factor vanishes in the ideal limit under
mild assumptions (e.g., if σ goes to zero uniformly in
space-time and if the temperature T remains locally square
integrable). If we can show that the second square-root
factor remains bounded in the ideal limit, then the product
will also go to zero.
Because the projection tensor Δμν is symmetric and also

non-negative (as seen by transforming into the fluid rest
frame), it defines an inner product for which another
application of the Cauchy-Schwartz inequality gives

jð∂μGÞlðrÞN̂μðxþ rÞj2 ≤ ð∂⊥
μ GÞlð∂μ

⊥GÞlðrÞ · N̂μN̂
μðxþ rÞ:

ð41Þ

The integral inside the second square root in Eq. (40) is thus
bounded byZ

dDrð∂⊥
μ GÞlðrÞð∂μ

⊥GÞlðrÞ
σN̂μN̂

μ

T2
ðxþ rÞ; ð42Þ

and the second factor in the integrand in Eq. (42) is just the
entropy production due to particle conductivity. Because
this entropy production is assumed to converge distribu-
tionally to a nonvanishing measure Σcond in the ideal limit,
this integral would remain bounded if the first factor were a
smooth test function. Unfortunately, the last statement is
generally false because ∂μ

⊥GlðrÞ ¼ Δμνðxþ rÞ∂νGlðrÞ
acquires a “rough” dependence on space-time through
the velocity Vμðxþ rÞ in the projection tensor. However,
it is easy to show (see Appendix A) that

0 ≤ ð∂⊥
μ GÞlðrÞð∂μ

⊥GÞlðrÞ ≤ 2γ2ðvÞjð∂GÞlðrÞj2E; ð43Þ
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where we introduced the factor γðvÞ ¼ V0ðxþ rÞ > 0
associated with the fluid velocity vector and also the
Euclidean space-time norm

jð∂GÞlðrÞj2E ¼
Xd
μ¼0

jð∂μGÞlðrÞj2: ð44Þ

The latter quantity no longer has any dependence on the
fluid velocity vector Vμðxþ rÞ, and it is a standard test
function (C∞ and compactly supported) when the kernel
GðrÞ has the same properties. Thus, the integral inside the
second square root of Eq. (40) is bounded by

2∥γðvÞ∥2∞
Z

dDrjð∂μGÞlðrÞj2E
σN̂μN̂

μ

T2
ðxþ rÞ; ð45Þ

and it remains finite in the limit, if we assume that
∥γðvÞ∥∞ ¼ supxjV0ðxÞj < ∞. This requires an assumption
that the fluid speed satisfies v ≤ cð1 − δÞ for some fixed
small δ ≪ 1. Such a δ will obviously be observer depen-
dent. Under these conditions, we conclude that the coarse-

grained dissipative number current term ∂μσN̂
μðxÞ → 0,

vanishing pointwise in the ideal limit.
The conclusion of this argument is that the coarse-

grained particle conservation law for any fixed l in the limit
σ, κ, η, ζ → 0, becomes

∂μJ̄μ ¼ ∂μnVμ ¼ 0; ð46Þ

with the dissipative term tending to zero. We thus obtain the
ideal particle conservation equation in a “coarse-grained
sense.” As shown in Ref. [48], the validity of the ideal fluid
equations in this coarse-grained sense for all l > 0 is
equivalent to their validity “weakly” or in the sense of
distributions. We should emphasize the nontriviality of this
result. Nonvanishing of the distributional limit Σcond ¼
D- limσ;κ;η;ζ→0σN̂μN̂

μ=T2 requires that gradients of thermo-
dynamic potentials must diverge, or j∂⊥

μ λj → þ∞, if the
Landau-Lifshitz contribution (13) to N̂μ is the dominant
one. Nevertheless, even with such diverging gradients of
fine-grained quantities (an “ultraviolet divergence”), the
coarse-grained equations are regularized, and any limit
fields n, Vμ as σ, κ, η, ζ → 0 will satisfy the ideal particle
conservation law in the coarse-grained sense. For finite but
very large values of the particle Péclet number Peσ, this
means that there is a long inertial range of scales l where
the coarse-grained ideal equation is valid.
It is worth emphasizing that the dissipation length lσ

where particle conductivity σ becomes non-negligible is
presumably observer-dependent at finite Peσ, unlike the
nonrelativistic case where all observers in different Galilean
frames will agree on the dissipation lengths. Notice that the
upper bound in Eq. (45) is not Lorentz invariant because the
gamma factor γðvÞ and the Euclidean norm of the kernel

gradient are both frame dependent. In fact, consider the
example of a coarse-graining average over a Euclidean ball
in space-time with radius l, as calculated by a certain
observer. When l ≫ lσ , then the dissipative contribution
to the coarse-grained particle current will be negligible to
this observer. However, this same coarse-grained particle
current to a comoving observer with large relative velocity
w in the 1-direction will correspond to a filter kernel (29)
with dilated thickness eþφlσ in the þ direction in the 0-1
plane and contracted thickness e−φl in the− direction. As a
consequence, ∂− gradients of coarse-grained fields become
large for this observer. When w is sufficiently close to c so
that e−φl≃ lσ , then the comoving observer may find that
dissipative particle transport is non-negligible for the
coarse-grained current in his frame of reference. Of course,
in the ideal limit σ → 0 with the scale l of the filter kernel
fixed, every observer will agree that dissipative transport
has vanished in the coarse-grained particle current
because lσ → 0.
All of the conclusions derived above hold also for the

coarse-grained equations of energy-momentum conserva-
tion, where at fixed l in the limit σ, κ, η, ζ → 0, any
limiting fields ϵ, ρ, and Vμ will satisfy

∂νT̄μν ¼ ∂νðϵgμν þ pΔμνÞ ¼ 0; ð47Þ

with all dissipation terms tending to zero. Just as for particle
conservation, the range of l over which these ideal
equations are valid could be observer dependent at finite
Reynolds and Péclet numbers. The proof of these state-
ments is very similar to that given above for particle
conservation, and we thus give complete details in
Appendix A. From Eqs. (46) and (47), we can conclude
that the relativistic Euler equations hold in the coarse-
grained sense at fixed scale l in the limit of infinite
Reynolds and Péclet numbers; that is, ideal relativistic
Euler equations hold distributionally.
There is one last remark on the coarse-graining regu-

larization, which has fundamental importance in what
follows. This coarse graining is a purely passive operation
that is applied a posteriori to the fluid variables and that can
effect no change whatsoever on any physical occurrence
[47,82]. In prosaic terms, coarse graining corresponds to
“removing one’s spectacles” and observing the physical
evolution at a reduced space-time resolution l. The
effective dynamical description is changed by regulariza-
tion, of course, with coarse-grained variables satisfying
much more complex equations than fine-grained fields.
This is not unexpected because the coarse-grained variables
are like block spins in the renormalization-group theory of
critical phenomena [83,84], and such Wilson-Kadanoff RG
procedures typically lead to very complicated effective
descriptions. In fact, an implementation of the coarse
graining by integrating out unresolved fields in a path-
integral formulation yields an effective dynamics with
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higher-order nonlinearity, long-time memory, and induced
stochasticity [85]. This is a manifestation of the “closure
problem,” in which coarse-grained variables like V̄μðxÞ no
longer satisfy simple closed equations of motion. As we see
below, Onsager’s method does not solve this problem but
instead bypasses it by exploiting 4=5th-law type expres-
sions for new, unclosed expressions. The essential idea is
then to invoke the independence of the physics on the
arbitrary coarse-graining scale l. This simple invariance
principle turns out to yield nontrivial consequences.

IV. ENERGY CASCADE

It is reasonable to expect that relativistic fluids at very
high Reynolds and Péclet numbers should exhibit a
turbulent energy cascade, just as nonrelativistic incom-
pressible and compressible fluids do. However, the familiar
notion of kinetic-energy cascade is not appropriate for
relativistic turbulence because kinetic energy is not a very
natural concept within relativity theory. On the other hand,
we have seen in our discussion of nonrelativistic com-
pressible fluids in paper I that energy cascade can be
understood from the coarse-grained dynamics of the
internal energy. Because the concept of internal energy
remains valid in relativistic thermodynamics, it provides a
good basis for the theory of relativistic energy cascade.
A resolved energy current is defined most simply as

Eμ
l ≔ −T̄μνV̄ν; ð48Þ

which (like resolved kinetic energy in nonrelativistic
turbulence) is a nonlinear function of coarse-grained
quantities. As we have shown in some detail in
Appendix A, for length scales l in the inertial range, or
for all fixed l in the ideal limit σ, κ, η, ζ → 0,

T̄μν ¼ ϵVμVν þ pΔμν

¼ p̄gμν þ hVμVν; ð49Þ
where h ¼ ϵþ p is relativistic enthalpy. Notably, the
quantity hVμVν is an exact formal analogue of the
“Reynolds stress” of nonrelativistic fluid turbulence. If
subsequent to the ideal limit σ, κ, η, ζ → 0, one considers
the limit of regularization length scale l → 0, one finds that

D − liml→0E
μ
l ¼ ϵVμ: ð50Þ

For this to hold, one needs only some modest regularity of
the limiting variables ϵ, p, Vμ, such as finite (absolute)
fourth-order moments in local space-time averages. Thus,
the resolved energy current converges distributionally in
the “continuum limit” l → 0 to the fine-grained energy
current of the Euler fluid. The naive energy balance
obtained by setting Qdiss ¼ 0 in Eq. (9) does not follow,
however. To obtain the correct result, we can use the
balance equation for the resolved energy current

∂μE
μ
l ¼ ∂μð−V̄νT̄μνÞ
¼ −ð∂μV̄νÞT̄μν

¼ −p̄ð∂νV̄νÞ − ð∂μV̄νÞhVμVν; ð51Þ

obtained from ∂μT̄μν ¼ 0 and Eq. (49). The last term in
Eq. (51) would not be present in the fine-grained internal-
energy balance for a smooth Euler solution because of the
orthogonality condition ð∂μVνÞVν ¼ 0. It is analogous to
the “deformation work” of nonrelativistic turbulent fluid,
which appears, however, in the equation for the resolved
kinetic energy rather than for resolved internal energy [e.g.,
see Eq. (paper I;43)]. This term is the source of possible
energy-dissipation anomalies in relativistic fluid turbu-
lence, and it gives the simplest representation of turbulent
energy flux.
Despite the simplicity of the above formulation, here we

follow an alternative approach based upon a relativistic
Favre averaging, similar to that employed in paper I for
nonrelativistic compressible turbulence. It should be
emphasized that the entire theory presented below could
be developed just as easily using Eq. (51) derived above
[86]. However, the relativistic Favre-averaging approach is
convenient to compare with results of paper I in the limit
c → ∞. The proper relativistic generalization of Favre
averaging is motivated by the appearance of the enthalpy
in Eq. (49). Note that the “null energy condition” h ≥ 0 is a
condition for stability of thermodynamic equilibrium [65],
and in the strict form, h > 0 is required for causality of the
relativistic Euler fluid [87]. We thus define the Favre-
average coarse graining for a relativistic fluid by

~f ≔ hf=h̄ ð52Þ

with enthalpy weighting. With this definition, Eq. (49)
becomes

T̄μν ¼ p̄gμν þ h̄ gVμVν

¼ p̄gμν þ h̄ ~Vμ ~Vν þ h̄ ~τðVμ; VνÞ: ð53Þ

As in the nonrelativistic theory, expanding in the pth-order
cumulants ~τðf1;…; fpÞ of the Favre average produces only
a single “unclosed” term in the coarse-grained stress-
energy tensor, whereas expanding in pth-order cumulants
τ̄ðf1;…; fpÞ of the unweighted space-time coarse gra-
ining would produce more such unclosed terms. This is a
significant advantage of the Favre average for potential
applications to LES modeling of relativistic fluid turbu-
lence. Within the Favre-averaging approach, it is conven-
ient to define the resolved energy current by

Eμe ≔ − ~VνT̄μν þ p̄

h̄
τ̄ðh; VμÞ − 1

2
~τðVν; VνÞhVμ: ð54Þ
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Alternative expressions for this current follow from
Eq. (49), the relation

~Vμ ¼ V̄μ þ ð1=h̄Þτ̄ðh; VμÞ; ð55Þ
and VνVν ¼ −1, from which one can easily derive

− ~VνT̄μν þ p̄

h̄
τ̄ðh; VμÞ

¼ hVμ þ hVνVνVμ − gVμVν hVν −p̄V̄μ: ð56Þ

Thus, by decomposing into Favre-average cumulants, one
obtains that

Eμe ¼ ϵVμ þ τ̄ðp; VμÞ þ h̄

�
1

2
~τðVν; VνÞ ~Vμ

þ ~τðVν; VμÞ ~Vν þ ~τðVν; Vν; VμÞ
�

¼ ϵ̄V̄μ þ τ̄ðh; VμÞ þ h̄

�
1

2
~τðVν; VνÞ ~Vμ

þ ~τðVν; VμÞ ~Vν þ ~τðVν; Vν; VμÞ
�
: ð57Þ

Either from this expression or directly from the definition
(54), one can see that

D- liml→0E
μ
le ¼ ϵVμ; ð58Þ

under the same assumptions as Eq. (50). Once again,
however, the naive energy balance (9) for the limiting
current Eμ ¼ ϵVμ need not hold with Qdiss ¼ 0 but instead
may be modified by a turbulent dissipative anomaly if

Qdiss ≔ D- limη;ζ;κ;σ→0Q
η;ζ;κ;σ
diss ≠ 0 ð59Þ

for Qη;ζ;κ;σ
diss given by Eq. (10). We emphasize that the

vanishing or not of the limit in Eq. (59) is an objective
physical fact, which cannot depend upon any coarse
graining.
To obtain the correct equation, one can use the inertial-

range balance equation for the energy current defined in
Eq. (54). Using ∂μT̄μν ¼ 0, one gets, after some straight-
forward calculations (see Ref. [88]),

∂μEμe ¼ −p̄ð∂νV̄νÞ þQflux
l ; ð60Þ

with relativistic energy flux defined by

Qflux
l ≔

1

h̄
ð∂νp̄Þτ̄ðh; VνÞ

− h̄ð∂μ
~VνÞ~τðVμ; VνÞ − 1

2
∂νhVν ~τðVμ; VμÞ: ð61Þ

The energy flux Qflux
l can be interpreted as the “apparent

dissipative heating” in the large scales based only on
measurements resolved at that scale. The first two terms
in the energy flux (61) are relativistic generalizations of the
baropycnal work and the deformation work as defined by
Aluie [45,46] for nonrelativistic compressible fluids,
whereas the third term has no nonrelativistic analogue.
The balance equation (60) is formally very similar to the
nonrelativistic balance equation (paper I;63) for the “intrin-
sic large-scale internal energy,” defined in Eq. (paper I;64).
Not only does Eq. (60) resemble the nonrelativistic balance
equation derived in paper I, but we show in Appendix B
that it reduces to it in the formal limit c → ∞. In particular,
the relativistic energy flux that we defined in Eq. (61)
converges as c → ∞ to the nonrelativistic expressions in
Refs. [45,46] and in Eq. (paper I;45).
Now let us exploit the fact that a nonzero energy-

dissipation anomaly in the ideal limit (59) cannot depend
upon any particular choice of the regularization scale l.
Subsequent to the limit η, ζ, κ, σ → 0, one can thus consider
the limit l → 0 of the coarse-grained internal-energy
balance (60) for the relativistic Euler fluid. It follows from
Eq. (58) that the left-hand side converges distributionally to
∂μðϵVμÞ because the overall derivative ∂μ can be trans-
ferred to a test function. We also define the distributional
product of the dilatation θ ¼ ∂μVμ and the pressure p by a
standard procedure [89]

p∘θ ≔ D-liml→0p̄ · θ̄; ð62Þ

just as in the nonrelativistic case in paper I. Although all of
the cumulant factors appearing in the energy flux (61)
vanish as l → 0, the flux Qflux

l itself need not vanish
because the space-time gradients multiplying them diverge
in the same limit. By taking the limit l → 0 of Eq. (60), one
thus obtains, for the relativistic Euler solutions, the dis-
tributional energy balance

