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Microscale and nanoscale lasers inherently exhibit rich photon statistics due to complex light-matter
interaction in a strong spontaneous emission noise background. It is well known that they may display
superthermal fluctuations—photon superbunching—in specific situations due to either gain competition,
leading to mode-switching instabilities, or carrier-carrier coupling in superradiant microcavities. Here we
show a generic route to superbunching in bimodal nanolasers by preparing the system far from equilibrium
through a parameter quench. We demonstrate, both theoretically and experimentally, that transient
dynamics after a short-pump-pulse-induced quench leads to heavy-tailed superthermal statistics when
projected onto the weak mode. We implement a simple experimental technique to access the probability
density functions that further enables quantifying the distance from thermal equilibrium via the
thermodynamic entropy. The universality of this mechanism relies on the far-from-equilibrium dynamical
scenario, which can be mapped to a fast cooling process of a suspension of Brownian particles in a liquid.
Our results open up new avenues to mold photon statistics in multimode optical systems and may constitute
a test bed to investigate out-of-equilibrium thermodynamics using micro or nanocavity arrays.
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I. INTRODUCTION

The ability to tailor specific correlation properties of
light is of central importance in quantum optics and also
of practical interest in applications such as the generation of
multiphoton effects [1] and time-domain ghost imaging [2].
Light-emitting semiconductors combined with engineered
photonic environments—e.g., optical cavities—prove use-
ful in this context as they enable great control over the
photon statistics from incoherent [spontaneous emission
(SE)] to coherent (laser) sources [3].
An ideal incoherent light source is a blackbody, where

the thermal equilibrium of a photon gas produces chaotic
fluctuations, accurately described by exponential distribu-
tions of the photon number n,

PðnÞ ¼ hnin
ð1þ hniÞ1þn ≈

1

hni e
−n=hni; ð1Þ

where the approximation holds in the large n limit. Photon
distributions as in Eq. (1) can be generated by, e.g., SE in
semiconductor media as a result of radiative carrier
recombinations in bulk or spatially confined direct band-
gap materials. The degree of second order coherence at zero
time delay, gð2Þ (τ ¼ 0), is useful to quantify the thermal
fluctuations: gð2Þð0Þ ¼ 2 is the thermal limit corresponding
to chaotic light [Eq. (1)], whereas gð2Þð0Þ > 2 stands for
superthermal light. On the other hand, laser radiation
leads to coherent emission properties well described by
Poissonian distributions [gð2Þð0Þ ¼ 1].
Superthermal light statistics has already been observed

in a number of photonic systems such as rotating diffusive
plates [4], superradiant quantum dots [5], or micropillars
showing switching instabilities between two orthogonally
polarized modes [6,7]. Superthermal fluctuations have also
been reported in the spatial domain as a result of light
propagation in disordered waveguide arrays [8,9]. In all
these cases, (quantum or classical) light and/or matter
coupling mechanisms at (quasi)equilibrium are the main
ingredients to generate extra correlations.
In this article, we show a dynamical route toward super-

bunching relying on far-from-equilibrium states following
a rapid variation of a parameter, or “quench” (see, e.g.,
Refs. [10–12]), in semiconductor-coupled nanolasers. This
takes place in the strong intercavity coupling limit or “Rabi
regime” in the terminology of Bose-Einstein condensates
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[13,14], where the intersite coupling overcomes the non-
linear interaction energy. Specifically, we show that such
nonequilibrium states for the transient mode energy flow
after a quench naturally produce superthermal, long-tailed
statistical distributions, of a different nature than typical
bimodal distributions previously observed in microlasers.
Furthermore, the dynamical equations can be mapped onto a
1D Langevin equation governing the fast cooling of an
ensemble of Brownian particles under gravity. The limit of
validity of this 1D stochastic model is subsequently tested by
accessing the Josephson regime—cavity coupling lower than
the nonlinearity—which may lead to self-trapping [15–17],
multistability [18], spontaneous symmetry breaking and
phase transitions [19–22], and even quantum criticality
[23,24]. Thus, our quenched bimodal nanolaser belongs to
a large class of far-from-equilibrium systems where super-
thermal statistics is the consequence of transient transport
mechanisms in phase space dominating over noise diffusion.
This paper is organized as follows. In Sec. II we introduce

