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Finding quantitative aspects of quantum phenomena which cannot be explained by any classical model
has foundational importance for understanding the boundary between classical and quantum theory. It also
has practical significance for identifying information processing tasks for which those phenomena provide
a quantum advantage. Using the framework of generalized noncontextuality as our notion of classicality,
we find one such nonclassical feature within the phenomenology of quantum minimum-error state
discrimination. Namely, we identify quantitative limits on the success probability for minimum-error state
discrimination in any experiment described by a noncontextual ontological model. These constraints
constitute noncontextuality inequalities that are violated by quantum theory, and this violation implies a
quantum advantage for state discrimination relative to noncontextual models. Furthermore, our non-
contextuality inequalities are robust to noise and are operationally formulated, so that any experimental
violation of the inequalities is a witness of contextuality, independently of the validity of quantum theory.
Along the way, we introduce new methods for analyzing noncontextuality scenarios and demonstrate a
tight connection between our minimum-error state discrimination scenario and a Bell scenario.
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I. INTRODUCTION

Understanding the boundary between the quantum and
the classical is of fundamental importance for understand-
ing quantum theory. One successful metric for nonclassi-
cality, violation of Bell’s notion of local causality [1],
defines a clear departure from classicality in relativistic
theories, but is relevant only for experiments with spacelike
separated measurements. Another notion of classicality,
which concerns context independence, was proposed by
Kochen-Specker [2] and Bell [3], and has since been
significantly refined and generalized [4]. It is the general-
ized notion of noncontextuality from Ref. [4] which we
study in this paper, but we refer to it simply as “non-
contextuality” hereafter. As a metric for nonclassicality, the
failure of noncontextuality has a broader scope than the
failure of local causality insofar as it does not require
spacelike separation. It has also been shown to subsume
many other preexisting notions of nonclassicality, such as
the negativity of quasiprobability representations [5], the
generation of anomalous weak values [6], and even the
aforementioned violations of local causality [4].

The quantum-classical boundary is also of practical
importance in identifying tasks which admit of a quantum
advantage. For example, violations of Bell inequalities
have been shown to be a resource for device-independent
key distribution [7], certified randomness [8], and commu-
nication complexity [9]. The failure of noncontextuality has
also been shown to be a resource, leading to advantages for
cryptography [10–12] and computation [13–15].
We here analyze minimum-error state discrimination

(MESD) from the point of view of noncontextuality.
Quantum state discrimination is a task wherein one must
guess which quantum state describes a given quantum
system when the state of that system is drawn from a known
set of possibilities with a known prior distribution, and the
estimation is based on the outcome of a measurement of
one’s choosing. In the “minimum-error” variety of state
discrimination, the objective is to minimize the probability
that the estimate is in error. We here focus on the simplest
case of a set containing just two states having equal a priori
probability.
Although it is common to assert that the impossibility of

perfectly discriminating nonorthogonal quantum states is
an intrinsically nonclassical effect, this claim does not meet
the minimal standard that one should require of any claim
that some operational feature of quantum theory cannot
be explained classically: namely, that it be justified by a
rigorous no-go theorem. Such a theorem articulates a
principle of classicality which has implications for opera-
tional statistics, and then proves that these implications are
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inconsistent with some operational feature(s) of quantum
theory. Because the principle of noncontextuality con-
strains operational statistics and also has very broad scope,
it is a particularly useful notion of classicality. If one does
take it as one’s principle of classicality, then the impos-
sibility of discriminating nonorthogonal pure quantum
states cannot be considered a nonclassical effect because
there are subtheories of quantum theory (containing a strict
subset of the states, measurements, and transformations of
the full theory) [16] wherein this phenomenon arises and
which admit of a noncontextual model. (Within such
models, the phenomenon can be attributed to the fact that
the probability distributions associated to such quantum
states are overlapping [17].) It follows that one must look at
more nuanced aspects of the phenomenology of quantum
state discrimination to identify features which are truly
nonclassical according to this principle.
We identify one such strongly nonclassical aspect of

minimum-error state discrimination: the particular depend-
ence of the probability of successful discrimination on the
overlap of the quantum states. For a given overlap, the
quantum probability of discrimination is larger than can be
accounted for by a noncontextual model. After presenting
this result as a no-go theorem—that no noncontextual
model can reproduce certain features of quantum MESD—
we reformulate the problem in a manner which makes no
reference to quantum theory, and which does not rely on
any theoretical idealizations such as noise-free measure-
ments or preparations. Our entirely operational formulation
allows us to derive inequalities which can experimentally
witness a contextual advantage for state discrimination, in
the presence of noise and independently of the validity of
quantum theory.
Our result identifies a key feature of quantum state

discrimination which cannot be understood in any non-
contextual model, and hence which is strongly nonclass-
ical. Because quantum state discrimination is a primitive in
many important quantum information processing protocols
[19,20], this work constitutes a first step towards identify-
ing contextuality as a resource for more tasks concerning
communication, computation, and cryptography.
We also prove an isomorphism between our operational

MESD scenario and a two-party Bell test in which one
party performs one of a pair of binary-outcome measure-
ments and the other performs one of three binary-outcome
measurements. This is similar to the fact that the non-
contextuality inequality delimiting the success rate for
parity-oblivious multiplexing [10] is isomorphic to the
Clauser-Horne-Shimony-Holte (CHSH) inequality in the
Bell scenario [10].
Finally, we introduce two powerful new technical tools.

First, we generalize existing methods for simulating exact
operational equivalences [21]. Namely, while Ref. [21]
shows how one may find a set of procedures which respects
certain operational equivalences exactly, we further

demonstrate that one can find procedures which respect
operational equivalences and simultaneously obey useful
auxiliary constraints, such as the symmetries native to our
ideal MESD scenario. This tool may have more general
applications in the comparison of experimental data with
theoretical expectations. More importantly, we find our
noncontextuality inequalities using a novel algorithm (pre-
sented in Appendix B) for deriving the full set of necessary
and sufficient noncontextuality inequalities for any finite
prepare-and-measure scenario, with respect to any fixed
operational equivalences (a full description of this algorithm
can be found in Ref. [22]).

II. OPERATIONAL THEORIES AND
ONTOLOGICAL MODELS

An operational theory is a specification of sets of
primitive laboratory operations (e.g., preparations and
measurements) and a prescription for finding the proba-
bilities pðkjM;PÞ for each outcome k given any measure-
mentM performed on any preparation P. Two preparations
P and P0 are termed operationally equivalent if they cannot
be differentiated by the statistics of any measurement; we
denote this operational equivalence by

P≃ P0: ð1Þ
In this article, quantum theory is understood as an opera-
tional theory. In the quantum formalism, the density
operator specifies the statistics for all measurements, so
that two preparation procedures are operationally equiv-
alent if and only if they are represented by the same density
operator.
An ontological model of an operational theory has the

following form. To every system, there is associated an
ontic state space Λ, where each ontic state λ ∈ Λ specifies
all the physical properties of the system. Each preparation
P of a system is presumed to sample the system’s ontic state
λ at random from a probability distribution, denoted μPðλÞ
and termed the epistemic state associated to P, where

∀λ∶ 0 ≤ μPðλÞ; ð2Þ
Z
Λ
dλμPðλÞ ¼ 1: ð3Þ

Each measurement M on a system is presumed to have its
outcome k sampled at random in a manner that depends on
the ontic state λ. The term effect is used to refer to the pair
consisting of a measurement M, together with one of its
outcomes k, and is denoted by kjM. The probability of
outcome k given measurement M, considered as a function
of λ, is termed the response function associated to kjM, and
denoted ξkjMðλÞ, where

∀λ;∀k∶ 0 ≤ ξkjMðλÞ; ð4Þ
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∀λ∶ X
k

ξkjMðλÞ ¼ 1: ð5Þ

Finally, an ontological model of an operational theory must
reproduce the latter’s empirical predictions; that is,

pðkjM;PÞ ¼
Z
Λ
dλξkjMðλÞμPðλÞ: ð6Þ

We are now in a position to describe the assumption
of preparation noncontextuality defined in Ref. [4]. An
ontological model is said to be preparation noncontextual
if it assigns the same epistemic state to all operationally
equivalent preparations [4]:

P≃ P0 ⇒ μPðλÞ ¼ μP0 ðλÞ: ð7Þ
In operational quantum theory, the principle of preparation
noncontextuality is respected whenever any two prepara-
tions that are associated to the same density operator are
represented by the same epistemic state. For instance,
different ensembles of states that average to the same
mixed state (and for which one discards the information
about which element of the ensemble was prepared) are
operationally equivalent, and must be assigned the same
epistemic state in a preparation-noncontextual model.
Although there is a corresponding notion of measure-

ment noncontextuality (namely, that operationally equiv-
alent outcomes of measurements are represented by the
same response functions), we do not require its use in this
article.
A few terminological conventions are useful. A meas-

urement is said to be represented as outcome-deterministic
in the ontological model if the associated response func-
tions all take values in f0; 1g. The support of an epistemic
state is defined as the set of λ ∈ Λ which are assigned
nonzero probability by it, supp½μPðλÞ�≡ fλ∶μPðλÞ ≠ 0g,
while the support of a response function is defined as the
set of λ ∈ Λ for which the response function is non-
zero, supp½ξkjMðλÞ�≡ fλ∶ξkjMðλÞ ≠ 0g.

