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Fluid polyamorphism is the existence of different condensed amorphous states in a single-component
fluid. It is either found or predicted, usually at extreme conditions, for a broad group of very different
substances, including helium, carbon, silicon, phosphorous, sulfur, tellurium, cerium, hydrogen, and tin
tetraiodide. This phenomenon is also hypothesized for metastable and deeply supercooled water,
presumably located a few degrees below the experimental limit of homogeneous ice formation. We
present a generic phenomenological approach to describe polyamorphism in a single-component fluid,
which is completely independent of the molecular origin of the phenomenon. We show that fluid
polyamorphism may occur either in the presence or in the absence of fluid phase separation depending on
the symmetry of the order parameter. In the latter case, it is associated with a second-order transition, such
as in liquid helium or liquid sulfur. To specify the phenomenology, we consider a fluid with thermodynamic
equilibrium between two distinct interconvertible states or molecular structures. A fundamental signature
of this concept is the identification of the equilibrium fraction of molecules involved in each of these
alternative states. However, the existence of the alternative structures may result in polyamorphic fluid
phase separation only if mixing of these structures is not ideal. The two-state thermodynamics unifies all
the debated scenarios of fluid polyamorphism in different areas of condensed-matter physics, with or
without phase separation, and even goes beyond the phenomenon of polyamorphism by generically
describing the anomalous properties of fluids exhibiting interconversion of alternative molecular states.

DOI: 10.1103/PhysRevX.8.011004 Subject Areas: Chemical Physics, Physical Chemistry,
Statistical Physics

I. INTRODUCTION

Fluid polyamorphism is the existence of two or more
amorphous condensed states in a single-component fluid
[1–6]. The possibility of a liquid-liquid transition in a pure
substance, in addition to ordinary vapor-liquid separation, is
commonly considered as the signature of fluid polyamor-
phism [3,7]. However, different amorphous phases can also
exist in single-component fluids without liquid-liquid sep-
aration (first-order transition) resulting in a continuous

(second-order) phase transition [8–12]. Fluid polyamor-
phism is found or predicted in a broad group of very different
systems, including (but not limited to) helium [8,9], sulfur
[10–12], phosphorous [13], carbon [14], cerium [15], silicon
[16–19], silicon dioxide [20–22], tellurium [23–25], tin
tetraiodide [26,27], and hydrogen [28–30]. Significantly, it
has also been hypothesized in metastable and deeply super-
cooled water [31–36]. Two alternative forms of molecular
arrangements are believed to exist in supercooled liquid
water: a low-density structure and a high-density structure.
Under certain conditions, metastable liquid-liquid separa-
tion could occur in pure water because of the existence of
these two alternative structures. The hypothesized liquid-
liquid metastable coexistence is not directly accessible in
bulk-water experiments because it is presumably located a
few degrees below the kinetic limit of homogeneous ice
formation [36,37]. Such coexistence has been reported for
some atomisticwatermodels (see review [36]),most notably
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in molecular simulations of the ST2 model [38]. A phase
diagram similar to that predicted for water was reported for a
model of supercooled silicon with the liquid-liquid tran-
sition line extending to negative pressures in the doubly
metastable region [22].
The examples of polyamorphism go far beyond super-

cooled water or other tetrahedral fluids, such as silicon or
silica. At high temperature and pressures of hundreds of
GPa, highly compressed fluid hydrogen is believed to occur
in two forms: atomic, metallic hydrogen and molecular,
nonmetallic hydrogen [28–30]. The chemical reaction
2H ⇄ H2 under these conditions may be accompanied
by a first-order fluid-fluid transition. It is expected that the
fluid-fluid transition line is terminated at a critical point,
above which there is a gradual transformation between the
two forms of highly compressed (dense plasma) hydrogen.
A mixture of two interconvertible hydrogen species can be
considered thermodynamically as a single-component fluid
because the number of degrees of freedom is constrained by
the condition of chemical-reaction equilibrium. Reversible
polymerization is another example of an equilibrium
chemical reaction that causes a dramatic change of sub-
stance properties. When the degree of polymerization N is
very large, the reaction NA ⇄ AN can be considered as a
second-order phase transition between the monomer phase
and the solutionof polymer inmonomers [10].At the second-
order transition point, there is no fluid phase separation.
There is no discontinuity in the density and entropy at the
transition point, although there is a symmetry break.
Liquid helium and sulfur represent two well-studied

examples of fluid polyamorphism without phase separa-
tion. The “lambda transition” at ∼2 K in 4He, between the
normal fluid and superfluid phases, is a second-order
transition caused by quantum Bose condensation [8].
Returning to phenomena at higher temperatures, liquid
sulfur is sharply polymerized at ∼433 K [10–12]. No fluid
phase separation is observed. Phosphorous is another
example of polyamorphism driven by polymerization,
though is not as well studied and, unlike polymerization
of sulfur, it is claimed to be accompanied by phase
separation [13].
A fundamentally important question is, what, if anything,

is common to all the chemically and physically very different
systems exhibiting polyamorphism? In this work, we present
a generic phenomenological approach, based on the Landau
theory of phase transitions [39], to describe fluid polya-
morphism in a single-component substance. The approach is
completely independent of the underlying molecular nature
of the phenomenon. To specify this approach and calculate
both phase behavior and thermodynamic properties, we
consider a fluid with thermodynamic equilibrium between
two competing interconvertible molecular “states” or struc-
tures. A fundamental signature of this concept is the
identification of the equilibrium fraction of molecules
involved in each of these alternative states.

The idea that water is a “mixture” of two different
structures dates back to the 19th century [40,41]. Rapoport
used this idea to explain the high-pressure melting curve
maxima of some liquid metals [42]. More recently, the
concept of two alternative condensed amorphous states has
become a popular explanation for liquid polyamorphism in
cerium caused by delocalization of Fermi electrons [15],
tellurium (a competition between twofold and threefold
local atomistic coordination) [23–25], tin tetraiodide (face-
to-face vs vertex-to-face orientation between the nearest
molecules) [26,27], and in water [43–49]. The variation of
the relative proportion of the alternative structures with
temperature and pressure, predicted in Ref. [49], was used
to explain the anomalous behavior of viscosity in super-
cooled water [50]. In a series of works by Tanaka et al., the
idea of two competing liquid states was specified in terms
of the alternative locally favored structures and two order
parameters associated with these structures [51–54].
However, most of the previously reported versions of

two-state thermodynamics considered only liquid-liquid
separation and ignored vapor-liquid transition or, at best,
introduced it empirically as a polynomial background part
of the Gibbs energy. Hence, the complete (“global”) phase
diagram was not obtained. Another limitation of previous
studies utilizing the two-state approach is that they con-
sidered only polyamorphism associated with liquid-liquid
separation, thus ignoring such important cases as super-
fluidity in helium or polymerization in sulfur. Furthermore,
a broad class of systems that exhibit equilibrium inter-
conversions of polymorphic molecules or supramolecular
units, but do not exhibit polyamorphism (e.g., structural
isomerization of hydrocarbons, conformation of polymer
chains, folding or unfolding of protein molecules, or
interconversion of stereoisomers), has not been previously
unified with polyamorphic fluids.
In this work, we formulate a mean-field equation of state

that globally describes both vapor-liquid and liquid-liquid
transitions in the same single-component fluid. A second-
order phase transition, causing fluid polyamorphism with-
out fluid-fluid separation, is also described by this generic
phenomenology. A particular variant of this global equation
of state also describes the systems that do not macroscop-
ically exhibit polyamorphism but still exhibit interconver-
sion of polymorphic molecules. Significantly, the global
equation of state is also applied for negative pressures
(stretched fluids). Negative pressures are observed and
studied experimentally, particularly in water [55–57], and
as such they are not simply a theoretical curiosity.
We discuss two alternative mechanisms for a liquid-

liquid transition in a single-component fluid. The “discrete”
mechanism is driven by the existence of two distinct mixable
or unmixable molecular forms or supramolecular structures.
In contrast, the “continuous” mechanism, associated with
isotropic two-scale nonideality in the Gibbs energy, does not
require the entropy of mixing of two distinct alternative
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entities and the system is not constrained by the condition

of interconversion equilibrium. Thermodynamically, these
cases may produce similar phase diagrams and similar
property anomalies, depending on the interplay of the model
parameters. Unambiguous discrimination of these mecha-
nisms can be made by examining (experimentally and
computationally) the kinetics of structural relaxation by
tuning the rate of interconversion and measuring (or simu-
lating) the rate of relaxation of the reaction coordinate.