the far-from-equilibrium dynamical theory following short
pump pulses in our coupled cavity system. Section III
presents the experimental setup and the technique to measure
the full probability distributions of the output pulse energies.
It shows the experimental results on long-tailed superthermal
light, which are subsequently discussed and compared with
the theoretical predictions. Section IV is devoted to the
analogy with the fast cooling of Brownian particles.
Conclusions and perspectives are given in Sec. V.

II. CLASSICAL OPTICAL QUENCH THEORY

In this section we will show, using a stochastic semi-
classical model for evanescently coupled cavities, that tran-
sients after quench can be approximated by “diffusion-free”
nonequilibrium solutions of a 1D Langevin equation for the
fractional mode population imbalance x ¼ ðIB − IABÞ=
ðIB þ IABÞ, where IBðABÞ are the intensities of the bonding
(antibonding) hybrid modes.
We model the dynamics of two coupled semiconductor

nanolasers using coupled-mode equations (see Supplemental
Material [25], Sec. A). The dynamical variables are the
normalized slowly varying cavity fields A1;2 and normalized
carrier population inversions D1;2, where the indexes j ¼ 1

and j ¼ 2 stand for left and right cavities, respectively.
The coupling between the two cavities is governed by the
dimensional parameters γ and K that represent the loss
and frequency difference between the two eigenmodes
normalized to the cavity photon rate κ (A1 ¼ A2, bonding,
and A1 ¼ −A2, antibonding). We assume strong intercavity
coupling K ≫ 1; i.e., we operate in the Rabi quasilinear
oscillating regime. We furthermore define Aj¼ffiffiffiffiffiffiffi
2Ij

p
expðiψ jÞ andD1;2 ¼ N � n, where N and n represent

the population average and the difference between the two
carrier reservoirs, respectively. In the strong coupling limit,
the original deterministic equations can be written as two

subsets of equations. The first one is a 2D dynamical system
coupling the total intensity I ¼ I1 þ I2 and the average
carrier density N, which, at leading order of both γ ≪ 1
and n ≪ 1, reads

_I ¼ 2ðN − 1ÞI; γ−1tot _N ¼ PðtÞ − Nð1þ IÞ: ð2Þ
The subsystem in Eqs. (2) parametrically forces a second
subset of equations, the Bloch sphere, through the variable n
(see Supplemental Material [25], Sec. B),

_θ ¼ −n sin 2θ þ γ cos 2θ cosΦ − K sinΦ ð3Þ

_Φ ¼ 2αn − 2γ
sinΦ
sin 2θ

− 2K
cosΦ
tan 2θ

ð4Þ

γ−1tot _n ¼ −nð1þ IÞ − NI cos 2θ; ð5Þ

where γtot ≪ 1 is the ratio of the total carrier recombination
to the cavity rates, θ ¼ 2 arctanð ffiffiffiffiffiffiffiffiffiffiffi

I2=I1
p Þ ∈ ½0; π� is the

polar angle, which is a measure of the photon density
imbalance between the two cavities, and the azimuthal angle
Φ ¼ ψ1 − ψ2 is the phase difference between the sites. In
this representation, the bonding and antibonding modes
correspond to two opposite points over the equator, ðθ;ΦÞ ¼
ðπ=2; 0Þ and ðθ;ΦÞ ¼ ðπ=2; πÞ (see Fig. 1).
We deal with a transient, far-from-equilibrium situation,

as a consequence of a short incoherent pump pulse PðtÞ.
A particular solution takes the form of a trajectory
in phase space that eventually comes back to the neighbor-
hood of the rest equilibrium point (jAjj2 ¼ 0). The sto-
chastic fluctuations coming from SE noise, which are
inherent to micro or nanolasers [26–28] and are noise
source terms in Eqs. (2)–(5), have a main impact: the
trajectory in phase space triggered by a given pump pulse
will start from random initial phases.
The averaged intensity resulting from Eqs. (2) with SE