III. QUANTUM MINIMUM-ERROR STATE
DISCRIMINATION

We begin with the problem of discriminating two non-
orthogonal pure quantum states jϕi and jψi. These two
states span a two-dimensional space, so we can represent
them as points in an equatorial plane of the Bloch ball, as
in Fig. 1.
First, we consider the operational signature of their

nonorthogonality. A measurement of the ϕ basis, Bϕ≡
fjϕihϕj; jϕ̄ihϕ̄jg, perfectly distinguishes between state jϕi
and its complement; we denote the associated outcomes
by ϕ and ϕ̄, respectively. A measurement of the ψ basis,
Bψ ≡ fjψihψ j; jψ̄ihψ̄ jg, does the same for the state jψi
and its complement, with associated outcomes ψ and ψ̄ .
If one implements the ψ basis measurement on the state ϕ,
the probability of obtaining the ψ outcome is

cq ¼ Tr½jϕihϕjψihψ j� ¼ jhϕjψij2: ð8Þ

Because one could think of this quantity as the probability
that ϕ passes the test for ψ and thus is confusable with ψ ,
we henceforth call it the confusability. Note that if one
implements the ϕ basis measurement on the state ψ , the
probability of obtaining the ϕ outcome is also cq.
Second, we consider the operational probability of

success at MESD for these states. If jϕi and jψi have
nonzero confusability (i.e., if they are not orthogonal), then
no measurement can distinguish between the two without
incurring a nonzero probability of error. We denote the
discriminating measurement by Bd ≡ fEgϕ ; Egψg, where
the outcome for which one should guess ϕ (ψ) is denoted
gϕ (gψ ). Assuming equal prior probabilities of jϕi and jψi,
the probability of guessing the state correctly with this
measurement is

sq ≡ 1

2
Tr½Egϕ jϕihϕj� þ

1

2
Tr½Egψ jψihψ j�: ð9Þ

We assume that the discriminating measurement has the
natural symmetry property Tr½Egϕ jϕihϕj� ¼ Tr½Egψ jψihψ j�,
so that

sq ¼ Tr½Egϕ jϕihϕj� ¼ Tr½Egψ jψihψ j�: ð10Þ

The measurement scheme that yields the greatest proba-
bility of guessing correctly which of two nonorthogonal
states was prepared is called the minimum-error state
discrimination scheme. Since jϕi and jψi are prepared with
equal probability, the measurement fEgϕ ; Egψg achieving
MESD is the one consisting of projectors onto the basis that
straddles jϕi and jψi in Hilbert space, which is depicted in
the Bloch sphere in Fig. 1. This is called the Helstrom
measurement [23]. It is well known that the probability of
guessing the state correctly using the Helstrom measure-
ment is

FIG. 1. The quantum states and measurements in our scenario,
depicted as Bloch vectors in an equatorial plane of the Bloch ball.
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sq ¼
1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhϕjψij2

q
Þ ¼ 1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cq

q
Þ: ð11Þ

We have now described all of the preparations and
measurements that usually appear in a discussion of the
problem of discriminating two nonorthogonal quantum
states, and some basic facts about the relations that hold
among the operational quantities characterizing the dis-
crimination problem (i.e., facts about the phenomenology
of quantum state discrimination). However, these facts are
insufficient for deriving a no-go theorem for noncontex-
tuality. The reason is that the preparations and measure-
ments described thus far do not exhibit any operational
equivalences via which the assumption of noncontextuality
could imply nontrivial constraints on the ontological
model.
However, there is a simple solution: we also consider the

problem of discriminating the pair of quantum states that
are complementary to jϕi and jψi, namely, jϕ̄i and jψ̄i,
also depicted in Fig. 1. By symmetry, the confusability of
jϕ̄i and jψ̄i is also equal to cq, and the success rate for
distinguishing jϕ̄i and jψ̄i when they have equal prior
probability is also equal to sq (where the optimal meas-
urement is again fEgϕ ; Egψg, but now the outcomes gϕ and

gψ signal one to guess preparations jψ̄i and jϕ̄i, respec-
tively). So the jϕ̄i vs jψ̄i discrimination problem is a mirror
image of the jϕi vs jψi discrimination problem, and
consequently does not require specifying any additional
facts about the phenomenology of quantum state discrimi-
nation. However, the inclusion of jϕ̄i and jψ̄i in our
analysis provides us with a nontrivial operational equiv-
alence relation among the preparations, namely,

1

2
jϕihϕj þ 1

2
jϕ̄ihϕ̄j ¼ 1

2
jψihψ j þ 1

2
jψ̄ihψ̄ j ¼ 1

2
: ð12Þ

We show that this equivalence relation together with
the phenomenology of quantum state discrimination
described above is sufficient to derive a no-go theorem
for noncontextuality.
The probability of a given measurement outcome occur-

ring on a given preparation, for every possible pairing
thereof, is summarized in Table I. Here, the columns
correspond to the distinct state preparations and the rows
correspond to the distinct effects (where one need
only include a single effect for each binary-outcome

measurement given that the probability for the other effect
is fixed by normalization).

IV. NONCONTEXTUALITY NO-GO THEOREM
FOR MESD IN QUANTUM THEORY

The fact that the ontological model must reproduce the
probabilities in Table I via Eq. (6) implies constraints on
the epistemic states associated to the four preparations
and the response functions associated to the three effects.
For instance, to reproduce the first column of the table,
one requires that

Z
Λ
dλξϕjBϕ

ðλÞμϕðλÞ ¼ 1; ð13Þ
Z
Λ
dλξψ jBψ

ðλÞμϕðλÞ ¼ cq; ð14Þ
Z
Λ
dλξgϕjBd

ðλÞμϕðλÞ ¼ sq: ð15Þ

Given that convex mixtures of preparations are repre-
sented in an ontological model by the corresponding
mixture of epistemic states [see Eq. (7) of Ref. [5] and
the surrounding discussion], it follows that 1

2
jϕihϕj þ

1
2
jϕ̄ihϕ̄j is represented by 1

2
μϕðλÞ þ 1

2
μϕ̄ðλÞ, and 1

2
jψihψ j þ

1
2
jψ̄ihψ̄ j is represented by 1

2
μψ ðλÞ þ 1

2
μψ̄ ðλÞ. But because

both of these mixtures of preparations are associated to the
completely mixed state [Eq. (12)], they are operationally
equivalent, and thus by the assumption of preparation
noncontextuality, they are represented by the same episte-
mic state. It follows that

1

2
μϕðλÞ þ

1

2
μϕ̄ðλÞ ¼

1

2
μψðλÞ þ

1

2
μψ̄ðλÞ: ð16Þ

Any ontological model satisfying noncontextuality, and
consequently Eq. (16), and reproducing the form of the data
in Table I, and consequently Eqs. (13)–(15) and their kin,
can be shown to satisfy the following trade-off between sq
and cq:

sq ≤ 1 −
cq
2
: ð17Þ

An intuitive proof is provided in Section IVA, where we
also discuss how this result is related to the results of
Refs. [24–26]. (In Appendix A, we provide a proof using
more general methods, which generalizes more easily to the
noisy case discussed later, in Sec. VI.)
This trade-off relation contradicts the one known to be

optimal in quantum theory, Eq. (11). The optimal quantum
trade-off generally allows higher success rates for a given
confusability than the noncontextual trade-off. Therefore,
we conclude that the phenomenology of minimum-error

TABLE I. Data table in the ideal quantum case.

jϕi jψi jϕ̄i jψ̄i
jϕihϕj 1 cq 0 1 − cq
jψihψ j cq 1 1 − cq 0
Egϕ sq 1 − sq 1 − sq sq
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state discrimination in the noiseless quantum case is
inconsistent with the principle of noncontextuality.
In Fig. 2, we plot the maximum success rate for MESD

as a function of the confusability for both quantum theory
[Eq. (11)] and for a noncontextual model [the trade-off that
saturates the inequality of Eq. (17)].

A. Intuitive proof of the noncontextual trade-off

We now introduce some basic facts from classical prob-
ability theory, which we then leverage to prove Eq. (17).
Suppose that a classical variable λ has been sampled

from one of two overlapping probability distributions,
pðλjaÞ and pðλjbÞ. Absent additional information, it is
straightforward to see that in trying to guess which of the
two distributions a given λ was drawn from, one cannot do
better than guessing “distribution a” for the values of λ for
which pðajλÞ > pðbjλÞ, and guessing “distribution b”
when the opposite is true. [Of course, it is irrelevant what
one guesses for the values of λ for which pðajλÞ ¼ pðbjλÞ.]
In the special case we are considering, with equal prior
probability pðaÞ ¼ pðbÞ ¼ 1

2
for the two options, if we

perform a Bayesian inversion, we find pðλjaÞ > pðλjbÞ if
and only if pðajλÞ > pðbjλÞ, and hence one should guess
distribution a for the values of λ for which pðλjaÞ > pðλjbÞ,
and guess distribution b when the opposite is true.
The probability that the guess g ∈ fa; bg was correct

given a particular value of λ is simply pðgjλÞ. Since we
always guess the distribution a or b that has the higher
likelihood of being correct, the probability that we are right
in each run is simply maxfpðajλÞ; pðbjλÞg. On average,
then, the success probability r is

r ¼
Z
Λ
dλpðλÞmaxfpðajλÞ; pðbjλÞg ð18Þ

¼
Z
Λ
dλpðλÞ½1 −minfpðajλÞ; pðbjλÞg� ð19Þ

¼ 1 −
Z
Λ
dλminfpðajλÞpðλÞ; pðbjλÞpðλÞg ð20Þ

¼ 1 −
Z
Λ
dλminfpðλjaÞpðaÞ; pðλjbÞpðbÞg ð21Þ

¼ 1 −
1

2

Z
Λ
dλminfpðλjaÞ; pðλjbÞg; ð22Þ

where the equality in Eq. (19) uses the fact that pðajλÞ þ
pðbjλÞ ¼ 1 for all λ. The quantity

R
Λ dλminfpðλjaÞ;

pðλjbÞg is termed the classical overlap of the probability
distributions pðλjaÞ and pðλjbÞ.
In a MESD scenario, the task is to guess, in each

particular run of the experiment, whether a system was
prepared by state preparation jϕi or by state preparation
jψi. If the experiment is described by an ontological model,
then this task corresponds to guessing, from a single sample
of the ontic state λ of the system, whether it was sampled
from the distribution μϕðλÞ or from μψ ðλÞ. Given that we do
not assume any operational equivalence relations among
the measurements in the experiment, the assumption of
measurement noncontextuality does not place any con-
straints on the ontological representation of the measure-
ments. Therefore, in particular, the Helstrom measurement
is at best represented in the ontological model by the set of
response functions that yield the maximum probability of
guessing which distribution the ontic state λ was sampled
from. From our discussion concerning two overlapping
classical probability distributions, it is clear that this
corresponds to a measurement that returns the gϕ outcome
whenever μϕðλÞ > μψðλÞ and the gψ outcome whenever
μϕðλÞ < μψðλÞ, and that the probability of guessing cor-
rectly based on the outcome of the Helstrom measurement
is upper bounded as follows [27]:

sq ≤ 1 −
1

2

Z
Λ
dλminfμϕðλÞ; μψðλÞg: ð23Þ

We now show that in a noncontextual model,

cq ¼
Z
Λ
dλminfμϕðλÞ; μψ ðλÞg; ð24Þ

so that substituting Eq. (24) into Eq. (23), we infer that
sq ≤ 1 − ðcq=2Þ, the noncontextual bound on the trade-off
between sq and cq described in Eq. (17).
First, in any preparation-noncontextual model the

response function ξiðλÞ for a projector onto pure state jii
satisfies

ξiðλÞ ¼
�
1 if λ ∈ supp½μiðλÞ�
0 otherwise:

ð25Þ

This outcome determinism for sharp measurements was
first proven in Ref. [4]. It can be seen by considering the
projector as part of some projective measurement M with
effects fEi ¼ jiihijg, and the corresponding basis of pure

FIG. 2. Optimal trade-off for a noncontextual (NC) model
(purple line) and for quantum theory (light blue curve).
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states fρi ¼ jiihijg, so that Tr½Eiρj� ¼ δi;j. Denoting the
epistemic state of ρj as μjðλÞ and the response function for
Ei as ξijMðλÞ, this implies that

R
μjðλÞξijMðλÞdλ ¼ δi;j.