II. RESULTS

A. Generic formulation of polyamorphism
in a single-component fluid

A generic thermodynamic description of fluid polya-
morphism can be formulated by using the Landau theory of
phase transitions [39], in which the key concept is the order
parameter, a variable that characterizes the emergence of a
more ordered state. The Gibbs energy (per molecule)G of a
single-component fluid is generally presented in the form

Gðp; T;ϕÞ ¼ G0ðp; TÞ þ kTfðϕÞ − hϕ; ð1Þ

where p, T, and k are the pressure, temperature, and
Boltzmann’s constant, respectively. In Eq. (1), ϕ is the
order parameter. The order parameter could be either a
scalar, a vector, or a tensor. The variable h is a thermo-
dynamic field conjugate to the order parameter known as
the “ordering field,” and fðϕÞ is a function whose specific
form depends on the microscopic nature and symmetry of
the order parameter. If the order parameter is a vector,
the ordering field is also a vector. In this case the order
parameter breaks the symmetry of the disordered state. We
must note that Eq. (1) applies to phenomena and systems
with different physical nature of the order parameter and,
correspondingly, ordering field. In some cases, such as
magnetization (a vector), the ordering field (i.e., the
magnetic field) is an independent variable, whereas gen-
erally in polyamorphic fluids the ordering field may be a
function of pressure and temperature. It is also possible that
some phase transitions occur only in zero ordering field
because the state with nonzero field does not physically
exist, e.g., the lambda transition in He4 [6] or the transition
from isotropic liquid to nematic liquid crystal (the order
parameter is a tensor) [39]. The transition between isotropic
liquid and nematic liquid crystal in a pure substance is an
example of the first-order transition without phase separa-
tion, unless the order parameter (tensor of anisotropy) is
coupled with the density. The existence of magnetic fluids
and nematic liquid crystals makes fluid polyamorphism to
be part of more general phenomena, “fluid polymorphism.”
In an ordinary isotropic liquid, there also could be two
different types of symmetry if its molecules have two
stereoisometric forms. If the liquid has a different number

of the stereoisomers, it will not possess a center of
symmetry with respect to reflection in any plane [39].
The equilibrium value of the order parameter is found by

minimizing the Gibbs energy via ð∂G=∂ϕÞp;T ¼ 0. This
minimization results in the equilibrium condition hðp; TÞ ¼
ð∂f=∂ϕÞp;T and thus makes the equilibrium value of the
order parameter, ϕ ¼ ϕe, to be a function of p and T.
A particular form of ϕ ¼ ϕe depends on the nature of the
order parameter. Generally, one can define ϕeðp; TÞ to vary
between zero (alternative amorphous structure is absent) and
unity (fully developed alternative amorphous structure). We
emphasize that in our approach we include the ordinary
vapor-liquid transition in the “background” part of the Gibbs
energy G0ðp; TÞ that is independent of ϕ.

B. Fluid polyamorphism induced by
interconversion of molecular states

To enable the general formulation of fluid polyamorphism
for the calculation of thermodynamic properties, we need to
specify the nature of the order parameter and, consequently,
the explicit form of the function fðϕÞ. A unifying scenario
for many, if not most, polyamorphic systems is thermody-
namic equilibrium between two alternative interconvertible
molecular states or supramolecular structures. This scenario
is phenomenologically equivalent to “chemical-reaction”
equilibrium between two alternative “species,” A and B. We
do not need to specify the atomistic structure of these states.
They can be two different structures of the same molecule
(isomers), dissociates and associates, or two alternative
supramolecular structures, such as different forms of a
hydrogen-bond network. Hence, the conversion of one
molecular or supramolecular state to another one may not
necessarily require breaking of chemical bonds.
Let x be the fraction of state B in the “chemical reaction”

A ⇄ B. This variable is also known as the “reaction
coordinate” or “degree of reaction” [58]. In chemical
reactions the number of atoms is conserved, while the
number of molecules may or may not be conserved. The
conservation of the number of atoms is controlled by
stoichiometric coefficients. For simplicity, we first consider
equal stoichiometric coefficients for A and B, meaning that
the number of molecules in the reaction is conserved.
Generally, the reaction A ⇄ B may involve different stoi-
chiometric coefficients νA and νB (such as 2H ⇄ H2 or,
generally, νAA ⇄ νBB). Specific stoichiometry may modify
the relation between the reaction coordinate and the molecu-
lar fraction of each state and separate the condition of
reaction equilibrium and the condition of phase equilibrium.
We specify the Gibbs energy (per molecule) given by

Eq. (1) in the form

G ¼ GA þ xGBA þGmix; ð2Þ

where GBA ¼ GB −GA, the difference between the Gibbs
energies of the molecular entities B and A, is equivalent to
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−h, while Gmix, the Gibbs energy of mixing, is equal to
kTfðϕÞ. Furthermore, the Gibbs energy of the background
state GA can be identified with G0, while x, the molecular
fraction of state B, with the order parameter ϕ.
Adopting in this section a symmetric form of the Gibbs

energy of mixing, Gmix ¼ Hmix − TSmix (where Hmix
is the enthalpy of mixing and Smix is the entropy of
mixing), such that Hmix−TSmix¼ωxð1−xÞþkTx lnðxÞþ
kTð1−xÞ lnð1−xÞ, we write [58,59]

Gðp; T; xÞ ¼ GAðp; TÞ þ xGBAðp; TÞ þ kTx lnðxÞ
þ kTð1 − xÞ lnð1 − xÞ þ ωxð1 − xÞ; ð3Þ

where ω is the parameter of nonideality of mixing. In
general, ω is a function of T and p. The ideal-solution
mixing in the Gibbs energy of mixing is represented
by the ideal-gas mixing entropy Sidealmix ¼ −k½x lnðxÞþ
ð1 − xÞ lnð1 − xÞ�. If ω does not depend on T, being a
system-dependent constant, or depends only on p, the
nonidealityGmix − TSidealmix ¼ ωxð1 − xÞ is entirely enthalpy
driven (“regular-solution mixing”). If ω is simply propor-
tional to T, while being arbitrarily dependent on p, the
nonideality is entirely entropy driven (“athermal-solution
mixing”). In most real mixtures, nonideality is driven by
both enthalpy and entropy. For simplicity, in this section,
we consider ω to be a constant.
The molecular fraction of state B (i.e., x) is a reaction

coordinate. The equilibrium value of the reaction coordi-
nate (in this particular formulation) is equivalent to the
equilibrium value of the order parameter ϕ. The chemical
reaction equilibrium between A and B makes the mixture
of A and B equivalent thermodynamically to a single-
component fluid. Indeed, the equilibrium value of the
reaction coordinate x ¼ xeðT; pÞ, the fraction of molecules
involved in state B, is obtained from the condition of
chemical-reaction equilibrium [39,58],

�∂ðG=kTÞ
∂x

�
p;T

¼ 0; ð4Þ

yielding the explicit relation between the order parameter
and the ordering field:

h¼ kT lnKðp;TÞ¼−GBAðp;TÞ¼ kT ln
x

1−x
þωð1−2xÞ;

