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We prove that quantum information encoded in some topological excitations, including certain Majorana
zero modes, is protected in closed systems for a time scale exponentially long in system parameters. This
protection holds even at infinite temperature. At lower temperatures, the decay time becomes even longer,
with a temperature dependence controlled by an effective gap that is parametrically larger than the actual
energy gap of the system. This nonequilibrium dynamical phenomenon is a form of prethermalization and
occurs because of obstructions to the equilibration of edge or defect degrees of freedom with the bulk. We
analyze the ramifications for ordered and topological phases in one, two, and three dimensions, with
examples including Majorana and parafermionic zero modes in interacting spin chains. Our results are
based on a nonperturbative analysis valid in any dimension, and they are illustrated by numerical
simulations in one dimension. We discuss the implications for experiments on quantum-dot chains tuned
into a regime supporting end Majorana zero modes and on trapped ion chains.
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I. INTRODUCTION

Solid-state systems supporting non-Abelian anyons,
such as Majorana zero modes (MZMs), are the focus of
considerable research aimed at exploiting them for quan-
tum information processing [1–4]. In the limit of zero
temperature, the quantum information stored in a collection
of non-Abelian anyons is protected, up to corrections
exponentially small in the separation between anyons. At
nonzero temperatures, however, thermally excited bulk
quasiparticles can be absorbed or emitted by a zero mode,
thereby corrupting the quantum information contained
therein. Thus a separation-independent failure of pro-
tection is expected to increase with temperature as
e−Δ=T , where Δ is an energy gap. These processes increase
the width and reduce the height of the predicted [5–7] zero-
bias peak that appears to have been observed in tunneling
experiments [8–14].
However, the decay of a zero mode and the quantum

information encoded in it is a nonequilibrium dynamical
process, and it is not clear if thermodynamic reasoning can
describe it properly. In the absence of electron-electron
interactions—for instance, in the Kitaev chain Hamiltonian
[15] or the transverse-field Ising chain, to which it is related
by a Jordan-Wigner transformation—thermally excited

quasiparticles do not affect the zero modes at all. This
can be reconciled with the previous paragraph by noting
that, in the absence of interactions, the coefficient in front
of e−Δ=T vanishes. While the absence of interactions is a
fine-tuned special case, a similar conclusion holds in
systems with strong disorder in which many-body locali-
zation [16] occurs. Here disorder-induced localization
prevents bulk excitations from carrying quantum informa-
tion away from a zero mode [18–20].
Disorder, however, is not necessary to have zero modes in

interacting systems. In at least one integrable system, the
XYZ spin chain, exact edge zeromodes survive the presence
of interactions [21]. This edge “strong zero mode” is an
operator that commutes with the Hamiltonian up to expo-
nentially small corrections in the finite size of the system
[22–24]. Moreover, as with the transverse-field Ising chain,
thermally excited quasiparticles do not cause the edge
degrees of freedom to equilibrate with the bulk. Rather,
the edge spin coherence lasts forever in a semi-infinite chain,
even at infinite temperature [25]. Even more strikingly,
similar behavior was found in several nonintegrable defor-
mations of the Ising chain. Here the coherence time is not
infinite, but extremely long lived [25].
The purpose of this paper is to show that such long-lived

edge modes are a more general phenomenon and to give a
direct and rigorous method for understanding them. We
demonstrate that “prethermalization,” the exponentially
slow approach to thermal equilibrium that occurs in some
closed quantum systems [26–31], can protect edge zero
modes and, in fact, topological degrees of freedom in
higher-dimensional systems as well. (Prethermalization can
also occur in periodically driven systems [31–39], but this
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is not our focus here.) Our analysis gives a clear meaning to
the notion of an “almost” strong zero mode: it is an operator
that commutes with the full Hamiltonian of a system up to
corrections that are a nearly exponentially small function of
a ratio of energy scales. Here by “nearly” exponentially
small, we mean with a logarithmic correction to the
exponent, as set out in Eq. (3) below. We call such an
operator a “prethermal strong zero mode.” Its lifetime is
bounded below by a nearly exponentially growing function
of this ratio of energy scales because prethermalization
delays equilibration of a prethermal strong zero mode until
this late time.
By relating the protection of quantum information to

prethermalization, we reveal the limits of such protection.
We elucidate the nature of this protection in one-
dimensional, two-dimensional, and three-dimensional
closed systems. However, solid-state devices are not closed
systems and prethermalization in such devices is eventually
superseded by thermalization driven by electron-phonon
interactions. Thus, the applicability of these ideas to
Majorana zero modes in semiconductor-superconductor
devices depends on the particular device considered (since
the prethermal limit is not accessible in all devices) and,
even then, is only in some temperature range over which the
electron-phonon interaction does not dominate. We quan-
titatively analyze the quantum-dot chain proposed in
Refs. [40,41]; although it has not been realized in experi-
ments yet, it is a useful case study. We show that
prethermalization can occur over a range of time scales.
In this prethermal regime, arguments relying on thermal
equilibrium are ultimately correct, but with a (nearly)
exponentially small prefactor that reflects the slow thermal-
ization of the system. Moreover, the naive energy gap Δ is
replaced with a much larger effective energy gap Δeff . This
suggests that the T > 0 protection of quantum information
may be optimized by entering the prethermal regime, in
addition to—or even rather than—maximizing the energy
gap. We demonstrate this tradeoff in explicit models.
The type of prethermalization we describe is not special

to one-dimensional or topological systems. We describe
explicitly how analogous phenomena occur in some two-
and three-dimensional systems and how prethermalization
protects edge modes for long times in systems not topo-
logically ordered. One particular example we describe in
detail is the transverse-field Ising chain perturbed by
integrability-breaking interactions. While this chain is
related to the quantum-dot chain via a Jordan-Wigner
transformation, the nonlocality of the map means that
topological order in the latter is simply ordinary ferromag-
netic order in the former. Nonetheless, we show how
prethermalization means the edge spin coherence lasts
for very long times here as well under any perturbation
preserving the Z2 spin-flip symmetry. Namely, the spin
coherence lasts for a time that is (nearly) exponentially
large in terms of the couplings.

We begin with a conceptual overview in Sec. II. In
Sec. III, we explain the prethermal regime and the theorem
of Abanin et al. [31] that guarantees its existence for certain
Hamiltonians. In the first part of Sec. IV, we show how this
theorem can be used to provide a lower bound on the
lifetime of edge zero modes and apply it explicitly to a
model of interacting Majorana fermions. In the remainder
of Sec. IV, we discuss the lifetime of the Majorana zero
modes at nonzero temperatures and present numerical
simulations supporting our arguments. We then generalize
this analysis in the following Sec. V, describing the
conditions needed to observe prethermally protected zero
modes and giving details of several examples that illustrate
these conditions. In Sec. VI, we apply this general strategy
to analyze systems in two and three dimensions.
Section VII explores possible practical applications of
our results, in quantum-dot and ion chains. Finally, in
Sec. VIII, we consider integrable systems, where the zero
modes may survive much longer (possibly even infinitely
longer) than the lower bound.

II. TOPOLOGICAL ZERO MODES
AT FINITE TEMPERATURE

A common feature of systems exhibiting topological
order at zero temperature is topological degeneracy, where
there are several nearly degenerate ground states. Their
energy splitting scales as e−L=ξ for some correlation length
ξ, where L is the system size. Moreover, these degenerate
states are locally indistinguishable. This means that, at zero
temperature, quantum information can be stored in the
degenerate ground state subspace in a topologically pro-
tected way. However, this topological protection usually
does not extend to finite temperature. Here we review, in a
schematic way, the standard arguments for this. We then
explain why, in an isolated system, prethermalization can
improve the situation considerably, both in topologically
and conventionally ordered systems. A rigorous argument
is given in later sections.
Our prototypical example is a one-dimensional topo-

logical superconductor, exemplified by the Kitaev chain
[15]. In such systems with open boundary conditions, there
is a pair of Majorana zero modes on the two ends of the
chain, represented by Majorana operators γ and γ’ [see
Fig. 1(a)]. At zero temperature, these can be used to encode
quantum information in the qubit. The qubit can be
decohered by randomly acting on it with the logical
operators σz ¼ iγγ0 or σx ¼ γ. Since these are both nonlocal
(the latter because it is a fermionic operator), the qubit is
therefore immune to decoherence from any local noise
process.
At finite temperature, on the other hand, there is a

finite density of fermionic quasiparticles in the bulk of the
system. If such a quasiparticle is near one of the Majorana
zero modes (say, the one corresponding to γ), then it can
annihilate on it [Fig. 1(b)], which has the effect of acting
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on the encoded qubit with the logical operator σx ¼ γ. At
finite temperature, such processes happen continuously,
and so the encoded qubit quickly decoheres. This is known
as “quasiparticle poisoning.”
How can quasiparticle poisoning be overcome? One

way is by many-body localization (MBL) [19,42–50]. This
causes the quasiparticles to become immobile and thus
prevents them from moving onto the boundary and anni-
hilating [50], as shown in Fig. 1(c). Going to a MBL
phase, however, requires strong disorder, and it is not at
all clear if such phases exist outside one dimension.
Moreover, MBL systems may not be suitable for topologi-
cal quantum computation with Majorana zero modes
because of nonlocal rearrangements that occur when
varying the Hamiltonian adiabatically [51,52].
We show in this work that there is another way of

avoiding quasiparticle poisoning. Our approach exploits
the fact that if the number of quasiparticles in the bulk is
conserved (in fact, it is sufficient for the number to be
conserved modulo 2), then they cannot be annihilated on
the boundaries [Fig. 1(d)]. Of course, outside integrable
systems, there is no reason why such a conservation
law should hold exactly, but often parameters of the

Hamiltonian can be tuned such that it holds in an
approximate way, leading to a long decoherence time.
One might imagine that obtaining a long decoherence

time in this way would require significant fine-tuning.
Remarkably, this turns out not to be the case. We show that
many Hamiltonians possess a significant parameter regime
with an approximately conserved quantity that we identify
with quasiparticle number. Terms violating the conserva-
tion law are exponentially small in parameters of the
Hamiltonian. This is based on the mechanism of pretherm-
alization, as discussed further in later sections.
Our approach is not necessarily limited to one-

dimensional systems. In higher dimensions, decoherence
of quantum information is also generally related to proc-
esses involving quasiparticles. For example, in the 2D toric
code defined on a torus, decoherence is caused by quasi-
particles moving around a noncontractible loop on the
torus. On the other hand, the 4D toric code is known to be
immune from decoherence at low temperatures, precisely
because this system has no topologically nontrivial particle-
like excitations [53]. Unfortunately, no such system is
known in dimension less than four.
We show that prethermalization can be used to suppress

decoherence in an isolated system arising from creation
or annihilation of quasiparticles. Thus, it is no help in the
case of the toric code on a torus, since quasiparticles can
move around noncontractible loops without changing the
total quasiparticle number. However, in the planar version
of the toric code, the decoherence mechanism involves
quasiparticles annihilating on the edges. Prethermalization
therefore is useful here. We analyze this and other higher-
dimensional examples in more detail in Sec. VI.