Because μjðλÞ is a normalized probability distribution, this
implies that, for any ontological model,

ξijMðλÞ ¼
�

1 if λ ∈ supp½μiðλÞ�
0 if λ ∈ supp½μj≠iðλÞ�:

ð26Þ

Equation (26) is not equivalent to Eq. (25), since there may
exist ontic states that are not in the support of any of the
μiðλÞ, and Eq. (26) does not constrain such ontic states in
any way. In a preparation-noncontextual model, however,
we can furthermore show that there are no ontic states
outside of the union of the supports of the set of basis
states, ∪isupp½μiðλÞ�, as follows. Every density operator ρ
appears in some decomposition of the maximally mixed
state ð1=dÞ1. By preparation noncontextuality, every such
decomposition has the same distribution μð1=dÞ1ðλÞ over
ontic states. Thus, every ontic state in the support of the
corresponding μρðλÞ also appears in the support of
μð1=dÞ1ðλÞ, so the full state space Λ is equivalent to
supp½μð1=dÞ1ðλÞ�. Furthermore, for the basis of states fρig
above, ð1=dÞPiρi ¼ ð1=dÞ1, so preparation noncontex-
tuality implies that

P
ið1=dÞμiðλÞ ¼ μð1=dÞ1ðλÞ, and there-

fore ∪isupp½μiðλÞ� ¼ supp½μð1=dÞ1ðλÞ� ¼ Λ. Thus, every
ontic state λ must be in the support of exactly one of
the ρi, and Eq. (26) can be strengthened to Eq. (25).
Recalling the expression for the confusability of

quantum states jϕi and jψi in an ontological model,
cq ¼

R
Λ dλξϕjBϕ

ðλÞμψ ðλÞ, Eq. (25) implies that for a prepa-
ration-noncontextual model

cq ¼
Z
supp½μϕðλÞ�

dλμψ ðλÞ: ð27Þ

By virtue of the symmetry of the problem, the analogous
expression with the roles of ϕ and ψ reversed also holds.
The fact that the expression for the ideal confusability cq ¼
jhϕjψij2 of ϕ and ψ in a preparation-noncontextual model
is given by Eq. (27) was noted by Leifer and Maroney [25].
The second implication of preparation noncontextuality

which we require to prove Eq. (24) is that for each of the
four quantum states Ψ ∈ fϕ;ψ ; ϕ̄; ψ̄g, μΨðλÞ ¼ 2μ1

2
ðλÞ

for all λ ∈ supp½μΨðλÞ�, where μ1
2
ðλÞ is the distribution

associated with the maximally mixed state 1
2
. This was also

first proven in Ref. [4], and follows immediately from
preparation noncontextuality, 1

2
μϕðλÞþ 1

2
μϕ̄ðλÞ¼ 1

2
μϕðλÞþ

1
2
μϕ̄ðλÞ¼ μ1

2
ðλÞ, and the fact that an ontic state can be in the

support of at most one state from a set of orthogonal states;
that is, μϕðλÞμϕ̄ðλÞ ¼ 0 and μψðλÞμψ̄ðλÞ ¼ 0.

Hence, for all λ ∈ supp½μϕðλÞ� ∩ supp½μψ ðλÞ�, we have
μϕðλÞ ¼ μψ ðλÞ ¼ 2μ1

2
ðλÞ. It follows that minfμϕðλÞ;

μψðλÞg ¼ μϕðλÞ ¼ μψðλÞ for all λ ∈ supp½μϕðλÞ� ∩
supp½μψðλÞ�, and is equal to 0 everywhere else, and
consequently

Z
supp½μϕðλÞ�

dλμψðλÞ

¼
Z
supp½μϕðλÞ�∩supp½μψ ðλÞ�

dλμψðλÞ

¼
Z
supp½μϕðλÞ�∩supp½μψ ðλÞ�

dλminfμϕðλÞ; μψ ðλÞg

¼
Z
Λ
dλminfμϕðλÞ; μψðλÞg: ð28Þ

Finally, Eqs. (27) and (28) together imply Eq. (24), which is
what we sought to prove.

B. Graphical summary of the proof

The intuitive proof is best summarized graphically, by
contrasting a preparation-contextual ontological model,
Fig. 3, with a preparation noncontextual ontological model,
Fig. 4. For visual simplicity, we have chosen a continuous,
one-dimensional, bounded ontic state space. We arrange

FIG. 3. In a contextual model of a MESD scenario: (a)–(f)
epistemic states, (g) classical overlap between μϕðλÞ and μψ ðλÞ,
(h) response function ξϕjBϕ

ðλÞ, with indication of Λϕ ≡
supp½μϕðλÞ� and Λϕ̄ ≡ supp½μϕ̄ðλÞ�, (i) confusability defined by
ξϕjBϕ

ðλÞ, also with indication of Λϕ and Λϕ̄.
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the state space into a circle, so that each point on the circle
is a unique ontic state, and epistemic states are represented
as probability distributions on the surface of the circle
(where the probability density corresponds to the radial
height). In each figure, we show the epistemic states for the
four preparations and for the two mixed preparations, the
classical overlap for two epistemic states, a representative
response function, and the confusability generated by that
response function. We then show that in the contextual
model, the classical overlap and confusability can differ,
while in the noncontextual model, they must be identical.
In the ontological model of a MESD scenario shown in

Fig. 3, the distributions 1
2
μϕðλÞ þ 1

2
μϕ̄ðλÞ and 1

2
μψðλÞ þ

1
2
μψ̄ðλÞ are not identical; hence, this model is preparation-

contextual. The classical overlap
R
Λ dλminfμϕðλÞ; μψ ðλÞg

is equal to the area of the shaded region in Fig. 3(g). The
response function ξϕjBϕ

ðλÞmust have value 0 on the support
of μϕ̄ðλÞ and value 1 on the support of μϕðλÞ, as pictured in
Fig. 3(h); however, in the region outside both of these
supports, its value is arbitrary, as indicated schematically.
Given the response function pictured, the confusability
cq ¼

R
Λ dλξϕjBϕ

ðλÞμψ ðλÞ equals the area of the shaded
region in Fig. 3(i). One can clearly see that the classical
overlap and the confusability need not be the same in a
preparation-contextual model.
In the ontological model of a MESD scenario shown in

Fig. 4, the distributions 1
2
μϕðλÞ þ 1

2
μϕ̄ðλÞ and 1

2
μψðλÞ þ

1
2
μψ̄ðλÞ are identical; hence, this model is preparation-

noncontextual. Furthermore, these two distributions are
equal to the unique distribution μ1

2
ðλÞ (whose support must

span the entire ontic state space), and the epistemic states
μϕðλÞ, μϕ̄ðλÞ, μψ ðλÞ, and μψ̄ðλÞ must both be equal on their
support to 2μ1

2
ðλÞ. Thus, in a preparation-noncontextual

model, the classical overlap is given simply by the integral
of 2μ1

2
ðλÞ in the region of common support, as shown by the

shaded region in Fig. 4(g). Furthermore, preparation non-
contextuality implies that the response function ξϕjBϕ

ðλÞ is 1
on the support of μϕðλÞ and 0 on all other ontic states, as
shown in Fig. 4(h). Given this form for the response function,
the confusability cq ¼

R
Λ dλξϕjBϕ

ðλÞμψðλÞ is given by the
area of the shaded region in Fig. 4(i). Clearly, the classical
overlap and the confusability are identical in a preparation-
noncontextual model.