ð5Þ

where KðT; PÞ is the reaction equilibrium constant. In a
binary mixture without chemical equilibrium, the differ-
ence between the Gibbs energies GBA depends on an
arbitrary constant because GA and GB are independent.
The chemical-equilibrium condition Eq. (4) eliminates this
uncertainty, thus making GBA well defined.
An important practical question arises: under which

experimental conditions will the system described by

Eq. (3) behave either as a binary fluid mixture or as a
single-component fluid? The answer depends on the
separation of time scales: a system with two interconvert-
ible fluid structures can be thermodynamically treated as a
single-component fluid if the time of observation is longer
than the characteristic time of reaction (fast conversion). At
the opposite limit (slow conversion) the system behaves
thermodynamically as a two-component mixture. In this
case, the constraint imposed byEq. (4) does not apply and the
concentration of the species becomes an independent vari-
able. Therefore, applying the chemical-reaction approach for
the description of single-component-fluid polyamorphism
assumes that the conversion is fast enough to satisfy the
equilibrium condition Eq. (4) within the experimental time
scale.
We emphasize that our use of the term “chemical-

reaction equilibrium” does not necessarily imply that
polyamorphism and liquid-liquid separation in a pure fluid
involves a chemical reaction in the conventional definition,
i.e., breaking of chemical bonds. Within the framework of
the Landau theory of polyamorphism, this terminology is
phenomenologically equivalent to the condition of thermo-
dynamic equilibrium with the Gibbs energy containing the
ideal entropy of mixing of two distinct alternative states and
the nonideal (“excess”) Gibbs energy of mixing.

C. Polyamorphic fluid-fluid phase separation

We note that for the symmetric Gibbs energy of mixing
given by Eq. (3) the condition lnKðp; TÞ ¼ 0 and the
condition of phase equilibrium (zero ordering field)
coincide. Along the line lnKðp; TÞ ¼ 0, if ω=kBT ≤ 2,
there is only one solution of Eq. (5), that is x ¼ 1=2.
However, if ω=kBT > 2, this equation has two stable
solutions, x > 1=2 and 1 − x < 1=2. This corresponds to
the coexistence of two fluid phases enriched with either
A or B. This means that the line lnKðT; PÞ ¼ 0 is the fluid-
fluid phase transition line. The temperature,

T�
c ¼

ω

2k
; ð6Þ

is the critical temperature for the polyamorphic fluid-fluid
transition. The critical pressure p∗

c is found from the
condition lnKðT ¼ T�

c; p ¼ p∗
cÞ ¼ 0. The temperature of

the fluid-fluid coexistence (“cxc”) as a function of the
fraction of state B is found as

T̂cxc ¼
2ð2x − 1Þ
ln½xð1 − xÞ� ; ð7Þ

where T̂cxc ¼ Tcxc=T�
c. At the critical point, x ¼ xc ¼ 1=2.

Above the critical temperature, the line lnKðp; TÞ ¼ 0
(a continuation of the line of phase transitions, along which
x ¼ 1=2) is known as the Widom line [49].
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Equation (7) is equivalent to the temperature dependence
of the spontaneous (in zero field) order parameter obtained
in the mean-field approximation for the Ising or lattice-
gas model. Indeed, introducing M ¼ 2x − 1 and using
arctanhðMÞ ¼ 1

2
ln½ð1þMÞ=ð1 −MÞ�, we obtain the well-

known Ising-model mean-field result [59]:

M ¼ tanh
M

T̂cxc
: ð8Þ

Expansion of Eq. (8) in powers ofM in the vicinity of the
critical point yields the asymptotic power law in the mean-
field approximation: M ¼ 2x − 1 ¼ �½3ðT − T∗

cÞ=T�
c�1=2.

D. Calculation of thermodynamic properties

From Eq. (3), we can obtain

∂x
∂pGBAþkT

∂
∂p ½x lnxþð1−xÞ lnð1−xÞþωxð1−xÞ� ¼ 0

ð9Þ

and

∂x
∂TGBA þ k

∂
∂T ½x lnxþ ð1− xÞ lnð1− xÞ þωxð1− xÞ� ¼ 0:

ð10Þ

The density and entropy are calculated from

ρðp; TÞ ¼ 1

Vðp; TÞ ¼
�∂G
∂p

�−1

T

¼ 1

VAðp; TÞ − kTð∂ lnK=∂pÞxðp; TÞ ð11Þ

and

Sðp; TÞ ¼ −
�∂G
∂T

�
p
¼ SAðp; TÞ þ kð∂ lnK=∂TÞxðp; TÞ;

ð12Þ

where VA ¼ VAðp; TÞ and SAðp; TÞ are the volume and
entropy (per molecule) of state A. From the Gibbs energy, if
state A and lnKðT; PÞ are specified we can obtain all other
thermodynamic properties, such as the isothermal com-
pressibility and heat capacity, as well as the global phase
diagram that includes both vapor-liquid and liquid-liquid
transitions.

E. Specifying state A and equilibrium constant

We have used two alternative choices of GAðp; TÞ. One
option is to adopt the chemical potential of the lattice-gas
model GA ¼ μlg. The other option is to use the chemical
potential of the van der Waals fluid GA ¼ μvdW. Both these

models famously describe the transition between liquid
and gaseous states and vapor-liquid coexistence. However,
there is an important conceptual difference between these
two models: lattice gas is a discrete model consisting of two
distinct states (empty cells and occupied cells) with the
entropy mathematically equivalent to the entropy of mixing
in a binary fluid. The van der Waals fluid is a continuous
model without distinct alternative states. In Sec. I of the
Supplemental Material [60] we provide details of thermo-
dynamic equations for the lattice-gas and van der Waals
models, as well as for the fine lattice discretization model
(Sec. 2 of Ref. [60]) that uniformly describes crossover
between the two alternative models [61]. The effect of the
differences in these two alternative formulations of state A
on the global phase diagram and properties of a poly-
amorphic fluid are not significant. Major effects are caused
by a particular dependence of the equilibrium constant on p
and T and by the distance from the liquid-liquid critical
point to the absolute stability limit of the liquid state with
respect to vapor (the liquid branch of the vapor-liquid
spinodal).
The formulation on an explicit equation of state requires

the specification of the equilibrium constant KðT; pÞ. A
general form of the Gibbs energy change of reaction can be
represented by the polynomial

GBAðp; TÞ ¼ −kT lnKðT; pÞ
¼ kðλþ αpþ βT þ γpT þ δp2 þ εT2 þ � � �Þ:

ð13Þ

Correspondingly, for the equilibrium constant,

− lnKðp;TÞ ¼GBA

kT
¼ λ

T
þα

p
T
þ βþ γpþ δ

p2

T
þ εTþ� � � ;

ð14Þ

where the coefficients of the polynomial represent the
changes (in first approximation) of energy (λ), volume (α),
entropy (β), isobaric expansivity (γ), heat capacity (δ), and
isothermal compressiblity (ε) in the reaction A ⇄ B. In the
linear approximation,

GBAðp; TÞ ¼ kðλþ αpþ βTÞ: ð15Þ

In this approximation the conversion between two states
is affected only by changes in energy, volume, and entropy.
The phase transition line and the Widom line are defined
as λþ αpþ βT ¼ 0 with a constant slope dp=dT ¼
SBA=VBA ¼ −β=α. In the Sec. III of the Supplemental
Material [60] we report the results for an alternative form of
the equilibrium constant. These results support our con-
clusion on the generic character of the developed approach.
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F. Global phase diagrams and lines of extrema
of thermodynamic properties

In this section we present results obtained by using
GAðp; TÞ for the chemical potential of the lattice-gas
model. Essentially similar results, presented in Sec. IV
of the Supplemental Material [60], are obtained when
adopting GAðp; TÞ for the chemical potential of the van
der Waals model.
A typical phase diagram, calculated from Eq. (3) with

GBAðp; TÞ using the linear approximation given by
Eq. (15), for the polyamorphic lattice-gas model is pre-
sented in Figs. 1(a) and 1(b). Dimensionless values of
temperature (T̂) and pressure (p̂) are relative to the critical
parameters of the vapor-liquid critical point (CP1). The
parameters of the model for this particular case are
λ=kTc1 ¼ 0.5, α=ρc1kTc1 ¼ −0.05, β=k ¼ −1.5, and
ω=kTc1 ¼ 0.6. Figures 1(a) and 1(b) show the vapor-liquid
and liquid-liquid coexistence (with the liquid-liquid critical
point, CP2, as a simple example located at a positive
pressure for the selected parameters), the absolute stability
limit of the liquid state with respect to vapor, and the
Widom line. The right branch of the vapor-liquid spinodal,
which is the absolute stability limit of liquid with respect to
vapor (obtained as the locus of maxima of the isobars),
demonstrates reentrant behavior at the densities close to the
liquid-liquid critical density.
Figure 2 demonstrates an example of the behavior of the

isothermal compressibility along three selected isobars:
above, at, and below the critical pressure. For the above
liquid-liquid critical pressure case (green line), the pres-
sures for both CP1 and CP2 are assigned to be equal. One
can notice the divergence of the isothermal compressibility
at the critical points and at the vapor-liquid spinodal.