∂μðϵVμÞ ¼ −p∘θ þQflux; ð63Þ

with a possible anomaly due to energy cascade given by

Qflux ≔ D-liml→0Qflux;l

¼ D-liml→0 − ð∂νV̄μÞhVμVν: ð64Þ

Note that the second expression in the equation above
arises from the corresponding l → 0 limit of Eq. (51).
A condition for the nonvanishing of the anomaly Qflux

can be obtained just as in the nonrelativistic case (see
Ref. [46] and Sec. Vof paper I), by deriving 4=5th-law type
expressions for the turbulent energy flux. The key point is
that the cumulants of fields with respect to the space-time
coarse graining can be written instead as cumulants of their
space-time increments with respect to an average over
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displacement vectors rμ weighted by the filter kernel. In
other words,

τ̄lðf1;…; fpÞðxþ aÞ ¼ hðδf1Þ…ðδfpÞicuml;a ; ð65Þ

where

δfiðx; rÞ ¼ fiðxþ rÞ − fiðxÞ ð66Þ

are space-time increments and where, for any function
hðrÞ,

hhil;a ¼
Z

dDrGlðr − aÞhðrÞ: ð67Þ

The superscript “cum” in Eq. (65) denotes the pth-order
cumulant part of any pth-order moment. The details of the
proof are given in Appendix B of Ref. [82], but the essential
point is that cumulants are invariant under shifts of
variables by constants and the increment δfiðx; rÞ is the
shift of fiðxþ rÞ by the quantity −fiðxÞ which is “con-
stant,” i.e., independent of rμ. The translation by the
spacetime vector aμ in Eq. (65) is useful to derive
expressions for all space-time gradients of coarse-graining
cumulants in terms of increments, by differentiating with
respect to aμ and then setting aμ ¼ 0. For example, for
p ¼ 1, one obtains with f̄ ¼ τðfÞ that

∂μf̄ðxÞ ¼ −
1

l

Z
dDrð∂μGÞlðrÞδfðx; rÞ ð68Þ

and analogous expressions for all p > 1 and all orders of
derivatives (Ref. [82], Appendix B). Expanding the Favre-
average cumulants into cumulants of the unweighted
coarse graining, one thus obtains expressions for all of
the contributions to the energy flux in terms of space-time
increments of the thermodynamic fields.
From these expressions in terms of space-time incre-

ments, we can derive necessary conditions for turbulent
energy-dissipation anomalies. Let us define scaling expo-
nents of space-time structure functions by

ζfq ≔ lim inf
jrjE→0

log ∥δfðrÞ∥qq
log jrjE

; ð69Þ

where ∥δfðrÞ∥q is the space-time Lq norm of the increment

and SfqðrÞ ¼ ∥δfðrÞ∥qq is thus the qth-order (absolute)
structure function of f. From the expressions in
Eqs. (65) and (68), one can see that the baropycnal work
term in Eq. (61) vanishes as l → 0, unless for every q ≥ 3

ζpq þ ζhq þ ζvq ≤ q: ð70Þ

Likewise, the deformation work and the third term in
Eq. (61) vanish as l → 0 unless for every q ≥ 3 either

ζhq þ 2ζvq ≤ q ð71Þ

or

3ζvq ≤ q: ð72Þ

The arguments here closely parallel those in paper I for the
nonrelativistic case (see Ref. [88]). In deriving these results,
we have assumed that the enthalpy h is bounded away from
both zero and infinity. The inequalities (70)–(72) demon-
strate that singularities of the fluid variables ϵ, ρ, and Vμ are
required in the ideal limit σ, κ, η, ζ → 0 in order to obtain a
nonvanishing energy-dissipation anomaly from turbulent
cascade. This is a scale-local cascade process as long as all
of the structure-function exponents satisfy 0 < ζfq < q for
f ¼ p, h, v [90].
The internal-energy balance (63) of limiting Euler

solutions can also be obtained from the fine-grained
internal-energy balance (9) of the dissipative fluid model
by directly taking the limit σ, κ, η, ζ → 0. In particle-frame
fluid models, the dissipative heat current contribution
∂μðκQ̂μÞ can be shown to vanish by arguments similar
to those applied to the dissipative terms in the coarse-
grained conservation laws. The details are presented in
Appendix D. DefiningQdiss as in Eq. (59) and also defining

p � θ ≔ D − limσ;κ;η;ζ→0p · θ; ð73Þ

we then obtain the distributional balance equation

∂μðϵVμÞ ¼ −p � θ þQdiss: ð74Þ

As in the nonrelativistic case discussed in paper I, one must
expect that the limit p � θ in Eq. (73) is generally distinct
from p∘θ in Eq. (62); that is, the double limits of p̄lθ̄l for η,
ζ, κ, σ → 0 and for l → 0 do not commute. In fact, the
quantities p � θ and Qdiss are presumably not completely
universal and may depend upon the particular sequence ηk,
ζk, κk, σk → 0 used to reach infinite Reynolds and Péclet
numbers. This is known to be true in the nonrelativistic
limit, as verified in paper I. However, it is a consequence of
Eq. (74) that the particular combination −p � θ þQdiss
depends only upon the limiting weak solution and not upon
the particular sequence of transport coefficients used to
obtain it.
A comparison of Eqs. (63) and (74) shows that the two

balance equations can be simultaneously valid only if
−p∘θ þQflux ¼ −p � θ þQdiss. In that case, by introduc-
ing the relativistic pressure-work defect

τðp; θÞ ≔ p � θ − p∘θ; ð75Þ

we can then rewrite the inertial-range balance (63) as

∂μðϵVμÞ ¼ −p � θ þQinert; ð76Þ
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where the total inertial energy dissipation is defined by

Qinert ≔ τðp; θÞ þQflux ¼ Qdiss: ð77Þ

As in the nonrelativistic case considered in paper I, the
inertial-range energy dissipation can arise not only from
energy cascade but also from the pressure-work defect.
Relativistic shock solutions provide explicit examples with
τðp; θÞ ≠ 0 (Appendix E). Unlike the nonrelativistic case, it
is not known rigorously that Qdiss ≥ 0.
Another important distinction of the relativistic situation

is that neither the energy flux Qflux
l nor the pressure work

p̄lθ̄l at finite l are Lorentz-invariant scalars, whereas the
corresponding quantities are Galilei invariant in nonrela-
tivistic compressible turbulence. Although p̄lθ̄l and the
expression (61) for Qflux

l appear to define invariant scalars,
they involve the kernel GlðrÞ, which is not frame invariant.
Thus, the coarse-graining regularization breaks Lorentz
symmetry, somewhat similar to lattice regularizations in
relativistic quantum field theory with finite lattice constant
a. In contrast, the fine-grained dissipation Qη;ζ;κ;σ

diss and the
fine-grained pressure work p · θ are both Lorentz scalars,
and thus their ideal limits Qdiss and p � θ as η, ζ, κ, σ → 0
must be invariant as well. It may appear somewhat
unsatisfactory that the energy flux Qflux

l and the resolved
pressure work p̄lθ̄l at finite l are observer dependent.
However, Lorentz invariance is restored in the l → 0 limit,
as easily proved for the combinations −p∘θ þQflux and, in
particular, Qinert ¼ τðp; θÞ þQflux. The invariance of
−p∘θ þQflux can be seen from its equality with both
∂μðϵVμÞ and −p � θ þQdiss, which are Lorentz scalars.
Likewise, Qinert ¼ Qdiss, which is an invariant scalar. It is
reassuring that the net inertial-range dissipation is observer
independent for the limit l → 0.
This invariance must also hold, within some limits, for l

finite but very small, at large Reynolds and Péclet numbers.
The reason is that the only effect of a change of inertial
frame is to change the filter kernel from Gl to G0

l as in
Eq. (24), but the l → 0 limits of p̄lθ̄l and Qflux

l as
distributions, when they exist at all, must be independent
of the specific filter kernel adopted [89]. This argument
implies that the two distributions p∘θ andQflux are, in fact,
Lorentz-invariant scalars separately and not only in combi-
nation [91]. For sufficiently small l inside a long inertial
range at large Re and Pe, this invariance of the l → 0
limiting distributions must hold approximately. On the
other hand, some observer dependence presumably arises
for l small but nonzero. For example, two observers
moving at sufficiently high relative velocities may disagree
about the negligibility of the microscopic dissipation for the
same coarse-grained fields. For one observer, Qinert

l may
account for all of the dissipation of resolved fields, while
for the other, the combinationQinert0

l þQη;ζ;κ;σ0
diss is necessary

to account for all of the dissipation in resolved fields, where

Qη;ζ;κ;σ
diss is the resolved viscous and conductive dissipa-

tion [92]. The observed flux contributions will then be
distinct.
In this section, we have focused on the large-scale/

resolved internal-energy balance, but there is also a
complementary budget for the unresolved/subscale energy
current. In the case of an unweighted space-time coarse
graining, the unresolved current can be naturally defined by
Kμ ≔ −τ̄ðTμν; VνÞ so that its sum with the resolved current
Eμ ¼ −T̄μνV̄ν accounts for the total energy current. Like-
wise, within the Favre-average coarse-graining approach,
the subscale internal-energy current can be defined as
Kμe ≔ Ēμ − Eμe , which, with Eq. (54), gives

Kμe ¼ −τ̄ðVν; TμνÞ þ gVμVν τ̄ðh; VνÞ þ
1

2
~τðVν; VνÞhVμ:

ð78Þ
From the separate balance equations for Ēμ and Eμe , it easily
follows that

∂μKμe ¼ −τ̄ðp; θÞ þ Q̄diss −Qflux;l: ð79Þ

The source term on the right-hand side is the difference
between the true dissipative heating Q̄diss and the “apparent
dissipation” Qflux;l based on measurements at scales > l,
together with the pressure-work defect τ̄ðp; θÞ which
represents the difference between the true pressure work
p � θ and the apparent pressure work p̄ · θ̄ based on fields
resolved also down to scales l. Using the expression (57)
for Eμe , the subscale internal-energy current can be rewrittenin terms of relativistic Favre-average cumulants of the
velocity. In particular, its negative becomes

−Kμe ¼ h̄

�
1

2
~τðVν; VνÞ ~Vμ þ ~τðVν; VμÞ ~Vν þ ~τðVν; Vν; VμÞ

�
þ τ̄ðp; VμÞ: ð80Þ

Substituting this expression into Eq. (79) yields a balance
equation very similar in form to the nonrelativistic subscale
kinetic-energy balance obtained in Eq. (paper I;66) and, in
fact, formally reducing to the latter in the limit c → ∞
(Appendix B). This identity will prove very important for
the discussion in the following section.
Finally, note the remarkable fact that our theoretical

analysis of relativistic energy cascade has entirely bypassed
kinetic energy, which plays a central role in nonrelativistic
turbulence theory. In fact, there does not seem to be a
generally accepted definition of kinetic energy for a
relativistic fluid. Any reasonable definition must be
frame dependent since the standard kinetic energy of a
nonrelativistic fluid itself changes under Galilean trans-
formations. This would make relativistic kinetic energy a
poor choice as a basis for a theory of turbulence, as all
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“cascade terms” would become frame dependent and
Lorentz invariance would not be restored even in the limit
l → 0. In some applications, however, it may be useful to
refer to a kinetic energy and its cascade, at least in a specific
reference frame. For example, in gamma-ray bursts, one
expects that the motion or kinetic energy of the jet will be
dissipated by turbulent cascade into internal energy (and,
ultimately, radiation). We show in Appendix C that our
approach predicts such a kinetic-energy cascade. To obtain
this result, we define the relativistic “kinetic-energy cur-
rent” T μ so that T0μ ¼ T μ þ Eμ holds, i.e., so that the total
energy current T0μ in the fixed frame is decomposed as a
sum of kinetic- and (total) internal-energy current. With this
definition, we show that the cascade of relativistic internal
energy as the primary process leads, as a secondary
phenomenon, to the cascade of relativistic kinetic energy.
This is formally similar to nonrelativistic turbulence but
where the cascade of kinetic energy is instead the primary
process and the cascade of “intrinsic resolved internal
energy” is secondary [see Eq. (paper I;63)]. To properly
motivate our definition of kinetic-energy current, we must
first consider the nonrelativistic limit in Appendix B. Thus,
the discussion of relativistic kinetic-energy cascade,
although important in applications, is best delayed to
Appendix C.

V. ENTROPY CASCADE

Hydrodynamic turbulence, like any other macroscopic
irreversible process, must be consistent with the second law
of thermodynamics. In the relativistic case, in particular,
positive entropy production is a primary constraint on
dissipative fluid models [8,10,24–26]. For nonrelativistic
compressible turbulence, we have argued in paper I that
there is a cascade of (neg)entropy, which is in addition to
energy cascade and which is even more fundamental. All of
these arguments carry over to relativistic fluid turbulence.
The resolved pressure work in the balance equations (51) or
(60) for the large-scale internal-energy current is a space-
time structured source of internal energy. In relativistic
thermodynamics, as in the nonrelativistic case, the
entropy per volume sðϵ; ρÞ is a concave function of ϵ
and ρ, so the creation of large-scale structure in ϵ
corresponds to a decrease of entropy at large scales.
To balance this destruction, one can then expect that
there will be an inverse cascade of the entropy, which is
injected by microscopic dissipation/entropy production.
As in the nonrelativistic case, we may define a “resolved
entropy”

s ≔ sðϵ̄; ρ̄Þ ð81Þ

and an “unresolved/subscale entropy”

△s ≔ sðϵ; ρÞ − sðϵ̄; ρ̄Þ ≤ 0; ð82Þ

whose nonpositivity follows from the concavity of the
entropy. It is somewhat more natural to consider the
negentropy or information density ιðϵ; ρÞ ¼ −sðϵ; ρÞ,
which is convex and whose unresolved/subscale contribu-
tion Δι ¼ −△s is non-negative. In this equivalent picture,
the pressure work injects negentropy at large scales, which
should cascade forward to small scales where it can be
efficiently destroyed by dissipative transport. In order to
formalize such notions, one must derive a balance equation
for the large-scale entropy.
This balance is straightforward to derive after taking the

limit η, ζ, σ, κ → 0 for fixed positive l. Using the first law
of thermodynamics ds ¼ βdϵ − λdn and D̄ ¼ V̄μ∂μ, one
gets

D̄ s ¼ β D̄ ϵ̄−λ D̄ n̄; ð83Þ

where we employ the notation ϕ ¼ ϕðϵ̄; ρ̄Þ for arbitrary
smooth functions ϕ of ϵ, ρ. The equations

D̄ n̄ ¼ −n̄ θ̄−∂μτ̄ðn; VμÞ; ð84Þ

D̄ ϵ̄ ¼ −ϵ̄ θ̄−p � θ − ∂μτ̄ðϵ; VμÞ þ Q̄diss ð85Þ

are direct consequences of Eqs. (46) and (74). Using the
Gibbs homogeneous relation ðϵþ pÞ=T ¼ sþ λn, one
obtains, after some straightforward calculations, a balance
equation of the following form:

∂μSμ ¼ Σinert
l : ð86Þ

The vector whose divergence appears on the left,

Sμ ≔ sV̄μ þ β τ̄ðϵ; VμÞ − λ τ̄ðn; VμÞ; ð87Þ

is a natural expression for the resolved entropy current,
with sV̄μ describing the entropy transport by large-scale
advection, β τ̄ðϵ; VμÞ the entropy transport due to subscale
internal-energy current, and λ τ̄ðn; VμÞ the entropy transport
due to subscale number current. It should be noted that
entropy current due to such turbulent subscale transport
will not generally be orthogonal to V̄μ in the Minkowski
pseudometric and thus not purely spatial in the rest frame of
the coarse-grained fluid velocity.
The source on the right-hand side of Eq. (86) is the

inertial-range entropy production

Σinert
l ¼ −Imech

l þ βQ̄diss þ Σflux
l ; ð88Þ

where anomalous input of negentropy from pressure work
is defined by

Imech
l ≔ βðp � θ − p θ̄Þ ð89Þ

and (forward) negentropy flux is defined by
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Σflux
l ≔ ð∂μβÞτ̄ðϵ; VμÞ − ð∂μλÞτ̄ðn; VμÞ: ð90Þ

The latter expression is also natural, as it represents entropy
production due to subscale transport of internal energy and
particle number acting against large-scale gradients of the
(entropically) conjugate thermodynamic potentials. In par-
ticular, Σflux

l > 0 when the subscale transport vectors are
“downgradient” or opposite to the gradients of T and λ.
Finally, note that one can further decompose the anomalous
negentropy input as

Imech
l ¼ β τ̄ðp; θÞ þ Ifluxl ; ð91Þ

where the first term is the contribution from the pressure-
dilatation defect and the second term,

Ifluxl ≔ βðp̄ − pÞθ̄; ð92Þ

is fluxlike, representing work of subscale pressure fluctua-
tions against large-scale dilatation. These expressions are
exactly analogous to those derived in Sec. VI of paper I for
the turbulent entropy balance of nonrelativistic compress-
ible fluid flows. In fact, as we show in Appendix B, the
formal limit c → ∞ recovers the previously derived non-
relativistic expressions.
Now consider the case where there is a nonvanishing

entropy production anomaly as in Eq. (22). If such an
anomaly exists, it cannot depend upon the arbitrary coarse-
graining scale l. Thus, for ideal turbulence at infinite
Reynolds and Péclet numbers, we may consider the
subsequent limit l → 0 of the inertial-range entropy
balance, with the coarse-graining regularization removed.
This yields a fine-grained entropy balance for the relevant
weak solutions of the relativistic Euler equations:

∂μðsVμÞ ¼ Σinert ð93Þ

Because all coarse-graining cumulants vanish distribution-
ally as l → 0, the resolved entropy current in Eq. (87)
must converge in the sense of distributions to sVμ

under relatively mild assumptions (e.g., when ϵ and ρ
are bounded in space-time). The limit Σinert of the source
(88) is Σinert ¼ −Imech þ Σflux þ β ∘Qdiss, where Imech ¼
Iflux þ β∘τðp; θÞ with

β∘τðp; θÞ ≔ D-lim
l→0

β τ̄ðp; θÞ ð94Þ

and where

β∘Qdiss ≔ D-lim
l→0

β Q̄diss ð95Þ

The limit source need not vanish. Although entropy is
conserved for smooth solutions of relativistic Euler equa-
tions, there may be anomalous entropy production for weak

solutions. Relativistic shock solutions with discontinuities
in the fluid variables are, of course, a well-known example
of such dissipative weak solutions (Appendix E). We see
below, however, that even continuous solutions may exhibit
anomalous entropy production.
Precisely the same balance equation can be obtained by

taking the limit η, ζ, σ, κ → 0 of the fine-grained entropy
balance (6) for the dissipative fluid model. The limit of the
dissipative entropy production is, of course, obtained
directly from our fundamental hypothesis (22). The fine-
grained entropy current for the dissipative fluid model also
converges to sVμ in the limit η, ζ, σ, κ → 0. This can be
verified without great difficulty for models of the Israel-
Stewart class. Recall that, in such models, the entropy
current does not have the naive form (17) that it assumes in
the Eckart-Landau-Lifshitz models, but it is instead modi-
fied as in Eq. (18) by terms that are second order in
gradients. Taking the latter energy-frame expression as a
concrete example, we factor out the dependence upon the
transport coefficients η, ζ, σ and introduce the rescaled
variables τ̂μν, τ̂, N̂μ. This yields the representation

Sμ ¼ sVμ − σλN̂μ −
1

2
ðζβ0Σζ þ σβ1Σσ þ 2ηβ2ΣηÞVμ

þ ζσ
α0
T
τ̂N̂μ þ ησ

α1
T
τ̂μνN̂ν: ð96Þ

Here, we have denoted as Σζ, Σσ, Ση the three terms in the
fine-grained entropy production (6) that are proportional to
ζ, σ, η, respectively. According to our fundamental hypoth-
esis (22), these converge to positive distributions Σbulk,
Σcond, Σshear in the limit η, ζ, σ → 0. Because of the
remaining factors of ζ, σ, η appearing in Eq. (96), however,
one should expect that the β terms will all vanish in that
limit. Likewise, the α terms should vanish because they are
quadratic in the transport coefficients ζ, σ, η. These
arguments are not rigorous because the factors involving
ϵ, ρ, Vμ in those terms do not remain smooth in the limit.
Nevertheless, it is possible to show, by simple inequalities,
that these terms do vanish in the sense of distributions
and, thus, D- limη;ζ;σ;κ→0S

μ
η;ζ;σ;κ ¼ sVμ. For details, see

Appendix D. One thus finally obtains the entropy balance
for the limiting Euler solution

∂μðsVμÞ ¼ Σdiss; ð97Þ

with Σdiss > 0 given by the limit in Eq. (22). The equality

Σinert ¼ Σdiss ð98Þ

is demanded by consistency with the inertial-range limiting
balance (93), just as in the nonrelativistic theory.
Given that anomalous entropy production is possible

for weak solutions, what degree of singularity of the fluid
variables is required for a nonvanishing anomaly? To
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answer this question, we can prove an Onsager-type
singularity theorem, which gives necessary conditions
for an anomaly. The basic idea is the same as in the
nonrelativistic case [48] and is easy to explain. We first
rewrite the resolved entropy balance (86) as

∂μSμ ¼ βðQ̄diss − τ̄ðp; θÞÞ − Ifluxl þ Σflux
l : ð99Þ

The flux terms Ifluxl and Σflux
l may be readily expressed in

terms of space-time increments of the fluid variables, using
the cumulant-expansion methods described in Sec. IV. The
term that is difficult to estimate directly is the one involving
Q̄diss − τ̄ðp; θÞ. Note that these two quantities separately
may be nonuniversal and may depend upon the particular
sequence ζk, σk, ηk → 0 used to obtain the limiting Euler
solution. Fortunately, exactly the same combination
appears in the balance equation (79) for the subscale
internal-energy current Kμe . Thus, one can define an
intrinsic resolved entropy current in the Favre-averaging
approach as

S�μe ≔ Sμ − βKμe
¼ sV̄μ þ β τ̄ðh; VμÞ − λ τ̄ðn; VμÞ

þ β h̄

�
1

2
~τðVν; VνÞ ~Vμ þ ~τðVν; VμÞ ~Vν

þ ~τðVν; Vν; VμÞ
�
; ð100Þ

where the second equality uses Eq. (80). It follows from
the two balance equations (79) and (99) that this intrinsic
entropy current satisfies the following balance:

∂μS�μe ¼ Σinert�
l ; ð101Þ

where net inertial-range entropy production is defined by

Σinert�
l ¼ −Ifluxl þ Σflux�

l ; ð102Þ
with the intrinsic negentropy flux

Σflux�
l ≔ Σflux

l − ð∂μβÞKμe þ βQflux
l

¼ ð∂μβÞτ̄ðh; VμÞ − ð∂μλÞτ̄ðn; VμÞ þ βQflux
l

þ h̄ð∂μβÞ
�
1

2
~τðVν; VνÞ ~Vμ þ ~τðVν; VμÞ ~Vν

þ ~τðVν; Vν; VμÞ
�
: ð103Þ

Just as for the naive version of the resolved entropy current,
D-liml→0S�μe ¼ sVμ, since all of the additional cumulant
terms vanish in the limit. Furthermore, and crucially, all
source terms on the right-hand side of Eq. (101) are fluxlike
and are products of subscale cumulant terms and gradients
of resolved fields, which allows us to express them in terms

of space-time increments. There is a rough analogy of our
entropy current modification with the Israel-Stewart cor-
rection, in that our current modification is a higher-order
moment of the coarse-graining average: Whereas the naive
entropy current in the second line of Eq. (100) involves, at
most, second-order moments of ϵ, n, and Vμ, the correction
on the third and fourth lines involves third-order moments.
Note, however, that our correction term does not have to be
small relative to the naive term.
A fundamental observation is that all individual terms in

the intrinsic entropy balance (101) depend only upon the
limiting Euler solution and not on the sequence used to
obtain it. In fact, the same equation can be obtained from
the distributional Euler solution directly, without consid-
ering the underlying microscopic model (dissipative fluid
dynamics, kinetic equation, quantum field theory, etc.). To
see this, one can use the homogeneous Gibbs relation s ¼
βðϵ̄þ pÞ − λ n̄ and the definition Kμe ¼ Ēμ − Eμe to rewrite
the intrinsic entropy current as

S�μe ¼ β Eμe þβp V̄μ − λN̄μ: ð104Þ

One can then derive the intrinsic entropy balance (101)
directly from the inertial-range balance equation (60) for
Eμe , the particle conservation equation ∂μN̄μ ¼ 0, and
thermodynamic relation ∂μðβpÞ ¼ n̄ð∂μλÞ − ϵ̄ð∂μβÞ. This
crucial observation implies that our results for anomalous
entropy production are universal and apply to all distribu-
tional solutions of the relativistic Euler equations, not only
those obtained as ideal limits of Israel-Stewart-type dis-
sipative fluid models.
The necessary conditions for anomalous entropy pro-

duction follow directly from the intrinsic entropy balance
(101), exactly as for the nonrelativistic case considered in
Ref. [48]. The conclusion is that the entropy anomaly can
be nonzero only if, for every q ≥ 3, at least one of the
following three conditions is satisfied by the structure-
function scaling exponents defined in Eq. (69):

2minfζϵq; ζρqg þ ζvq ≤ q; ð105Þ

minfζϵq; ζρqg þ 2ζvq ≤ q; ð106Þ

3ζvq ≤ q: ð107Þ

The first inequality (105) is implied by (and thus replaces)
the inequality (70), which was shown earlier to be neces-
sary for nonvanishing of the baropycnal work as l → 0,
while the inequalities (106) and (107) replace (71) and (72),
which were shown to be necessary for nonvanishing of
the other two contributions to energy flux. The above
inequalities would be equalities for a K41-dimensional
scaling determined by mean energy flux, and the departure
from the upper bound is a measure of the space-time
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intermittency of the solution fields [23,93]. These upper
bounds, even if they hold as equalities, imply that ϵ, ρ, Vμ

must be nonsmooth or singular in spacetime for the ideal
limit. Roughly speaking, limit solutions with anomalous
entropy production can have, at most, 1=3 of a derivative in
a space-time Lq sense.
For nonrelativistic fluids, the conditions analogous to

Eqs. (105)–(107) are known to be necessary also for an
energy-dissipation anomaly [48]. While Qflux ¼ 0 if none
of those conditions holds, it is, in principle, still possible
that τðp; θÞ ¼ Qdiss > 0. When the balance equation (60)
for resolved internal energy is rewritten as

∂μEμe ¼ −p � θ þQinert
l ð108Þ

with

Qinert
l ≔ τ̄ðp; θÞ þQflux

l ; ð109Þ

then it differs strikingly from the balance equation (101) for
intrinsic resolved entropy because the terms τ̄ðp; θÞ and
Qinert

l are not determined uniquely as l → 0 by the limiting
weak Euler solution. Those terms, in fact, generally depend
upon the underlying dissipative fluid model sequence, as
seen, for example, for the nonrelativistic limit of shock
solutions where a Prandtl-number dependence remains. In
Ref. [48], the vanishing energy-dissipation anomaly is
instead derived from the vanishing entropy production
anomaly. That proof carries over to relativistic fluids
whenever the dissipative fluid model satisfies the bounds

Σζ;η;κ;σ
diss ≥ Qζ;η;κ;σ

diss =T ≥ 0: ð110Þ

Amusingly, the only dissipative relativistic model in the
class that we consider that guarantees Eq. (110) is the
classical energy-frame Landau-Lifshitz theory [94], which
is formally ill posed and acausal. The result will be true,
nevertheless, if the viscous transport fields τ, τμν in the
relativistic fluid model are sufficiently well approximated
by the constitutive relations of the Landau-Lifshitz theory.
Such results have been proved [72,73] but need to be
extended to solutions with shocks or other milder turbulent
singularities to show that conditions (105)–(107) are
necessary for anomalous energy dissipation.

VI. RELATIONS TO OTHER APPROACHES

We now briefly discuss the relation of our analysis with
other approaches to relativistic fluid turbulence that have
been proposed in the literature.

A. Barotropic fluid models

In paper I, we have criticized nonrelativistic barotropic
models as being physically inapplicable to fluid turbulence
since this is a strongly dissipative process. The same

criticisms carry over to relativistic barotropic models if
those are defined as in Refs. [56,95], for example. These
authors take ϵ ¼ ϵðρÞ as the condition for barotropicity,
which implies that p ¼ pðϵ; ρÞ ¼ pðρÞ. As in the non-
relativistic case, the internal energy per rest mass e ¼ u=ρ
can be obtained from the integral

e ¼
Z

pdρ
ρ2

ð111Þ

if and only if the fluid is isentropic with entropy per
mass sm ¼ s=ρ constant in space-time (see Ref. [57],
Sec. 2.4.10). This is inconsistent with the irreversible
production of entropy by turbulence unless the fluid is
somehow strongly coupled to another physical field which
very efficiently carries off the generated entropy.
Furthermore, one obtains from Eq. (111) and ∂μJμ ¼ 0 that

∂μðuVμÞ ¼ −pθ; ð112Þ

which omits viscous heating, so the “heat reservoir” to
which such a hypothetical fluid is coupled must also rapidly
absorb this excess energy. Barotropic equations of state,
together with formula (111) for internal energy, are thus
physically inconsistent, as soon as one includes dissipative
terms in Jμ and Tμν, and are unsuitable as models of
turbulence in fluids that are isolated or only weakly coupled
to additional fields. These remarks apply to the special case
of polytropic equations of state with pðρÞ ¼ KρΓ for
exponent Γ, whenever the internal-energy density is deter-
mined from the relation u ¼ p=ðΓ − 1Þ, as is very standard
in numerical simulations with relativistic polytropic mod-
els. Such models cannot correctly represent the time-
irreversible physics of relativistic fluid turbulence, which
is created by the spectrum of singularities that develop in
the solutions. Note that barotropic fluid models in the sense
of Refs. [56,95] are already known to be physically
inadequate to describe the irreversible evolution of rela-
tivistic shocks (Ref. [57], Sec. 2.4.10).
These criticisms do not apply to relativistic barotropic

equations of state if those are defined instead by the
alternative condition p ¼ pðϵÞ, e.g., as in Ref. [57].
Note that such a formulation of barotropicity is more
general because it makes sense even when the constituent
particles of the fluid have zero rest mass and ρ≡ 0. There is
no physical inconsistency of such an equation of state with
irreversible entropy production by microscopic dissipation.
For example, ultrarelativistic fluids with vanishingly small
coldness mc2=kBT ≪ 1 (Ref. [57], Sec. 2.4.4) and models
of hot, optically thick, radiation-pressure-dominated plas-
mas (Ref. [57], Sec. 2.4.8) both satisfy p ¼ 1

3
ϵ and are thus

barotropic in this second sense. Both of these models have a
nonconstant thermodynamic entropy, which can be made
consistent with the second law of thermodynamics by
addition of suitable dissipative terms to the ideal fluid
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equations. More generally, conformally invariant fluid
models that describe low-wave-number dynamics of con-
formal quantum-field theories [8] and nonconformal fluid
models in the zero charge-density sector [26] satisfy both
p ¼ pðϵÞ and dissipative second-order hydrodynamical
equations similar to the Israel-Stewart models consistent
with the second law of thermodynamics. In fact, the exact
shock solutions considered in Appendix E are for conformal
fluids [21]. All of our conclusions apply to such models,
with the simplification that hydrodynamics now reduces to
the equation ∂νTμν ¼ 0 for the stress-energy tensor alone.