C. Relation to previous work

Leifer and Maroney [25] consider the assumption that
Eq. (27) should hold for every possible pair of quantum
states ϕ and ψ as a constraint on ontological models that is
worthy of investigation in its own right. They term
ontological models that satisfy this assumption maximally
ψ-epistemic. As we note in Sec. IVA (and as demonstrated
in their Letter), this assumption follows from prepara-
tion noncontextuality (and hence from universal noncon-
textuality). However, Leifer and Maroney investigate
the consequences of making the assumption of maximal
ψ-epistemicity without also assuming other consequences
of universal noncontextuality, in particular, without assum-
ing other consequences of preparation noncontextuality.
They establish their no-go theorem for maximal

ψ-epistemicity (and hence for universal noncontextuality)
by demonstrating that maximal ψ-epistemicity implies the
Kochen-Specker notion of noncontextuality (which is meas-
urement noncontextuality together with the assumption of
outcome determinism for sharp measurements), and then
relying on the fact that quantum theory does not admit of a
Kochen-Specker noncontextual model (the Kochen-Specker
theorem).
Both our article and theirs explore senses in which a pair

of quantum states may be said to be “indistinguishable,”
and to what extent some operational counterpart of this
indistinguishability can be explained in an ontological
model satisfying certain properties. But there are key
differences. As we have noted, the property of ontological
models that we focus on is different: we consider the
assumption of universal noncontextuality rather than just
maximal ψ -epistemicity [29]. The more important differ-
ence between our work and that of Leifer and Maroney,
however, is in how we operationalize the notion of
indistinguishability.
To explain the difference, it is useful to highlight two

distinct facts about a pair of nonorthogonal pure quantum
states [i.e., a pair jψi and jϕi for which jhψ jϕij2 > 0]:

FIG. 4. In a noncontextual model of an MESD scenario: (a)–(f)
epistemic states, (g) classical overlap between μϕðλÞ and μψ ðλÞ,
(h) response function ξϕjBϕ

ðλÞ, with indication of Λϕ ≡
supp½μϕðλÞ� and Λϕ̄ ≡ supp½μϕ̄ðλÞ�, (i) confusability defined by
ξϕjBϕ

ðλÞ, also with indication of Λϕ and Λϕ̄.
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(i) they are not perfectly discriminable, which is to say
that there is no quantum measurement that achieves zero
error in the discrimination task, formalized as sq > 0, and
(ii) they are confusable, which is to say that the ideal
quantum measurement that tests for being in the state jϕi
has a nonzero probability of being passed by the state jψi,
and similarly for jϕi and jψi interchanged, formalized as
cq > 0.
The determination of the maximum probability of

discrimination for a given confusability, that is, the optimal
trade-off relation that holds between sq and cq, is one of the
central results in the field of quantum state estimation. Our
work seeks to determine constraints on this trade-off
relation from assumptions about the ontological model.
Leifer and Maroney, by contrast, do not consider this

trade-off relation, nor the expression for the discrimina-
bility of quantum states. Rather, they address (and answer
in the negative) the question of whether the degree of
confusability of nonorthogonal pure quantum states can be
given a particular expression in the ontological model,
namely, that of Eq. (27), which asserts that the test
associated to the state jϕi is a test for whether the ontic
state λ is inside the ontic support of the distribution
representing jϕi [30]. While the expression for the con-
fusability of two quantum states is a feature of their
indistinguishability, it is not one that has previously been
of interest in the field of quantum state estimation.
Thus, whereas Leifer and Maroney show the impossibil-

ity of a particular ontological expression for the confus-
ability from a known no-go result for Kochen-Specker
noncontextuality (the Kochen-Specker theorem), we begin
with the native phenomenology of minimum-error state
discrimination (the quantum trade-off between sq and cq),
and we derive a novel no-go result for universal non-
contextuality from it.
The form of the trade-off relation between discrimina-

bility and confusability has relevance for quantum infor-
mation processing tasks that make use of minimum-error
state discrimination. For instance, it is used in Ref. [32]
to derive the trade-off relation between concealment and
bindingness in quantum bit commitment protocols [33,34],
and such protocols can be used as subroutines in protocols
for other tasks, such as strong coin flipping [32,35]. It has
also been used in the analysis of quantum protocols for the
task of oblivious transfer [36]. Our results may be useful,
therefore, in determining whether or not the failure of
universal noncontextuality is a resource for such tasks.
Note that because MESD for two pure quantum states is

a phenomenon occurring in a two-dimensional Hilbert
space (the subspace spanned by the two states) while the
Kochen-Specker theorem can be proven only in Hilbert
spaces of dimension three or greater, there is no possibility
of leveraging facts about Kochen-Specker-uncolorable sets
to infer anything about which aspects of MESD resist
explanation within a universally noncontextual model [37].

A final crucial advantage of our approach over that of
Ref. [25] is that it can be used to derive noncontextuality
inequalities that are noise robust and hence experimentally
testable, as we show in the next section. Noise robustness is
critical if one hopes to leverage contextuality as a resource
in real (hence, noisy) implementations of information
processing protocols.

V. DEALING WITH NOISE

It is important to recognize that the inequality of Eq. (17)
is not experimentally testable. To clarify this point, we first
draw a distinction between noncontextuality no-go results
and noncontextuality inequalities. A noncontextuality no-
go result is a proof that no noncontextual model can
reproduce certain predictions of quantum theory; as such,
a no-go result can contain idealizations (such as perfect
correlations) which are justified by quantum theory but
which never hold in real experiments. In some cases (as
above), a no-go result may derive an inequality on the way
to deriving a logical contradiction, but such an inequality
may not qualify as a proper noncontextuality inequality. In
our usage, a noncontextuality inequality makes no refer-
ence to the quantum formalism and must not invoke
idealized assumptions in its derivation. We give such an
inequality for MESD in Sec. VI.
The distinction between no-go results and robust

inequalities has historical precedent. In his 1964 paper
[1], in deriving an inequality that could be shown to be
violated by quantum correlations, Bell assumed an experi-
ment wherein certain pairs of measurements had perfectly
correlated outcomes. Such perfect correlations hold for
ideal quantum states and measurements, but are never
observed in nature. Hence, Bell’s 1964 result is a no-go
result, with consequences for the interpretation of quantum
theory, but the inequality he derives en route to this
contradiction does not provide a means of experimentally
testing the principle of local causality. In 1969, Clauser,
Horne, Shimony, and Holte [38] derived an inequality
without assuming these idealizations. Because their
inequality makes no reference to perfect correlations or
to any other feature of quantum theory, its violation rules
out all locally causal ontological models, independently of
the validity of quantum theory. Only inequalities of this type
are termed “Bell inequalities” in modern usage (so that the
inequality in Bell’s 1964 paper is not a “Bell inequality”).
Similarly, Eq. (17) is not a proper noncontextuality

inequality because it relies upon the idealization of perfect
correlations between which of the states jϕi or jϕ̄i was
prepared and which of the outcomes will occur in the
measurement of the Bϕ basis (and similarly for ψ and ψ̄).
To get a noncontextuality inequality, we must allow these
correlations to be imperfect. Thus, in Table I, the entries
that take the values 0 and 1 must instead be presumed to
take the values ϵ and 1 − ϵ, respectively, such that ϵ
becomes a parameter in our noncontextuality inequality
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which quantifies the degree of imperfection of the
correlations. We then show that quantum mechanics still
allows higher success rates for a given confusability than
any noncontextual model, even when ϵ ≠ 0.
Before proving this, we first rephrase the scenario as

a totally operational prepare-and-measure experiment,
with no reference to the quantum formalism (despite the
suggestive notation below). This is a necessary first step
for deriving any proper noncontextuality inequality.

A. Operationalizing MESD

We imagine an experiment involving four preparations
fPϕ; Pψ ; Pϕ̄; Pψ̄g and three binary-outcome measurements,
fMϕ;Mψ ;Mdg, with outcome sets denoted fϕ; ϕ̄g, fψ ; ψ̄g,
and fgϕ; gψg, respectively. An arbitrary data table for such
an experiment would contain 12 independent parameters,
specifying the probability of the first outcome of each
measurement when acting on each preparation (the prob-
ability of obtaining the second outcome being fixed by
normalization).
However, we wish to study the scenario in which

preparations Pϕ, Pψ , Pϕ̄, and Pψ̄ satisfy the following
relation: the procedure P1

2
ϕþ1

2
ϕ̄ defined by sampling from

preparations Pϕ and Pϕ̄ uniformly at random (and then
forgetting which preparation occurred) is indistinguishable
from the similarly defined procedure P1

2
ψþ1

2
ψ̄ . We denote

this operational equivalence by

P1
2
ϕþ1

2
ϕ̄ ≃ P1

2
ψþ1

2
ψ̄ : ð29Þ

This implies that only three of the parameters in each row
are independent, so only nine independent parameters
remain.
Previously the operational equivalence of Eq. (29) was

guaranteed by quantum theory [Eq. (12)], but now we wish
to justify it experimentally. In order to do so, one must
show that the statistics for P1

2
ϕþ1

2
ϕ̄ and for P1

2
ψþ1

2
ψ̄ are

identical for all measurements. Because the statistics of
a tomographically complete set of measurements allows
one to predict the statistics for all measurements, it suffices
to verify this identity for such a tomographically complete
set. Accumulating evidence that a given set of measure-
ments is indeed tomographically complete represents
the most difficult challenge for an experimental test of
noncontextuality (see Refs. [21,39] for a more detailed
discussion).
Note that in a realistic experiment, the four preparations

that are realized, called the primary preparations, will not
satisfy Eq. (29) perfectly. However, this problem can be
solved by postprocessing these into “secondary prepara-
tions”which are chosen to enforce this equivalence [21,40],
as we discuss in Sec. VII.
For this nine-parameter problem, the algorithm we

describe in Appendix B gives the full set of necessary

and sufficient noncontextuality inequalities, which we list
in Appendix D. For now, however, we consider a special
case with just three parameters, which captures the essence
of minimum-error state discrimination. Namely, we assume
symmetries that parallel those in the ideal quantum case:

s≡ pðgϕjMd; PϕÞ ¼ 1 − pðgϕjMd; Pψ Þ
¼ pðgϕ̄jMd; Pϕ̄Þ ¼ 1 − pðgϕ̄jMd; Pψ̄ Þ; ð30Þ

c≡ pðϕjMϕ; Pψ Þ ¼ pðψ jMψ ; PϕÞ
¼ pðϕ̄jMϕ̄; Pψ̄ Þ ¼ pðψ̄ jMψ̄ ; Pϕ̄Þ; ð31Þ

and

1 − ϵ≡ pðψ jMψ ; PψÞ ¼ pðϕjMϕ; PϕÞ
¼ pðψ̄ jMψ̄ ; Pψ̄Þ ¼ pðϕ̄jMϕ̄; Pϕ̄Þ: ð32Þ

We denote the three free parameters that remain after
imposing the symmetries by s, c, and 1 − ϵ, paralleling
their ideal quantum counterparts, sq, cq, and 1, respectively.
Just like the operational equivalence, these symmetries will
never hold exactly for the primary procedures, but we can
enforce them while choosing secondary procedures, as we
discuss in Sec. VII.
The notation Pϕ, Pψ , Pϕ̄, Pψ̄ , Mϕ, Mψ , and Md will

henceforth be used to denote the secondary procedures, for
which the operational equivalence and symmetries are exact.
The resulting data table, Table II, is similar to the ideal

scenario of Table I, but contains the noise parameter ϵ
(1 − ϵ) in place of the probability 0 (1).
Note that for each row, the average of the entries in the

Pϕ and Pϕ̄ columns is 1
2
(and similarly for Pψ and Pψ̄ ).