III. PRETHERMAL REGIME

A closed quantum system is said to be “prethermal” if, en
route to thermalization, it is in an exponentially long-lived
quasisteady state. One cause of prethermalization is an
approximate conservation law: over intermediate time
scales—known as the prethermal regime—the system
maximizes its entropy, subject to the constraint that the
conserved quantity takes a fixed value. Over sufficiently
long time scales, the entropy is maximized without any
constraint.
A theorem of Abanin, De Roeck, Huveneers, and Ho

(henceforth ADHH) [31] guarantees the existence of such a
prethermal regime for Hamiltonians of the form

Ĥ ¼ −JN̂ þ Ŷ; ð1Þ

where N̂ is a sum of finite-range commuting terms, such
that N̂ has integer eigenvalues, i.e., e2πiN̂ ¼ 1. The proof in
Ref. [31] assumes that each term in N̂ acts only on a single
site, but in Appendix A we show that this assumption can
be relaxed. We define a parameter J0 that is essentially the

FIG. 1. (a) A 1D chain of a topological superconductor, with
Majorana zero modes at the edges. (b) At finite temperature,
mobile quasiparticles can annihilate on the Majorana zero
modes, decohering the quantum information stored. (c) With
strong disorder, the chain can be made to be MBL, such that
the localized quasiparticles are not able to annihilate on the
boundaries. (d) In a suitable “prethermal” regime, the quasipar-
ticles are mobile but are prevented from annihilating on the
boundary by an approximate conservation law.
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largest operator norm of any local term in Y; more explicit
forms are given in specific examples below. The theorem
says that for J0=J sufficiently small, there exists a local
unitary transformation U such that

UĤU† ¼ −JN̂ þ D̂þ Ê; ð2Þ

where ½N̂; D̂� ¼ 0 and ∥Ê∥ ¼ Oðe−cn�Þ, where

n� ¼
�

J=J0
½1þ logðJ=J0Þ�3

�
ð3Þ

and c is a constant. Since we focus on the J ≫ J0 limit, we
often drop the 1 in the denominator of Eq. (3) for the sake of
uncluttering the equations. As a result, the dynamics of the
system conserves N̂ until a time t� ∝ ecn� . A more precise
statement of the ADHH theorem can be found in Ref. [31].
For our purposes, the essential point of theADHHtheorem

is that a Hamiltonian, Eq. (1), has an emergent approximate
Uð1Þ symmetry generated by N̂. The symmetry violations
come from terms in the transformed Hamiltonian that are
nearly exponentially small in the large-J limit. We apply the
ADHH theorem to Hamiltonians with edge zero modes and
show that the approximateUð1Þ symmetry can protect these
zero modes—even far from the ground state of the system,
where we do not ordinarily expect topological protection. It
also protects them in systems with no topological order
whatsoever, thus providing a completely different mecha-
nism for preserving quantum coherence distinct from topo-
logical considerations.
There is a nice heuristic picture for why a Hamiltonian of

the form in Eq. (1) has an approximateUð1Þ symmetry. The
transformation to the form of Eq. (2) means that it is very
difficult for the terms in Ŷ to cause transitions between
different eigenspaces of N̂: in order to conserve energy,
many excitations of Ŷ must be created or annihilated. Such
a process occurs slowly, so violation of the approximate
Uð1Þ symmetry takes a very long time.
However, in applying these ideas to real systems, it is

important to keep in mind that the ADHH theorem requires
that Ŷ be a sum of local terms, each of which has a bounded
(indeed, small) norm. This condition cannot be satisfied in
any real solid since phonons and photons do not have finite-
dimensional local Hilbert spaces. The energy associated
with a transition between different eigenspaces of N̂ need
not wait for many excitations of Ŷ to be created or
annihilated; it can, instead, be supplied or carried away
by a phonon or photon. However, if the couplings of the
electronic degrees of freedom to phonons and photons are
sufficiently small, they may not play a role during the
prethermal regime. We show that this is the case in
semiconductor devices in Sec. VII A. We note also that
the presence of gapless excitations does not automatically
destroy all symmetry-protected edge modes [54].

IV. PRETHERMAL PROTECTION OF
A TOPOLOGICAL QUBIT

The importance of the ADHH theorem for the present
work is that in many cases UN̂U† can be identified with an
effective “quasiparticle number,” and its approximate con-
servation can suppress the decoherence mechanisms of a
topological qubit, as outlined in Sec. II.
In this section we introduce the idea by describing a

particular example in depth: a topological superconducting
chain. We show that it is possible to construct a prethermal
edge Majorana zero mode for arbitrary interactions, as long
as the topological superconducting ordering term is the
dominant coupling. We present evidence from numerical
simulations that the prethermal regime persists over a
surprisingly large range of couplings, including values of
the dominant coupling that are not so very large. Later, in
Sec. VII A, we discuss the relevance of these ideas to
quantum-dot chains in a semiconductor-superconductor
heterostructure, where the electron-phonon coupling cuts
off prethermalization. As we see, there are circumstances
under which the effect of the electron-phonon coupling is
weaker than electron-electron interactions, so that pre-
thermalization acts to suppress the dominant MZM decay
channel, leading to relatively long-lived MZMs. Although
this first example is one dimensional, the basic idea and the
theorem on which it relies work in any dimension, as we
discuss in later sections.

A. Prethermalization in the interacting Kitaev chain

The Kitaev chain [15] is a simplified model of a
one-dimensional topological superconductor of spinless
fermions. Its Hamiltonian is

H ¼ −
X
j

½tðc†jcjþ1 þ cjc
†
jþ1Þ þ μc†jcj

þ Δðcjcjþ1 þ c†jþ1c
†
jÞ�: ð4Þ

The topological superconducting phase occurs for 2jtj > jμj,
provided Δ > 0.
Moreover, we need to include interactions in our

description. They can be and usually are dropped for the
purposes of demonstrating the existence of the topological
superconducting phase and its concomitant MZMs, but
they are necessary for any discussion of nonzero temper-
ature dynamics. With the addition of such terms, Eq. (4)
takes the form

H ¼
X
j

�
−
tþ Δ
2

ðc†jcjþ1 þ cjc
†
jþ1 þ cjcjþ1 þ c†jþ1c

†
jÞ

−
t − Δ
2

ðc†jcjþ1 þ cjc
†
jþ1 − cjcjþ1 − c†jþ1c

†
jÞ

− μc†jcj þ Vc†jcjc
†
jþ1cjþ1 þ � � �

�
: ð5Þ
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We have only written the simplest interaction term explic-
itly (the V term) and denoted the rest implicitly with the
ellipses. In writing the Hamiltonian in this way, we have
explicitly separated the presumed largest term, written on
the first line, from the smaller terms, written on the second
and third lines.
This model can be written in terms of the Majorana

fermion operators γAj and γBJ defined according to
cj ¼ ðγAj þ iγBJ Þ=2. This rewriting gives Ĥ ¼ −JN̂ þ Ŷ,
where

N̂ ¼ i
XL−1
j¼1

γBj γ
A
jþ1 ¼

XL−1
j¼1

σziσ
z
iþ1; ð6Þ

and J ≡ ðtþ ΔÞ=2. On the right-hand side of the second
equal sign, we have written the Jordan-Wigner transformed
representation of this operator according to the definitions

γAj ≡ σzj
Yj−1
k¼1

σxk; γBj ¼ iσxjγ
A
j : ð7Þ

Note that we have taken open boundary conditions in order
to focus on the physics of the edge. One important thing to
note is that with open boundary conditions, the two
Majorana fermions at the edges, γA1 and γBL, do not appear
in N̂. Each therefore commutes with it. We also have

Ŷ ¼ −ih
XL
j¼1

γAj γ
B
j −

X
α;β

Jαβ
XL−1
j¼1

iγαj γ
β
jþ1

− h2
XL−1
j¼1

γAj γ
B
j γ

A
jþ1γ

B
jþ1 − J2

XL−2
j¼1

γBj γ
A
jþ1γ

B
jþ1γ

A
jþ2

þ � � � ; ð8Þ

where … denotes other third-neighbor and more-distant
hopping and interaction terms. The transverse field h is the
chemical potential of the topological superconductor,
Eq. (5), according to the identification h≡ μ. The two
four-Fermi terms we single out are the two simplest, and in
spin language are h2σxjσ

x
jþ1 and J2σ

z
jσ

z
jþ2, respectively; in

terms of the original topological superconductor, h2 ≡ V,
while J2 includes slightly longer-ranged interactions and
Cooper pair-hopping terms not explicitly included in
Eq. (5). For simplicity, we take couplings in Ŷ to be
spatially uniform, but this is not necessary for the approach
to work; in fact, adding disorder to Ŷ typically enhances the
effects that we describe. We thus include a JAB term in
Eq. (8); because of the integer-eigenvalue restriction, it
cannot be absorbed into the JN̂ term if it is disordered. We
assume that the hopping and interaction terms have finite
range but make no further assumptions.