noise and a short pump pulse is shown in Fig. 1(a) as a
function of time. We consider repetitive sequential cycles of
optical pumping such that each response to a single pump
pulse is a particular statistical realization on the Bloch
sphere [Eqs. (3)–(5)], so that we can follow an ensemble of
trajectories in parallel (104). The results are shown for
different elapsed times before [Fig. 1(b), right] and within
[Figs. 1(c)–1(d), right] the IðtÞ laser pulse. We can observe
two distinct situations: a quasiequilibrium random phase
distribution below threshold [Fig. 1(b), right] and non-
equilibrium [Figs. 1(c)–1(d), right], which becomes peaked
around the antibonding fixed point ðθ;ΦÞ ¼ ðπ=2; πÞ at the
IðtÞ maximum [Fig. 1(d), right].
The main statistical information of the out-of-

equilibrium mode energy exchange is contained in the
coordinate x ¼ sin θ cosΦ of the Bloch sphere, which can
be shown to account for the fractional mode population
imbalance x ¼ ðIB − IABÞ=ðIB þ IABÞ, whereas the coor-
dinate z ¼ cos θ is the fractional site population imbalance

MATHIAS MARCONI et al. PHYS. REV. X 8, 011013 (2018)

011013-2



z ¼ ðI1 − I2Þ=ðI1 þ I2Þ. The dynamical evolution of x is
governed by the following Langevin equation,

dx
dt

¼ fðxÞ þ gðxÞξðtÞ; ð6Þ

where fðxÞ ¼ γxð1 − x2Þ − SspI−1x and g2ðxÞ ¼
ð1 − x2ÞSspI−1 are the normalized drift and diffusion
coefficients, respectively; γxðtÞ ¼ 2γ − αNIγtotð2KÞ−1 is
the effective damping coefficient [α is the phase-amplitude

coupling factor of the semiconductor laser and Ssp the
spontaneous emission factor (see Supplemental Material
[25], Secs. C–E)]; and ξðtÞ is Gaussian noise with zero
mean and variance one. Equation (6) can be associated with
the Fokker-Planck equation governing the evolution of the
probability distribution ρðxÞ,

∂ρ
∂t þ

∂
∂x ðfρÞ ¼

1

2

∂2

∂x2 ðg
2ρÞ: ð7Þ

Although diffusion is given by a multiplicative noise term,
the steady-state equilibrium is exponential,

ρeqðx; βÞ ¼ N e−βx; ð8Þ
with β ¼ −2γxIS−1sp and N ¼ β=ð2 sinh βÞ, in such a way
that β−1 ∼ SspI−1 can be identified as the effective temper-
ature of a reservoir. Hence, the steep intensity increase
[Fig. 1(a)], with buildup time scale corresponding to the
cavity photon lifetime, _IðtÞ=IðtÞ ∼ 1, can be related to a
cooling processmuch faster than the typical time scale of the
mode energy exchange γ−1x ∼ 10. This process is analogous
to the rapid cooling of an ensemble of Brownian particles
in a fluid, as we will show in Sec. IV. The probability
distribution is initially at the exponential equilibrium cor-
responding to the high temperature β ¼ β0 [Fig. 1(b)], for
which the statistical distribution of the weak mode is also
exponential, as expected from Eq. (1). As IðtÞ dramatically
builds up, the system is forced to evolve in a basically
noiseless situation (β → ∞). In this initial phase of relax-
ation toward a much lower reservoir temperature, drift
dominates over diffusion in Eq. (7) and we can solve it
by setting Ssp ¼ 0. We find that the solution of the transport
problem with initial condition ρtðx; t0Þ ¼ ρ0ðxÞ reads