The location of the liquid-liquid critical point depends
on the interplay of two essential parameters, λ (the energy
change of reaction at zero pressure) and ω ¼ 2kTc2 (the
nonideality of mixing of the alternative states). As shown in
Fig. 3, by tuning Tc2 ¼ ω=2k from zero to a certain positive
value (depending on λ) the model evolves from a “singu-
larity-free” scenario (Tc2 ¼ 0) to a “critical-point-free”
scenario (the liquid-liquid critical point is located beyond
the absolute stability limit of liquid state with respect
to vapor).

(a) (b)

FIG. 1. Phase diagram for a polyamorphic lattice gas: T̂ ¼ T=Tc1 and p̂ ¼ p=pc1, ρ is the density. (a) Pressure-temperature diagram.
The blue curves are either vapor-liquid or liquid-liquid transitions; CP1 and CP2 are the vapor-liquid and liquid-liquid critical points
assigned (as an example) to be at the same isobar. The red dotted curves are the liquid and vapor branches of liquid-vapor spinodal and
the blue dotted line is the Widom line. (b) Temperature-density diagram. The thick blue and thick red curves are the vapor-liquid and
liquid-liquid coexistence, respectively. The multicolor curves are selected isobars.

FIG. 2. The dimensionless isothermal compressibility κ̂T ¼
ρ−1ð∂ρ=∂p̂Þ along three selected isobars: above the liquid-liquid
critical pressure, assigned equal to the vapor-liquid critical pressure
(green line), at the critical pressure (red line), and below the critical
pressure (blue line). T̂c1 ¼ 1 and T̂c2 ¼ Tc2=Tc1 are the vapor-
liquid and liquid-liquid critical temperatures, T̂LL ¼ TLL=Tc1 is the
temperature of the liquid-liquid transition at the selected isobar.TSP
is the temperature of the vapor-liquid spinodal.
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Stokely et al. [62] studied the effects of hydrogen bond
cooperativity on the behavior of supercooled water. They
introduced two major parameters: the strength of the
directional component of the hydrogen bond and the degree
of hydrogen bond cooperativity. If the degree of hydrogen
bond cooperativity is zero, the neighboring bonds are
formed independently. We note that if the strength of the
directional component of the hydrogen bond is identified
with the energy change of reaction (λ) and the degree of the
cooperative component of the hydrogen bond is identified
with the nonideality parameter ω ∝ Tc2, then the phase
diagram presented in Fig. 3 is essentially similar to that
obtained by Stokely et al. [62].
Tuning the distance of the liquid-liquid critical point

from the absolute stability limit of the liquid state with
respect to vapor results in a major change in thermody-
namic behavior of the system and, especially, in the pattern
of extrema in thermodynamic properties [63,64]. In par-
ticular, the locus of density maximum or minimum is one of
the most characteristic features of polyamorphic liquids.
The salient points of this locus are interrelated through
thermodynamic relations, with the extrema loci of thermo-
dynamic response functions, such as the isothermal com-
pressibility along isobars or the isobaric heat capacity along
isotherms [64,65]. Furthermore, since the extrema loci are
experimentally observed for a broad range of temperatures
and pressures, including thermodynamically stable regions,
their shape provides important information for modeling
liquid polyamorphism, especially if the liquid-liquid tran-
sition is experimentally inaccessible [66].
The evolution of the extrema loci upon tuning the

location of the liquid-liquid critical point is demonstrated

in Fig. 4(a) (singularity-free scenario) to Fig. 4(d) (critical-
point-free scenario). The pattern of extrema loci in Fig. 4(a)
demonstrates a singularity-free scenario [63] which is
relevant to those tetrahedral systems that do not exhibit
a metastable liquid-liquid separation, such as the mW
model of water [67], but still exhibit interconversion
between alternative states. The pattern presented in
Fig. 4(b) (a “regular polyamorphism” scenario, the
liquid-liquid critical point is located at a positive pressure)
is observed in the popular ST2 [68] and TIP4P/2005 [69]
atomistic water models. The additional (shallow) extrema
of the heat capacity, observed in this case, is unrelated to
the liquid-liquid transition and is specific to the model
adopted for state A. The extrema are also unrelated to the
so-called “weak” extrema of the heat capacity and iso-
thermal compressibility reported by Mazza et al. [70] that
emanate from the liquid-liquid critical point and which are
specific for their “many-body model” of water. The case
presented in Fig. 4(c) is a degenerate one as the critical
point coincides with the vapor-liquid spinodal. Finally,
Fig. 4(d) presents the case in which the transition line
remains of first order until the liquid becomes unstable with
respect to vapor (critical-point-free scenario [71]). We note
that the critical-point-free scenario is a variant of the
“stability limit conjecture” proposed by Speedy [72].
Speedy viewed the cause of the anomalies of water as a
continuous instability line which “bounds the metastable
superheated, stretched, and supercooled states.” In the
critical-point-free scenario, this instability line is realized
by the union of the liquid-liquid (present in our model but
not shown for clarity) and liquid-vapor spinodal. One can
notice that the vapor-liquid spinodal in Fig. 4 remains
continuous and smooth even when it intercepts the liquid-
liquid transition line [Fig. 4(d)]. This is not generic, being a
result of the simple linear form of GBAðT; pÞ, given by
Eq. (15), thatwas used for the calculations. This form implies
that the compressibilities of states A and B are the same.
The most dramatic result of the evolution of the

extrema loci is the shrinking and eventual disappearance
of the maximum density locus upon the transition from the
singularity-free scenario to the critical-point-free scenario.
This effect is observed for both choices of state A, the
lattice gas and van der Waals models, with various sets of
the model parameters (see the Supplemental Material,
Figs. S9 and S10 [60]) and has been recently observed
in models of doubly metastable silicon [73] and silica [74].
To investigate in what degree this effect is common, it
would be worth examining other models for state A, which
could be both more realistic and specific to different
polyamorphic systems or models.
Another remarkable peculiarity of liquid polyamor-

phism, which has not been reported previously in the
literature, is a singularity (“bird’s beak”) in the liquid-liquid
coexistence curve when the critical point coincides with
the vapor-liquid spinodal [Fig. 4(c)]. This singularity is

Beyond

Stability

Limit

FIG. 3. Parametrized phase diagram for polyamorphic lattice
gas in terms of nonideality of mixing of the alternative states A
and B, T̂c2 ¼ ω=2kTc1, and the energy difference of A and B,
λ̂ ¼ λ=kTc1. The volume difference of states A and B is taken
constant. The singularity-free scenario corresponds to T̂c2 ¼ 0.
The critical-point-free scenario is favored by stronger nonideality
and smaller energy difference.
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associated with the common tangent of the liquid-liquid
coexistence and vapor-liquid spinodal in the p-ρ and T-ρ
diagrams as shown in Figs. 5(a) and 5(b). It is also observed
for the van der Waals choice for state A (see the
Supplemental Material, Fig. S11 [60]). We believe this
effect is a thermodynamic requirement. A similar shape for
fluid-fluid coexistence is observed in dilute binary solu-
tions near the vapor-liquid critical point of the pure solvent
when two spinodals have a common tangent in the p-ρ and
T-ρ diagrams [75].