B. Point splitting and statistical states

In paper I, we argued that point-splitting regularizations
are inadequate for nonrelativistic compressible fluid turbu-
lence, and the same arguments hold for relativistic fluid
turbulence. Previously, Fouxon and Oz [19] used a point-
splitting technique in the setting of an externally forced
relativistic fluid satisfying

∂νTμν ¼ Fμ ð113Þ

for a Minkowski force Fμ. Assuming that a statistically
homogeneous and stationary state exists, those authors
derived an exact statistical relation

hT0μð0; tÞTiμðr; tÞi ¼
1

D
Pμri ðno sum on μÞ; ð114Þ

with h·i denoting the ensemble average and with Pμ ¼
hT0μð0; tÞFμð0; tÞi a “power input.” In the formal non-
relativistic limit c → ∞, this relation reduces, in conformal
models with sound speed cs ¼ c=

ffiffiffi
d

p
[96], to the classical

“12=dðdþ 2Þth law” for d-dimensional incompressible
fluid turbulence (e.g., Ref. [97]), but for finite speeds of
light, the relation (114) has nothing to do with energy of
the fluid. As noted earlier, Fouxon and Oz [19] made
the following conclusion: “Our analysis indicates that the
interpretation of the Kolmogorov relation for the incom-
pressible turbulence in terms of the energy cascade may be
misleading.”
Needless to say, our analysis contradicts this conclusion.

We have already discussed the limitations of point-splitting
regularizations in paper I, and we shall not repeat that
discussion here. We only point out that the anomalies
obtained by the point-splitting arguments of Ref. [19] are
for quantities such as T2

0μðxÞ, which are not conserved
quantities even for smooth solutions of relativistic Euler
equations and which have no obvious physical significance.
The specific quantities are chosen in Ref. [19] simply so
that a point-splitting regularization applies. One cannot
conclude that the energy cascade and energy-dissipation
anomaly must be absent in relativistic turbulence because a
certain regularization method is insufficient to derive them.
The alternative coarse-graining regularization employed by

us here shows that cascades and dissipative anomalies for
both energy and entropy naturally arise in relativistic fluid
turbulence. Furthermore, in conformal fluid models with
cs ¼ c=

ffiffiffi
d

p
, the relativistic energy fluxQflux

l considered by
us reduces, in the nonrelativistic limit, to the standard
kinetic-energy flux for an incompressible fluid,

lim
c→∞

cQflux
l ¼ −ρ0∇v̄∶τðv; vÞ; ð115Þ

with constant mass density ρ0, following the arguments in
Appendix B. Aluie (private communication) has shown that
the standard 4=5th law of Kolmogorov, which is ordinarily
derived by point splitting, can also be obtained from
Eq. (115) for incompressible Navier-Stokes [98]. Thus,
there is no unique way to extend the incompressible 4=5th
law to relativistic turbulence, but our extension describes
energy cascade in the relativistic regime.
To underscore this point, we briefly discuss here the

energy balance for forced statistical steady states of
relativistic fluid turbulence. This is a rather artificial setting,
quite distinct from most real-world relativistic turbulence,
e.g., in astrophysics, in which there is no local stirring and
no ensembles. Therefore, in this paper, we focus on freely
evolving turbulence and individual flow realizations.
However, our considerations carry over directly to forced,
steady-state ensembles. Note that the Minkowski force can
quite generally be composed as

Fμ ¼ 1

c2
hAμ

ext −
1

c
QcoolVμ; ð116Þ

with VμA
μ
ext ¼ 0. Here, Aμ

ext is an external acceleration field
with units of ðlengthÞ=ðtimeÞ2, and Qcool is a cooling rate
density with units of (energy)/(volume)(time). As usual, we
include factors of c to facilitate discussion of the non-
relativistic limit. The internal-energy balance in the pres-
ence of a Minkowski force becomes

∂μEμ ¼ −pθ þQdiss −
1

c
Qcool: ð117Þ

It follows that, in a statistically homogeneous and sta-
tionary state, one has the fine-grained balance

1

c
hQcooli ¼ hQtransi þ hQdissi; ð118Þ

where Qtrans ¼ −pθ is the mechanical production of
internal energy by pressure work. Our inertial-range inter-
nal-energy balance (60), with the addition of the
Minkowski force, becomes

∂μE
μ
le ¼ −p̄lθ̄l þQflux

l − ~Vl;μF̄
μ
ext;l; ð119Þ

which now includes the coarse-graining length scale l
explicitly. One thus has
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h ~Vl;μF̄
μ
ext;li ¼ −hp̄lθ̄li þ hQflux

l i
¼ hQtransi þ hQinert

l i; ð120Þ

where Qinert
l ¼ Qflux

l þ τ̄lðp; θÞ is the total inertial-range
effective dissipation from both energy cascade and the
pressure-work defect and Qtrans ¼ −p � θ. At length scales
much smaller than the scale L of the Minkowski force,
h ~Vl;μF̄

μ
ext;li≃ ð1=cÞhQcooli, and

hQinert
l i≃ 1

c
hQcooli − hQtransi ¼ hQdissi; l ≪ L:

ð121Þ

We thus find that the ideal dissipation rate has a constant
ensemble average for scales l in the inertial range, which
equals the energy-dissipation rate of the microscopic fluid
model. This is formally identical to the statistical energy-
balance relation that we obtained in the nonrelativistic case,
and it reduces to this relation in the limit c → ∞.
It is more traditional to expect that the effective energy-

dissipation rate at inertial-range lengths l is set by the
external input of kinetic energy by the large-scale forcing,
but, of course, kinetic energy is not a natural relativistic
quantity. Analogous constraints arise relativistically from
the conditions

hFμi ¼ 0; ð122Þ

which are necessary if a statistically homogeneous and
stationary state is to exist for the forced fluid described by
Eq. (113). The μ ¼ 0 condition gives

hQcoolγi ¼
1

c
hhA0

exti: ð123Þ

In the limit c → ∞, this becomes

hQcooli≃ chρA0
exti ¼ hρv ·Aexti: ð124Þ

Here, we use the orthogonality condition A0
ext ¼ v ·Aext=c.

Since the equation of motion projected orthogonal to Vμ

takes the formDVμ ¼ ð1=c2ÞAμ
ext þ � � � in the presence of a

Minkowski force, the limit of the spatial components as
c → ∞ becomes Dv ¼ Aext þ � � �. Thus, Eq. (124) is
equivalent to the usual nonrelativistic relation that
hQcooli ¼ hQini, where Qin ¼ ρv ·Aext is the kinetic-
energy injection rate per volume by the external forcing.
We note, in passing, that the constraints hFii ¼ 0 from the
spatial components similarly reduce, in the nonrelativistic
limit c → ∞, to the condition hρAexti ¼ 0, or no net
momentum injection by the external forcing.
In addition to energybalance, theremust also be an entropy

balance for homogeneous and stationary ensembles. In the
presence of a Minkowski force, the fine-grained entropy
balance (6) is found using Eq. (117) to be modified to

∂μSμ ¼ Σdiss −
1

c
βQcool: ð125Þ

Thus, for a homogeneous and stationary ensemble,

hΣdissi ¼
1

c
hβQcooli; ð126Þ

and microscopic entropy production is balanced by entropy
removal by cooling. The inertial-range entropy balance (101)
is likewise modified by a Minkowski force, with the
divergence of Eq. (104) using Eq. (119) given by

∂μS�μe ¼ Σinert�
l − β ~VμF̄μ: ð127Þ

When the Minkowski force is supported mainly at the large
scale L, one obtains the inertial-range mean balance

hΣinert�
l i ¼ hβ ~VμF̄μi≃ 1

c
hβQcooli; l ≪ L: ð128Þ

Thismean entropy balance is formally the same as Eq. (paper
I;107) for the nonrelativistic case and reduces to it in the limit
c → ∞. The physical picture is also the same as for non-
relativistic compressible turbulence,with entropy produced at
small scales inverse cascading through the inertial range up to
scales l≃ L, where external cooling can remove the excess
entropy. Equivalently (and perhaps more naturally), the
negentropy injected by a large-scale cooling will forward
cascade to small scales where irreversible microscopic trans-
port can destroy it. If one makes the distinction in Eq. (102)
between negentropy flux and anomalous negentropy input,
then one can also write

hΣflux�
l i≃ 1

c
hβQcooli þ hIfluxl i; l ≪ L; ð129Þ

where the negentropy flux proper is equal, on average, to the
total negentropy input at large scales, both from external
cooling and from anomalous negentropy input.

C. Linear wave-mode decompositions

In paper I, we have also called into question the validity
of representing turbulent solutions by decompositions into
linear wave modes. This is a very popular approach in
nonrelativistic plasma astrophysics and has recently been
developed for Poynting-dominated relativistic MHD tur-
bulence [99]. We do not consider charged plasmas in the
present paper but only fluids of electrically neutral par-
ticles. Here, we just briefly discuss the issues with
decompositions into linear wave modes. A basic problem
is that thermodynamic relations such as p ¼ pðϵ; ρÞ and
s ¼ sðϵ; ρÞ impose nonlinear constraints on solutions of
the fluid equations, which thus live in nonlinear submani-
folds of function space. Wave modes ϵ0, ρ0 obtained by
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linearization of the fluid equations around a uniform
equilibrium background ϵ0, ρ0 only satisfy these thermo-
dynamic constraints to the linearized level. This may be an
adequate representation when fluctuations are relatively
small, satisfying ϵ0=ϵ0, ρ0=ρ0 ≪ 1. However, turbulence
generally produces fluctuations much larger than the
means, where this linear approximation to the thermody-
namic relations is inadequate. Decomposition into linear
wave modes is thus clearly an approximation, with an
unknown range of validity. We note that in conformal fluids
with AdS gravity duals, the linear wave-mode decompo-
sition corresponds, on the gravity side, to the expansion in
quasinormal modes about the uniform AdS black hole.
Expansion in such quasinormal modes has recently been
independently argued [16] to be inapplicable to the
turbulent regime.

VII. EMPIRICAL PREDICTIONS AND EVIDENCE

High-energy astrophysical plasma flows are probably the
best candidates in nature to exhibit relativistic fluid
turbulence, but remote observations of such systems poorly
constrain theory. In order to confront theory with precise
evidence, the only recourse at the moment is numerical
simulation of turbulence for relativistic kinetic equations or
dissipative fluid models. Here, we briefly discuss the
relations of our work to the existing body of numerical
simulations. Confining our attention to electrically neutral
fluids, as considered in the present work, the most relevant
numerical studies have been motivated either by astro-
physics [13,14] or by the fluid-gravity correspondence
[15–17]. Numerical codes exist for simulating the particle-
frame Israel-Stewart model [100], but we are aware of no
turbulence simulations so far that exploit such codes. (The
only exception is the study of Ref. [16] for a very similar
second-order dissipative model of conformal fluids in 2þ 1
space-time, discussed further below.) Instead, most studies
have solved the relativistic Euler fluid equations using
dissipative numerical schemes to remove the energy cas-
caded to small scales rather than a physical viscosity.
We first discuss the astrophysically motivated simula-

tions in 3þ 1 space-times with topology T3 × R. Zrake and
MacFadyen [13] solved the stress-energy equation (113)
and Eq. (2) for conserved particle number. They employed
a relativistic ideal-gas equation of state p ¼ ðΓ − 1Þu for
Γ ¼ 4=3 and adopted a Minkowski force

Fμ ¼ ρAμ − ρðu=u0Þ4Vμ; ð130Þ

with terms representing mechanical stirring and radiative
cooling, respectively. The space resolutions of their simu-
lations were 2563, 5123, 10243, 20483, and they had a mean
relativistic Mach number of about Ma ¼ 2.67. Radice
and Rezzolla [14] instead solved only the stress-energy
equation (113) for a radiation-pressure-dominated fluidwith
p ¼ ð1=3Þϵ and with a Minkowski force

Fμ ¼ F0ðtÞð0; fiÞ ð131Þ

for fi a zero space-average, solenoidal, random vector
supported at low wave numbers. They performed four runs
with F0ðtÞ ¼ 1, 2, 5, 10þ ðt=2Þ with space resolutions
1283, 2563, 5123, 10243, andwith relativisticMach numbers
Ma ¼ 0.362, 0.543, 1.003, 1.759. The simulations of both
groups are consistent with a forward energy cascade,
although they had, at their disposal, no concrete formula
such as our Eq. (61) in order to make a precise measurement
of relativistic energy flux.
Both of these groups also measured the scaling expo-

nents ζ∥vp of longitudinal velocity structure functions using
the ESS procedure [101], and Ref. [13] also measured the
exponents ζvp for an absolute Minkowski-norm velocity

structure function. Both of these studies found ζ∥vp ≤ p=3
and ζvp ≤ p=3 for p ≥ 3, consistent with our theoretical
predictions. The phenomenological model of She-Lévêque
[102] was found to be a reasonable approximation to the
ESS results for ζ∥vp , but not for ζvp in Ref. [13], which took

on smaller values than ζ∥vp associated with greater space-
time intermittency. When p < 3, our analysis makes no
theoretical predictions for ζ∥vp or ζvp, aside from the
reasonable inference by concavity that ζp > p=3. The

direct (non-ESS) measurements of Ref. [13] yielded ζ∥v2 ≐
ζv2 ≐ 1 (Burgers-like), whereas Ref. [14] claimed consis-
tency with ζ∥v2 ≐ 2=3 (K41). This discrepancy could be due
to the larger Mach number in the simulations of Ref. [13]
(see their Fig. 1, which shows clear evidence of shocks).
On the other hand, the spectra in Fig. 2 of Ref. [14] at low
wave numbers are consistent with ζ∥v2 > 2=3, and the
higher wave numbers are plausibly contaminated by
bottleneck effects. In our opinion, neither of the simulations
[13,14] achieved a long enough inertial range to yield
quantitatively reliable results for scaling exponents.
Motivated by black-hole gravitational physics through