Here, this follows from the assumed symmetries, not from
the operational equivalence (which specifies that the
average of the entries for Pϕ and Pϕ̄ is the same as the
average of the entries for Pψ and Pψ̄ , but not necessarily 1

2
);

in Table I, the same averaging property is implied by the
operational equivalence of each of the two mixtures to the
maximally mixed quantum state in Eq. (12) (and redun-
dantly implied by these symmetries).
Finally, we assume that the measurements and outcomes

are labeled in the natural way; e.g., the outcome ofMϕ that
is more likely to occur given the preparation Pϕ is ϕ rather
than ϕ̄, and so on. Then, the data satisfy the constraint that

ϵ ≤ c ≤ 1 − ϵ: ð33Þ

TABLE II. Data table for our operational scenario.

Pϕ Pψ Pϕ̄ Pψ̄

ϕjMϕ 1 − ϵ c ϵ 1 − c
ψ jMψ c 1 − ϵ 1 − c ϵ
gϕjMd s 1 − s 1 − s s
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VI. NONCONTEXTUALITY INEQUALITIES
FOR MESD

The operational equivalence relation of Eq. (29) together
with the assumption of preparation noncontextuality
implies via Eq. (7) that

1

2
μPϕ

ðλÞ þ 1

2
μPϕ̄

ðλÞ ¼ 1

2
μPψ

ðλÞ þ 1

2
μPψ̄

ðλÞ; ð34Þ

where we again use the fact that convex mixtures of
preparations are represented in an ontological model by
the corresponding mixture of epistemic states. The fact that
the ontological model must reproduce Table II implies
constraints analogous to Eqs. (13)–(15) and their kin.
As we prove in Appendix B, the trade-off between s, c,

and ϵ in any noncontextual model of our operational
scenario must satisfy

s ≤ 1 −
c − ϵ

2
: ð35Þ

In Appendix C, we show that quantum theory allows a
trade-off of

s ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1 − ϵÞcðc − 1Þ

p
þ cð2ϵ − 1Þ

q �
:

ð36Þ

Thus, quantum theory predicts a higher state discrimination
success rate for any given c and ϵ than a noncontextual
model allows. One easily verifies that Eq. (35) reduces to
Eq. (17) in the limit of ϵ → 0, and that Eq. (36) reduces to
Eq. (11) in the same limit. It is an open question whether
Eq. (36) is the optimal trade-off that quantum theory
allows. We conjecture that it is optimal for pairs of states
in a two-dimensional Hilbert space.
The noncontextual and quantum trade-offs are shown in

Fig. 5. The purple surface represents the triples ðs; c; ϵÞ
saturating the inequality of Eq. (35), while the light blue
surface represents the triples ðs; c; ϵÞ corresponding to the
quantum success rate of Eq. (36).
If an experiment generates data having the form of

Table II and satisfying Eq. (29), and it is found to lie above
the purple shaded surface, then one has experimental
evidence for the failure of noncontextuality. This evidence
is independent of the validity of quantum theory, and signals
a contextual advantage for state discrimination, even when
one’s preparations and measurements are imperfect.

A. Understanding the quantum and
noncontextual bounds

For both quantum and noncontextual models, we
adopt the natural labeling convention described above
Eq. (33), so that all operational data necessarily satisfy

ϵ ≤ c ≤ 1 − ϵ. In the c − ϵ plane of Fig. 5, these constraints
describe a triangular wedge which points into the page.
In the plane with ϵ ¼ 0, Sec. IVA provides an intuitive

explanation for the trade-off relation.
In the plane with ϵ ¼ c, we can see that for both quantum

and noncontextual models, the preparations can be per-
fectly distinguishable, s ¼ 1. This follows from the fact
that the value of ϵ quantifies the noise in Mϕ and Mψ , and
when c is no larger than ϵ, we can attribute all of the
confusability to this noise. Explicitly, one can construct a
quantum model where preparation Pϕ is represented by
j0ih0j and Pψ is represented by j1ih1j and where effect
EϕjMϕ

is represented by ð1 − ϵÞj0ih0j þ ϵj1ih1j and Eψ jMψ

is represented by ϵj0ih0j þ ð1 − ϵÞj1ih1j, which implies
that c ¼ ϵ, while s ¼ 1 for the Helstrom measurement
fj0ih0j; j1ih1jg. Furthermore, since these states and effects
are all diagonal in the same basis, we can take the
eigenvalues of these to define the conditional probabilities
of a noncontextual model which achieves c ¼ ϵ and s ¼ 1.
Whenever c > ϵ, however, the noise in Mϕ and Mψ

cannot explain all of the confusability, and therefore some
of this confusability must be explained by the lack of
perfect distinguishability of the preparations; that is, in a
quantum model, the preparations must be represented by
nonorthogonal states, while in a noncontextual model, they
must be represented by overlapping probability distribu-
tions. Thus, the maximum value of s falls away from 1 as
we move away from the ϵ ¼ c plane. In a noncontextual
model, it falls off linearly, interpolating between its value
for ϵ ¼ c and its value for ϵ ¼ 0. The quantum bound falls
off more slowly.

B. Robustness to depolarizing noise

We can get a sense for the robustness of our non-
contextuality inequalities by considering a specific noise
model in quantum theory. Imagine that one’s attempts to
implement the ideal quantum preparations and measure-
ments are thwarted by a depolarizing channel which has the
same noise parameter v for all states and effects:

FIG. 5. Maximum success rate achievable in a noncontextual
model (purple surface), and quantumly acheivable success rate
(light blue surface).
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DvðρÞ ¼ ð1 − vÞρþ v
1
2
; ð37Þ

DvðEkÞ ¼ ð1 − vÞEk þ v
1
2
: ð38Þ

The resulting states and effects are shown in Fig. 6 for some
fixed v. One can graphically see that this uniform depo-
larization map generates a new set of states and measure-
ments which satisfy the symmetries and operational
equivalence we require. However, if the noise is too large,
our noncontextuality inequality will not be violated, as we
now show.
This noisy model generates a data table of the form of

Table II with

s ¼ 1

2
þ ð1 − vÞ2

��
1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cq

q ��
−
1

2

�
; ð39Þ

c ¼ 1

2
þ ð1 − vÞ2

	
cq −

1

2



; ð40Þ

ϵ ¼ 1

2
½1 − ð1 − vÞ2�: ð41Þ

As always, cq ¼ jhϕjψij2.
The maximum level of noise v that still violates our

noncontextuality inequality, Eq. (35), is easily calculated as
a function of the Bloch sphere angle θ between the two
states [defined by cos2ðθ=2Þ ¼ jhϕjψij2], by substituting
Eqs. (39)–(41) into Eq. (35):

v ¼ 1 −
1

cq þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cq

p ¼ 1 −
1

cos2ðθ
2
Þ þ sinðθ

2
Þ : ð42Þ

Equation (42) is plotted in Fig. 7. For θ ¼ 0 or θ ¼ π, the
noncontextual bound equals the ideal quantum bound, and
hence no experiment can violate our noncontextuality
inequality at these extremal angles. For all other θ,
an experiment with depolarizing noise such that v ≤ 1 −
f1=½cos2ðθ=2Þ þ sinðθ=2Þ�g can violate the inequality.

The maximum tolerance to noise (v ¼ 0.2) occurs
when θ ¼ ðπ=3Þ.

VII. ENFORCING SYMMETRIES AND
OPERATIONAL EQUIVALENCES

In Sec. VA, we predicate our noncontextuality inequal-
ities on the exact operational equivalence of Eq. (29) and
exact operational symmetries of Eqs. (30)–(32), yet we
claim that these idealizations can in fact be realized in
realistic, noisy experiments. Of course, no experimental
data will directly satisfy either of these requirements;
rather, one performs a postprocessing of the data, as
originally outlined in Ref. [21].
For pedagogical clarity, we discuss this data processing

under the assumption that the operational theory is quan-
tum theory. Note, however, that our comments can easily be
generalized to the framework of generalized probabilistic
theories (defined in Refs. [41,42]), as demonstrated in
Refs. [21,39]. Indeed, the analysis must be performed in
this framework if one hopes to directly test the hypothesis
of noncontextuality against one’s experimental data (i.e.,
without assuming the validity of quantum theory).
For any set P of noisy preparations that has been

performed experimentally, one can simulate perfectly the
statistics of all other preparations in the convex hull of P,
viewed as points in the quantum state space (here, simply a
plane of the Bloch sphere). Similarly, for any set E of noisy
measurement effects, one can perfectly simulate the sta-
tistics of all other effects in the convex hull of E, viewed as
points in the space of valid quantum effects. In Ref. [21],
this fact was leveraged to simulate exact operational
equivalences for a set of secondary preparations from data
on a set of primary preparations that failed to satisfy the
operational equivalences exactly. Here, we leverage this
trick to simulate preparations and measurements which
simultaneously satisfy our operational equivalence as well
as the symmetries. We now argue that this can always be