G. Fluid polyamorphism without or with phase
separation: superfluid transitions in liquid 4He

and 4He− 3He mixtures

The second-order phase transitions (lambda transitions)
of superfluidity in pure 4He and 3He helium isotopes
are arguably the most famous examples of liquid

polyamorphism without phase separation [8,9]. The forma-
tion of the superfluid is associated with the formation of a
Bose-Einstein condensate. In 4He, the lambda transition
between the normal fluid and superfluid phases occurs at
∼2 K [8], while 3He forms a superfluid phase (A or B,
depending on pressure) at a temperature below 0.0025 K [9].
In the mean-field approximation, polyamorphism in

helium-4 is described near the transition temperature
TλðpÞ by Eq. (1) with hðp; TÞ ¼ jhj ¼ 0, ϕðp; TÞ ¼ jψj
(a two-component vector order parameter, the wave func-
tion in the theory of Bose-Einstein condensation [6,7],
containing real and imaginary parts) and fðϕÞ given by a
Landau expansion [37]:

fðT; pÞ ¼ 1

2

T − TλðpÞ
TλðpÞ

jψj2 þ 1

4
ujψj4; ð16Þ

FIG. 4. Evolution of the pattern of the extrema loci upon tuning the location of the liquid-liquid critical point. Black is the density
maximum or minimum; red is the isothermal compressibility maximum or minimum along isobars; green is the isobaric heat capacity
maximum or minimum along isotherms; dotted green shows additional (shallow) extrema of the heat capacity unrelated to the liquid-
liquid transition; dotted red are two branched of the liquid-vapor spinodal; blue dashed is the Widom line; red dots are the vapor-liquid
(CP1) and the liquid-liquid (CP2) critical points. (a) A “singularity-free” scenario—the critical point is at zero temperature, thus it is not
labeled as CP2; extrapolations of the extrema loci to zero temperature are shown as dashed lines. (b) A “regular” scenario—the critical
point CP2 is at a positive pressure. (c) The critical point coincides with the absolute stability limit of the liquid state. (d) A “critical point-
free” scenario—the “virtual” critical point CP2 is located in the unstable region.
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where u is a coupling constant. The superfluid phase below
TλðpÞ can be viewed phenomenologically as a two-state
“mixture” with the fraction of the superfluid component
controlled by thermodynamic equilibrium. The order
parameter in the mean-field approximation changes with
temperature as jψj ¼ �½ð1=uÞðTλ − TÞ=Tλ�1=2. In contrast,
the experimentally observable physical property, the frac-
tion (“density”) of the superfluid component, is a scalar,
changing along isobars as ρsf ∝ jψj2 ∝ TλðpÞ − T. The
transition is continuous, occurring in pure helium-4 without
phase separation. However, liquid-liquid phase separation
is observed in a mixture of 4He and 3He, where the lambda
transition at the tricritical-point concentration of 3He
becomes a first-order transition [76]. The physical origin
of tricriticality in the 4He − 3He mixture is a coupling
between the vector order parameter ψ and concentration c
(a scalar) of 3He [76,77]. The function fðjψj; cÞ will
contain an invariant ∝jψj2c. In contrast to the ordinary
parabolic fluid-fluid coexistence, the mean-field shape
of the tricritical liquid-liquid coexistence is anglelike:
the difference of concentration of the mixture and
its tricritical value is a linear function of temperature,
c − ctct ∝ ρsf ∝ T tct − T. Another remarkable feature of
tricriticality is that in three dimensions it is essentially
a mean-field phenomenon (with small logarithmic cor-
rections) [76], thus making Landau theory a valid
approximation.
Landau theory, applied to superfluidity, implies that fluid

polyamorphism without phase separation (a second-order
transition) is associated with a vector order parameter. If the
order parameter is a tensor (isotropic-nematic transitions),
the transition between two fluid phases will be first order,
but, nevertheless, not necessarily with phase separation
[77]. Phase separation will emerge only if the vector (or

tensor) order parameter is coupled with a scalar (density
or concentration).
The two-state interpretation of superfluidity certainly

does not imply that there is a chemical-reaction equilibrium
between alternative two states in helium. However, there is
a remarkable analogy that underlines the common two-state
phenomenology of polyamorphic fluids. In the two-fluid
superfluidity model, the superfluid state has zero entropy.
The total entropy is due to the normal fluid, and can be
calculated by using Bose statistics and the excitation
spectrum of helium [8]. The next section demonstrates
how a similar asymmetric entropy emerges in the Gibbs
energy of mixing for a two-state fluid that undergoes an
equilibrium reaction of polymerization. Analogously to
helium, In the infinite-degree polymerization limit, the
contribution from the polymer chain to the entropy of
mixing vanishes.

H. Fluid polyamorphism caused by polymerization
without or with phase separation

The transition to polymeric liquid sulfur at a temperature
about ∼433 K is another example of fluid polyamorphism
without phase separation. The properties of sulfur near
the polymerization transition are completely reversible, as
is the case for a continuous phase transition. Using a
Heisenberg n-vector model (n is the number of the vector’s
components) in the limit n → 0, Wheeler et al. [78,79]
explained the polymerization in sulfur as a second-order
phase transition in a weak external field. An earlier theory
by Tobolsky and Eiseberg [10] describes the temperature
dependence of the extent of polymerization in terms of a
second-order phase transition in the mean-field approxi-
mation. The situation for real sulfur is more complicated
because the polymerization of sulfur into its supramolecu-
lar structure occurs upon heating [10,11], since liquid sulfur

FIG. 5. A singularity (“bird’s beak”) in the liquid-liquid coexistence curve if the critical point coincides with the liquid-vapor spinodal.
(a) Pressure-density, (b) Temperature-density. Thick blue curve is the vapor-liquid coexistence; thick red is the liquid-liquid coexistence;
CP1 and CP2 are the vapor-liquid and liquid-liquid critical points, respectively; dotted blue is the liquid-vapor spinodal; multicolor
curves are selected isotherms (a) and selected isobars (b).
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contains octamers that are to be broken to undergo
polymerization. Furthermore, according to Dudowicz et al.
[80], polymerization in actin is strictly equivalent to a
thermodynamic phase transition only in the limit of zero
concentration of the initiator.
Here we consider the simplest scenario, namely, an

equilibrium reaction of polymerization NA ⇄ AN in the
liquid phase of monomers A. In the limit N → ∞, this
reaction is equivalent to a second-order phase transition in
zero field between the phase containing only monomers
(state A) and the phase containing a solution of the infinite
polymer chain in the monomers (state B). The phenomenon
is equivalent to a second-order transition because the
volume fraction of polymer is continuous at the starting
point of polymerization, while its derivative is discontinu-
ous. For polymerization in an incompressible liquid sys-
tem, the volume fraction of polymer is proportional to the
fraction of polymerized monomers x. If the solvent mol-
ecules are just nonpolymerized monomers, this transition
is described thermodynamically by the Flory mean-field
theory of polymer solutions [81,82] constrained by the
equilibrium condition of polymerization. In the Flory
theory, the Gibbs energy per monomer is

Gðp; T; xÞ ¼ GA þ xGBA þ kT
x
N
ln x

þ kTð1 − xÞ lnð1 − xÞ þ ωxð1 − xÞ: ð17Þ

In the simplest approximation, the interaction parameter
ω can be assumed to be independent of temperature,
ω ¼ kΘ=2, where Θ is a temperature of phase separation
in the limit N → ∞, x → 0 (the “theta temperature”). At
temperatures much higher than the theta temperature (when
the interaction parameter is negligible), the infinite chain
exhibits a self-avoiding walk in solution of monomers [83].
For a reversible reaction at the condition ω ≪ kT, the

enthalpy of mixing can be neglected and the chemical-
reaction equilibrium condition reads