the fluid-gravity correspondence [8,9,11], there have also
been simulations of relativistic fluid turbulence in 2þ 1
space-time dimensions, both for free-decaying [15,16]
and externally forced [17] cases. Here, the evolution of
low-wave-number perturbations to black holes in a
Dþ 1-dimensional, asymptotically AdS space-time is
expected to be equivalent to a relativistic hydrodynamics
on theD ¼ dþ 1-dimensional conformal boundary of AdS
space. Thus, 3þ 1-dimensional black holes correspond to
relativistic hydrodynamics in 2þ 1 dimensions. All of our
considerations are independent of the space dimension d
and thus apply for d ¼ 2, but this case is likely to be
substantially more complex than d > 2. Even for incom-
pressible fluid turbulence, d ¼ 2 is a much richer problem
than d > 2. For example, freely decaying and externally
forced incompressible turbulence appear substantially sim-
ilar for d > 2, with both exhibiting an energy-dissipation
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anomaly. However, the enstrophy-dissipation anomaly
predicted for d ¼ 2 incompressible turbulence [103,104]
appears only in forced turbulence, whereas there is no
enstrophy anomaly for freely decaying turbulence unless
the initial data are very singular [105,106]. Viscous energy
dissipation always tends to zero in d ¼ 2 incompressible
turbulence, but the energy accumulates in large scales by
quite different mechanisms in the two cases: “vortex
merger” [28,107] for freely decaying turbulence and
“inverse energy cascade” [103] for forced turbulence.
The previously mentioned simulations of 2þ 1 relativistic
turbulence also seem to indicate that there is no energy-
dissipation anomaly there and that vortex-merger and
inverse-cascade processes occur. It should be kept in mind,
however, that all of the discussed simulations are at low
relativistic Mach numbers. At higher Mach numbers,
shocks will surely proliferate, leading to irreversible energy
dissipation and entropy production. Such behavior was
observed in Refs. [108,109] for simulations of d ¼ 2
nonrelativistic compressible turbulence, motivated by
large-scale dynamics of galactic accretion disks. We thus
believe that the phenomenology of 2þ 1 relativistic tur-
bulence will be quite nonuniversal, depending upon the
relativistic Mach number, free decay vs forced, precise
details of the initial data, etc.
The simulations cited above already largely support the

present work, but our theory makes a rich array of further
predictions for relativistic fluid turbulence that are easily
subject to empirical tests. Chief among these predictions
are the following: (1) anomalous energy dissipation both
by local energy cascade and by the pressure-work defect,
(2) anomalous input of negentropy into the inertial range
by pressure work, in addition to any external input by
large-scale cooling mechanisms, (3) negentropy cascade to
small scales through a flux of intrinsic inertial-range
entropy, and (4) singularity or “roughness” of fluid fields
to sustain cascades of energy and entropy so that at least
one of the exponent inequalities (105)–(107) must hold.
The explicit formulas (61) for energy flux and Eq. (103)
for intrinsic entropy flux provide quantitative measures of
cascade rates in relativistic turbulence. Furthermore, in
order to provide mean fluxes of the predicted signs, the
expressions (61) and (103) require specific space-time
correlations to develop, e.g., “downgradient turbulent
transport” with τ̄ðh; VμÞ, τ̄ðn; VμÞ anticorrelated with the
thermodynamic gradients ∂μT, ∂μλ, respectively. These
many predictions provide an ample field of study for
future numerical investigation.

VIII. SUMMARY AND FUTURE DIRECTIONS

The theory developed in this paper is based upon the
hypothesis that relativistic fluid turbulence should exhibit
dissipative anomalies of energy and entropy, similar to
those observed for incompressible fluids. From this

hypothesis alone, we have shown that the high
Reynolds- and Péclet-number limits should be governed
by distributional or coarse-grained solutions of the relativ-
istic Euler equations. We have also demonstrated that
precisely characterized singularities or “roughness” of
the fluid fields is required to permit dissipative anomalies.
The argument closely follows that of Onsager [27,28]
for incompressible fluids, which we have explained as a
nonperturbative application of the principle of renormali-
zation-group invariance [52].
One of the key open questions is certainly the extension

of the present special-relativistic theory to GR turbulence.
There is reason to believe that much of the present theory
will carry over straightforwardly to GR since curved
Lorentzian manifolds are locally diffeomorphic to
Minkowski space. However, new effects may arise if
curvature scales become comparable to inertial-range
turbulence scales. The main technical problem in extending
our theory to GR is the development of suitable coarse
graining in curved space-times in order to regularize
turbulent ultraviolet divergences. Coarse-graining opera-
tions in GR have also attracted recent interest because of
problems in cosmology and in the interpretation of cos-
mological observations, and much of this parallel work
[110,111] should carry over to general-relativistic turbu-
lence. Here, we may note that an Onsager singularity
theorem has already been proved for incompressible fluid
turbulence on general compact Riemannian manifolds by
exploiting a coarse-graining regularization defined with a
heat kernel smoothing [112].
Even in Minkowski space, our work opens important

new directions of study. Our quantitative formulas (61)
for energy flux and (103) for entropy flux allow for an
exploration of the physical mechanisms of relativistic
turbulent cascades [113,114]. The vortex-stretching mecha-
nism of Taylor [115] is widely believed to drive the d ¼ 3
incompressible energy cascade, but it is unclear whether
such physics carries over to relativistic fluids. The equa-
tions of motion with the coarse-grained tensor (53) derived
in this paper also provide the mathematical foundations for
LES modeling of relativistic turbulence in Minkowski
space [79–81]. Such LES holds promise to be an important
tool in numerical investigation of local turbulence in high-
energy astrophysical events, such as gamma-ray bursts.
Finally, there are interesting implications of the present
work for black hole physics because the fluid-gravity
duality connects relativistic fluid dynamics in dþ 1
Minkowski space-time to Einstein’s equations in a
Poincaré patch of a Dþ 1-dimensional AdS black hole
solution. Thus, when high-Reynolds-number turbulence
develops in a relativistic fluid in Minkowski space, our
Onsager singularity theorem implies not only that the fluid
fields must become rough but also that rough metrics must
develop in the turbulent solutions of the Einstein equations
in the dual gravitational description.
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The roughness or Hölder singularity of the turbulent
velocity VμðxÞ, in particular, has profound implications
for relativistic fluid turbulence. It was pointed out in a
landmark work of Bernard et al. [116] on nonrelativistic
incompressible turbulence that fluid velocities with Hölder
exponent h < 1 have nonunique Lagrangian particle
trajectories. It was shown by those authors in a syn-
thetic model of turbulence that the Lagrangian trajectories
become “spontaneously stochastic” in the high Reynolds-
number limit, with randomness of trajectories persisting
even when the initial particle location and the advecting
velocity become deterministic and perfectly specified. The
physical mechanism is explosive Richardson-type turbulent
dispersion of particle pairs, which is also expected to hold
(with some modifications) in relativistic fluid turbulence
[117]. It has subsequently been shown that such “sponta-
neous stochasticity” of Lagrangian particle trajectories
holds at Burgers shocks [118] and is necessary in incom-
pressible Navier-Stokes turbulence for anomalous dissipa-
tion of passive scalars [119,120]. These considerations
carry over directly to relativistic fluid worldlines XμðX0; τÞ
defined by the equations

dXμ=dτ ¼ VμðXðτÞ; τÞ; Xμð0Þ ¼ Xμ
0: ð132Þ

Because of the Hölder singularities of the turbulent velocity
vector predicted by our analysis, the fluid worldlines must
become spontaneously stochastic, with a random ensemble
of worldlines passing through each fixed event X0. This
implies a turbulent breakdown of Lagrangian conservation
laws that hold for smooth solutions of the relativistic Euler
equations, such as the Kelvin theorem [121] (Ref. [57],
Sec. 3.7.5). Likewise, in relativistic astrophysical plasmas,
the Alfvén theorem on magnetic flux conservation for ideal
MHD solutions [122,123] must be fundamentally altered
by spontaneous stochasticity effects. In nonrelativistic
theory, this fact leads to fast turbulent magnetic reconnec-
tion independent of collisional resistivity [44,124,125], and
our present work implies that the same turbulent mecha-
nisms can act in relativistic magnetic reconnection.
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APPENDIX A: DERIVATION OF
COARSE-GRAINED RELATIVISTIC

EULER EQUATIONS

In this appendix, we give key details of the proof
of validity of the relativistic Euler equations in the

coarse-grained or weak sense for any ideal limits of
thermodynamic fields ϵ, ρ, Vμ as Peσ , Peκ, Reη, Reζ → ∞.
Most of the argument for the particle-conservation

equation has been given in Sec. III. One final estimate
was left unproved, involving the Lorentz-invariant norm
defined by

ΔμνAμAν;

where Δμν ¼ gμν þ VμVν projects perpendicular to the
relativistic fluid velocity vector Vμ with respect to the
Minkowski pseudometric. Lorentz transforming into
the fluid rest frame Aμ → A0

μ,

ΔμνAμAν ¼ jA0j2;

coinciding with the standard Euclidean norm of the spatial
part of the vector. The above norm is, in fact, only a
seminorm because ΔμνVμVν ¼ 0. In deriving a bound on
the dissipative terms in the coarse-grained conservation
laws in Sec. III, we needed an estimate on this seminorm
above in terms of the Euclidean norm.
To obtain this, we note that

ΔμνAμAν ¼ a⊤Δa;

where a is the D-dimensional vector with components Aμ

of the covariant vector and Δ is the D ×D-dimensional
matrix with entries Δμν of the contravariant tensor. We then
use the standard bound

ja⊤Δaj ≤ ∥Δ∥2∥a∥22; ðA1Þ

where ∥Δ∥2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðΔ⊤ΔÞ

p
and ρðMÞ is the spectral radius

of the D ×D-dimensional matrixM (Ref. [126], Sec. 2.3).
Since Δ is real and symmetric, one furthermore has
∥Δ∥2 ¼ ρðΔÞ. We thus must compute the eigenvalues of
Δ. This is simply done by an orthogonal transformation,
which rotates the spatial part of the vector Vμ ¼
γðvÞð1; v=cÞ into the 1-direction. Note that such a purely
spatial rotation changes neither the Minkowski pseudo-
norm nor the Euclidean norm of Aμ. After this rotation, the
matrix Δ becomes block diagonal, with a lower block that
is the ðd − 1Þ × ðd − 1Þ identity matrix and an upper block
that is the 2 × 2 matrix,

Δ2 ¼
1

1 − β2v

�
β2v βv

βv 1

�
; βv ¼ v=c:

The matrix Δ2 has an eigenvalue 0 with eigenvector
ð−1; βvÞ⊤ (whose components are obviously those of the
covariant vector Vμ ¼ gμνVν) and an eigenvalue ð1þ β2vÞ=
ð1 − β2vÞ greater than 1 with eigenvector ðβv; 1Þ⊤. It follows
that ρðΔÞ ¼ ½ð1þ β2vÞ=ð1 − β2vÞ�. Finally, noting that
∥a∥22 ¼ jAj2E, we obtain the bound
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jΔμνAμAνj ≤
1þ β2v
1 − β2v

jAj2E:

This upper estimate is optimal, in that it can actually be
achieved for a suitable spacelike vector Aμ corresponding to
the second eigenvector above. Since 1þ β2v ≤ 2, we obtain
the bound stated in Eq. (43) in the main text.
The dissipative terms in the coarse-grained energy-

momentum conservation equation are estimated in a very
similar fashion. Here, we sketch briefly the bound for the
shear-viscosity term, which can be written as

cμ∂νð2ητ̂μνðxÞÞ

¼ −
1

l

Z
dDrcμð∂νGÞlðrÞ · 2ηðxþ rÞτ̂μνðxþ rÞ; ðA2Þ

and we have introduced a constant vector cμ that can be set
to 1 for any particular component of the equation and zero
for the others, in order to select that component. The
Cauchy-Schwartz inequality applied to this term gives

jcμ∂νð2ητ̂μνðxÞÞj

≤
1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
suppðGlÞ

dDrð2ηT2Þðxþ rÞ
s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
dDr

2η

T2
ðxþ rÞjcμð∂νGÞlðrÞ · τ̂μνðxþ rÞj2

s
:

ðA3Þ

The first square-root factor goes to zero in the ideal limit
under mild assumptions on η and T, as long as the second
square-root factor remains bounded. To estimate the second
term, we note that, for any second-rank covariant tensors
Aμν, Bμν, the quantity

ΔμαΔνβAμνBαβ ¼
X
ij

Aij
0Bij

0

when the tensors are transformed to Aμν
0, Bμν

0 in the rest
frame of the fluid. The expression on the right is the
standard Frobenius inner product of d × d matrices, and
thus the expression on the left is a degenerate inner product
(vanishing whenever either tensor is a product of the form
VμCν or CμVν). Employing the Cauchy-Schwartz inequal-
ity for this degenerate inner product gives

jcμð∂νGÞlðrÞ · τ̂μνðxþ rÞj2
≤ ðc⊥μ cμ⊥Þ · ð∂⊥

ν GÞlð∂ν⊥GÞlðrÞ · τ̂μντ̂μνðxþ rÞ: ðA4Þ

The above inequality yields the following upper bound for
the integral under the second square root in Eq. (A3):

ðc⊥μ cμ⊥Þ
Z

dDrð∂⊥
ν GÞlðrÞð∂ν⊥GÞlðrÞ ·

2ητ̂μντ̂
μν

T2
ðxþ rÞ:

ðA5Þ

Now, using Eq. (43) in the main text and the similar
inequality

0 ≤ ðc⊥μ cμ⊥Þ ≤ 2γ2ðvÞjcj2E; ðA6Þ

we obtain our final estimate for the integral under the
second square root,

4jcj2E∥γðvÞ∥4∞
Z

dDrjð∂GÞlðrÞj2E ·
2ητ̂μντ̂

μν

T2
ðxþ rÞ: ðA7Þ

This upper estimate converges in the ideal limit to

4jcj2E∥γðvÞ∥4∞
Z

dDrjð∂GÞlðrÞj2EΣηðxþ rÞ ðA8Þ

and thus remains bounded. We conclude that the shear-
viscosity term in the coarse-grained energy-momentum
equation vanishes in the ideal limit.
Similar results are obtained for the bulk-viscosity term

in the coarse-grained energy-momentum equation using the
identity

cμ∂νðζτ̂ΔμνðxÞÞ

¼ −
1

l

Z
dDrc⊥μ ð∂μ

⊥GÞlðrÞ · ζðxþ rÞτ̂ðxþ rÞ ðA9Þ

and, for the thermal-conductivity term, using

cμ∂νðκQ̂μVν þ κQ̂νVμðxÞÞ

¼ −
1

l

Z
dDrκðxþ rÞc⊥μ Q̂μðxþ rÞ · ð∂νGÞlðrÞVνðxþ rÞ

−
1

l

Z
dDrcμVμðxþ rÞ · κðxþ rÞð∂⊥

ν GÞlðrÞQ̂νðxþ rÞ:

ðA10Þ

The bulk-viscosity term is treated very similarly to the
shear-viscosity term. For the thermal-conductivity term,
we need to use the standard Cauchy-Schwartz inequality
jcμVμj ≤ jcjEjVjE and the following estimate for the
Euclidean norm of the fluid velocity vector:

jVj2E ¼ γ2ðvÞð1þ v2=c2Þ ≤ 2γ2ðvÞ: ðA11Þ

The details are straightforward and left to the reader.