We now apply the ADHH theorem to the perturbed
Ising-Kitaev Hamiltonian −JN̂ þ Ŷ, with open boundary
conditions and the operators defined by Eqs. (6) and (8).
The theorem is applicable for J=J0 sufficiently large, where
the energy scale J0 is given in this case by

J0 ¼
1

κ20
½eκ0hþ e2κ0ðh2 þ JAB þ JBA þ JAA þ JBBÞ

þ e3κ0ðthree-site termsÞ þ � � ��: ð9Þ

The JAB term is included in the presence of disorder, where
it is the deviation of J from its mean value. In the disordered
case, J0 is defined as the maximum possible value of the
right-hand side of Eq. (9) for any site in the system,
stipulating that the interactions on the right-hand side of
Eq. (9) touch that site. The number κ0 is chosen so that this
sum is finite. By choosing eκ0 as large as possible while
satisfying this requirement, we can maximize the range of J
over which the theorem applies. Then the theorem guar-
antees that there exists a local unitary transformation U
such that

Uð−JN̂ þ ŶÞU† ¼ −JN̂ þ D̂þOðe−cn� Þ; ð10Þ
where ½N̂; D̂� ¼ 0 and n� is given by Eq. (3). Another way
to say this is that the original Hamiltonian Ĥ ¼ −JN̂ þ Ŷ
has an approximately conserved quantity U†N̂U, which is
conserved until times t� ¼ Oðecn� Þ.
To illustrate the significance of this approximately

conserved quantity, let us consider the limit J0 → 0, which
implies Ŷ ¼ 0 so the Hamiltonian is simply Ĥ ¼ −JN̂. In
that case, the local unitary rotation U ¼ 1, so the conserved
quantity is simply U†N̂U ¼ N̂. In this limit, excitations
(henceforth, “quasiparticles”) correspond to violations of
one of the terms in Eq. (6) and have no dynamics. The
conserved quantity N̂ simply counts the number of qua-
siparticles. Precisely, the number of quasiparticles is the
eigenvalue of ðL − 1 − N̂Þ=2. In fact, for our purposes, it is
sufficient to use the fact that the number of quasiparticles is
conserved modulo 2 in this limit; in other words, here there
is a conserved Z2 charge,

~F ≡ eiπN̂=2 ¼ iγB1

�YL−1
j¼2

iγAj γ
B
j

�
γAL: ð11Þ

We emphasize that this is not the same as the fermion parity
F , which is also a symmetry of any local fermionic
Hamiltonian; the latter is instead given by

F ¼
YL
j¼1

ðiγAj γBj Þ; ð12Þ

which differs from ~F in that the boundary Majorana
operators γA1 and γBL are also included (thus, ~F can in a
sense be interpreted as the “fermion parity in the bulk”).
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The important result is that as perturbations are added,
moving J0 away from zero, there is a continuous defor-
mation of N̂, namely, U†N̂U, which we continue to identify
as the effective quasiparticle number, and it is approxi-
mately conserved. By the intuitive discussion in Sec. II, this
suggests that topological information stored in the
Majorana zero modes should have a long decoherence
time. We are now in a position to rigorously establish this.
Indeed, a sufficient condition to allow for quantum infor-
mation to be stored with infinite (respectively, very large)
decoherence time is that there exist Majorana operators ΨA

and ΨB that square to the identity; anticommute with each
other; and commute (respectively, almost commute) with
the Hamiltonian. This means that they form an “edge strong
MZM” in the language of Ref. [24]. We show that this is an
implication of the ADHH result.
The presence of the strong MZMs has important ram-

ifications. In the fermionic picture, both ΨA and ΨB toggle
between all states in the sectors, even the highly excited
ones. Their presence means that the full Hilbert space of the
system can be decomposed into the tensor product of a two-
state quantum system, i.e., a topological qubit and a
nontopological “bulk” Hilbert space, of dimension 2L−1,
such that the Hamiltonian vanishes upon projection onto
the topological qubit, up to finite-size corrections ∼e−L=ξ.
Consequently, the topological qubit is protected at any
temperature: regardless of how the dynamics of the system
affects the projection of the state of the system into the bulk
Hilbert space, the topological qubit is unaffected. In the
spin language, this means that the autocorrelator of the
boundary spin operator σz1 ¼ γA1 for any temperature or
initial state is nonvanishing up to exponentially long times
of order ðJ=hÞL [25]. The same goes for the other edge
spin, σzL ¼ F γBL.
To see why ADHH implies a strong MZM, let us first

return to the limit J0 ¼ 0, where the Hamiltonian is simply
−JN̂. In this limit, the Majorana operators γA1 and γBL
already form a strong MZM. Now turn on any or all of the
other terms in Ŷ, while keeping 0 < J0 ≪ J. The ADHH
theorem states that there exists a local unitary change of
basis U that transforms the problem into one in which N̂ is
conserved, up to nearly exponentially small corrections.
The locality properties of U, along with the fact that
½N̂; D̂� ¼ 0, require that the approximate transformed
Hamiltonian −JN̂ þ D̂ commutes with the edge Majorana
fermions:

½ð−JN̂ þ D̂Þ; γA1 � ¼ ½ð−JN̂ þ D̂Þ; γBL� ¼ 0: ð13Þ

To see this, observe that −JN̂ þ D̂ commutes with both the
fermion parity F and the “bulk fermion parity” ~F defined
in Eq. (11). Therefore, it also commutes with their product,
F ~F ¼ iγA1 γ

L
1 . The fact that U is a local unitary ensures that

the norm of any term coupling both γA1 and γBL must be

exponentially small in L. We assume that L is large enough
that such terms can be ignored. It then follows that all terms
must commute with γA1 and γB1 individually, proving
Eq. (13).
Thus, in the presence of interactions, we define

Ψl ¼ U†γA1U; Ψr ¼ U†γBLU: ð14Þ

The vanishing commutator, Eq. (13), and the theorem,
Eq. (10), show that these commute with H up to order
cn� < L:

½Ĥ;Ψr� ¼ Oðe−cn� Þ; ½Ĥ;Ψr� ¼ Oðe−cn� Þ: ð15Þ

By construction, Ψl and Ψr square to the identity
operator and anticommute with F . We call such operators,
satisfying Eq. (15), “prethermal strong Majorana zero
modes.” The authors of Ref. [25] found evidence for
“almost” strong zero modes in the special case where Ŷ
contains only nonzero h, h2, J2. Here we have established
that they are an example of a prethermal strong MZM,
confirming the claims made there.

B. Temperature dependence of the lifetime

Now suppose that the system is at temperature T. The
dynamics of the prethermal strong MZM Ψl are visible in
the retarded Green function

GðωÞ≡
Z

∞

0

dteiωtTrfeβHγA1 ðtÞγA1 ð0Þg

¼
Z

∞

0

dteiωtTrfeβHσz1ðtÞσz1ð0Þg: ð16Þ

This is not the Green function of Ψl but rather that of the
“bare” operator γA1 . However, there is nonzero overlap
between these two operators, so the Green function of the
latter can be used to probe the former. In the limit of large
system size, we can ignore the interaction between Ψl and
Ψr, so this Green function takes the form

GðωÞ ¼ Zðωþ iΓÞ−1: ð17Þ

The “wave-function renormalization” Z is a measure of the
overlap between γA1 and the MZM operator Ψl, as deter-
mined by the unitary transformation U. The decay rate Γ is
our primary figure of merit in judging prethermal strong
zero modes. It is directly reflected in the width of a zero-
bias peak observed in tunneling into the end of a Majorana
chain (see Sec. VII A) and determines the error rate for
topological qubits encoded in the MZMs Ψl, Ψr. The decay
rate Γ is determined by Ê, the correction term in the
transformed basis, and would vanish if Ê were to vanish,
with the decay time becoming infinite. From Eq. (15),
which expresses the fact that ∥Ê∥ ¼ Oðe−cn� Þ, we see that
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Γ ¼ AðTÞe−cn� ≈ AðTÞe−½ðcJ=J0Þ=ln3ðJ=J0Þ�: ð18Þ

Let us now examine the temperature dependence in more
detail. After a local unitary rotation by U, the Hamiltonian
can be shifted to Eq. (2) as Ĥ ¼ −JM̂ þ D̂þ Ê, where
M̂ ¼ −N̂ þ c, with the constant c chosen so that M̂ has the
smallest eigenvalue 0. The term D̂ commuteswith M̂ and can
be jointly diagonalized with it, so the decay is attributed to
resonant transitions between different M̂ sectors induced by
Ê. These transitions can only happen between states with
approximately the same energy with respect to JM̂ þ D̂.
The corresponding energy bandwidth of the sector with
M̂ ¼ m is bounded by ½E0þmJ−mCJ0;E0þmJþmCJ0�,
where E0 is the ground-state energy, and C is some
dimensionless constant. Roughly, this is because a state in
this sector differs from the ground state only in at most m
spots, and only those spots can contribute to the energy
difference from the ground state. For a rigorous proof, see
Appendix B. States in the M̂ ¼ m sector can have the same
energy as those in the M̂ ¼ mþ 1 sector when E0 þmJ þ
mCJ0 ≥ E0 þ ðmþ 1ÞJ − ðmþ 1ÞCJ0 or, in other words,
when m ≥ mmin ∼ J=J0. A transition can only occur when
the resonance condition is satisfied. In an excited statewith a
nonzero density of excitations, at leastmmin of them must be
close to the MZM in order for a transition to occur. Hence,

Γel-el ¼ A0e−cn�ρmmin ; ð19Þ

where ρ is the density of excited quasiparticles.
We thus have shown that the decay time of a MZM of

Eq. (19) is determined by two factors. The important
consequence is that decay of a MZM is suppressed by a
high power of the quasiparticle density, in addition to the
state-independent exponential suppression e−cn� .
At very low temperatures, the density of excited quasi-

particles in superconductors is generally higher than the
expected thermal (or prethermal) equilibrium value
ρ ∼ e−Δ=T . (The reasons for this lie outside the purview
of our discussion; for a recent theoretical analysis, see
Ref. [55]. References [1–7] in this paper contain exper-
imental measurements of the quasiparticle density.) At
temperatures that are not too low, the quasiparticle density
exhibits equilibrium behavior, and we have ρ ∼ e−Δ=T .
When this is the case, the decay rate is controlled by
e−Δeff=T , where we have defined the “effective gap”
Δeff ∼ JðJ=J0Þ. The effective gap is much larger than
the actual gap, which is Δ ∼ J, up to corrections of order
J0. Therefore, for J ≫ J0 and T ≪ Δeff , the decay rate is of
the form

Γel-el ¼ A0e−cn�e−Δeff=T: ð20Þ

This shows that the finite lifetime of aMZM is exponentially
large in n� ∼ ðJ=J0Þ= ln3ðJ=J0Þ and also exponentially

large in 1=T. Equation (20) suggests that MZM qubits
can be optimized by maximizing J=J0 even at the cost
of reducing Δ, since in any case Δeff ≫ Δ when J=J0 is
large.