FIG. 6. The images of the ideal quantum states and effects
under a depolarization map for some fixed value of v. FIG. 7. The maximum value of the parameter v for the

depolarizing noise model that allows a violation of our non-
contextuality inequality, as a function of the Bloch sphere angle θ
between the two states.
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done, although if the primary preparations or measurements
are too noisy, the resulting simulated data will not violate
our inequalities.
As we show explicitly in Sec. VI B, even a partially

depolarized set of states and effects can violate our
inequality. Hence, one need only realize experimental
sets P and E which contain in their convex hull the
images of our ideal states and effects under the depolari-
zation map Dv with v ≤ 1 − f1=½cos2ðθ=2Þ þ sinðθ=2Þ�g.
Then, one can postprocess the data obtained fromP andE
to obtain a physically meaningful set of data which
satisfies the operational equivalence and symmetries that
we assume in the main text, and our inequality will still be
violated. Geometrically, this simply means that the pri-
mary preparations must have a convex hull which contains
the image of the ideal states under a depolarizing map with
v ≤ 1 − f1=cos2ðθ=2Þ þ sinðθ=2Þg, as pictured in Fig. 8
(and similarly for the measurements, also pictured).
In fact, there are other noisy sets of preparations and

measurements besides the depolarized versions of the
corresponding ideals which satisfy the operational equiv-
alence and symmetries needed for the noncontextuality
inequality to apply. A simple example is states and
measurements that are depolarized versions of the ideals
that are also rotated in the plane by the same angle. By
doing such a rotation, one may be able to simulate a set of
states and effects with less depolarization, which then leads
to larger violations. In general, there are many sets of states
and effects that satisfy our operational equivalence and
symmetries. Given a set of primary procedures that one has
performed and characterized, finding the states and mea-
surements satisfying our constraints which maximize the
violation of our inequality is a straightforward linear
program [21].
Leveraging the convex structure of operational theories

in order to define secondary laboratory procedures which
respect certain theoretical idealizations is a powerful tool

which we expect to have broad applicability. To date, this
method has been proposed to identify operational proce-
dures which respect exact operational equivalences. What
we have just shown is that the method also allows one to
enforce natural symmetries which greatly simplify the
problem at hand [as evidenced by comparing Eq. (35) to
the set of inequalities in Appendix D]. Of course, this tool
does not allow one to define laboratory procedures which
satisfy any desired idealizations; for example, one could
never generate a pure state or a sharp measurement effect
by convexly mixing the noisy procedures actually per-
formed in the lab. We expect future work to continue
expanding the range of practical applicability of the
technique of secondary procedures.

VIII. ISOMORPHISM BETWEEN MESD
AND A BELL SCENARIO

Any noncontextuality scenario that makes no assump-
tions of measurement noncontextuality, and for which there
is a single mixed preparation whose various ensemble
decompositions generate all of the operational equivalences
of interest, is isomorphic to a related Bell scenario [43].
Both of these conditions hold for our MESD scenario, since
we do not consider any operational equivalences among the
measurements, and the operational equivalences among the
preparations are generated by decompositions of a single
mixed preparation (e.g., the maximally mixed state in the
ideal case). The operational Bell scenario which relates to
our MESD scenario is one with two parties, whom we
denote by S andM (for reasons that will become apparent),
where S has two binary measurements, denoted S1 and S2,
and M has three binary measurements, denoted M1, M2,
and M3. The outcomes (which we denote si for Si and mj

for Mj) take values in the set f−1;þ1g.
For such a scenario, the set of constraints which define

the local set of correlations is given by positivity inequal-
ities, pðsimjjSiMjÞ ≥ 0, the normalization conditionP

simj
pðsimjjSiMjÞ ≥ 0, and the CHSH inequalities [38]

(applied to any of the three possible pairings of two
measurement settings on S with two measurement settings
on M) [44]. As we show, the bound on our MESD success
rate follows under our assumed symmetries from the CHSH
inequality

hs1m1i þ hs1m3i þ hs2m1i − hs2m3i ≤ 2; ð43Þ

where

hsimji ¼
X
simj

simjpðsimjjSiMjÞ

¼ 2pðsi ¼ mjjSiMjÞ − 1: ð44Þ

The connection between this Bell scenario and our
MESD scenario is most easily seen in the ideal quantum

FIG. 8. (a) If one can perform the four primary preparations
P1–P4 (shown as green triangles), then one can simulate any
preparation in their convex hull (shown as a light gray shaded
region). In particular, one can simulate secondary procedures that
are depolarized versions of the ideal preparations (shown as blue
circles like those in Fig. 6). (b) Similarly for the measurements.
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realization. Imagine that the two parties share a maximally
entangled state jΦþiSM ¼ ð1= ffiffiffi

2
p Þðj00iSM þ j11iSMÞ (with

j0i and j1i defined so that jϕi and jψi have real coefficients
when written in this basis), and imagine that their mea-
surements correspond to the quantum measurements from
the main text, as follows:

S1 ¼ fjϕiShϕj; jϕ̄iShϕ̄jg;
S2 ¼ fjψiShψ j; jψ̄iShψ̄ jg;
M1 ¼ fjϕiMhϕj; jϕ̄iMhϕ̄jg;
M2 ¼ fjψiMhψ j; jψ̄iMhψ̄ jg;
M3 ¼ fEgϕ

M; E
gψ
Mg: ð45Þ

We take the þ1 outcome for each measurement to
correspond to the first quantum effect for that measure-
ment. This ideal quantum realization of this Bell scenario is
conceptually transformed into our ideal quantum realiza-
tion of the MESD scenario by viewing a measurement by
party S to be a remote preparation (via quantum steering)
for party M. For example, outcome þ1 for S1 remotely
prepares the state jϕiM (which is why we have chosen
the notation S, for “source”). Similarly, outcome −1 for
measurement S2 prepares the state jψ̄iM, and so on.
Thus, one can verify that in the ideal quantum realiza-

tion, sq and cq become [in our new notation, and assuming
the symmetries in Eqs. (30)–(32)]

sq ¼ pðs1 ¼ m3jS1M3Þ ¼ 1 − pðs2 ¼ m3jS2M3Þ;
cq ¼ pðs1 ¼ m2jS1M2Þ ¼ pðs2 ¼ m1jS2M1Þ; ð46Þ

while the fact that paired preparations and measurements
are perfectly correlated in the ideal quantum realization
corresponds to

0 ¼ 1 − pðs1 ¼ m1jS1M1Þ ¼ 1 − pðs2 ¼ m2jS2M2Þ:
ð47Þ

Furthermore, the no-signaling condition in the Bell
scenario implies the operational equivalence of our
MESD scenario. If party S performs measurement S1,
the updated state on M will be either jϕi or jϕ̄i with equal
likelihood, and if party S performs measurement S2, the
updated state on M will be either jψi or jψ̄i with equal
likelihood. In quantum theory, the no-signaling condition
implies that the average density operator prepared on M is
the same for either choice of measurement by S, which is
precisely the operational equivalence of Eq. (12).
Using Eq. (44), we can write Eqs. (46) and (47) in terms

of expectation values:

sq ¼
1

2
ð1þ hs1m3iÞ ¼

1

2
ð1 − hs2m3iÞ;

cq ¼
1

2
ð1þ hs1m2iÞ ¼

1

2
ð1þ hs2m1iÞ;

0 ¼ 1

2
ð1 − hs1m1iÞ ¼

1

2
ð1 − hs2m2iÞ: ð48Þ

Rewriting Eq. (43) in terms of sq and cq instead of
expectation values, one obtains

sq ≤ 1 −
cq
2
; ð49Þ

recovering Eq. (17), our bound for the success rate in state
discrimination.
Because both the Bell scenario and our MESD scenario

are operationally defined, one can also make the translation
without assuming the ideal quantum realizations. In a
realistic operational scenario, ϵ will be nonzero, and one
obtains

s ¼ pðs1 ¼ m3jS1M3Þ ¼ 1 − pðs2 ¼ m3jS2M3Þ;
c ¼ pðs1 ¼ m2jS1M2Þ ¼ pðs2 ¼ m1jS2M1Þ;
ϵ ¼ 1 − pðs1 ¼ m1jS1M1Þ ¼ 1 − pðs2 ¼ m2jS2M2Þ:

ð50Þ

Rewriting Eq. (43) in terms of s, c, and ϵ instead of
expectation values, one obtains

s ≤ 1 −
c − ϵ

2
; ð51Þ

recovering Eq. (35), our bound for the success rate in state
discrimination.
Because of the redundancies induced by our assumed

symmetries, Eq. (35) follows also from the CHSH
inequality,

hs1m2i þ hs1m3i þ hs2m2i − hs2m3i ≤ 2; ð52Þ

by the same logic. More generally, if we do not assume
any symmetries, then there are no redundant inequalities.
If we furthermore do not assume the natural labeling
constraint [Eq. (33)], then the full polytope of local
correlations for this Bell scenario [44] [and described
just above Eq. (43)] is isomorphic to the full polytope of
noncontextual correlations for our MESD scenario.

IX. FUTURE DIRECTIONS

We have derived noncontextuality inequalities that
minimum-error state discrimination in quantum theory that
fails to admit of a noncontextual model. We derive non-
contextuality inequalities that delimit the trade-off between
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success rate, error rate, and confusability in state discrimi-
nation, independently of the validity of quantum theory.
Our results show that contextuality is a resource for state

discrimination, even in realistic, noisy experiments. This
suggests many directions for future research. One impor-
tant question is how our results translate into advantages
for quantum information processing tasks which have
MESD as a subroutine. Because many such tasks (e.g.,
key distribution) consider consecutive measurements on the
system, this research program would require further analy-
sis regarding the consequences of noncontextuality for
experiments involving sequential measurements [6,45,46].
It would also be interesting to generalize these results to

other types of state discrimination, such as unambiguous
state discrimination. Indeed, one can easily derive a
relevant no-go theorem. The challenge is to define an
operational notion of “unambiguous” given that no meas-
urement yields truly unambiguous knowledge in the
presence of noise. Once this challenge is met, it should
be straightforward to apply the general algorithm that
we have introduced in this article in order to derive
the noncontextuality inequalities for this scenario.
Understanding the relation between noncontextuality and
other kinds of state discrimination should translate into new
kinds of quantum advantages for information process-
ing tasks.
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APPENDIX A: PROOF OF
NONCONTEXTUALITY NO-GO