APPENDIX B: NONRELATIVISTIC LIMIT

Space-time coarse-graining kernels in relativistic theory
GðrÞ ¼ Gðr0; rÞ and in nonrelativistic (Newtonian) theory

GREGORY L. EYINK and THEODORE D. DRIVAS PHYS. REV. X 8, 011023 (2018)

011023-22



GNðr; τÞ are related by a simple change of dimensions
through scaling with c:

Gðr0; rÞ ¼ ð1=cÞGNðr; r0=cÞ:

Thus,

f̄ðxÞ ¼
Z

dDrGlðrÞfðxþ rÞ

¼
Z

ddr
Z

dτGN;lðr; τÞfðxþ r; tþ τÞ

¼ f̄Nðx; tÞ; ðB1Þ

and there is no need to distinguish between f̄ and f̄N as
c → ∞. This is not true, in general, for more singular
coarse graining in space-time. Consider as an example the
backward light-cone average with

GðrÞ ¼ GðrÞδðr0 þ jrjÞ:

In that case,

f̄ðxÞ ¼
Z

ddrGlðrÞfðxþ r; t − jrj=cÞ:

Then, in the limit c → ∞,

f̄ ¼ f̄N −
1

c

Z
ddrGlðrÞjrj _fðxþ r; tÞ þO

�
1

c2

�
;

where

f̄Nðx; tÞ ¼ 1

c

Z
ddrGlðrÞfðxþ r; tÞ

is the nonrelativistic instantaneous spatial coarse graining.
In this case, f̄ and f̄N are distinct. We assume hereafter a
smooth space-time coarse graining.
Even with smooth space-time coarse graining, the

relativistic and nonrelativistic Favre averages are distinct
because, respectively,

~f ≔ hf=h̄; ~fN ≔ ρf=ρ̄;

where the first is weighted by h ¼ ρc2 þ hN, with hN ¼
uþ p the nonrelativistic (Newtonian) enthalpy and the
second weighted by ρ. Straightforward Taylor expansion in
1=c2 gives

~f ¼ ~fN þ 1

c2ρ̄2
ðfhN ρ̄−fρ hNÞ þO

�
1

c4

�
:

While the relativistic and nonrelativistic Favre averages are
distinct, they do agree to leading order in 1=c2.

With these preliminaries, we now consider the formal
nonrelativistic limit of c → ∞. We note the standard
relations

∂μ ¼
�
1

c
∂t;∇

�
; ðB2Þ

Vμ ¼
�
1þ 1

2c2
jvj2 þO

�
1

c4

�
;
1

c
v þO

�
1

c3

��
; ðB3Þ

D ¼ Vμ∂μ ¼
1

c
DþO

�
1

c3

�
; ðB4Þ

with D ¼ ∂t þ v · ∇, and

θ ¼ ∂μVμ ¼ 1

c
ΘþO

�
1

c3

�
; ðB5Þ

with Θ ¼ ∇ · v, or, more generally,

∂μðfVμÞ ¼ 1

c
½∂tf þ ∇ · ðfvÞ� þO

�
1

c3

�
: ðB6Þ

Furthermore, because cumulants of constants vanish, we
have relations such as

τ̄ðV0; f2; f3;…; fnÞ ¼
1

2c2
τ̄ðjvj2; f2; f3;…; fnÞ; ðB7Þ

τ̄ðV0; V0; f3;…; fnÞ ¼
�

1

2c2

�
2

τ̄ðjvj2; jvj2; f3;…; fnÞ;

ðB8Þ

and so forth. The same relations hold also for Favre
cumulants, just replacing τ̄ by ~τ.

1. Inertial-range energy balance

We consider first the energy balance (60) or

∂μEeμ ¼ −p̄ θ̄þQflux
l : ðB9Þ

Note that ϵVμ ¼ c2Jμ þ uVμ, so

∂μϵVμ ¼ ∂μuVμ ¼ 1

c
½∂tūþ ∇ · (ū v̄þτ̄ðu; vÞ)� þO

�
1

c3

�
:

ðB10Þ

By the results (B3), (B7), and (B8),

τ̄ðp; VμÞ ¼
�
O

�
1

c2

�
;
1

c
τ̄ðp; vÞ þO

�
1

c3

��
; ðB11Þ
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1

2
~τðVν; VνÞ ~Vμ ¼

�
1

2c2
~τNðvi; viÞ þO

�
1

c4

�
;

1

2c3
~τNðvi; viÞv þO

�
1

c5

��
; ðB12Þ

~τðVν; Vν; VμÞ ¼
�
O

�
1

c4

�
;
1

c3
~τNðvi; vi; vÞ þO

�
1

c5

��
;

ðB13Þ

and

~τðVν; VμÞ ~Vν

¼
�
O

�
1

c4

�
;−

1

2c3
~τNðjvj2; vÞ · 1

þ 1

c3
~τNðvi; vÞ ~vNi þO

�
1

c5

��
¼

�
O

�
1

c4

�
;−

1

2c3
~τNðvi; vi; vÞ þO

�
1

c5

��
: ðB14Þ

Putting all of these results together with the formula (57)
for Eeμ and h̄ ¼ ρ̄c2 þ h̄N gives

∂μEeμ ≃ 1

c
∂t

�
ūþ 1

2
ρ̄~τNðvi; viÞ

�
þ 1

c
∇ ·

�
ū v̄þτ̄ðh; vÞ þ 1

2
ρ̄~τNðvi; viÞ~vN

þ 1

2
ρ̄~τNðvi; vi; vÞ

�
: ðB15Þ

Now consider relativistic energy flux given by

Qflux
l ¼ 1

h̄
ð∂νp̄Þτ̄ðh; VνÞ − h̄ð∂μ

~VνÞ~τðVμ; VνÞ

−
1

2
∂νhVν ~τðVμ; VμÞ: ðB16Þ

Easily from previous estimates, we get

1

h̄
ð∂νp̄Þτ̄ðh; VνÞ≃ 1

cρ̄
∇p̄ · τ̄ðρ; vÞ: ðB17Þ

Next, observe that

~τðVμ; VνÞ ¼
�Oð 1c4Þ Oð 1c3Þ
Oð 1c3Þ 1

c2 ~τ
Nðv; vÞ

�
ðB18Þ

and

∂μ
~Vν ¼

�Oð 1c3Þ Oð 1c3Þ
Oð 1c3Þ 1

c∇~vN

�
; ðB19Þ

so

h̄ð∂μ
~VνÞ~τðVμ; VνÞ≃ 1

c
ρ̄∇~vN∶~τNðv; vÞ: ðB20Þ

For the last term, use hVν ¼ c2Jν þ hNVν to obtain

∂νhVν ≃ 1

c
½∂thN þ ∇ · ðhNvÞ�: ðB21Þ

Since, in addition,

1

2
~τðVν; VνÞ≃ 1

2c2
~τNðvi; viÞ; ðB22Þ

we thus find

1

2
∂νhVν ~τðVμ; VμÞ ¼ O

�
1

c3

�
: ðB23Þ

In conclusion,

Qflux
l ≃ 1

cρ̄
∇p̄ · τ̄ðρ; vÞ − 1

c
ρ̄∇~vN∶~τNðv; vÞ ¼ 1

c
Qflux

l ;

ðB24Þ

where Qflux
l is the nonrelativistic energy flux.

From the results (B15), (B24), and p̄ θ̄≃ð1=cÞp̄ Θ̄,
we thus obtain, as the nonrelativistic limit of the inertial-
range internal-energy balance for the relativistic Euler
equation,

∂t

�
ūþ 1

2
ρ̄~τNðvi; viÞ

�
þ ∇ ·

�
ū v̄þτ̄ðh; vÞ

þ 1

2
ρ̄~τNðvi; viÞ~vN þ 1

2
ρ̄~τNðvi; vi; vÞ

�
¼ −p̄ Θ̄þQflux

l : ðB25Þ

This is nothing other than the nonrelativistic balance
equation for intrinsic large-scale internal energy, obtained
in Eq. (I;63) of paper I.

2. Inertial-range entropy balance

We now consider the intrinsic inertial-range entropy
current in the Favre formulation, Se�μ ¼ Sμ − βKeμ, and its

balance equation

∂μSe�μ ¼ −Ifluxl þ Σflux�
l ðB26Þ
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with the intrinsic negentropy flux

Σflux�
l ¼ Σflux

l − ð∂μβÞKeμ þ βQflux
l : ðB27Þ

First, we note a standard difference between relativistic
and Newtonian thermodynamics due to the distinction
between rest mass and energy in the latter:

ϵ ¼ ρc2 þ u; λ ¼ βmc2 þ λN: ðB28Þ

See Ref. [60] or [57], Sec. 2.3.6. Using these relations, one
easily finds that

Sμ ¼ sV̄μ þ β τ̄ðu; VμÞ − λN τ̄ðn; VμÞ

¼
�
sþO

�
1

c2

�
;
1

c
½s v̄þβ τ̄ðu; vÞ

− λN τ̄ðn; vÞ� þO

�
1

c3

��
: ðB29Þ

On the other hand, it follows directly from the formula (80)
for Keμ and the estimates in the previous subsection that

− Keμ ¼
�
1

2
ρ̄~τNðvi; viÞ þO

�
1

c2

�
;

1

2c
ρ̄~τNðvi; viÞ~vN þ 1

2c
ρ̄~τNðvi; vi; vÞ

þ 1

c
τ̄ðp; vÞ þO

�
1

c3

��
: ðB30Þ

As an aside, we note that this last result implies that the
balance equation (79) for Keμ reduces in the limit c → ∞ to
the nonrelativistic balance equation (paper I;64) for the
subscale kinetic energy. We finally obtain that

∂μSe�μ ≃ 1

c
½∂ts� þ ∇ · s��; ðB31Þ

where

s� ¼ sþ ð1=2Þβ ρ̄ ~τNðvi; viÞ ðB32Þ

is the nonrelativistic intrinsic inertial-range entropy and

s� ¼ s v̄þβ τ̄ðhN; vÞ − λN τ̄ðn; vÞ

þ β

�
1

2
ρ̄~τNðvi; viÞ~vN þ 1

2
ρ̄~τNðvi; vi; vÞ

�
ðB33Þ

is the associated spatial current. See Eqs. (paper I;97) and
(paper I;99).
On the other hand, using again the relation (B28)

between relativistic and Newtonian thermodynamic quan-
tities, one finds that Eq. (90) yields

Σflux
l ¼ ð∂μβÞτ̄ðu; VμÞ − ð∂μλNÞτ̄ðn; VμÞ

≃ 1

c
½∇β · τ̄ðu; vÞ − ∇λN · τ̄ðn; vÞ�

¼ 1

c
Σflux;N
l ; ðB34Þ

where Σflux;N
l is the (naive) entropy flux in nonrelativistic

compressible turbulence. Directly from Eq. (B30) and the
asymptotics for Qflux

l in the previous subsection, one finds
that

βQflux
l − ð∂μβÞKeμ

≃ 1

c
βQflux

l þ 1

2c
ð∂tβÞρ̄~τNðvi; viÞ

þ 1

c
∇β ·

�
1

2
ρ̄~τNðvi; viÞ~vN þ 1

2
ρ̄~τNðvi; vi;vÞ þ τ̄ðp;vÞ

�
:

ðB35Þ

This corresponds exactly to Eq. (paper I;93) in the non-
relativistic theory. Finally, the very simple equality

Ifluxl ¼ βðp̄ − pÞθ̄≃ 1

c
βðp̄ − pÞΘ̄ ¼ 1

c
Iflux;Nl ðB36Þ

shows that the relativistic inertial-range entropy balance
(101) reduces in the limit c → ∞ to the balance (paper I;98)
of nonrelativistic intrinsic inertial-range entropy.

APPENDIX C: RELATIVISTIC FLUID KINETIC
ENERGY AND ITS TURBULENT CASCADE

As discussed in the main text, we define kinetic-energy
current, rather naturally, as

T μ ≔ T0μ − Eμ: ðC1Þ

Clearly, the “current” T μ does not transform as a vector
under Lorentz transformations. However, using Eq. (9)
for Eμ, it satisfies

∂μT μ ¼ pð∂μVμÞ −Qdiss; ðC2Þ

which is a Lorentz scalar and the equation that is reasonably
expected to hold for a kinetic-energy current. It is worth
noting that the combination T μ þ Uμ is a locally conserved
quantity, satisfying

∂μðT μ þ UμÞ ¼ 0; ðC3Þ

since

T μ þ Uμ ¼ T0μ − c2Jμ: ðC4Þ
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It thus represents the total energy current in the fixed frame
minus the energy current of rest mass.
To further emphasize the naturalness of the proposed

definition (C1), consider the case of a relativistic Euler
fluid. Although there are generally dissipative contributions
to T μ, its components for an ideal fluid are simply

T 0 ¼ hγ2v − p − ϵγv; T i ¼ ðhγ2v − ϵγvÞ
vi

c
: ðC5Þ

The kinetic-energy density in Eq. (C5) is straightforwardly
rewritten as

T 0 ¼ hðγv − 1Þ2 þ ðϵþ 2pÞðγv − 1Þ: ðC6Þ

It follows directly from Eq. (C6) that T 0 ¼ 0 when γv ¼ 1,
T 0 is a convex function of γv when h ≥ 0, and T 0 is
non-negative when, in addition, ϵþ 2p ≥ 0. If instead
ϵþ 2p < 0, then T 0 < 0 for γv ≳ 1. Non-negativity and
convexity are guaranteed by the strong energy condition
on the stress-energy tensor [127]:�
Tμν −

T
D − 2

gμν
�
WμWν ≥ 0; Wμ timelike: ðC7Þ

Indeed, for a perfect fluid, the strong energy condition is
equivalent to

h ≥ 0; ðD − 3Þϵþ ðD − 1Þp ≥ 0; ðC8Þ

which for 3 ≤ D ≤ 5 implies both h ≥ 0 and ϵþ 2p ≥ 0.
For most reasonable equations of state and for sufficiently
low space-time dimensions, the proposed kinetic-energy
density thus has the properties naturally expected.
The c → ∞ limit of the kinetic-energy current defined in

Eq. (C1) also recovers the familiar nonrelativistic expres-
sions. From Eq. (C5) and h ¼ ρc2 þ hN , it follows
straightforwardly that the ideal part of the kinetic-energy
current becomes

T 0 ∼
1

2
ρjvj2 þO

�
1

c2

�
;

T i ∼
�
1

2
ρjvj2 þ p

�
vi

c
þO

�
1

c3

�
ðC9Þ

and dissipative contributions to T 0 vanish in the limit
c → ∞. Using the orthogonality condition Π0i ¼ Πijvj=c,
Eq. (C2), in the limit, becomes

∂t

�
1

2
ρjvj2

�
þ ∇ ·

��
1

2
ρjvj2 þ p

�
v þΠN · v

�
¼ pð∇ · vÞ −Qdiss; ðC10Þ

where ΠN is the nonrelativistic limit of the viscous stress
and Qdiss ¼ −ΠN∶∇v is the nonrelativistic viscous dis-
sipation [74]. Note the cancellation of terms proportional to
κ from Eqs. (4) and (7) in T0μ − Eμ as c → ∞. In the
parabolic Eckart and Landau-Lifshitz theories, ΠN ¼
−2ηNS − ζNΘI, and Eq. (C10) is the standard kinetic-
energy balance for the nonrelativistic compressible Navier-
Stokes equation. In the better-behaved Israel-Stewart
models, Eq. (C10) still holds as c → ∞, but now the
viscous stress is determined by an independent dynamical
equation DtΠN ¼ � � �. Thus, the kinetic-energy balance is
that of a nonrelativistic extended irreversible thermody-
namic (EIT) model. We note that Eq. (C3) likewise reduces,
in the limit c → ∞, to conservation of total nonrelativistic
fluid energy:

∂t

�
1

2
ρjvj2þu

�
þ∇ ·

��
1

2
ρjvj2þuþp

�
vþΠN ·vþq

�
¼ 0; ðC11Þ

where q is the nonrelativistic heat flux. This is given by
Fourier’s lawq ¼ −κN∇T in the Eckart andLandau-Lifshitz
theories (Ref. [128], Sec. 136), and in the Israel-Stewart
theories, it is determined by a separate equation Dtq ¼ ….
The recovery of these standard nonrelativistic results is
another measure of appropriateness of definition (C1).
In a turbulent flow, we expect a dissipative anomaly of

kinetic energy in the infinite Reynolds-number limit.
Indeed, the energy dissipation Qdiss in the kinetic-energy
balance (C2) is the same quantity (16) that appears in the
internal-energy balance but with the opposite sign. As seen
from Eq. (16), the nonvanishing ofQdiss in the limit η, ζ, σ,
κ → 0 requires diverging gradients, σμν, θ, Aμ → ∞. In
order to eliminate these divergences and to obtain a well-
defined set of fluid equations in the infinite Reynolds and
Péclet limit, we have employed a coarse-graining regulari-
zation, which yields finite inertial-range balance relations
for resolved internal energy and resolved entropy. To study
the inertial-range cascade of kinetic energy, one must
introduce a similar resolved kinetic energy, which we take
to be

T μe ≔ T̄0μ − Eμe : ðC12Þ

Notice that our procedure here is exactly the opposite of
that for the nonrelativistic case in paper I, where the
resolved kinetic energy ð1=2Þρ̄j~vj2 was the primary quan-
tity and the “intrinsic” resolved internal energy was
introduced as a secondary quantity ū� ¼ Ē − ð1=2Þρ̄j~vj2,
with E ¼ ð1=2Þρjvj2 þ u the (fine-grained) total energy
density; see Eq. (paper I;64). For reasons already discussed,
here we instead treat the resolved internal-energy current
Eeμ defined in Eq. (54) as the primary quantity and the
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resolved kinetic-energy density Te μ in Eq. (C12) above as
the secondary one. The definition (C12) is a suitable
regularization of T μ since the estimates derived in
Appendix A show that all nonideal contributions to it
vanish as η, ζ, σ, κ → 0 with l fixed and clearly
D − liml→0Te μ ¼ T μ. Furthermore, using Eq. (60) for Eeμ,

∂μTe μ ¼ p̄ θ̄−Qflux
l ; ðC13Þ

where the limit η, ζ, σ, κ → 0 has been taken andQflux
l is the

inertial-range energy flux defined in Eq. (61). This energy
flux thus appears not only as a “source” of resolved internal
energy but also as a “sink” of resolved kinetic energy due to
loss by turbulent cascade.
The previous analysis yields the dissipative anomaly in

the kinetic-energy balance at infinite Reynolds and Péclet
numbers. If the limit l → 0 is taken subsequent to the
limit η, ζ, σ, κ → 0, then Eq. (C13) becomes

∂μT μ ¼ p∘θ −Qflux; ðC14Þ

with definitions as in Eqs. (62) and (64). Alternatively, the
balance equation for kinetic-energy current at infinite
Reynolds and Péclet numbers may be obtained by directly
taking the limit as η, ζ, σ, κ → 0 of the fine-grained balance
(C2), which gives

∂μT μ ¼ p � θ −Qdiss; ðC15Þ

with the definitions (59) and (73). Comparing the previous
two expressions, one finds that Qdiss ¼ Qinert with Qinert ¼
τðp; θÞ þQflux and τðp; θÞ in Eq. (75). Thus, from the
inertial-range perspective, the dissipative anomaly of rela-
tivistic kinetic energy can be produced both by turbulent
cascade and by the pressure-work defect.
In the limit c → ∞, the above theory reproduces the

results of paper I for nonrelativistic kinetic-energy cascade.
This is remarkable, given the secondary role of kinetic
energy in relativistic fluid turbulence and its primary role in
nonrelativistic turbulence. To show this, it is helpful to use
mass conservation ∂μJ̄μ ¼ 0 to write

∂μTe μ ¼ ∂μT μ þ Uμ − ∂μEeμ: ðC16Þ

In the limit c → ∞, the inertial-range balance
∂μT μ þ Uμ ¼ 0 becomes

∂t
1

2
ρjvj2 þ uþ ∇ ·

�
1

2
ρjvj2 þ uþ p

�
v ¼ 0: ðC17Þ

If one subtracts the nonrelativistic limit (B25) of the
balance for Eeμ from the latter equation (C17), then one
obtains from Eq. (C13), as c → ∞, that

∂t

�
1

2
ρ̄j~vN j2

�
þ ∇ ·

��
p̄þ 1

2
ρ̄j~vN j2

�
~vN þ ρ̄~τNðv; vÞ · ~vN

−
p̄
ρ̄
τ̄ðρ; vÞ

�
¼ p̄ Θ̄−Qflux

l : ðC18Þ

In this manner, the inertial-range kinetic-energy balance
equation (paper I; 43) of nonrelativistic turbulence can be
recovered as c → ∞ from the relativistic balance (C13).

APPENDIX D: FINE-GRAINED BALANCES
OF INTERNAL ENERGY AND ENTROPY

IN THE IDEAL LIMIT

In this appendix, we derive the balances of internal
energy and entropy for the relativistic Euler solutions by
considering directly the ideal limit of the fine-grained
balances from the dissipative fluid model.
We begin by considering ∂μEμ with the particle-frame

energy current in Eq. (7), or Eμ ¼ ϵVμ þ κQ̂μ. We must
show that the contribution of the second term vanishes
distributionally in the limit κ, η, ζ → 0. After smearing with
a general test function φ, a straightforward estimate by a
Cauchy-Schwartz inequality gives

���� Z dDxð∂μφÞκQ̂μ

����
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
suppðφÞ

dDxκT2

Z
dDxð∂⊥

μ φ∂μ
⊥φÞ

κQ̂μQ̂
μ

T2

s
;

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∥γðvÞ∥2∞

Z
suppðφÞ

dDxκT2

Z
dDxj∂φj2EΣκ

s
; ðD1Þ

using Eq. (A6) and the definition Σκ ¼ κQ̂μQ̂
μ=T2 to

obtain the last estimate. The second integral inside the
square root is bounded when Σtherm ¼ D − limη;ζ;κ→0Σκ

exists, while the first integral vanishes in the limit. We

conclude that ∂μðκQ̂μÞ!D 0 as κ, η, ζ → 0.
We next consider ∂μSμ with the entropy current given by

the energy-frame Israel-Stewart formula Eq. (96). We must
show that only the term ∂μðsVμÞ survives in the ideal limit
and that all of the direct dissipative contributions vanish
distributionally. The easiest one to treat is the λσN̂μ term in
Sμ, which gives a vanishing contribution by the same
argument used above for κQ̂μ.
The terms ηβ2ΣηVμ, ð1=2Þζβ0ΣζVμ, ð1=2Þσβ1ΣσVμ all

give contributions to ∂μSμ that are bounded in the same
manner. We thus consider only the first one. After smearing
by a test function φ, its contribution is bounded by
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���� Z dDxð∂μφÞVμηβ2Ση

����
≤

ffiffiffi
2

p
∥γðvÞ∥∞

Z
dDxj∂φjEηβ2Ση

≤
ffiffiffi
2

p
∥γðvÞ∥∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
suppðφÞ

dDxη2β22Ση

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
dDxj∂φj2EΣη

s
; ðD2Þ

using j∂μφVμj ≤ j∂φjEjVjE and Eq. (A11) for the first
inequality, and Cauchy-Schwartz for the second. Since
Σshear ¼ D- limη;ζ;σ→0Ση, the second square-root factor is
bounded. For the first square-root factor, note thatZ
suppðφÞ

dDxη2β22Ση ≤ ∥ηβ2∥2L∞(suppðφÞ)Ση(suppðφÞ); ðD3Þ

with ΣηðKÞ ¼ R
K dDxΣη. For the compact set suppðφÞ,

take ψ ∈ C∞
c with ψ ≥ 0 and ψ jsuppðφÞ ¼ 1. Then,

Ση(suppðφÞ) ≤
R
dDxψΣη, so

lim sup
σ;η;ζ→0

Ση(suppðφÞ) ≤
Z

dDxψΣshear ðD4Þ

follows also from Σshear ¼ D- limη;ζ;σ→0Ση. Finally, since
∥ηβ2∥L∞(suppðφÞ) → 0 as σ, η, ζ → 0, the upper bounds
(D2)–(D4) show that the entire contribution vanishes in the
ideal limit.
The terms ησðα1=TÞτ̂μνN̂ν, ζσðα0=TÞτ̂N̂μ also give con-

tributions that are both bounded similarly, and we consider
only the first. After smearing with a test function,���� Z dDxð∂μφÞησ

α1
T
τ̂μνN̂ν

����
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
suppðφÞ

dDx
1

2
σηα21TΣη

Z
dDxð∂⊥

μ φ∂μ
⊥φÞΣσ

s
; ðD5Þ

by the Cauchy-Schwartz inequality and the definitions of
Ση, Σσ . Then,Z

dDxð∂⊥
μ φ∂μ

⊥φÞΣσ ≤ 2∥γðvÞ∥2∞
Z

dDxj∂φEj2Σσ ðD6Þ

using Eq. (A6) andZ
suppðφÞ

dDxσηα21TΣη ≤ ∥σηα21T∥L∞ðsuppðφÞÞΣηðsuppðφÞÞ:

ðD7Þ

The term Ση(suppðφÞ) is bounded as in Eq. (D4). In the
ideal limit, ∥σηα21T∥L∞(suppðφÞ) → 0, and thus the bounds

(D5)–(D7) imply that the contribution to ∂μSμ vanishes
distributionally as σ, η, ζ → 0.

We conclude that ∂μSμ !D ∂μðsVμÞ as σ, η, ζ → 0 when
Sμ is given by the energy-frame formula Eq. (96). The
argument for the entropy current of the particle-frame
Israel-Stewart theory is identical, with the replacements
σ → κ, N̂μ → Q̂μ.

APPENDIX E: RELATIVISTIC SHOCK
SOLUTIONS

1. Reduced conformal model and shock solution

We consider here an exact family of shock solutions for
dissipative relativistic fluid models in 1þ 1 space-time
dimensions, which were obtained in the previous work of
Liu and Oz [21]. The 1þ 1 fluid models considered
by those authors are reduced conformal fluids (RCFs)
obtained from a D ¼ ðdþ 1Þ-dimensional conformal fluid
(note that ourD is instead denoted 2σ in Ref. [21]) and have
corresponding dimensionally reduced gravity duals [129].
We recall that the equation of state for the pressure in
D-dimensional conformal fluids is given by a power of the
temperature

p ¼ αTD; ðE1Þ

with a dimensionless constant α. The tracelessness of the
stress-energy tensor requires an energy density

ϵ ¼ ðD − 1Þp ¼ αðD − 1ÞTD: ðE2Þ

There is no additional conserved current Jμ in the RCFs
considered by Ref. [21], and consequently, λ ¼ 0. The
resulting first law of thermodynamics dϵ ¼ Tds, as well as
the homogeneous Gibbs relation h ¼ ϵþ p ¼ sT, implies
that the entropy density is

s ¼ αDTD−1 ¼ Dα1=DpðD−1Þ=D: ðE3Þ

In the energy-frame description, the nonideal part of the
stress tensor (4) is transverse to the velocity, VμΠμν ¼ 0. As
in Ref. [21], we consider only first-order terms in the
gradient expansion. Since bulk viscosity ζ ¼ 0 for con-
formal fluids, the only transport coefficient at this order is
shear viscosity η with Πμν ¼ −2ησμν. Upon reduction to
1þ 1 dimensions, this appears as an effective bulk vis-
cosity, so

Πμν ¼ −ζθΔμν; ðE4Þ

with ζ ¼ ð1=2πÞðD − 2=D − 1Þs. However, just as in
Ref. [21], we take ζ ≔ ζðTÞ to be an arbitrary function
since none of our results depends upon any particular
choice.
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Representing the two-velocity as Vμ ¼ γvð1; βvÞ, any
stationary solution of the 1þ 1 viscous model satisfies

d
dx

½ðDp − ζθÞγ2vβv� ¼ 0; ðE5Þ

d
dx

½pð1þDγ2vβ
2
vÞ − ζθγ2v� ¼ 0: ðE6Þ

Equations (E5) and (E6) follow from ∇μTμν ¼ 0, setting
ν ¼ 0, 1 and they imply

fe ¼ ðDp − ζθÞγ2vβv; ðE7Þ

fp ¼ pð1þDγ2vβ
2
vÞ − ζθγ2v; ðE8Þ

where fe ≡ T01 and fp ≡ T11 are constant energy and
momentum fluxes. Using Eqs. (E7) and (E8), Ref. [21]
obtained smooth viscous shock solutions by quadrature. We
do not employ these integral expressions but only use the
following important consequences of Eqs. (E7) and (E8):

ϵ ¼ ðD − 1Þp ¼ fe=βv − fp; ðE9Þ

p − ζθ ¼ fp − feβv: ðE10Þ

In particular, the representation (E9) of the pressure in terms
of the velocity is analogous to the Bernoulli-type relation
exploited by Becker to study shock solutions of the
nonrelativistic compressible Navier-Stokes equations for
Pr ¼ 3=4 [130]. Together, Eqs. (E9) and (E10) completely
determine ζθ in terms of the velocity, yielding identical
results for any choice of viscosity ζðTÞ.
The viscous model solutions of interest converge in the

infinite Reynolds-number limit to stationary shock solu-
tions of the relativistic Euler equations. These are piecewise
constant, with a preshock velocity β0 to the left and a
postshock value β1 to the right. The possible values are
obtained by equating the two expressions for the pressure
from Eqs. (E9) and (E10) with ζ ¼ 0:

fe=βv − fp ¼ ðD − 1Þp ¼ ðD − 1Þ½fp − feβv�: ðE11Þ

This yields a quadratic polynomial in βv with coefficients
depending upon D and R ≔ fp=fe. The condition for two
distinct real roots is jRj > 2ðD − 1Þ1=2=D. The product of
the roots is given by

β0β1 ¼ 1=ðD − 1Þ ≔ β2s ; ðE12Þ

where βs ¼ cs=c and cs ¼ c=
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p
is the sound speed.

The condition h ¼ ϵþ p ¼ D · p > 0 requires that both
sides of Eq. (E11) are positive. Using the quadratic formula
for the roots, it is easy to check that this holds if and only if
jRj < 1. The simultaneous conditions

1 > jRj > 2ðD − 1Þ1=2=D ðE13Þ

requireD > 2 in order for inviscid shock solutions to exist.
A relation between pressures p0, p1 or temperatures T0, T1

on both sides of the shock can be obtained by using
Eq. (E7) for ζ ¼ 0, which gives

p0=p1 ¼ ðT0=T1ÞD ¼ ðβ1γ21=β0γ20Þ: ðE14Þ

Equations (E12) and (E14) imply that the fluid on one side
of the shock has supersonic velocity and lower temperature,
whereas the other side is subsonic with higher temperature.
As noted in Ref. [21], positive entropy production requires
that colder supersonic fluid flows into the shock front and
hotter subsonic fluid flows out.
We derive here all of the source terms that appear in the

internal-energy and entropy balances for these shock solu-
tions, both those in the fine-grained (dissipation-range)
balances as ζ → 0 and those in the coarse-grained (inertial-
range) balances as l → 0. It should be pointed out that
first-order dissipative relativistic fluid models of the type
considered are acausal and have unstable solutions even at
global equilibrium [61]. Thus, the viscous shock solutions
obtained by Ref. [21] are expected to be unstable to small
perturbations. However, they are exact stationary solutions
that, as ζ → 0, converge in Lp norms for any p ∈ ½1;∞Þ to
stationary shock solutions of relativistic Euler equations and
thus provide an example for our general mathematical
framework. We emphasize that the viscous model solutions
are employed only to evaluate dissipation-range quantities,
whereas all of our inertial-range limit results hold with
complete generality for all relativistic Euler shocks with the
equation of state (E1). Inviscid solution fields are all discon-
tinuous step functions

fðxÞ ¼
�
f0 x < 0

f1 x > 0
¼ f0 þ ðΔfÞθðxÞ; ðE15Þ

whereΔf ¼ f1 − f0 and θðxÞ is the Heaviside step function.
We also use the notation fav ¼ 1

2
ðf0 þ f1Þ for the average

value on both sides of the shock. A fact that we use frequently
for ideal step-function fields is

f̄ðxÞ ¼ f0 þ ðΔfÞθ̄ðxÞ; ḡðxÞ ¼ g0 þ ðΔgÞθ̄ðxÞ ðE16Þ

and thus

ḡ ¼ g0 þ
Δg
Δf

ðf̄ − f0Þ; ∂xḡ ¼
Δg
Δf

∂xf̄: ðE17Þ

Furthermore,

∂xf̄ðxÞ ¼ ðΔfÞδ̄ðxÞ: ðE18Þ

The coarse graining that is employed here is purely spatial,
with a kernelG. Because the solutions are stationary in the rest
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frame of the shock, there is no need for temporal coarse
graining.