C. Numerical results for prethermal MZMs

The preceding general arguments can be substantiated by
computations in finite-size systems. For chains of length
N ¼ 8–14, we study prethermal strong MZMs all the way
up to infinite temperature by exact diagonalization. As may
be seen in the top panel of Fig. 2, the MZM survives to very
long times at infinite temperature. The lifetimes are con-
sistent with an exponential dependence on the ratio of
scales J=J0 until the lifetime becomes so long that finite-
size effects become important. In a model in which the only
terms in Ŷ are h and h2, we can write J0 ¼ h2=fðh=h2Þ for
some function fðxÞ. As may be seen from Fig. 2, the data
collapse onto this form.
Using time-evolving block decimation (TEBD) [56], we

can study much larger systems, where finite-size effects
are less severe. This approach is applicable to low-energy
initial states for which the entanglement does not grow too
much, allowing accurate simulation with bond dimension
χ ¼ 100. Our results confirm that, at least for low-energy
states, the Majorana lifetime remains large for larger
system sizes (see Fig. 3). Note that the decay time shown
in Fig. 3 should not be directly compared to Fig. 2 because
Fig. 2 is at infinite temperature, whereas Fig. 3 is at very
low temperature.

FIG. 2. The decay time (on a logarithmic scale) of a MZM at
T ¼ ∞ for L ¼ 8–14 sites, as a function of h and h2, as obtained
by exact diagonalization. The data collapse onto the form
ln τJ ¼ J=h2fðh=h2Þ þ constant, as expected, with deviations
attributable to finite-size effects when the lifetime is long. The
decay time of the spin at the center of the L ¼ 14 chain (dashed
line) is not prethermalization protected and is much shorter.
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V. GENERAL CRITERIA AND EXAMPLES FOR
PRETHERMALIZATION-PROTECTED

TOPOLOGICAL DEGREES OF FREEDOM

The procedure described in preceding sections uses the
ADHH theorem to find prethermal strong MZMs. In this
section, we give a systematic approach to applying the
theorem to determine when topological degrees of freedom
are protected from thermal fluctuations by prethermaliza-
tion. This approach involves two key observations:

(i) The ADHH theorem guarantees the presence of a
single long-lived local Uð1Þ charge for J=J0 large
enough.

(ii) In turn, this nearly conserved Uð1Þ prevents local
bulk excitations from violating the conservation of
some topological charge, up to exponentially
small terms.

More prosaically, the idea is that the nearly conserved
quantity guarantees that a topological charge localized at
edges or defects cannot be changed by the absorption or
emission of small numbers of bulk excitations. These
general criteria can be applied in any dimension, and so
we give some examples in one, two, and three dimensions.
We illustrate them through several one-dimensional exam-
ples in the remainder of this section and with higher-
dimensional examples in the next.

A. Three-state Potts

It is instructive to analyze an example where the ADHH
theorem, although applicable, does not guarantee any pre-
thermal strong zero modes. As shown in Refs. [22,23], the
three-state Potts chain does not have any sort of edge zero
mode for finite J. The easy edge-spin-flip process that kills

the putative zero mode can be seen easily in perturbation
theory for J large. Here we rephrase this result in the more
general setup of this paper.
The quantum-chain analog of the three-state Potts model

has a three-state quantum system on each of L sites. The
basic operators σ and τ acting nontrivially on a single site
generalize the Pauli matrices σx and σz. Instead of squaring
to the identity and anticommuting, they obey

σ3 ¼ τ3 ¼ 1; σ† ¼ σ2; τ† ¼ τ2; στ ¼ ωτσ;

where ω≡ e2πi=3. Matrices satisfying this algebra are

σ ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA; τ ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA: ð21Þ

Here σ generalizes the Pauli matrix σz to measure the value
of a clock variable, while τ generalizes σx to shifting the
value. The operators σj, τj are defined analogously to the
Ising case, where they act nontrivially on the jth site of
the chain and trivially elsewhere.
The three-state Potts chain is invariant under global S3

permutations of the three states and has nearest-neighbor
interactions. This fixes the Hamiltonian with open boun-
dary conditions to be H ¼ −JN̂P þ YP, where

N̂P ¼
XL−1
j¼1

ðσ†jσjþ1 þ σjσ
†
jþ1Þ; ŶP ¼ −

XL
j¼1

ðτj þ τ†jÞ:

ð22Þ

If desired, these operators can be rewritten in terms of Z3

parafermionic operators akin to Majorana fermions [24].
The operator N̂P has integer eigenvalues, since σ†jσjþ1 þ

σjσ
†
jþ1 has eigenvalue 2 if the Z3 spins at j and jþ 1 are

identical and −1 if they are not. Thus, N̂P is related to
counting kinks, just as in Ising. However, an important
difference with the Ising case is that here there are two types
of kinks. We label the three states at each site as A, B, C,
with theZ3 symmetry cyclically permuting them.When the
states AB (or BC or CA, their cyclic permutations) occur on
sites j and jþ 1, respectively, we call the configuration a
kink, and when BA appears (or CB or AC), we call the
configuration an antikink. Thus, ½2ðL − 1Þ − N̂P�=3 counts
the number of kinks plus the number of antikinks.
Since N̂P is an integer, the ADHH theorem says there is

an emergent Uð1Þ symmetry in the prethermal regime,
conserving the total number of quasiparticles. However,
this symmetry does not prevent a zero mode from decaying,
because a kink can scatter off the edge and turn into an
antikink without changing N̂P. In perturbation theory, this
results from the easy-spin-flip process described in
Ref. [23] (see [57]). Namely, consider, say, the AB kink

FIG. 3. The decay of a MZM at low energies, as obtained by
TEBD for systems of length L ¼ 40, which shows that a long-
lived MZM persists even in a much larger system. Red: Decay
of the strong zero mode Green’s function hΨjγA1 ðtÞγA1 ð0ÞjΨi for
an initial state jΨi containing a single quasiparticle close to
the left edge (i.e., −γB3 γA4 ¼ −1 and γBi γ

A
iþ1 ¼ 1 for i ≠ 3), for

L ¼ 40 and h=J ¼ h2=J ¼ 0.075. This is equivalent in the
corresponding transverse-field Ising chain to the spin correlation
hΨjσz1ðtÞσz1ð0ÞjΨi. Blue: Decay of the bulk spin correlation
hΨjσzL=2ðtÞσzL=2ðtÞjΨi in the transverse-field Ising chain.
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on sites 1 and 2. The YP term allows the spin on site 1 to be
shifted from A to C, and so converts the AB kink to the CB
antikink. This process conserves N̂P while flipping the
edge spin. Clearly there can be no long edge-spin relaxation
time, and no edge strong zero mode, even in the prethermal
regime.
This fact appears nicely in the language of the unitary

transformations used in this paper. The point is that the
transformation guarantees only that the resulting D̂ com-
mutes with N̂. It says nothing directly about the edge spin,
which is why in the Majorana case we needed to argue that
no terms involving edge-spin flips could appear in D̂. Here
they can. Such operators are easy to write out using the
projectors

PðrÞ
j;jþ1 ¼ ð1þ ωrσ†jσjþ1 þ ω2rσjσ

†
jþ1Þ=3; ð23Þ

satisfying PðrÞ
j;jþ1P

ðsÞ
j;jþ1 ¼ δrsP

ðrÞ
j;jþ1 and τjP

ðrÞ
j;jþ1 ¼ Pðr−1Þ

j;jþ1.

Since N̂P can be written as a sum over Pð0Þ, it follows that

½N̂P; τ1P
ð2Þ
1;2� ¼ 0;

so there is no obstacle to including τ1P
ð2Þ
1;2 into D̂. Indeed, it

does appear for Eq. (22) and for a generic Hamiltonian with
the same dominant term N̂P. Since it shifts the edge spin, it
rules out any strong zero mode. The Q-state Potts model
with SQ permutation symmetry is the obvious generaliza-
tion of this to any integer Q ≥ 2 and, except for the Ising
case Q ¼ 2, the same arguments apply: there is no edge
strong zero mode for any finite J.