THEOREM FOR MESD

Herein we provide an alternative proof of our no-go
theorem, Eq. (17), that is, of the fact that the inequality

sq ≤ 1 −
cq
2

ðA1Þ

must be satisfied for any sq and cq arising in a non-
contextual model that reproduces the data in Table I and
respects the operational equivalence of Eq. (12). While the

proof provided in the main text uses an intuitive argument
that is native to the task of state discrimination, the
argument in this section abstracts away from the specific
problem at hand, and as such extends naturally to the more
general method required for proving Eq. (35) (as we discuss
in Appendix B).
First, we allow the ontological model to have an ontic

state space of arbitrary form, and we allow the response
functions to be outcome-indeterministic. Second, we show
that for any such model, there exists a simpler ontological
model which is equally general, but which has only eight
ontic states and has response functions that are purely
outcome-deterministic. Third, we show that two of these
ontic states are superfluous if Bd is optimal for state
discrimination. Fourth, we show that the forms of the
epistemic states are greatly constrained by their perfectly
predictable responses on the corresponding measurements.
Fifth, we parametrize the set of possible epistemic states as
probability distributions over the remaining six ontic states
in accordance with these constraints. Sixth, we calculate the
values of sq and cq in terms of these response functions and
epistemic states. Finally, we impose preparation noncon-
textuality and eliminate the unobserved variables to obtain
the optimal trade-off between sq and cq.
As one ranges over the ontic states in our ontological

model, the vector (ξϕjBϕ
ðλÞ; ξψ jBψ

ðλÞ; ξgϕjBd
ðλÞ) of valid

probability assignments to our three binary basis measure-
ments defines a unit cube. The most obvious ontological
model would have one λ for each possible probability
assignment (including the indeterministic ones), defining
an ontic state space isomorphic to the unit cube. The
epistemic states in such an outcome-indeterministic model
would be arbitrary normalized probability densities over
this set of ontic states (that is, all the interior points of
the cube).
However, we can always simplify matters without loss

of generality by decomposing each nonextremal probability
value assignment into extremal assignments. (These
extremal points are outcome-deterministic if and only if
there are no nontrivial constraints from measurement
noncontextuality, but this is indeed the case here.)
Let us define a variable κ which runs over the eight

extremal points in the cube of ontic states. Then, there
exists a pðκjλÞ such that ξkjMðλÞ ¼

P
κξkjMðκÞpðκjλÞ. We

can thus write any observable probability pðkjM;PÞ as

pðkjM;PÞ ¼
Z
Λ
ξkjMðλÞμPðλÞdλ

¼
X
κ

ξkjMðκÞμPðκÞ; ðA2Þ

where μPðκÞ≡
R
Λ dλpðκjλÞμPðλÞ. This construction lets us

write observed probabilities in terms of extremal value
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assignments by effectively moving uncertainty into the new
state distributions μPðκÞ.
We sometimes simplify the notation by letting the

distributions and response functions be vectors of proba-
bilities indexed by the ontic states κ; e.g.,

pðkjM;PÞ ¼
X
κ

ξkjMðκÞμPðκÞ ¼ ξ⃗kjM · μ⃗P: ðA3Þ

We thus convert an outcome-indeterministic model over
a continuum of ontic states (the unit cube) to an outcome-
deterministic model over just eight ontic states (its verti-
ces), without any loss of generality. The vertices κ1–κ8
correspond to the deterministic triples,

(ξϕjBϕ
ðκÞ; ξψ jBψ

ðκÞ; ξgϕjBd
ðκÞ)

∈ fð0; 0; 0Þ; ð0; 0; 1Þ; ð0; 1; 0Þ;…; ð1; 1; 1Þg; ðA4Þ

so the three response functions are

ξ⃗ϕjBϕ
¼

2
66666666666664

0

0

0

0

1

1

1

1

3
77777777777775

; ξ⃗ψ jBψ
¼

2
66666666666664

0

0

1

1

0

0

1

1

3
77777777777775

; ξ⃗gϕjBd
¼

2
66666666666664

0

1

0

1

0

1

0

1

3
77777777777775

:

ðA5Þ

In fact, if we assume Bd is optimal, the fourth and fifth
of these value assignments will never occur. Consider,
for example, the triple (1, 0, 0) (which occurs for κ5).
Since ξϕjBϕ

ðκ5Þ ¼ 1, the state cannot have been ϕ̄. Since
ξψ jBψ

ðκ5Þ ¼ 0, the state cannot have been ψ . Thus, we
know the state must have been ϕ or ψ̄ ; in either case, the
winning strategy is for Bd to return the outcome gϕ.
Therefore, the winning strategy has ξgϕjBd

ðκ5Þ ¼ 1, and
thus the triple (1, 0, 0) never occurs in the winning strategy.
Similar logic applies to the triple (0, 1, 1), and hence we
need not consider these two assignments [47]. The remain-
ing value assignments are

(ξϕjBϕ
ðκÞ; ξψ jBψ

ðκÞ; ξgϕjBd
ðκÞ)

∈ fð0; 0; 0Þ; ð0; 0; 1Þ; ð0; 1; 0Þ; ð1; 0; 1Þ;
ð1; 1; 0Þ; ð1; 1; 1Þg: ðA6Þ

Thus, six ontic states are sufficient for describing our
experiment: one for each remaining deterministic assign-
ment. It follows that the vectors representing each of the
three response functions are

ξ⃗ϕjBϕ
¼

2
6666666664

0

0

0

1

1

1

3
7777777775
; ξ⃗ψ jBψ

¼

2
6666666664

0

0

1

0

1

1

3
7777777775
; ξ⃗gϕjBd

¼

2
6666666664

0

1

0

1

0

1

3
7777777775
:

ðA7Þ

We can constrain the most general form of the
epistemic states using the perfect predictability of mea-
surements Bϕ and Bψ on their corresponding states.
Namely, recalling Eq. (25) and the form of the response
functions, ξϕjBϕ

ðκÞ, ξψ jBψ
ðκÞ, ξψ̄ jBψ

ðκÞ≡ 1 − ξψ jBψ
ðκÞ, and

ξϕ̄jBϕ
ðκÞ≡ 1 − ξϕjBϕ

ðκÞ, we can see that our epistemic
states must have the form

μ⃗ϕ ¼

2
6666666664

0

0

0

a4
a5
a6

3
7777777775
; μ⃗ϕ̄ ¼

2
6666666664

a1
a2
a3
0

0

0

3
7777777775
; μ⃗ψ ¼

2
6666666664

0

0

b3
0

b5
b6

3
7777777775
; μ⃗ψ̄ ¼

2
6666666664

b1
b2
0

b4
0

0

3
7777777775
;

ðA8Þ

where normalization requires that a4 þ a5 þ a6 ¼ 1, and
so on.
The definitions of cq and sq in Eqs. (8) and (10)

translated into our ontological model become

cq ¼ μ⃗ψ · ξ⃗ϕjBϕ
¼ μ⃗ϕ · ξ⃗ψ jBψ

¼ 1 − μ⃗ψ̄ · ξ⃗ϕjBϕ

¼ 1 − μ⃗ϕ̄ · ξ⃗ψ jBψ
; ðA9Þ

sq ¼ μ⃗ϕ · ξ⃗gϕjBd
¼ 1 − μ⃗ψ · ξ⃗gϕjBd

¼ 1 − μ⃗ϕ̄ · ξ⃗gϕjBd

¼ μ⃗ψ̄ · ξ⃗gϕjBd
: ðA10Þ

Taking these dot products using the vectors in Eqs. (A7)
and (A8) gives

cq ¼ b5 þ b6 ¼ a5 þ a6 ¼ 1 − b4 ¼ 1 − a3 ðA11Þ

and

sq ¼ a4 þ a6 ¼ 1 − b6 ¼ 1 − a2 ¼ b2 þ b4: ðA12Þ

Because the epistemic states must be normalized, it
follows that b5 þ b6 ¼ 1 − b3, a5 þ a6 ¼ 1 − a4, a4 þ
a6 ¼ 1 − a5, and b2 þ b4 ¼ 1 − b1. Substituting these four
expressions, we obtain
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cq ¼ 1 − b3 ¼ 1 − a4 ¼ 1 − b4 ¼ 1 − a3 ðA13Þ

and

sq ¼ 1 − a5 ¼ 1 − b6 ¼ 1 − a2 ¼ 1 − b1; ðA14Þ

and hence b3 ¼ a4 ¼ b4 ¼ a3 and a5 ¼ b6 ¼ a2 ¼ b1.
Let us take sq ¼ 1 − a2 and cq ¼ 1 − a3. If there were

no more constraints, then a2 and a3 could range from 0 to 1
independently, and sq and cq could take any values from 0
to 1. By imposing preparation noncontextuality, however,
we have

μ⃗1
2
¼ 1

2

2
6666666664

a1
a2
a3
a4
a5
a6

3
7777777775
¼ 1

2

2
6666666664

b1
b2
b3
b4
b5
b6

3
7777777775
: ðA15Þ

This implies bi ¼ ai for all i. Since a1 þ a2 þ a3 ¼ 1 from
normalization, a1 ¼ b1 from preparation noncontextuality,
and b1 ¼ a2 as derived above, we also have 2a2 þ a3 ¼ 1
and hence cq ¼ 2a2. Finally, writing sq in terms of cq yields

sq ¼ 1 −
cq
2
: ðA16Þ

APPENDIX B: PROOF OF NONCONTEXTUALITY
INEQUALITY FOR MESD

Herein we prove our noncontextuality inequality,
Eq. (35); that is, we prove that

s ≤ 1 −
c − ϵ

2
ðB1Þ

must be satisfied for any s, c, and ϵ arising in a non-
contextual model that reproduces data in Table II and
respects Eq. (29).
First, we use the arguments of Appendix A to write down

an ontological model with eight ontic states and purely
outcome-deterministic response functions. Second, we para-
metrize the set of possible epistemic states for this second
model in accordance with preparation noncontextuality.
Third, we calculate expressions for s, c, and ϵ in terms of
these response functions and epistemic states. These manip-
ulations reduce the problem to a small set of linear equalities
and inequalities over unobserved and observed variables.
Finally, we eliminate the unobserved variables to obtain
inequalities concerning only the observed variables s, c,
and ϵ.