ρtðx; tÞ ¼
4eτρ0½1þxþeτðx−1Þ

1þx−eτðx−1Þ�
½1þ eτ þ xð1 − eτÞ�2 ; ð9Þ

where we defined the effective normalized time τðtÞ ¼R
t
t0
2γxðsÞds that takes into account the temporal dependence

of γxðtÞ via the intensity carrier productNðtÞIðtÞ. Therefore,
τ may increase faster than t in the time interval around the
pulse where αNI > 4γK γ−1tot . Equation (9) can thus be
regarded as the zero final temperature evolution or
“diffusion-free” transient distribution following a short
pulse quench, where the only fitting parameter is t0 [see
Figs. 1(b)–1(d), left, green lines].
We characterize these out-of-equilibrium states by first

computing the time-dependent second-order coherence of
the bonding mode at vanishing time delay, gð2Þðt; 0Þ, plotted
in Fig. 1(a). Before and after the laser pulse, i.e., for
IðtÞ ≈ 0, gð2Þðt; 0Þ ≈ 2, which corresponds to thermal
emission. Close to the pulse maximum (tmax), the B mode
becomes superthermal, gð2Þðt ¼ tmax; 0Þ ≈ 3. After-pulse
superbunching can also be observed, gð2Þðt ¼ t2; 0Þ ≈ 8.

FIG. 1. Numerically simulated response of a coupled nanolaser
system under short-pulse pumping (centered at tpump ¼ 32).
(a) Evolution of total laser output intensity (red), excess entropy
(blue), and second-order autocorrelation for the bonding mode
(black). (b)–(d) Snapshots of the PDFs for the fractional
population imbalance (left) and Bloch sphere representations
(right) at (b) t ¼ 20 (before laser buildup), (c) t1 ¼ 35 (during the
early phase buildup), and (d) tmax ¼ 37.8 (pulse maximum). Red
curves on PDFs represent the equilibrium solutions of Eq. (7) to a
final temperature as given by the instantaneous intensity. Green
curves are T ¼ 0, “free-falling” approximations of the PDF
[Eq. (9)] with fitted t0 ¼ 33.5. The simulation parameters are
K ¼ 7, γ ¼ −0.1, α ¼ 5, P ¼ 4Pth, and γ−1tot ¼ 28.
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Our last step is to use the information of the full statistical
distributions [also experimentally accessible (see Sec. III)]
to quantify deviations from equilibrium by means of
the entropy SðtÞ ¼ −

R
ρðx; tÞ ln ½ρðx; tÞ�dx. To this aim,

we consider, starting from ρðx; tÞ as the initial state, a
subsequent irreversible transformation without net energy
exchange with the reservoir. Namely, we define the final
state as an equilibrium distribution of temperature Tf such
that the internal energy is conserved, i.e., UeqðTfÞ ¼ UðtÞ;
hence Tf ¼ Tf½UðtÞ�, whereUðtÞ ¼ R

xρðx; tÞdx is a time-
dependent internal energy and the equilibriumdistribution is
given in Eq. (8). The exchanged entropy with the reservoir
thus vanishes, and the only source of entropy production is
the degree of internal order; we then define the excess
entropy inside the system ΔSiðtÞ as

ΔSiðtÞ ¼ SeqfTf½UðtÞ�g þ
Z

ρðx; tÞ ln ½ρðx; tÞ�dx; ð10Þ

which is zero if the initial state is an equilibrium distribution,
and positive otherwise. As such, it quantifies the degree
of internal residual order—or coherence—of the system,
which is maximum for the farthest nonequilibrium state (see
Supplemental Material [25], Secs. G–K, for more details).
Figure 1(a) shows ΔSiðtÞ, which is significantly high close
to the pulse maximum, ΔSiðtmaxÞ ≈ 0.25, and can be
considered as a measure of the maximum distance from
equilibrium than can be measured after quench upon pulse
integration.