GBAðp; TÞ ¼ −TSBA ¼ kT
N

− kT þ kT
N

ln x − kT lnð1 − xÞ:
ð18Þ

Specifying (just for simplicity) the Gibbs energy change
of reaction as GBAðp; TÞ ¼ kðλþ αpþ βTÞ, we obtain the
temperature dependence of the polymer volume fraction
along isobars, presented in Fig. 6. At a finite degree of
polymerization, there is no sharp transition between the
monomer-reach and polymer-reach states. This case cor-
responds to a singularity-free scenario in the two-state
thermodynamics (there is no polyamorphism, but there is
interconversion), although the asymmetry (with respect to
the Widom line) in the equilibrium fraction of polymerized
molecules is very strong at large N. However, in the limit
N → ∞, GBAðp; TÞ ¼ −TSBA ¼ −kT − kT lnð1 − xÞ, the

polymer volume fraction is zero at all temperatures
above the transition temperature, T ¼ TλðpÞ, defined by
the condition

−kT lnð1 − xÞ ¼ λþ αpþ βT þ kT ¼ 0. ð19Þ

We note that in this highly asymmetric case the condition
lnK ¼ λþ αpþ βT ¼ 0 and the condition of phase equi-
librium at the transition temperature, λþαpþβTþkT¼ 0,
are not the same. One can also notice that near the transition
temperature the polymer volume fraction changes linearly
as a function of T − TλðpÞ, suggesting that, like in the case
of superfluidity in helium, the actual order parameter for
polymerization in the limit N → ∞ is proportional to x1=2.
This is polyamorphism without phase separation, purely

driven by the extraordinary asymmetry in the entropy of
mixing in the limit N → ∞. Therefore, in this (asymmetric
entropy-driven, no heat of mixing) case, the behavior of the
system is fundamentally different from the case of nonideal
mixing-driven polyamorphism with phase separation, when
N and ω are finite.
We emphasize that the meaning of the order parameter for

the system inwhich two interconvertible states are controlled
by chemical-reaction equilibrium changes from a scalar for
all finite N (in the purely symmetric case, N ¼ 1, this is a
fraction of conversion, x) to a specific (zero-component
vector) order parameter ψ, with x ∝ jψj2 ∝ TλðpÞ − T,
associated with self-avoiding walk singularities of the
infinitely long (N → ∞) polymer chain [82–84]. This makes
the infinite degree of polymerization, at least in the mean-
field approximation, to be analogous to the two-state model
of superfluidity. The sharpness of polymerization fraction
with the temperature variation, δT=T, the parameter that

FIG. 6. Fraction of polymerized monomers as a function of
temperature for different degrees of polymerization. Green curve
corresponds to N ¼ 10, blue curve to N ¼ 30, and red curve to
N → ∞. The polymerization in the limit N → ∞ is equivalent to
a continuous (second-order) phase transition in zero field.
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controls crossover between the singularity-free scenario
(finite N and zero ω) and the polyamorphism with a lambda
transition (infinite N and zero ω), is δT=T ∝ N−1=2 [83,84].
If N is finite, the possibility of polyamorphism is always
associated with phase separation and requires the existence
of nonideality in the Gibbs energy of mixing (finite inter-
action parameter ω). We note, however, that polyamorphic
liquid-liquid separation (finite N) could, in principle, be
entropically driven if ω is simply proportional to T, while
being dependent on p [49].
In addition to pure sulfur, Wheeler [85] considered

polymerization of sulfur in a molecular solvent. If the
mutual attraction between the monomers fragments of the
polymer chain is stronger than between the chain fragments
and solvent molecules, at a certain temperature, equivalent
to the theta temperature, the transition to the polymer-rich
phase could be accompanied by phase separation in the
solution. The line of second-order phase transitions
becomes the line of first-order transition at a tricritical
point [39,76,83]. Therefore, the theta point of the infinite
polymer chain in the solution of small molecules is
equivalent to a tricritical point. Within the framework of
Landau theory, one can interpret the emergence of the
tricritical point as a result of coupling between the
polymerization order parameter ψ and concentration.
In principle, a similar phenomenon could exist in a pure

polymerizing molecular liquid if the attraction between the
monomers fragments of the emerging polymer chain is
stronger than between the chain fragments and nonpoly-
merized monomers. Then the monomers and the monomer
solution enriched with the polymer will separate below the
theta temperature (see Fig. S12 in the Supplemental
Material [60]). The emergence of liquid-liquid separation
and tricriticality in a single-component polymerizing fluid
requires a strong coupling between polymerization and
density, through the interaction term ωx2 ∝ jψj2x. A
generalized phase diagram of a fluid exhibiting infinite-
chain polymerization with phase separation below the
tricritical point is presented in Fig. 7. In reality, phase
separation is rare because it requires significant nonideality
in interactions between the fragments of the polymer chain
and its monomers. At high pressures, a sulfur melt under-
goes a nonmetal-metal first-order transition [86], similar to
that earlier found in selenium [87]. However, this transition
is unrelated to polymerization in sulfur at atmospheric
pressure, which occurs as a second-order transition.
Polymerization in phosphorus, unlike polymerization in
sulfur, is accompanied by phase separation [13]. If the
degree of polymerization in phosphorus could be infinite
(practically, δT=T ∝ N−1=2 ≪ 1), the liquid-liquid coexist-
ence line would be separated from second-order transitions
by a tricritical point, i.e., not an ordinary critical point. This
thermodynamic requirement brings interesting questions to
the interpretation of polyamorphism in phosphorous, given
by Yarger and Wolf [88], as being associated with ordinary

liquid-liquid criticality. This interpretation is unambiguously
correct only if the parameter δT=T ∝ N−1=2 is not very small.
For finite, but small δT=T ∝ N−1=2, a crossover between
ordinary criticality and tricriticality (δT=T ∝ N−1=2 → 0)
should be taken into account. However, such interpretation
seems to be indeed adequate for the polyamorphic behavior
of triphenyl phosphite [89].

I. Liquid-liquid transition in a single component fluid
without interconversion of discrete molecular states

In a single-component fluid, the existence of liquid-liquid
separation, in addition to the vapor-liquid transition, does not
necessarily require the existence of distinct interconvertible
molecules ormolecular structures. Indeed, the Landau theory
of phase transitions can phenomenologically describe this
scenario without any reference to such interconversion.
Let the Gibbs energy of a fluid be described by Eq. (1)

with the ordering field hðp; TÞ. The ordinary vapor-liquid
transition is described byGoðp; TÞ. The origin of a possible
liquid-liquid transition and the nature of the order param-
eter depends on a particular form of the function fðϕÞ. If
we adopt a continuous free-energy model for this function,
e.g., in the van der Waals-like form,

fðϕÞ ¼ ϕ ln
ϕ

1 − ~bϕ
− ~aϕ2

kT
; ð20Þ
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FIG. 7. Generalized phase diagram of a fluid exhibiting
equilibrium polymerization into an infinite chain. Blue area is
the polymeric phase; thick black line and curve are first-order
phase transitions (coexistence between monomer and polymer
phases and between vapor and liquid, respectively); CP is the
vapor-liquid critical point; the theta point is equivalent to a
tricritical point which separates the second-order and first-order
phase transitions; TRP is the triple point (monomers, polymer-
enriched phase, and vapor coexist). Dotted red curve represents
the absolute stability limit of liquid with respect to vapor. Blue
dashed line is continuation of the liquid-liquid transition line into
the metastable region.
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the derivative of this function yields the expression for the
ordering field in the form of the chemical potential of a van
der Waals fluid:

h ¼ ∂f
∂ϕ ¼ kT

�
1

1 − ~bϕ
þ ln

ϕ

1 − ~bϕ

�
− 2~aϕ; ð21Þ

where the interaction parameter ~a defines the second
energy scale and ~b is the second distance scale. From
Eq. (20), using a particular form of h ¼ hðT; pÞ, e. g.,
h ¼ λþ αPþ βT, one can obtain the equilibrium value of
the order parameter ϕe ¼ ϕðp; TÞ. The fundamental differ-
ence between the continuous and reaction-equilibrium
approaches is the definition of the ordering field
h ¼ hðT; pÞ. In the reaction-equilibrium approach the
pressure-temperature dependence of h is controlled by
the condition of reaction equilibrium. In the continuous
approach h is just a specific part of the chemical potential;
its particular pressure-temperature dependence is to be
determined by the condition of liquid-liquid equilibrium
(h ¼ 0). Only in the case when the function f has a form
with the symmetric entropy, like in the lattice-gas model,
the definitions of the ordering field in continuous and
discrete (if it is also symmetric) approaches are equivalent.
We note that in the continuous scenario the order

parameter is not associated with an equilibrium fraction
of molecules involved in a certain state because there is no
entropy of mixing of two distinct species in the function
fðϕÞ. Instead, the order parameter originates from the
additional energy and length scales in the intermolecular
potential, being phenomenologically associated (in first
approximation) with the excess entropy Sex ¼ S − S0 ¼−βϕ and excess volume V0 ¼ ∂G0=∂p, where V0 ¼∂G0=∂p and S0 ¼ −∂G0=∂T. The order parameter is
zero for a simple fluid (which is described by a one-scale
Gibbs energy) and changes from zero to unity as a function
of p and T.
In particular, for the given (van der Waals-like) example,

the critical value of the order parameter ϕc ¼ 1=3~b and the
critical temperature T�

c ¼ 8~a=27k ~b. However, in the vicin-
ity of the critical point of phase separation, the function
fðϕÞ can be symmetrized by an appropriate redefinition of
the order parameter and the ordering field [90]. The discrete
scenario can also be asymmetric, due to either asymmetric
entropy of mixing or asymmetric heat of mixing. Generally,
for such cases, the order parameter is not just a fraction of
conversion. It will be defined through a coupling between
the reaction coordinate (fraction of conversion), density,
and entropy, being a combination of all these variables.
The possibility of fluid polyamorphism without inter-

conversion of discrete molecular states is limited to liquid-
liquid separation and deemphasizes structural difference
between the alternative liquid phases. In particular, this

scenario excludes polyamorphism without phase separation
caused by infinite-degree polymerization (sulfur) and
liquid-liquid separation accompanied by chemical reaction
(phosphorus, hydrogen). It also excludes liquid-liquid
separation of interconvertible stereoisomers and self-
assembly (see Sec. VIII of the Supplemental Material [60]).

III. DISCUSSION

A. Is the critical-point-free scenario realistic
for supercooled water?

One result, reported in Sec. II F, has practical implica-
tions. There is an ongoing discussion in the scientific
community on the possibility of a critical-point-free sce-
nario in silicon, silica, and supercooled water, if the first-
order liquid-liquid transition line could continue into the
stretched liquid state (doubly metastable) crossing the
vapor-liquid spinodal [71–74,91,92]. This scenario is
illustrated in Fig. 4(d). In this scenario the locus of density
maxima disappears, collapsing into the transition line at
negative pressures. In contrast, the locus of density maxima
for real water is observed experimentally at positive
pressures. This phenomenon of shrinking the density
maximum line is reproduced for both the van der Waals
and lattice-gas models for state A and for different forms of
GBAðp; TÞ (see the Supplemental Material, Figs. S9d and
S10 [60]). In fact, we tried many different combinations
of the parameters in the two-state model and always found
the same behavior. Moreover, the same collapse has been
recently observed in doubly metastable models of silicon
[71] and silica [72]. Shrinking of the density maxima
locus in a regular critical-point scenario with respect to a
singularity-free scenario, similar to that seen in Figs. 4(a)
and 4(b), was also observed by Truskett et al. [93] in an
associating fluid model with directional interactions.
However, we must note that for one alternative model

(the modified van der Waals model of Poole et al. [91]),
even in the case of the critical-point-free scenario, the
density maximum line still exists at positive pressure.
Therefore, the mere existence of the density maximum
line in real water cannot reject the critical-point-free
scenario. It could be possible that shrinking the density
maximum locus would not always result in its disappear-
ance. Experiments in the doubly metastable region can
resolve this problem. Recent experiments on water at
negative pressure [64] have observed a maximum in
isothermal compressibility along isobars. This makes a
strong case in favor of either the second-critical-point or
singularity-free scenarios. These two scenarios require the
existence of a compressibility maximum at negative pres-
sures (Fig. 4), whereas the critical-point-free scenario
predicts the divergence of the compressibility at the
liquid-liquid spinodal (that is crossed upon cooling at
negative pressures in this scenario).
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B. Is Landau theory sufficient to unify different
polyamorphic phenomena?

In this work we argue that the phenomenon of fluid
polyamorphism can be unified by the Landau theory of
phase transitions. Landau theory is a mean-field approxi-
mation that neglects the effects of fluctuations on thermo-
dynamic properties [39,77,94]. However, these effects are
dominant only in the immediate vicinity of the fluid-
fluid critical points and second-order phase transitions
and they do not qualitatively change the phase diagrams.
Furthermore, the effects of fluctuations are insignificant for
first-order transitions and near tricritical points [39,94].
Effects of fluctuations can be incorporated into the two-
state thermodynamics through a well-developed crossover
procedure by renormalizing the function fðϕÞ in Eq. (1), as
described in Ref. [95]. In other words, Landau theory is
sufficient to address all basic issues of polyamorphic fluid
phase behavior. The concept of symmetry breaking at the
transition point is more important. Depending on the
symmetry of the order parameter, fluid polyamorphism
may or may not be accompanied by phase separation. If the
order parameter is a scalar, a first-order transition between
fluid phases may be terminated by a critical point. If the
order parameter is a vector, a second-order transition
without phase separation is possible. Moreover, coupling
between scalar and vector order parameters could cause
tricriticality and first-order transition in the system that
otherwise would demonstrate a second-order polyamorphic
transition.

C. Can one discriminate, experimentally or
computationally, between “discrete” and “continuous”

approaches to fluid polyamorphism?

While the symmetry of the order parameter (scalar vs
vector) can be elucidated by the study of polyamorphic
phase behavior, discrimination between the two alternative
approaches (continuous vs discrete) to fluid polyamor-
phism in the systems with a scalar order parameter and
without an obvious molecular interconversion is a more
delicate task. For the description of liquid-liquid transitions
without well-defined discrete molecular states, the differ-
ence between these approaches is somewhat similar to that
between the descriptions of vapor-liquid transition by either
the lattice-gas model or van der Waals model (see the
Supplemental Material, Secs. 1 and 2 [60]). In the con-
tinuous case the function fðϕÞ in Eq. (1) does not contain
the entropy of mixing of two alternative states. Instead, this
function may have a form similar to the asymmetric van der
Waals-like free energy. However, the difference between
the vapor-liquid transitions in the symmetric lattice-gas
model and asymmetric van der Waals model is subtle.
Moghaddam et al. [61] developed a “fine lattice discreti-
zation” crossover procedure that uniformly describes these
two models (see Supplemental Material, Sec. II [60]).
Similarly, the alternative formulations of the origin of

liquid-liquid separation in a pure fluid, namely, the exist-
ence of two interconvertible states or the existence of
additional interaction energy and distance scales in an
isotropic intermolecular potential, may generate very sim-
ilar phase diagrams. Furthermore, both approaches, discrete
and continuous, may generate similar extrema lines in the
singularity-free scenario (Tc2 ¼ 0). For example, Poole
et al. [91] and Truskett et al. [93] proposed an extension of
the van der Waals equation that incorporates the effects of
the network of hydrogen bonds that exist in liquid water.
They did not use the concept of reaction equilibrium
between the two alternative structures, although a possible
relation between their models and two-state thermodynam-
ics has not yet been investigated.
The question arises, can these alternative approaches be