B. Z3 parafermions

Despite the results for the three-state Potts model,
it is still possible to have prethermal edge zero modes of
Z3 parafermions. One way of doing this is to follow
Refs. [22,23] and to deform the dominant term N̂P from
Eq. (22) to

N̂θ ¼
1

2 cos θ

XL−1
j¼1

ðe−iθσ†jσjþ1 þ eiθσjσ
†
jþ1Þ: ð24Þ

For θ not a multiple of π=3, this explicitly breaks spatial
parity and time-reversal symmetries. It also breaks the S3
permutation symmetry to Z3 and thereby breaks the
symmetry between kinks and antikinks.
To utilize the ADHH theorem, we need to chose θ so that

N̂θ has integer eigenvalues. The simplest nonzero value,
θ ¼ π=3, is the Potts antiferromagnet. Here, the edge zero
mode does not exist for similar reasons as described above
for the ferromagnet. Thus, we choose θ ¼ π=6, halfway
between ferromagnet and antiferromagnet. In this case, the
energy of an antikink is twice that of a kink when h ¼ 0,

and Lþ N̂π=6 counts the number of kinks plus twice the
number of antikinks. Turning on h and applying the
theorem means that the resulting D̂ does not conserve
the number of kinks individually, but allows scattering
processes that convert one antikink to two kinks. The nice
fact is that no such simple process flips the edge spin. For
example, an antikink near the edge scatters into two kinks
via the process

BAAAA… ⇒ BCAAA � � �
that does not flip the edge spin. More formally, there is no
local operator involving τ1 inside D̂ here, just as there is
none involving σx1 in the Majorana case. To prove this, we
utilize the identity [59]

ωLþN̂π=6 ¼ σ†1σL: ð25Þ

Hence, conservation of N̂π=6 implies that any term that does
not couple the two ends of the chain must commute with σ1
and σL individually.
The physics for other values of θ seems akin to the J2

large case discussed next. For certain values of θ, N̂θ can be
rescaled to have integer eigenvalues, but then edge spin-
shifting terms can occur at some order [59].

C. Interacting Majorana chains with
multiple large couplings

We now return to the interacting Majorana chain, but we
allow Ŷ to include terms that are not very small. We cannot
apply the ADHH theorem to ensure a long decay time for
the zero mode. We may be tempted to fix this by moving
the offending terms from Ŷ to N̂. Naively, this fix would be
valid as long as the extra terms commute with our putative
zero mode and the eigenvalues of N̂ remain integers. We
show that similar considerations as for the Potts and clock
models arise: the prethermalization theorem holds, but the
resulting Uð1Þ symmetry need not protect the zero mode.
As a simple example, returning to our original Ising

model in (8), let us allow the next-nearest neighbor
coupling J2 to be of the same magnitude as J. In order
to apply the ADHH theorem, we must then include it in
the dominant term JN̂. This presents a potential problem,
since the theorem requires integer eigenvalues of N̂.
However, if we take rational J2=J ¼ p=q for coprime
integers p and q, then

N̂nn ¼
X
j

ðqσzjσzjþ1 þ pσzjσ
z
jþ2Þ ð26Þ

still has integer eigenvalues. The Hamiltonian becomes
Ĥnn ¼ −ðJ=qÞN̂nn þ Ŷnn.
We may now use the ADHH theorem to obtain an

approximate conservation law for N̂nn. However, N̂nn no
longer counts kink number; instead, it is the sum of the
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number of broken nearest and next-nearest neighbor bonds,
weighted appropriately by q and p. This means it is
possible to flip the edge spin while conserving N̂nn by
converting broken bonds of one type to the other.
Equivalently, terms appear in D̂nn that do not commute

with the MZM γA1 . For example if J ¼ J2, then σx1ðσz2 − σz3Þ
commutes with N̂nn but flips the edge spin, ruining the
conservation of the MZM. These are the resonances
described in detail in Ref. [25]. They allow easy edge-
spin flips by exchanging energy between different types of
bonds. For example, consider the process that swaps
between these two spin configurations, identical but for
the edge spin:

↑↑↓ � � �⇔↓↑↓ � � � : ð27Þ
The energy contribution from the three spins on the left is
2ðJ þ J2Þ, while on the right it is 2ð2JÞ, so when J ¼ J2
the edge spin can be flipped for no energy cost.
This easy spin flip is analogous to a kink scattering off

the edge into an antikink in the Potts model, but there is an
important difference between the two. Here, there is an
energy cost associated with either of the domain walls in
the right configuration in Eq. (27) moving. Thus once a
kink has moved to the edge and transformed from the left
configuration to the right via an edge-spin flip, it is trapped
at the edge, as opposed to the Potts case, where the newly
produced antikink is not confined. Thus the only way the
kink can move away from the edge is to transform back into
the left configuration, reversing the edge-spin flip. This
implies that, at low energy densities where there are
few kinks, we should expect the MZM to retain a long
lifetime, despite the resonances. We have confirmed this via
the TEBD. It should be noted that an exception to this
survival at low energy densities occurs at the critical point
J2 ¼ −J=2, which, for any nonvanishing Ŷnn, becomes a
paramagnetic regime between competing ferromagnetic
and antiferromagnetic orders. This allows kinks to move
freely from the edge in either configuration.
These results and the ADHH theorem shows that it is

possible for the MZM to survive for long times even for
large J2=J, because the term in D with the edge-spin flip
may occur only with some high power of 1=ðJqÞ. In other
words, the order in perturbation theory in which the
resonance occurs may be some large value nr. The time
to decay is then of order ecnr. For general p and q, we
expect that nr is roughly maxðp; qÞ, in accordance with the
analysis of Ref. [25]. It is worth noting that at J ¼ 0 but
nonzero J2, the ensuing Hamiltonian model is equivalent to
two copies of the Ising-Kitaev chain, and so n� → ∞ as
J2=J → ∞ as well.

VI. TWO- AND THREE-DIMENSIONAL SYSTEMS

As we have emphasized throughout, the ADHH theorem
applies in any dimension. In this section, we apply the

general criteria developed in Sec. V to show how the
resulting almost-conservation law can result in topological
protection analogous to the one-dimensional examples we
have analyzed.

A. Two dimensions

We study a perturbed toric code Hamiltonian [60] on a
finite square lattice with sides of lengths L1 and L2. The
spins live on the links i, with Hamiltonian

H ¼ −u
�X

v

Av þ
X
p

Bp

�
þ hz

X
i

σzi þ hx
X
i

σxi þ…;

ð28Þ

where Av ¼
Q

i∈N ðvÞσ
z
i and Bp ¼ Q

i∈pσ
x
i for vertices v

and plaquettes p. In the bulk, there are four spins on the
links entering each vertex v and four spins on the links in
each plaquette p. We put “rough” and “smooth” boundary
conditions [61,62] on, respectively, the horizontal and
vertical sides. At a rough edge, there are only three links
around each edge plaquette; at a smooth edge, there are
only three links entering each edge vertex. At the rough
boundaries, Bp is modified so that it is the product of the
three σxi operators around a rough boundary plaquette; the
vertex terms are unchanged since there are still four links
attached to each vertex (we include no term for the
“dangling” vertices touching only one link). At the smooth
boundaries, Av is modified so that it is the product of the
three σzi operators around each smooth boundary vertex; the
nearby Bp are unchanged since each plaquette still contains
four links. The … represents all other possible local terms,
which are assumed to be small, including a term ∝
ðPvAv −

P
pBpÞ which would give electric and magnetic

charges different energies.
Such a system has a doubly degenerate ground state,

which can be used as a qubit. One basis for this qubit is
given by the eigenstates of the electric charge (modulo 2)
on a rough edge. To make this more precise, consider the
unperturbed toric code Hamiltonian [Eq. (28) with all
couplings other than u set to zero]. Each term in the
Hamiltonian is a projector plus a constant, and so ground
states are annihilated by each individually. Now consider a
path P of length P stretching along the lattice from one of
the dangling vertices on one rough edge to a dangling
vertex on the other edge labeled by consecutive links l1,
l2…lP and the operator MP ¼ Q

P
k¼1 σ

x
lk
. Then the eigen-

states of the unperturbed toric code Hamiltonian can be
grouped into eigenstates of MP with eigenvalues �1. It is
easy to check that this eigenvalue is independent of the
choice of the path P. This eigenvalue is the magnetic
charge on either smooth boundary, with which P is roughly
parallel. Likewise, the smooth edge corresponds to a rough
edge on the dual lattice, and so we can define a path P̂ on
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the dual lattice stretching from one smooth edge to the
other. The electric charge operator is then defined as
EP̂ ¼ Q

P
k¼1 σ

x
lk
, and analogously to the magnetic charge,

any eigenstate of the Hamiltonian can be grouped into
eigenstates of EP̂ with eigenvalue �1. However, EP̂ and
MP anticommute, since P and P̂ always intersect. There
are thus two ground states, not four, and the operators
acting on this qubit can be identified as Z≡ EP̂ and
X ≡MP .
Now consider the perturbed model, in which the other

couplings are allowed to be nonzero. If hx or hz is large, the
system undergoes a zero-temperature phase transition to a
trivial phase; see Refs. [63,64] and references therein.
However, if hx; hz;… are not too large, then the system
remains in the zero-temperature topological phase, and the
ground state is still doubly degenerate, up to corrections
that are exponentially small in minðL1; L2Þ. We can still
associate the Z and X eigenstates with the eigenstates of
electric and magnetic charge (modulo 2) on, respectively,
the rough and smooth edges, but the Z and X Wilson lines,
EP̂ andMP , need to be thickened since the ground state has
fluctuations in which virtual pairs of e particles straddle P̂,
and similarly with m particles and P. The resulting
thickened operators are not washed out by such quantum
fluctuations in the ground state because virtual pairs never
get too widely separated before recombining, so long as
the system is in the topological phase. (They have an
opportunity to become more and more widely separated
from each other as the system approaches the quantum
phase transition.)
However, conventional wisdom holds that this degen-

eracy is only a feature of the ground states and the excited
states are not degenerate. Thermally excited pairs of
quasiparticles can wander far from each other since they
are real, not virtual, excitations. In particular, the naive
expectation is that the qubit—meaning the boundary
electric and magnetic charges—has a decay rate Γ of order
ðL1 þ L2Þe−u=T at nonzero temperature. Suppose, however,
that u ≫ u0, where u0 is built analogously to Eq. (9) from
hx, hz, and all other terms lumped into the … remainder.
The interesting question is then whether the prethermal
conservation law implied by the ADHH theorem results
in the qubit living longer than this naive expectation,
analogous to the edge modes in 1D.
Because all Av and Bp operators mutually commute,

their sum has integer eigenvalues. The ADHH theorem thus
implies that N̂TC ≡P

vAv þ
P

pBp is conserved, up to
exponentially small corrections. This integer is zero in
the ground state, and otherwise is simply the number of
bulk excitations, not just their parity. To see if the
approximate conservation of the number of bulk excitations
protects the qubit, we need to define X and Z operators.
The bulk Wilson line operators described above do not
work because, even if the number of bulk excitations is

conserved, a bulk excitation can still cross a Wilson line
and so flip its charge. However, we can define boundary
operators that measure the rough-boundary electric charge
and the smooth-boundary magnetic charge by simply
pushing P̂ to either rough boundary and P to either smooth
boundary,