Exactly as before, we can convert a general, outcome-
indeterministic model over a continuum of ontic states
(the unit cube) to an outcome-deterministic model over just
eight ontic states (its vertices), without any loss of general-
ity. (As before, this is simply a mathematical construction,
and in no way commits us to a fundamental principle of
outcome determinism.) The vertices of the unit cube, κ1–κ8,
again correspond to the deterministic triples

(ξϕjMϕ
ðκÞ; ξψ jMψ

ðκÞ; ξgϕjMd
ðκÞ)

∈ fð0; 0; 0Þ; ð0; 0; 1Þ; ð0; 1; 0Þ;…; ð1; 1; 1Þg; ðB2Þ

and the three response functions are again

ξ⃗ϕjMϕ
¼

2
66666666666664

0

0

0

0

1

1

1

1

3
77777777777775

; ξ⃗ψ jMψ
¼

2
66666666666664

0

0

1

1

0

0

1

1

3
77777777777775

; ξ⃗gϕjMd
¼

2
66666666666664

0

1

0

1

0

1

0

1

3
77777777777775

: ðB3Þ

In a more general situation in which measurement non-
contextuality is also leveraged, there will be linear con-
straints on this set of response functions, and the extremal
response functions will no longer all be outcome-deter-
ministic. In this case, one can still explicitly enumerate the
finite set of extremal response functions by taking the
intersection of the linear constraints with the above cube
of value assignments. These extremal points modify the
specific form of Eq. (B3), and our methods would proceed
largely unchanged.
Each preparation generates a probability distribution

over κ, so we can write the epistemic states as

μ⃗Pϕ
¼

2
66666666666664

a1
a2
a3
a4
a5
a6
a7
a8

3
77777777777775

; μ⃗Pψ
¼

2
66666666666664

b1
b2
b3
b4
b5
b6
b7
b8

3
77777777777775

; μ⃗Pϕ̄
¼

2
66666666666664

c1
c2
c3
c4
c5
c6
c7
c8

3
77777777777775

; μ⃗Pψ̄
¼

2
66666666666664

d1
d2
d3
d4
d5
d6
d7
d8

3
77777777777775

; ðB4Þ

where the parameters in each vector are positive and
sum to 1.
Dot products between a vector in Eq. (B3) and a vector in

Eq. (B4) can produce any set of observable statistics, and
thus constitute a general ontological model for our mea-
surements and preparations. The values of (s, c, ϵ) that we
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can observe in a noncontextual model with our assumed
symmetries, however, are restricted by the above con-
straints, all of which we repeat here for convenience.
Equations (2) and (3) imply that for all four preparations,

∀κ∶ 0 ≤ ½μ⃗P�κ ≤ 1 ðB5Þ

and

X
k

½μ⃗P�k ¼ 1: ðB6Þ

Equation (29) gives

μ⃗Pϕ
þ μ⃗Pϕ̄

¼ μ⃗Pψ
þ μ⃗Pψ̄

: ðB7Þ

Equations (30)–(32) are, respectively,

μ⃗Pϕ
· ξ⃗gϕjMd

¼ 1 − μ⃗Pψ
· ξ⃗gϕjMd

¼ s: ðB8Þ

μ⃗Pψ
· ξ⃗ϕjMϕ

¼ μ⃗Pϕ
· ξ⃗ψ jMψ

¼ c; ðB9Þ

μ⃗Pψ
· ξ⃗ψ jMψ

¼ μ⃗Pϕ
· ξ⃗ϕjMϕ

¼ 1 − ϵ: ðB10Þ

Equation (33) gives

ϵ ≤ c ≤ 1 − ϵ: ðB11Þ

Equations (B5)–(B11) define a set of constraints over the
variables s, c, ϵ, ai, bi, ci, and di (where i ∈ f1; 2;…; 8g).
Although the parameters ai, bi, ci, di in our epistemic states
are not observable, constraints upon them [Eqs. (B5) and
(B6)] have consequences for the set of possible triples
ðs; c; ϵÞ. Finding the set of inequalities over only ðs; c; ϵÞ
that is implied by the full set of linear equalities
and inequalities of Eqs. (B5)–(B11) is algebraically tedious
by hand, but straightforward using the well-known
Fourier-Motzkin elimination algorithm, which returns
our result

s ≤ 1 −
c − ϵ

2
: ðB12Þ

It is worth noting that the technique for deriving non-
contextuality inequalities we introduce here, insofar as it
reduces to a convex hull problem, is an instance of the
problem of quantifier elimination. Recent work in quantum
foundations has seen increasing use of quantifier elimination
algorithms, in noncontextuality [48,49] as well as other
scenarios. Fourier-Motzkin elimination,which is appropriate
for problems wherein the dependence on the variables to be
eliminated is linear, has been used to derive Bell inequalities
[50], and also recently, to derive Bell-like inequalities for
novel causal scenarios [51–53]. In Ref. [53], where the

problem is reduced to what is known as the classical
marginals problem—that of determining whether a given
set of distributions onvarious subsets of a set of variables can
arise as the marginals of a single joint distribution over all of
the variables—this problem can be solved by performing
quantifier elimination on the probabilities in the joint dis-
tributions using convex hull algorithms. Nonlinear quantifier
elimination using cylindrical algebraic decomposition has
also found application in deriving Bell-like inequalities in
simple scenarios [52,54]. We anticipate that these more
general techniques for quantifier elimination will ultimately
also find applications to the derivation of noncontextuality
inequalities.

APPENDIX C: NOISY QUANTUM
REALIZATION WHICH VIOLATES OUR
NONCONTEXTUALITY INEQUALITY

We now sketch a quantum realization of the MESD
scenario for any given values of c and ϵ satisfying the
assumed symmetries and operational equivalences and
violating our noncontextuality inequality for all values of
c and ϵ. (The ideal quantum realization of the MESD
scenario, given earlier, was defined only for ϵ ¼ 0.)
There is no general technique for finding the set of all

data tables achievable in quantum theory for some prepare-
and-measure scenario. For some cases (e.g., Bell tests), this
set can be approximated efficiently via the Navascues-
Pironio-Acin hierarchy [55]. For situations with multiple
preparations or additional constraints, no such method
exists yet.
However, we can apply our understanding from Sec. VI A

to construct a quantum model which recovers Eq. (36),
which we conjecture is optimal for qubits. Namely, because
we want to find the maximum value of s consistent with a
given c and ϵ, we should attribute as much of the confus-
ability as possible to noise in theMϕ andMψ measurements,
and only attribute the remainder of the confusability to
nonorthogonality of the states. As such, in this section we
allow the effects Eϕ, Eψ , Eϕ̄, and Eψ̄ to be noisy. That is, the
measurements are allowed to be any positive-operator valued
measures, unlike in Appendix A (where Eϕ denotes a
projector onto jϕi, and so on).
ImaginePϕ prepares state j0i on the Bloch sphere and Pψ

prepares a pure state jθi rotated by θ ∈ ½0; π� with respect to
j0i in theX − Z plane.We specify the value of θ later.Within
this plane, the effect Eϕ must lie on the green line shown in
Fig. 9, since only these effects imply h0jEϕj0i ¼ 1 − ϵ.
The choice of Eϕ that yields the maximum confusability

is the one on the green line, closest to jθi (but not closer
to jθi than to j0i, since that would imply that c ≥ 1 − ϵ).
The remainder of the confusability must then be attributed
to the nonzero inner product between the two pure states,
so θ is fixed by hθjEϕjθi ¼ c. Now that the two states
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are specified, calculating the optimal (Helstrom) proba-
bility is a simple quantum calculation whose result gives
Eq. (36); that is,

s ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1 − ϵÞcðc − 1Þ

p
þ cð2ϵ − 1Þ

q �
:

ðC1Þ

The remaining states and effects are completely fixed
by the assumed symmetries and operational equivalence.
For a general pair of c and ϵ, this quantum model
outperforms the optimal noncontextual model, as seen in
Fig. 5.

APPENDIX D: FULL SET OF
NONCONTEXTUALITY INEQUALITIES
FOR MESD WITHOUT SYMMETRIES

As promised in Sec. VA, we now derive the full set of
noncontextuality inequalities for our operational MESD
scenario when the symmetries of Eqs. (30)–(32) are not
assumed. In Table III, we show a general data table for three
binary measurements and four preparations which respect
our operational equivalence. There are nine free parame-
ters, since the probabilities in the last column are fixed by
those in the first three.
The procedure from Appendix B yields the following set

of inequalities over the nine free parameters, which are
necessary and sufficient for the data to have been generated
by a noncontextualmodel respectingoperational equivalence
Eq. (29):

0 ≤ sϕ ≤ 1;

0 ≤ sϕ̄ ≤ 1;

0 ≤ sψ ≤ 1;

0 ≤ ϵϕ ≤ cϕ ≤ 1 − ϵϕ;

0 ≤ ϵϕ̄ ≤ cϕ̄ ≤ 1 − ϵϕ̄;

0 ≤ ϵψ ≤ cψ ≤ 1 − ϵψ ;

0 ≤ sϕ − sϕ̄ þ sψ ≤ 1;

0 ≤ cϕ − cϕ̄ þ ϵψ ;

0 ≤ cψ þ sϕ̄ − sψ þ ϵϕ;

0 ≤ cψ − sϕ̄ þ sψ þ ϵϕ;

0 ≤ −cψ þ sϕ þ sψ þ ϵϕ̄;

0 ≤ cϕ þ sϕ̄ − sψ þ ϵψ ;

0 ≤ −cϕ̄ þ sϕ þ sψ þ ϵψ ;

0 ≤ cϕ − sϕ̄ þ sψ þ ϵψ ;

0 ≤ −cϕ̄ þ cψ þ ϵϕ þ ϵψ ;

0 ≤ cϕ − cψ þ ϵϕ̄ þ ϵψ ;

0 ≤ 2 − cψ − sϕ − sψ þ ϵϕ̄;

0 ≤ 2 − cϕ̄ − sϕ − sψ þ ϵψ ;

0 ≤ −cϕ þ cϕ̄ þ cψ þ ϵϕ − ϵϕ̄ − ϵψ ;

0 ≤ 1 − cϕ þ cϕ̄ − cψ − ϵϕ þ ϵϕ̄ − ϵψ : ðD1Þ

Of course, these inequalities reproduce Eq. (35) if the
symmetries are now imposed.
In deriving these inequalities, we assume the logical

labeling of Eq. (33). If one drops the labeling condition,
then the resulting inequalities are identical to the facets of
the Bell polytope discussed in Sec. VIII (but have no
practical relevance to minimum-error state discrimination).
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