III. EXPERIMENTAL REALIZATION

In order to experimentally show superthermal, long-
tailed probability density function (PDF) transients after
quench in a photonic system, we use two coupled nano-
lasers operating at room temperature (see Appendix A)
under short-pulsed pumping, which is a natural path to
experimentally access quench dynamics. Two coupled
photonic crystal cavities are optically pumped at the
geometrical center with short (100-ps duration) pulses
with a period Tpump ¼ 10 μs [Fig. 2(a)]. The emission is
collected with a high numerical aperture microscope
objective, and its back focal plane is imaged through a
lens to obtain the far-field pattern [Fourier plane, Fig. 2(a)].
In order to temporally resolve the pulse energy of the two

coupled modes B and AB, we set up two confocal detection
paths: two single-mode fibers are used as pinholes to
simultaneously select two small regions on the Fourier
plane and detect their intensities. These regions are located
at the center (k ¼ 0) for the B-mode detection and shifted
along the x direction for the AB mode [Fig. 2(a)]. Signals
are sent to two identical low-noise (200 fW=

ffiffiffiffiffiffi
Hz

p
), 660-

MHz-bandwidth avalanche photodiode (APD) detectors.
Hence, the detectors integrate the output pulses, resulting in
peak APD signals proportional to the pulse energy, which is

eventually calibrated in photon number (p): we call this
method single-pulse energy detection (SPED). Typical
p-time series contain 104 pulses. Figure 2(a) shows a
segment of two simultaneous p-time series displaying both
the AB-mode and B-mode signals. We point out that, since
the cavities operate in a laser regime, each output pulse,
containing projections on both B and AB modes, results

(a)

(b)

Single pulse energy detection
Nanolasers

Single photon detection

Oscilloscope

Pulse number

P
ho

to
n 

nu
m

be
r

Correlation

Time

×

FIG. 2. Experimental autocorrelation results. (a) Top: “Single-
pulse energy detection” scheme using the pulse-to-pulse meas-
urement technique of emitted photon numbers. Simultaneous
photon collection from the two modes and further detection
with APDs allow us to obtain a sequence of pulses (p-time trace)

from which PDFs and gð2Þp values are computed. Bottom: “Single-
photon detection” scheme. Light from the bonding mode is also
sent to aHBT setup to provide directmeasurement of second-order
coherence, used as a cross-check. SNSPD stands for super-
conducting nanowire single-photon detector; FBS stands for
fibered beam splitter. Inset: Normalized coincidence count histo-

gram of the B-mode for P ¼ 4Pth. (b) Circles: g
ð2Þ
p for B and AB

modes at different pump powers computed from thevariance of the
p-time traces shown in (a). Black diamonds : area under the central
peak of the HBT autocorrelation normalized to the average area
under secondary peaks (error bars in grey shadow), in good

agreement with gð2Þp measurements (see Supplemental Material
[25], Sec. F, for a theoretical comparison).
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from a single trajectory in phase space, whose time
integration leads to a single-pulse photon number.

Second-order correlations of the pulse energies gð2Þu (see
Supplemental Material [25], Sec. F) or equivalently, photon

number gð2Þp , are computed from the variances of the p-time
traces and depicted in Fig. 2(b) for both modes. Our method
is validated by means of the standard Hanbury Brown and
Twiss (HBT) experiments [see Fig. 2(a) lower frame and
Appendix B] [29,30]. Note that these correlation traces are
normalized time-integrated autocorrelation functions ~RðτÞ
(see Appendix B), whose central peak can be approximated
as snapshots of gð2Þðt; τÞ close to the pulse maximum,
~Rð0Þ ≈ gð2Þðtmax; 0Þ (see Supplemental Material [25],

Sec. F). It is clearly observed in Fig. 2(b) that gð2Þp with
the SPEDmethod and the normalized area under the central
correlation peak with the HBT method are within the

experimental errors. In addition, gð2Þp for the B mode reveals

superthermal emission [gð2Þp > 2] for P≳ 1.5Pth, while the

AB-mode emission remains Poissonian [gð2Þp ≈ 1].
Figures 3(a)–3(c) show experimental and numerical

photon number PDFs for three intercavity coupling param-
eters obtained using the barrier engineering technique [31],
K ¼ 3.3, K ¼ 6, and K ¼ 10, respectively, and three
different pump rates, P ¼ 1.5Pth, P ¼ 2Pth, and P ¼
3Pth from left to right. For the two larger coupling
parameters (K ¼ 6 and K ¼ 10), the PDFs evolve from
nearly exponential to long-tailed PDFs as the pump power
is increased, showing very good agreement between
experimental data and numerical simulations of a stochastic
mean-field model. As for second-order moments, the
measured PDF can also be interpreted as snapshots close