Z ¼ U†
�Y

i∈HB

σzi

�
U; X ¼ U†

�Y
i∈VB

σxi

�
U; ð29Þ

where U is the unitary given by ADHH, HB is the set of
vertical links that belong to the horizontal rough boundary
at the top of the rectangle (this choice is arbitrary—the
bottom would work equally well), and VB is the set of
vertical links that belong to the vertical smooth boundary at
the left side of the rectangle.
The transformed edge Wilson-line operators in Eq. (29)

commute with the Hamiltonian, up toOðe−cn� Þ corrections,
except at the corners. Away from the corners, D contains
only terms commuting with Z, because a noncommuting
term would necessarily create or annihilate an e particle in
the bulk, thereby violating the conservation of N̂TC.
Similarly, terms in D that do not commute with X would
create anm particle. However, at the corners,D can contain
terms that cause the rough edge to absorb an e particle and
the smooth edge to emit an m particle or vice versa. One
example is σz4σ

z
3σ

x
1ð1þ Bp2345

Þð1þ Av123Þ, where the dan-
gling link is labeled by 1; v123 is the corner vertex
connected to links 1,2,3; and p2345 is the corner plaquette
that overlaps it and contains links 2,3,4,5. An error-causing
process associated with this term is depicted in Fig. 4.
We thus arrive at the interesting result that the only

possible violations of the long-lived conservation law occur
at the corners. Prethermalization therefore suppresses the
low-temperature error rate from Γ ∝ ðL1 þ L2Þe−u=T to

Γ ∝ e−cn� ðL1 þ L2Þe−ðu=u0Þu=T þ e−u=T

for some constant c. It would be interesting to see how this
argument generalizes to weakly perturbed Levin-Wen
models [65].

B. Three dimensions

There are four dimensional topological phases with no
pointlike excitations, and they protect quantum information
at nonzero temperatures below the phase transition into the
topological phase, as noted in Sec. II. In three dimensions,
we are halfway there, since magnetic excitations are
looplike; their line tension prevents them from causing
errors. However, there are still pointlike excitations that
cause errors at nonzero temperature. Prethermalization can
suppress them.
It was recently shown [66] that Abelian topological

phases in 3þ 1 dimensions have loop excitations carrying

PRETHERMAL STRONG ZERO MODES AND TOPOLOGICAL … PHYS. REV. X 7, 041062 (2017)

041062-11



Cheshire charge. The simplest example is the 3D toric
code, which has a Hamiltonian of the same form as Eq. (28)
generalized to the cubic lattice, with one modification
discussed below. There are six links attached to each vertex,
so Av is a product of six σzi operators while Bp is still the
product of four σxi operators around each plaquette. There
are loop excitations on which e particles condense in a
manner analogous to the “rough” boundaries considered
above in the case of the 2D toric code. To analyze such loop
excitations, we can modify the Hamiltonian so that the
ground state has one at a specified loop K, as was done in
Ref. [66]. We label the loop K, of length L, in terms of
vertices vk and links lk such that the vertices vkþ1 and vk
are connected by the link lk for all k ¼ 1…L with
vKþ1 ¼ v1. We now modify the Hamiltonian along this
loop according to

XK
k¼1

Avk → −
XK
k¼1

σxlk : ð30Þ

This transverse field commutes with the Bp terms, so
eigenstates of the Hamiltonian are eigenstates of σxlk for
every link lkþ1 on the loop. Thus, they resonate between a
state with two e particles at either end of the link and a state
without e particles at the ends of the link. Alternatively, we
can insert such a loop excitation in a manner that empha-
sizes the similarity with the “rough” edge in 2D: we remove
all vk, lk ∈ K from the lattice. The Hamiltonian is
unchanged at all of the remaining vertices and the plaquette

operator is modified to a product of three spins for the
plaquettes that previously contained lk ∈ K. In this alter-
native construction, it is again clear that the states of the
system resonate between having zero and two e particles at
either end of each link on K. The spectrum is degenerate in
the limit of a large loop, provided that there are at least two
such loops in the system, since the total charge on a loop
can be either 1 or e, subject to the constraint that the total
topological charge of the system is fixed. In the simplest
case, in which there are two such loops in the system, states
are doubly degenerate and the degenerate subspace at each
energy forms a qubit spanned by states with charge 1 or e
on both loops. This charge is locally unobservable; hence it
is “Cheshire charge,” which explains why the two states are
degenerate in the limit of a large loop.
A straightforward generalization of the arguments

applied in two dimensions in Sec. VI A shows that
Cheshire-charge-carrying loops cannot emit or absorb an
e particle in the analogous prethermal regime in 3D. Hence,
the Z operator acting on the qubit commutes with the
prethermal Hamiltonian D̂. A dressed version of the X
operator, meanwhile, is expected to be conserved in the
low-temperature phase T < Tc below the phase transition
at which long flux loops unbind and proliferate [67]. Thus,
the qubit is partially protected by the dynamics of the low-
temperature phase (as was already known [53]) and
partially protected by prethermalization. Unlike in the
2D case discussed above, our 3D topological qubit has
error rate Γ < e−cn�e−ðu=u0Þu=T , where u0 is the appropriate
energy scale derived from the couplings in Ŷ. The corner
error processes that caused trouble in 2D are not present
here because an electric charge cannot become a magnetic
charge, since one is pointlike and the other looplike, unlike
in 2D, where both are pointlike and necessarily have the
same energy in the prethermal limit. In other words, in the
prethermal regime, the 3D toric code is, up to exponentially
small corrections, a self-correcting nonzero temperature
quantum memory; the only other known examples are 4D
topological phases [53]. Thus, in this case, prethermaliza-
tion buys us an extra dimension, which might be rather
difficult to otherwise acquire.

VII. EXPERIMENTAL REALIZATIONS

Although the primary focus of this paper is the con-
ceptual advance in the theory of topological phases of
matter that results when the theory of prethermalization is
brought to bear on it, it is important to note that this
advance may have implications for near-term devices and
experiments. For illustrative purposes, we discuss two
examples: Majorana zero modes in semiconductor-super-
conductor devices and Ising spins in a trapped ion chain.
The former example allows us to introduce an important
point, which is that prethermalization is generically termi-
nated by a coupling to a heat bath; when the coupling is

(a) (b)

FIG. 4. (a) Prethermalization does not protect against qubit
errors at the boundaries between “rough” and “smooth” edges of
the toric code on a surface with boundary. Here, an e particle
(blue dot) is absorbed by the rough boundary (top edge), while an
m particle (red cross) is emitted by the neighboring smooth
boundary (right edge), as described in the text. (b) When a qubit
is encoded in a loop that carries “Cheshire charge” in 3D, errors
associated with a magnetic flux loop encircling (sequence of
dotted red lines, whose growth and subsequent shrinkage are
indicated by the green arrows) the Cheshire loop are suppressed
by the size of the Cheshire loop, since the magnetic flux loops
have a line tension at temperatures below the bulk phase
transition temperature. There is no such protection against the
emission or absorption of a pointlike electric charge (blue
circles), even below the phase transition temperature into the
topological phase. However, prethermalization can suppress such
processes exponentially.
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weak, this occurs at very late times, and the prethermal
regime extends until then. Since the electron-phonon
interaction is suppressed by the ratio of the electron mass
to the ion mass (it must vanish in the limit that the latter
approaches infinity), this can be weak, thus giving an
example of this scenario. Meanwhile, the ion chain has
interactions that are long ranged, so it is not immediately
obvious that our analysis applies. However, the calculations
that we present do, in fact, indicate that prethermalization
occurs in this case as well. Although this system does not
have a topological phase, the edge spins are governed by
similar dynamics. We present a quantitative discussion of
the experimental requirements for observing edge spins
protected by prethermalization.

A. Quantum-dot chains and the fate of
prethermalization in the presence
of electron-phonon interactions

The authors of Refs. [40,41] have proposed devices in
which quantum dots (possibly defined by gates acting on
MZM-supporting nanowires) are the basic building blocks
for superlattices that have an effective low-energy descrip-
tion as models of Majorana fermions hopping on a lattice.
They therefore realize literal versions of the Hamiltonian of
Eqs. (6) and (8). Moreover, Ref. [41] gives a procedure for
tuning a system of quantum dots to the limit in which the
coupling J is much larger than all the other coupling
constants from Eq. (8). In the standard notation for the
Kitaev chain [15], this translates into making tþ Δ much
larger than μ and t − Δ. In other words, Ref. [41] gives a
procedure for tuning into the prethermal regime of large
J=J0. These devices are a bit futuristic, so we are not, in this
section, proposing immediate experimental tests of pre-
thermalization-protected MZMs. Rather, our purpose here
is to illustrate the considerations that must enter into any
effort to exploit prethermalization in a solid.
As we discuss momentarily, prethermalization leads us to

predict extremely small decay rates for theMZMs at the ends
of such a chain. However, these extremely small decay rates
are not observed since the electron-phonon coupling ends
prethermalization before these exponentially small effects
do. In other words, the electron-phonon coupling can violate
the conservation of N before the time t�. But if the electron-
phonon contribution to thermalization is smaller than the
electron-electron contribution over some range of temper-
atures, device geometries, and device parameters, then
prethermalization still plays an important role in extending
the lifetime of a topological qubit. We show that the naive
MZM decay rate attributable to electron-electron inter-
actions, which is what would be seen outside the prethermal
regime, is Γnon-pt

el-el ∼ n2qp · 0.6 GHz. Meanwhile, the decay
rate attributable to electron-phonon interactions is Γel-ph <
nqp · 10 MHz, which is almost certainly a gross overestimate
since it does not take into account the screening of piezo-
electric interactions by the superconductor or the effect of