2. Energy balance

a. Dissipation range

It can be easily shown for stationary shocks of these
RCFs that Qdiss and p � θ exist as distributions separately,
not just in combination. The fine-grained energy balance
equation (9) in the ζ → 0 limit thus reads

∂xðϵγvβvÞ ¼ Qdiss − p � θ: ðE19Þ

We now calculate the two distributions Qdiss and p � θ
appearing above as sources or sinks of the energy density.
Viscous pressure work p � θ: Direct differentiation

yields the dilatation factor

θ ≔ ∂xðγvβvÞ ¼ γ3v∂xβv; ðE20Þ

and making use of the Bernoulli relation (E9) for the
pressure, one obtains

ðD − 1Þpθ ¼
�
fe
βv

− fp

�
γ3v∂xβv: ðE21Þ

It is straightforward to check that the right-hand side of
Eq. (E21) can be expressed as a total x derivative:

ðD − 1Þpθ ¼ d
dx

�
fe ln

�
βv

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2v

p �
þ ðD − 1Þγvβvp

�
:

The distributional limit as ζ → 0 is thus found to be

p � θ ¼ D- limζ→0pθ

¼
�

fe
D − 1

ln

�
β1
β0

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β20

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β21

p �
þ Δ½γvβvp�

	
δðxÞ:

ðE22Þ

Viscous dissipation Qdiss: The simplest approach to
derive Qdiss is to use the fine-grained energy balance

ζθ2 − pθ ¼ ∂xðϵγvβvÞ ðE23Þ

to obtain that, as ζ → 0,

Qdiss − p � θ ¼ Δ½γvβvϵ�δðxÞ: ðE24Þ

From Eqs. (E22) and (E24), we get

Qdiss ¼ D- limζ→0ζθ
2

¼
�

fe
D− 1

ln

�
β1
β0

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− β20

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− β21

p �
þDΔ½γvβvp�

	
δðxÞ:

ðE25Þ

b. Inertial range

The resolved energy in the limit ζ → 0 satisfies

∂xðγvβv ϵ̄Þ ¼ Qflux
l − p̄ θ̄ : ðE26Þ

We now calculate the distributional limit as l → 0 of the
two terms appearing above as sources or sinks.
Inertial pressure work p∘θ: Since γv, βv, and p are all

step functions in the ideal limit, Eq. (E17) gives

p̄∂xγvβv ¼
Δ½γvβv�
Δp

∂x

�
1

2
p̄2

�
:

It follows that

p∘θ ¼ D- liml→0p̄∂xγvβv ¼ pavΔ½γvβv�δðxÞ: ðE27Þ

Note that, as required, this result is completely independent
of the choice of the filter kernel G.
Energy flux Qflux: By the definition in Eq. (64),

Qflux ¼ −D- liml→0ðhuμuνÞ∇μūν

¼ D − liml→0(ðhγ2vβvÞ∂xγv − ðhγ2vβvÞβv∂xγvβv):

Enthalpy can be replaced with pressure using h ¼ D · p.
The balance (E7) with ζ ¼ 0 for both terms then gives, in
the limit l → 0,

Dðpγ2vβvÞ∂xγv ¼ fe∂xγv !D feΔγvδðxÞ;
Dðpγ2vβvÞβv∂xγvβv ¼ feβv∂xγvβv

¼ fe
ΔðγvβvÞ
Δβv

∂xðβv2Þ

!D feΔ½γvβv�βavv δðxÞ;

where Eq. (E17) was used for the second term. Together,
these yield

Qflux ¼ fefΔγv − βavv Δ½γvβv�gδðxÞ: ðE28Þ

We see again that the limiting inertial range result is
independent of the choice of filter kernel G. To compare
this term with those previously calculated, we note that, for
any ideal shock solution, Eq. (E9) implies
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ΔðϵγvβvÞ ¼ feΔγv − fpΔðγvβvÞ; ðE29Þ

and Eq. (E10) with ζ ¼ 0 implies that

pav ¼ fp − feβav: ðE30Þ

These relations can be used to rewrite the formula (E28)
for Qflux as

Qflux ¼ fΔ½γvβvϵ� þ pavΔ½γvβv�gδðxÞ: ðE31Þ

Equations (E27) and (E31) immediately show that

Qflux − p∘θ ¼ Δ½γvβvϵ�δðxÞ; ðE32Þ

as required by the limit of the balance (E26).
The relation (E28) has a further interesting implication

thatQflux < 0 for relativistic Euler shocks with the equation
of state (E1). Using the relation (E12) for the product β0β1,
it is easy to show that

Jðβ0; DÞ ≔ βav
ΔðγvβvÞ
Δγv

¼ 1

2

�
1

γ0γ1
þ D
D − 1

�
; ðE33Þ

which may be regarded as a function of just one of the two
velocities (say, β0) and D. Using the above definition and
Eq. (E28),

Qflux ¼ feΔγv½1 − Jðβ0; DÞ�δðxÞ: ðE34Þ

As noted earlier, positive entropy production at the shock
requires that Δγv < 0, so Qflux < 0 if the second factor
in Eq. (E34) is positive over the range βs < β0 < 1. Direct
calculation of the derivative gives

∂
∂β0 Jðβ0; DÞ ¼ −ðβ40 − β4sÞ

γ0γ1
β30

< 0; ðE35Þ

while

Jðβs; DÞ ¼ 1; Jð1; DÞ ¼ D
2ðD − 1Þ >

1

2
: ðE36Þ

Thus, 1=2 < Jðβ0; DÞ < 1 over the permitted range of β0,
so the second factor in Eq. (E34) remains positive and
Qflux < 0. This is a more extreme version of what occurs
for shocks in a nonrelativistic, compressible Navier-Stokes
fluid, where Qflux ¼ 0 (Appendix A of paper I). In both
cases, irreversible shock heating is not due to energy
cascade, and in the relativistic case, inverse energy cascade
even contributes cooling rather than heating.
Pressure-dilatation defect: By subtracting Eq. (E27)

from Eq. (E22), we find

τðp; θÞ≡ p � θ − p∘θ
¼

�
Δ½γvβvp� − pavΔ½γvβv�

þ fe
D − 1

ln

�
β1
β0

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β20

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β21

p �	
δðxÞ: ðE37Þ

Together with Eqs. (E24) and (E31), this yields

Qdiss ¼ Qflux þ τðp; θÞ: ðE38Þ

The latter equality can also be obtained by comparing the
relations (E24) and (E32), corroborating the general result
(77). Because Qdiss > 0 whereas Qflux < 0, it follows that
τðp; θÞ > 0. Just as for the nonrelativistic shocks discussed
in paper I, the pressure-dilation defect is responsible for the
net irreversible heating at the shock.

3. Entropy balance

a. Dissipation range

The fine-grained entropy balance for stationary solutions
is given simply by

∂xðsγvβvÞ ¼
ζθ2

T
: ðE39Þ

Viscous entropy production: It follow immediately from
the above that, for discontinuous shock solutions,

Σdiss ≔ D- limζ→0

ζθ2

T
¼ Δ½γvβvs�δðxÞ: ðE40Þ

The entropy production anomaly is thus completely inde-
pendent of the details of the molecular dissipation and,
obviously, Σdiss ≥ 0. As already noted in Ref. [21], this
positivity is equivalent to the condition that

1 <
s1γ1β1
s0γ0β0

¼
�
β1γ

D−2
0

β0γ
D−2
1

�
1=D

; ðE41Þ

where Eq. (E14) has been used to obtain the second
expression. This ratio is 1 for β0 ¼ β1 ¼ βs and, considered
as a function of β0 and D, it is shown, by a straightforward
calculation, to have a positive β0-derivative for β0 ≠ βs.
This implies that β0 > βs > β1 is required for positive
entropy production, as claimed earlier.

b. Inertial range

The resolved entropy equation for stationary solutions of
the RCF models is

∂x(s γvβv þβ τ̄ðϵ; γvβvÞ)
¼ Σflux

l þ β(Qdiss − τ̄ðp; θÞ); ðE42Þ
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where Σflux
l ¼ ∂xβ τ̄ðϵ; γvβvÞ. This entropy evolution equa-

tion is considerably simpler than the general Eq. (86) since
λ ¼ 0 and because the pressure is proportional to the energy
density so that Ifluxl ≡ 0.
Inertial-range viscous heating β∘Qdiss: From Eq, (E25),

Qdiss ¼ q�δðxÞ, so

Q̄diss ¼ q�δ̄ðxÞ: ðE43Þ

From the formula (E2), we see that the inverse temperature
β ¼ 1=T satisfies β ¼ α1=Dp−1=D, and thus

β ¼ α1=D
�

ϵ̄

Dþ 1

�
−1=D

¼ α1=Dp̄−1=D: ðE44Þ

Using Eq. (E18) to write δ̄ ¼ ∂xp̄
Δp , we get

βQ̄diss ¼ α1=D
Dq�
D − 1

1

Δp
d
dx

½p̄ðD−1Þ=D� ¼ q�
Δϵ

ds
dx

; ðE45Þ

and therefore, as l → 0,

β∘Qdiss ¼ q�
Δs
Δϵ

δðxÞ: ðE46Þ

Pressure-dilatation defect β∘τðp; θÞ: Our earlier result
in Eq. (E22), that p � θ ¼ qPVδðxÞ, yields, by the same
argument,

D − liml→0βp � θ ¼ qPV
Δs
Δϵ

δðxÞ: ðE47Þ

On the other hand, using Eq. (E44), we have

β p̄ θ̄ ¼ α1=Dp̄
D−1
D ∂xðγvβvÞ ¼

Dα1=D

2D − 1

Δ½γvβv�
Δp

∂x½p̄2D−1
D �:

ðE48Þ

Thus,

D- liml→0β p̄ θ̄ ¼ Dα1=D

2D − 1

Δ½γvβv�
Δp

Δ½p2D−1
D �δðxÞ: ðE49Þ

The following relations are useful and follow directly from
Eqs. (E2) and (E3):

Δ
�
1

T

�
¼ α1=DΔ½p−1=D� ¼ ðD−1Þðs1ϵ0− s0ϵ1Þ

Dϵ0ϵ1
; ðE50Þ

Δ
�
p2

T

�
¼ α1=DΔ½p2D−1

D � ¼ Δ½sϵ�
DðD − 1Þ : ðE51Þ

With these, we have that Imech ¼ β∘τðp; θÞ is given by

β ∘ τðp; θÞ ¼ 1

Δϵ

�
qPVΔs −

Δ½γvβv�Δ½sϵ�
2D − 1

�
δðxÞ: ðE52Þ

Combined contribution β ∘Qdiss − β ∘ τðp; θÞ: From
Eq. (E24), we obtain

q� − qPV ¼ Δ½γvβvϵ�: ðE53Þ

Thus, the combined contribution of these terms is simply

β ∘Qdiss − β ∘ τðp; θÞ
¼ 1

Δϵ

�
ΔsΔ½γvβvϵ� þ

Δ½γvβv�Δ½sϵ�
2D − 1

�
δðxÞ: ðE54Þ

Negentropy flux Σflux
l : First, we consider the contribution

ð∂xβÞϵγvβv. From Eq. (E44), we have

∂xβ ¼ −
α1=D

D
p̄−Dþ1

D ∂xp̄: ðE55Þ

Using Eq. (E16) to write

ϵγvβv ¼ ϵ0γ0β0 þ
ΔðϵγvβvÞ

Δp
ðp̄ − p0Þ; ðE56Þ

a straightforward calculation shows

ð∂xβÞϵγvβv !D −
1

D
ΔsΔ½γvβvϵ�

Δϵ
δðxÞ

−
�
Δ½γvβvϵ� − γ0β0Δϵ

Δϵ

�
ϵ0α

−1=DΔ½p−1=D�δðxÞ: ðE57Þ

The other term is computed likewise using

ð∂xβÞϵ̄ γvβv
¼ −α1=D

D − 1

D
p̄−1

D∂xp̄

�
γ0β0 þ

Δ½γβ�
Δp

ðp̄ − p0Þ
�
;

ðE58Þ

where, after some calculation, one has

ð∂xβÞϵ̄ γvβv !D −α1=D
ðD − 1Þ2
2D − 1

Δ½γvβv�
Δϵ

Δ½pð2D−1Þ=D�δðxÞ

þ 1

D

�
Δ½γvβv�ϵ0 − γ0β0Δϵ

Δϵ

�
ΔsδðxÞ: ðE59Þ

Therefore, Eqs. (E57) and (E59) in combination show
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Σflux ≔ D- liml→0∂xβ τ̄ðϵ; γvβvÞ

¼ α1=D
ðD − 1Þ2
2D − 1

Δ½γvβv�
Δϵ

Δ½pð2D−1Þ=D�δðxÞ

−
1

D
ðΔ½γvβv�ϵ0 − γ0β0Δϵþ Δ½γvβvϵ�Þ

Δs
Δϵ

δðxÞ

− α1=D
�
Δ½γvβvϵ� − γ0β0Δϵ

Δϵ

�
ϵ0Δ½p−1=D�δðxÞ:

ðE60Þ

The relations (E50) and (E51) can then be employed to
simplify the expression for the flux to

Σflux ¼
1

Δϵ

�
ðϵ1s0 − ϵ0s1ÞΔ½γvβv� −

Δ½γvβv�Δ½sϵ�
2D − 1

	
δðxÞ:

ðE61Þ

Adding together the formulas (E54) and (E61), one has,
after minor manipulation, that

β ∘Qdiss − β ∘ τðp; θÞ þ Σflux ¼ Δ½γvβvs�δðxÞ; ðE62Þ

in agreement with Eq. (E42) and the dissipation-range
result (E40), as demanded by the general equality Eq. (98).
A further implication of the formula (E61) for entropy

flux is that Σflux > 0 at these relativistic Euler shocks.
Although not presented here, arguments like those applied
to Qflux show this result and are confirmed by numerically
plotting Eq. (E61) as a function of R for each D > 2. It is
interesting that Σflux > 0 was also found for planar shock
solutions of nonrelativistic compressible Euler equations
in paper I. In both cases, there is a forward cascade of
negentropy at the shock, even though the energy flux is
vanishing or negative.
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