to pulse maximum t ¼ tmax: a stronger pump induces more
intense laser output pulses, and hence a stronger quench,
which leads to more pronounced long-tailed distributions.
Now, a link can be established between the time-

dependent evolutions of the statistical observables after
quench and the experimental results obtained with the
single-pulse energy detection scheme. We note that the two
larger coupling parameters, K ¼ 6 and K ¼ 10, belong
to the quasilinear, large-coupling Rabi regime for which
K > α [32] (here α ¼ 5). The superthermal quenches

asymptotically reach gð2Þp values of approximately 3–3.5
[Figs. 3(e)–3(f), left], in agreement with gð2Þðtmax; 0Þ ≈ 3 in
Fig. 1(a). The deviation from equilibrium can be quantified
by computing the excess entropy ΔSi as defined in Eq. (10)
but using pulse energies [Supplemental Material [25],
Sec. J, Eq. (S72)]. The monotonic entropy increase toward
ΔSi ∼ 0.2–0.3 is compatible with transients after quench
for K ¼ 6 and K ¼ 10 and corresponds to ΔSiðtmaxÞ
predicted by the model [see Fig. 1(a)].
Unlike large K-values, the case K ¼ 3.3 is fundamentally

different as it jumps into the Josephson regime, K < α [32].

Here, neither gð2Þp nor the excess entropy have the same
behavior as for very strong coupling. In addition, it can be

observed that gð2Þp tends to 1 for increased pumping, which is
an indication of the presence of a coherent phase. The local
maxima in the distributions for K ¼ 3.3 [Fig. 3(a)] lead to
larger deviations from equilibrium which, even in good
agreement with the full numerical simulations of the stochas-
tic mean-field model, are not predicted by the simple 1D
model [Eq. (6)]. Instead, the large entropy departure for
K ¼ 3.3 andP > 2.5Pth [Fig. 3(d), right] is observed, which
can be interpreted as a consequence of symmetry-breaking
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FIG. 3. Statistical distributions of the photon number for the B-mode. (a)–(c) Experimental (bars) and theoretical (lines) PDFs
for increased pump powers P ¼ 1.5Pth (left), P ¼ 2Pth (middle), and P ¼ 3Pth (right) and different intercavity coupling levels:
(a) K ¼ 3.3, (b) K ¼ 6, and (c) K ¼ 10. (d)–(f) Experimental (symbols) and theoretical (lines) degree of second-order coherence (left);
excess entropy (right, black); and order parameter (right, orange) as a function of P for (d) K ¼ 3.3, (e) K ¼ 6, and (f) K ¼ 10. In the
numerical simulations, γ ¼ −0.1, α ¼ 5, and γ−1tot ¼ 28.
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phenomena taking place for such coupling parameters, as we
have recently explored in continuous wave operation [19].
As proposed in Ref. [21], a symmetry-breaking phase
transition can be detected from the evolution of an order
parameter, jÔj ¼ jA1 þ A2j, which will grow up under
symmetry-breaking conditions. We observe in Figs. 3(d)–
3(f) (right panels) that hjÔj2i remains small for K ≥ 6, while
it experiences an abrupt increase forK ¼ 3.3 andP > 2.5Pth,
which constitutes experimental evidence—in the sense of a
quench—of a symmetry-breaking phase transition. Hence,
K ¼ 3.3 with P > 2.5Pth corresponds to the mixing of a
thermal state with a symmetry-broken coherent phase, which
is beyond the simple long-tailed distributions described in
Sec. II. It shows the increasing statistical complexity of the
dissipative coupled cavity system when accessing the highly
nonlinear Josephson limit in which the nonlinear laser
frequency shift overcomes the tunnel energy K [19].