the device geometry,which can be designed to have a phonon
band gap. Since the former is quadratic innqp, while the latter
is linear, we conclude that, even for this overestimate of
phonon effects, the electron-electron interactions are the
dominant decay channel for nqp > 0.01, and prethermaliza-
tion suppresses this dominant decay channel. If the bulk
quasiparticle density is thermal (which may or may not be a
valid assumption, for the reasons discussed in Ref. [55] and
Refs. [1–7] of that paper), this translates into a range of
temperatures, ðtþ ΔÞ=T < 4.6. Again, this range could be
greatly increased, depending on the effects of device geom-
etry on the phonon spectrum. In the rest of this subsection,we
explain these estimates in more detail.
The initial motivation for considering such a system was

that it may be possible to tune parts of the system more
reliably into and out of the topological superconducting
phase. The potential drawback of such systems is that the
energy gap of the coupled-MZM system is significantly
smaller than the energy gap of a single nanowire. For
instance, Ref. [41] finds t ≈ 9 μV and Δ ≈ 6 μV. One
might consequently fear that much lower temperatures
would be necessary in order to protect the end MZMs of
such a quantum-dot chain.
Indeed, suppose that the hopping parameter were

twice as large, in which case the system would be outside
the prethermal regime, with ðtþ ΔÞ=2 ¼ 7.5 μV and
ðt − ΔÞ=2 ¼ 1.5 μV, and assume a nearest-neighbor
repulsion V ¼ 3 μV. Then, a rough naive estimate for
the decay rate due to electron-electron interactions would
be Γnon-pt

el-el ∼ n2qp · V2=ðt − ΔÞ, since ðt − ΔÞ is the band-
width of excited quasiparticles (so its inverse is the density
of states). This gives Γnon-pt

el-el ∼ n2qp · 0.6 GHz. Thus, the zero
mode decays in a few nanoseconds unless the quasiparticle
density is very low, which is unlikely to be the case since
the gap is relatively small.
However, the results of this paper show that the small gap

may not doom the MZM: prethermalization protects
quantum information until a time that is nearly exponen-
tially long in the ratio between tþ Δ and some combina-
tion of the other couplings, such as t − Δ, V, etc., according
to Eq. (20). Moreover, the temperature dependence has a
characteristic energy scale n�ðtþ ΔÞ, rather than ðtþ ΔÞ
itself, so relatively small ðtþ ΔÞ is not as detrimental as
one might fear. As a result of prethermalization, the decay
rate due to electron-electron interactions should, instead,
be Γpt

el-el ∼ ðnqpÞmmin · e−cn� · V2=ðt − ΔÞ, as in Eq. (19). In
other words, prethermalization suppresses the decay rate
attributable to electron-electron interactions by a factor
Γpt
el-el=Γ

non-pt
el-el ∼ ðnqpÞmmin−2e−cn� . For the values of t, Δ given

above, ðtþ ΔÞ=ðt − ΔÞ ≈ 5, and assuming that all other
couplings are smaller than t − Δ, we find n� ≈mmin ≈ 5.
If we replace the Oð1Þ constant c by 1, then we can use
e−n� ≈ 6 × 10−3. Thus, we have Γpt

el-el ∼ n5qp · 3.6 MHz.
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If we assume that the system is at a temperature
T ¼ 50 mK, and that the quasiparticle density is given
by the equilibrium value, then nqp ≈ e−ðtþΔÞ=T ≈ 0.05,
while ðnqpÞ5 ≈ e−Δeff=T ¼ e−mminðtþΔÞ=T ≈ 3 × 10−7. (We
are assuming that, in the initial state, the quasiparticle
density is equal to its equilibrium value but its subsequent
evolution is impeded by prethermalization, especially its
equilibration with the edge modes.) Thus, the enhancement
of ðtþ ΔÞ to Δeff ¼ mminðtþ ΔÞ is the larger effect at
these temperatures, assuming that the system equilibrates
rapidly with respect to D̂; i.e., is in the prethermal state.
The resulting decay rate is Γpt

el-el ∼ n5qp · 3.6 MHz ∼ 1 Hz.
However, if the system is out of equilibrium, the factor of
e−cn� may be more important since it protects the zero
modes even if there are nonequilibrium excitations in
the bulk that would render the equilibrium estimate
ðnqpÞmmine−Δeff=T moot.
We must compare the prethermal decay rate to the

phonon-assisted decay rate Γel-ph. A bulk fermionic exci-
tation, which has energy E ¼ tþ Δ, can be absorbed by a
zero mode and its energy can be emitted as a phonon of
momentum q ¼ E=v, where v is the speed of sound. The
Hamiltonian governing the electron-phonon interaction is

Hel-ph ¼
Z

d3xd3x0ρelðxÞVijðx − x0Þ∂iujðx0Þ: ð31Þ

Here, ρelðxÞ ¼ iγA1 γ
B
1 jψ1ðxÞj2, where ψ1ðxÞ is the wave

function of the zero-energy fermionic level of a single dot
coupled to a superconductor [41], ujðxÞ is the displacement
in the j-direction of the ion whose equilibrium position is x,
and Vijðx − x0Þ ¼ Dδðx − x0Þδij þ eh14wijðx − x0Þ. The
electron-phonon coupling has two parts, the deformation
potential D and the piezoelectric coupling h14. The piezo-
electric potential satisfies qiwijðqÞ ¼

P
λiMλðqÞðϵλqÞj,

where λ are the phonon polarizations, ϵλq are the corre-
sponding polarization unit vectors, and MλðqÞ depend on
the direction of q but not its overall scale. Hence, the decay
rate for a MZM attributable to the deformation potential
electron-phonon coupling is

ΓDP
el-ph ¼

Z
d3q
ð2πÞ3 jQðqÞj2ðDqÞ2 1

ρ
δðE2 − v2l q

2Þnqp

<
1

4π2ρvlE

�
D

E
vl

�
2
�
E
vl

�
2

nqp: ð32Þ

Here, ρ is the density of the solid and, as before, nqp is
the probability of a bulk fermionic excitation on dot 1. In
going to the second line, we have bounded QðqÞ≡R
d3xeiq·xjψ1ðxÞj2 by jQðqÞj2 < 1. The first two factors

in the second line are the matrix element for such a process;
the third factor in the second line is the density of states for
the phonon, which is ∝ q2; and the final factor is the

probability for a bulk quasiparticle excitation to be near
enough to the MZM for absorption to occur. (We empha-
size that the relevant gap for phonon-assisted decay of a
MZM is E ¼ tþ Δ, not Δeff , which is the relevant scale
for electron-electron interactions in the prethermal regime.)
The reverse process, in which a bulk quasiparticle excita-
tion is emitted and a phonon is absorbed, has the same
amplitude at low temperature. Prethermalization occurs
if Γel-ph < Γel-el. For InAs we take the following values
[68]:D ¼ 5.1 eV; the speed of longitudinal sound waves is
vl ≈ 4.7 km=s; the density is ρ ≈ 5.67 g=cm3. We take
tþ Δ ≈ 15 μV estimated in Ref. [41], as in our discussion
of the prethermal decay rate attributable to electron-
electron interactions. This gives ΓDP

el-ph < nqp · 300 kHz.
For an equilibrium distribution of excited quasiparticles
at T ¼ 50 mK, this gives ΓDP

el-ph < 15 kHz. Turning now
to the piezoelectric coupling, we first note that, in the
presence of strong coupling to superconducting leads, this
effect may be suppressed by screening. However, if we
neglect this screening effect and compute, as an upper
bound, the decay rate due to an unscreened piezoelectric
coupling, we find

ΓPE
el-ph <

Z
d3q
ð2πÞ3 jQðqÞj2ðeh14Þ2

1

ρ
δðE2 − v2q2Þnqp

∼
1

4π2ρvE
ðeh14Þ2

�
E
v

�
2

nqp: ð33Þ

Here, we have made the approximation of ignoring the
difference between the longitudinal and transverse sound
velocities vl ≈ 4.7 km=s and vt ≈ 3.3 km=s and simply set
them both to v≡ 4.2 km=s. We have also made the
simplification of replacing MλðqÞ by an upper bound
MλðqÞ < 1. Using h14 ¼ 3.5 × 106 V=cm, given in
Ref. [69], we find ΓPE

el-ph ∼ nqp · 10 MHz. For an equilib-
rium distribution of excited quasiparticles at T ¼ 50 mK,
this gives ΓPE

el-ph ∼ 500 kHz. We note that this estimate does
not take into account the effect of phonons in the super-
conductor, although we expect this to be a smaller con-
tribution to the decay rate since the electronic wave
function is concentrated primarily in the semiconductor;
it has also not taken into account the effect of the device
geometry on the phonon spectrum at the wavelengths of
interest. In this regard, we note that it may be possible
to pattern a material in order to engineer a phonon band gap
at the wavelength 2πk−1 ¼ hv=E ≈ 1 μm, potentially
strongly suppressing the effect of phonons. Thus, even
at relatively high temperatures, 1 μs is a conservative
estimate of the potential lifetime of a MZM in a quan-
tum-dot chain in the prethermal regime, but the lifetime
may be as long as 1 ms.
We briefly note that much of our discussion of quantum-

dot chains in Sec. VII A also applies to the model of
Ref. [70], which uses short topological nanowires to
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construct a two-dimensional model of Ising anyons on the
honeycomb lattice [71]. The Ising anyons emerge as low-
energy excitations of a superlattice of Coulomb-blockaded
islands, each containing two nanowires. Our results do not
apply to the physics of the nanowires themselves, but
instead to the effective model of the low-energy degrees
of freedom, which has a prethermal regime in the limit
that the bulk Majorana fermion operators have a flat
band. The existence of such a prethermal regime would
facilitate universal topological quantum computation using
the strategy of Ref. [70], since it ameliorates the drawback
of a reduced energy gap.