discriminated either experimentally or computationally?
The discrete approach is obviously required for the
description of polyamorphism caused by a well-defined
chemical reaction (hydrogen, sulfur, phosphorus) or inter-
conversion of polymorphic molecules. Depending on the
stoichiometric coefficients, the entropy of mixing may or
may not have a symmetric form. A hypothetical example of
a discrete approach with the perfectly symmetric entropy of
mixing is equilibrium folding-unfolding of a single mol-
ecule. If the conformers of this molecule do not attract each
other, at certain temperature they may separate. A similar
case is the symmetric phase separation of stereoisomers.
A recent simulation study [95] has demonstrated the
possibility of spontaneous chiral symmetry breaking in a
single-component racemic (achiral) fluid upon cooling
through a critical point of liquid-liquid separation.
However, for other debated examples of polyamorphism,
including metastable liquid water, the question of the
existence and interconversion of two discrete states can
only be unambiguously answered if thermodynamic analy-
sis is combined with dynamic and structural studies.
One of the arguments in favor of the discrete approach

is the direct computation of the equilibrium number of
molecules involved in alternative states in several simulated
waterlike models. The fractions of molecules involved in
the high-density structure and in the low-density structure
at various temperatures and pressures have been computed
for the ST2 [96], TIP4P/2005 [97], and mW [67,98]
models. While being well described by the two-state
thermodynamics, the mW model does not exhibit liquid-
liquid separation, behaving similar to the singularity-free
scenario. We note that more accurate atomistic models of
water are available for bulk properties [99], which have not
yet been applied to this problem. In particular, the role of
polarization is being increasingly recognized as having a
significant influence on the properties of water [100,101]
and has not been considered so far.
The existence of a bimodal distribution of molecular

configurations in real water is supported by x-ray photon
correlation spectroscopy [102], and by an investigation of
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vibrational dynamics [103]. An unresolved theoretical
problem is the microscopic nature of the phenomenological
order parameter (the molecular fraction of conversion in the
two-state thermodynamics) associated with the bimodal
distribution in supercooled water. The concept of locally
favored structures, developed by Tanaka and co-workers
[51–54,89], accounting for coupling between the orienta-
tional and translational local orders is a promising approach
for resolving this problem.
An unexplored area, both experimentally and computa-

tionally, is the kinetics of interconversion of the alternative
structures. The chemical relaxation rate becomes slower
upon cooling and thus may interplay with the rate of
phase transformations. The rate interconversion of discrete
molecular or supramolecular forms depends on the acti-
vation barrier. The existence of the activation barrier is a
signature of interconversion. This barrier can be tuned both
experimentally (catalysis, temperature) and computation-
ally (by simulating intermediate states). The rate of
interconversion can be obtained by measuring the relaxa-
tion of fluctuations of reaction coordinate by dynamic light
scattering (see the Supplemental Material, Sec. VIII [60]).
It is known that conserved and nonconserved order

parameters may belong to different classes of universality
in dynamics [104]. The reaction coordinate is a non-
conserved order parameter that obeys the dynamics of
relaxation independent of the wave number. Density and
entropy are conserved quantities. They obey a diffusive
relaxation with the rate proportional to the square of the
wave number. Therefore, experimental and simulation
studies of the relaxation rate at different wave numbers
could discriminate the nature of polyamorphism.
Another unresolved question is the relation between the

developed phenomenology of discrete alternative states and
a two-scale isotropic intermolecular potential, such as the
Jagla potential [105–108] or, more generally, soft-repulsion
potentials [109,110] that generate a liquid-liquid transition
in a single-component system. As pointed out by Vilaseca
and Franzese [109], isotropic intermolecular potentials, due
to the lack of directional interactions, provide a mechanism
for fluid polyamorphism that is an alternative to the
bonding in network-forming liquids, such as water. It
seems that the entropy of the systems described by an
isotropic intermolecular potential may not contain the term
that is associated with the entropy of mixing of two discrete
states. However, how can the molecular clustering observed
in simulations of a Jagla-potential fluid [111] be inter-
preted? In the discrete lattice-gas model there is no
distance-dependent intermolecular potential. The discrete
lattice-gas model and continuous van der Waals model can
be reconciled by a crossover procedure known as the “fine
lattice discretization” [61]. How could this procedure affect
the evolution of the shape of intermolecular potential?
Ultimately, any peculiarities in the condensed-matter
behavior are determined by details in interatomic and

intermolecular interactions. Answers to the questions raised
are highly desirable and require further investigation.
Finally, the microscopic nature, and even the existence,

of polyamorphism can be elucidated by studying the phase
transitions in binary solutions, which stem from polya-
morphism predicted, but inaccessible, in the pure solvent
[112–118]. Liquid-liquid transitions in binary solutions
usually originate from essential nonideality of mixing.
However, if a liquid-liquid transitions is found in an ideal
solution, this transition must stem from the liquid-liquid
transition of the pure solvent [117]. Therefore, a recent
calorimetric study [118] of an ideal solution (hydrazinium
trifluoroacetate in water) is probably the most direct
evidence, obtained so far, for water’s polyamorphism.

IV. CONCLUSIONS

Fluid polyamorphism, or, more generally, “fluid poly-
morphism” if liquid crystals are included, is a surprisingly
widespread, yet poorly understood, phenomenon in con-
densed matter, either observed or predicted in a broad
range of materials. We develop a generic phenomenological
approach, based on the Landau theory of phase transitions,
to describe polyamorphism in a single-component fluid.
It is completely independent of the underlying molecular
origin of the phenomenon and sheds new light on the
physical nature of polyamorphism.
We utilize the concept of thermodynamic equilibrium

between two competing interconvertible states or molecular
structures. The existence of two competing states in a
single-component fluid may promote fluid polyamorphism
either with or without phase separation depending on the
symmetry of the order parameter. If the order parameter is a
scalar, associated with the molecular fraction of conversion,
the polyamorphism is accompanied by fluid phase sepa-
ration. If the order parameter is a vector (the lambda
transition in helium and an infinite-degree polymerization
transition), the polyamorphism may be accompanied by
phase separation only at the account for coupling of the
vector order parameter with a scalar order parameter, thus
causing tricriticality.
The two-state thermodynamics naturally unifies all the

debated cases of fluid polyamorphism: with and without
phase separation, from the “singularity-free” scenario to
the “critical-point-free” one, and qualitatively describes the
thermodynamic anomalies typically observed in polyamor-
phic materials. We have discovered a remarkable pecu-
liarity of liquid polyamorphism, which has not been
reported previously in the literature, namely, a singularity
(bird’s beak) in the liquid-liquid coexistence curve when
the critical point coincides with the liquid-vapor spinodal.
This singularity is a generic feature, being associated
with the common tangent of the liquid-liquid coexistence
and vapor-liquid spinodal at the temperature-density and
pressure-density planes.

MIKHAIL A. ANISIMOV et al. PHYS. REV. X 8, 011004 (2018)

011004-14



The developed approach enables a global equation of
state to be formulated that uniformly describes both vapor-
liquid and liquid-liquid equilibria in single-component
fluids, including the metastable and doubly metastable
states under negative pressures. Further experimental and
simulation studies of dynamic and structural properties
are desirable to verify other predictions of this approach,
such as shrinking the locus of density maximum in the
critical-point-free scenario, and elucidate the microscopic
foundation of the developed phenomenology.
Our work makes a paradigm shift from fluid polya-

morphism defined as a relatively narrow phenomenon of
liquid-liquid separation in a single-component fluid to a
cross-disciplinary field that addresses a broad class of
systems and phenomena with interconversion of alternative
molecular or supramolecular states. The phenomenology
developed in our work extends the original two-state model
far beyond liquid-liquid separation in a single-component
fluid and opens the way to construct global equations of
state for various materials of a physically different nature,
polyamorphic or not, wherever molecular interconversion
may take place.
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