IV. ANALOGY WITH BROWNIAN PARTICLES

This section aims at addressing the universality of our far-
from-equilibrium distributions after quench, bymapping the
nanolaser system to the dynamics of Brownian particles in a
fluid. Brownian particles are mesoscopic objects subjected
to external forces but also in contactwith a thermal bath, e.g.,
pollen submerged into a fluid as in the original Brown
experiment [33]. The interactions with the thermal reservoir
provide at the same time dissipation and fluctuations that

lead to thermal equilibrium. In the high friction limit, the
altitude xj of the particle j follows the Langevin equation of

motion γdxj=dt ¼ −gþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γkBT=m

p
ξjðtÞ, where γ is the

viscous damping rate, g is gravitational acceleration, kB the
Boltzmann constant, m the mass, T the reservoir temper-
ature, and ξjðtÞ a Gaussian white noise. We consider a hard
(reflecting) wall at x ¼ 0 as the boundary condition and
rescale the variables as T → T=θg with the characteristic
temperature θg ¼ g2m=γ2kB, x → xγ2=g, and t → γt. The
normalized Langevin equation has the form of Eq. (6), but
now fðxÞ ¼ −1 and g2 ¼ 2T. The equilibrium solution of
the FP equation [Eq. (7)] is also given by Eq. (8), i.e., an
exponential distribution which, in this simple case, is that of
the potential energyUðxÞ ¼ x [see Figs. 4(a) and 4(c)], with
β ¼ 1=T and N ¼ β.
We point out that the transient dynamics toward equilib-

rium is governed by the viscosity γ. As a consequence, if the
system is initially at thermal equilibrium with temperature
T ¼ T1, twowidely different paths, or cooling processes, are
possible toward a temperature T2 < T1. First, the reservoir
temperature TðtÞ may decrease slowly as compared to the
characteristic time scale of the particle γ−1. In our rescaled
units, this means _T=T ≪ 1. In this adiabatic case, the
distribution during the cooling process is defined by the
equilibrium distribution with a time-dependent temperature
ρðx; tÞ ¼ ρeq½x;TðtÞ� (see Supplemental Material [25],
video S1).

FIG. 4. Quenching analogy between a suspension of Brownian particles in a fluid (a)–(c) and a double cavity laser with mode energy
flow from bonding (B) to antibonding (AB) modes (d)–(f). (a), (d): Initial equilibrium; from left to right: potential energy, a snapshot of
the physical ensemble (104 particles), height histogram (blue bars), and the steady-state equilibrium distribution ρeqðx; TÞ [red line,
Eq. (8)]. (b), (e): Quenched phase. The far nonequilibrium distributions are due to the abrupt decrease of the reservoir temperature from
T1 to T2 < T1. Particles located at high altitudes remain “hot,”while lower particles cool down more rapidly. (c)–(f) Final equilibrium at
T ¼ T2.
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Another possibility consists in decreasing the temperature
abruptly. The system will remain in an out-of-equilibrium
state for some time,with a statistical distribution thatwill not
correspond to the exponential equilibrium [see Fig. 4(b) and
Supplemental Material [25], video S2). In such a transient
phase after quench, the particles are simply falling and the
Brownian fluctuations can be neglected; hence, the dynam-
ics is dominated by transport (drift) rather than diffusion.
Collisions with the bottom wall make particles thermalize
faster: thosewith lowpotential energy become cold,whereas
high-altitude particles remain hot. This simple picture
unveils quench phenomena in more complex systems such
as our strongly coupled cavities operating in the laser regime
[Figs. 4(d)–4(f)].
The analogy between falling Brownian particles and

compound cavity laser systems relies on three important
features: (i) coupled cavities may support several (here two)
eigenmodes which, as long as the cavities are filled with
active (gain) media, interact through mode-mode scattering
and/or gain competition leading to energy flow (drift)
among the modes [32,34]; (ii) stochastic fluctuations are
intrinsic because of spontaneous emission noise; and
(iii) the equilibrium below laser threshold is thermal.
Within this analogy, the reservoir temperature in the
coupled cavity system is given by β−1 ∼ SspI−1. Hence, a
rapid intensity increase in the bimodal laser corresponds to
a fast cooling of the Brownian particle system. A main
difference can still be pointed out: the stochastic process
in the Brownian particle case is given by additive noise,
while the noise term is multiplicative in the optical system.
Also, the potential is nonlinear in the optical system while it
is linear in the falling Brownian particle case. Remarkably,
the drift and diffusion terms combine together in the optical
system in such a way that the equilibrium is also expo-
nential. Physically, the drift force in the bimodal nanolaser
results from loss difference between the two optical modes.

V. CONCLUSIONS

In conclusion, we have shown a far-from-equilibrium
route to superthermal emission in coupled nanolasers by
preparing the system with a short-pump-pulse parameter
quench. The signatures of nonequilibrium transients are
heavy-tailed photon distributions of the weak hybrid mode,
which have been experimentally observed by means of a
single-pulse energy detection scheme. The universality of
this process relies on an abrupt effective temperature
decrease in a 1D stochastic transport equation for the
mode energy: the drift forces overcome diffusion, leading
to super-exponential distributions with “high temperature”
deviations. The distance from equilibrium has been quan-
tified through the excess internal entropy, which could be
used as a nonarbitrary indicator of heavy-tail statistics in,
e.g., the physics of extreme events [35]. Finally, our far-
from-equilibrium mechanism is illustrated through the
analogy with an ensemble of a suspension of Brownian

particles in a fluid upon a fast-cooling process. These
results open up a new paradigm to investigate classical
phase transitions and out-of-equilibrium thermodynamics
using multimode nonlinear dissipative optical cavities.
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APPENDIX A: PHOTONIC CRYSTAL
NANOLASER FABRICATION

The two coupled nanocavities are made as defects (three
holes missing) in a photonic crystal lattice consisting of
air holes etched in a 265-nm-thick InP membrane. The
InP membrane contains four InGaAs=InGaAsP quantum
wells with photoluminescence centered at 1510 nm and
FWHM ¼ 63 nm. It is bonded to a silicon substrate by
means of a 400-nm benzocyclobutene (BCB) layer. In
between BCB and InP, a 1-μm-thick SiO2 layer is chemi-
cally underetched in order to suspend the InP membrane
and provide a Q-factor of about 5000. The amount of
evanescent coupling between the nanolasers can be pre-
cisely tailored by modifying the hole diameter of the central
row in the barrier [31].

APPENDIX B: HANBURY BROWN
AND TWISS EXPERIMENT

The bonding mode intensity is split into two identical
paths with a 50=50 fibered beam splitter. Each output is
sent to superconducting nanowire single-photon detectors
(SNSPD, Single Quantum Eos, closed-cycle systems). The
quantum efficiency of these devices is about 15% and the
timing jitter is 50 ps. We operate the SNSPD with a bias
current well below the superconductor threshold so that
we only count 50 dark photons per second. To perform
coincidence measurements, we attenuate the signal down to
2000 counts=s on each detector. SNSPD outputs are moni-
tored with an oscilloscope (Lecroy Wavepro 725 Zi
2.5 GHz, 40 GS=s). The coincidence count diagram is
obtained by triggering the oscilloscope on one SNSPD
channel, and we use the built-in Lecroy function≪ skew ≫
to measure the time interval from the closest detection event
on the second SNSPD channel. Then, a histogram of the
time intervals is plotted on the oscilloscope with 1000
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detection events. With this method, we thus reconstruct the
time-integrated autocorrelation function RðτÞ. We define
~RðτÞ ¼ fRðτÞ=[½1=ð2MÞ�PM

−Mðm≠0Þ Rðτ ¼ mTÞ]g as the

autocorrelation function normalized to the side-peaks aver-
age value. Therefore, the degree of second-order coherence
in the energy variable is the area under the central peak of the
normalized autocorrelation function divided by the average

of the areas under the side peaks, gð2Þu ≈ f½R T=2
−T=2

~RðτÞdτ�=R
side-peaks

~RðτÞdτg (see Supplemental Material [25], Sec. F).
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