B. Trapped atomic chains

Another possible experimental realization would be a
trapped ion or neutral atom chain governed by a perturbed
transverse-field Ising model [72,73]. Here, coupling to
an external heat bath would be less of a concern, although
the effective system size might be smaller than in the
quantum-dot case.
For example, in Ref. [74], the authors use chains of

up to 22 171Ybþ ions in linear radiofrequency (Paul) traps,
encoding effective two-state systems in their 2S1=2 hyper-
fine ground states. Long-range spin-spin interactions are
generated using laser-mediated spin-phonon interactions.
In particular, using the beatnote between two overlapped
laser beams to drive stimulated Raman transitions, they
generate the effective Hamiltonian

Ĥ ¼
X
i<j

Ji;jσ
z
iσ

z
j þ B

X
i

σxi ; ð34Þ

where interaction is long ranged and antiferromagnetic:

Ji;j ¼
JI

ji − jjα ; ð35Þ

with JI > 0. For nearest-neighbor interactions in Ising,
ferromagnet and antiferromagnet are unitarily equivalent.
Here, the distinction is important, because the ferromagnet
has a phase with long-ranged order for α < 2 and nonzero
temperatures less than some critical temperature Tc [75],
while the antiferromagnet does not have such an ordered
phase for T > 0, like the nearest-neighbor model [76].
Consequently, for initial states that are near the top of the
spectrum here, the end and bulk spin lifetimes are infinite
since these are low-energy states of the ferromagnetic
Hamiltonian −H.
In the setup of Ref. [74], the experimentally realizable

range of α is 0.5 < α < 2, while JI=2π ≤ 1 kHz, achieved
by changing the trap voltages and the detuning of the
beatnote from resonance. The B term is generated by
driving further resonant stimulated Raman transitions out
of phase with the beatnote. It can range from negligible to a

maximum of B=2π ¼ 10 kHz. So it should certainly be
feasible to enter the prethermal regime B ≪ JI.
The autocorrelators of individual spins hσzjðtÞσzjð0Þi may

be measured up to times of order 100=JI. Thus, it should be
possible to observe the prethermal protection of the edge
spin through the survival of its autocorrelator, in contrast
with the bulk spins, which would decay over experimen-
tally accessible time scales. The one caveat is that, although
the edge spin is long lived for any system temperature or
any energy initial state, for very high-energy initial states
near the top of the spectrum, or for negative temperatures,
the protection comes from the long-ranged ferromagnetic
order when α < 2, rather than prethermalization. This case
is easily distinguishable because the bulk spins are also
long lived.
Simulations with exact diagonalization (ED) at infinite

temperature on similar system sizes confirm this picture, at
least for α ≳ 1.25; see Fig. 5. The main theoretical concern
for prethermalization is the long-ranged nature of the
interaction, because for the ADHH theorem to hold we
require small J0=J. In fact, the ADHH theorem has not yet
been proven for power-law decay interactions. In our
discussion above, N̂ consists of just the nearest-neighbor
interaction magnitude JI . For α ¼ 2, the shortest-possible
range in the experiments, the next-largest term is a quarter
of the size, so we might be justified in putting it and longer-
range terms in Ŷ. However, for smaller α, we should include
at least the next-nearest-neighbor term in N̂ as well. This
case, including the possibility of resonances, is discussed in
detail in Sec. V C below. Crucially, for there to be any

FIG. 5. The decay time (on a logarithmic scale) of a MZM in
the transverse-field Ising model with long-ranged interactions at
T ¼ ∞ for L ¼ 8–14 sites and h ¼ 0.2, as obtained by exact
diagonalization. It is plotted as a function of α, the power of the
decay of the long-ranged interaction. As in Fig. 2, the decay time
saturates in L for larger values of the perturbing couplings. The
decay times for ferromagnetic and antiferromagnetic interactions
are the same at T ¼ ∞; it is only at lower temperatures where the
effect of the long-ranged order for α < 2 in the ferromagnetic
case becomes important.
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chance for the ADHH theorem to hold, N̂ must have integer
eigenvalues, which is of course impossible to tune exactly
experimentally for more than one coupling. However, for
the system sizes L ≤ 22 that are experimentally accessible,
we do not expect this to be of practical issue in observing
the prethermal protection of the edge spin in contrast to the
bulk, and indeed the ED results support this.
Of course, once α becomes small, the arguments above

based on locality break down completely. The two ends of
the chain come into contact, so that terms that flip the edge
spin may be immediately added to D̂, and the edge spin is
no longer protected, regardless of the applicability of the
ADHH theorem. It is also worth noting that the smaller α is,
the less localized at the edge the zero mode is, and so the
greater its overlap with the bulk spins. This means that there
may be some small but observable part of the bulk spin
correlator that survives to long times, albeit exponentially
suppressed in magnitude compared to the edge.

VIII. INTEGRABLE SYSTEMS

Turning now to more formal considerations, we empha-
size that the number n� following from the ADHH theorem
only defines a lower bound on how long a zero mode lives.
Indeed, in a free-fermion system, the recursive procedure
defined in Ref. [31] converges, so that n� → ∞ as L → ∞,
as we now show explicitly. In fact, one might go so far as to
say that the ADHH recursive procedure gives us an
alternate formulation of Onsager’s solution of the Ising
model.
The strong MZMs and corresponding unitary operators

in the free-fermion Ising-Kitaev chain can be found
directly, with no need for the full-blown ADHH procedure.
The Hamiltonian here is H ¼ −JN̂ þ Ŷ with N̂ given by
(6) and Ŷ given by (8) with all couplings other than h and J
set to zero. The strong MZMs at the left and right edges,
respectively, are then given by [15]

Ψ ¼ N
XL
j¼1

�
h
J

�
j
γAj ; Ψ0 ¼ N

XL
j¼1

�
h
J

�
j
γBLþ1−j:

where the normalization N is chosen to make
Ψ2 ¼ ðΨ0Þ2 ¼ 1. Each of these commutes with the
Hamiltonian, up to terms of order ðh=JÞL. Thus, n�
for the edge modes is L throughout the ordered phase
h < J. The unitary operator Ue relates the strong edge
MZM at arbitrary h to that at h ¼ 0 (the latter commuting
with N̂). We have

Ψ ¼ U†
eγA1Ue; ð36Þ

and we write

Ue ¼ expði½U0 þ U1 þU2 þ…�Þ; ð37Þ

where Un is Hermitian and of order ðh=JÞn. If we insist
that Ψ commute with the Hamiltonian Ĥ up to order
ðh=JÞn, as per Sec. III, then we may calculate Un by
inverting the equation:

½Ĥ; ½Un; γA1 �� ¼ i½Ĥ; e−i
P

n−1
j¼0

UjγA1e
i
P

n−1
j¼0

Uj �: ð38Þ

For the Ising-Kitaev chain, we may calculate this boundary
unitary transform exactly:

Ue ¼ cos
θ

2
þ cos θ sin

θ

2
γA1

XL
j¼2

�
h
J

�
j−2

γAj ; ð39Þ

where sin θ ¼ h=J.
Of course the Ue constructed in this manner is not

the full unitary transform shown to exist by the
ADHH theorem, and the correspondingly transformed
Hamiltonian would not display the emergent Uð1Þ sym-
metry. Nevertheless this “boundary” unitary transform is
sufficient to show conservation of the edge mode in
the prethermal regime. Namely, if we combine the boun-
dary unitaries from both ends, then the transformed
Hamiltonian conserves the Z2 bulk fermion parity
ðUeU 0

eÞ†
Q

L−1
j¼1 γ

B
j γ

A
jþ1UeU 0

e ¼ ðUeU 0
eÞ†σz1σzLUeU 0

e up to
order n� ¼ L. As discussed in Sec. IVA, this approximate
conservation law is all that is needed.
Breaking the integrability by including nonzero h2

and/or J2 in Eq. (8), we have calculated Ue up to
eleventh order using a computer-aided algebra program.
The resulting edge zero modes agree with those calcu-
lated explicitly in Ref. [25]. For example, when the only
perturbing terms in Ŷ are h and h2, we find to second
order that

Ue ¼ exp

�
1

2
½hσy1σz2 þ h2σx1σ

y
2σ

z
3 þ h2σy1σ

x
2σ

z
3

þ hh2σ
y
1ðσz3 − σy2σ

y
3σ

z
4Þ − h22σ

x
1σ

y
2σ

y
3σ

y
4σ

z
5�
�
:

Furthermore, this method of calculating the edge zero
modes is preferable and more efficient than the method
outlined in Ref. [25], because the edge zero modes are
automatically normalized at each order by construction.
It is also illuminating to implement the ADHH procedure

directly and explicitly on the full bulk Hamiltonian. We
show that for the free-fermion Ising-Kitaev case, the unitary
transformation can be computed exactly. For simplicity,
here we take L → ∞ so the Hamiltonian of the Ising-Kitaev
chain is

HIK ¼ −
X
j

ðJσzjσzjþ1 þ hσxjÞ: ð40Þ

We assume that J is sufficiently large compared to h so that
we can apply ADHH with
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N̂IK ¼
X
j

σziσ
z
iþ1; ŶIK ¼ −h

X
j

σxj : ð41Þ

We rewrite the Hamiltonian in the form

HIK ¼ −JN̂IK − hD̂0 − i
h
2

X
j

ðγAj γBj þ γBj−1γ
A
jþ1Þ;

so that the last term is the “error” term Ê, which does not
commute with N̂IK, and

D̂0 ≡ 1

2

X
j

σxjð1 − σzj−1σ
z
jþ1Þ ¼

i
2

X
j

ðγAj γBj − γBj−1γ
A
jþ1Þ

commutes with N̂IK. This can be checked explicitly; the key
observation is that if there is a single kink at either j − 1=2
or jþ 1=2, flipping the spin at site j hops the kink, while
with no kink or two kinks adjacent to j, flipping the spin
creates or annihilates two kinks, respectively. The former
process conserves N̂IK, while the latter does not, so the
former is allowed in D̂IK. Acting with the operator ð1 −
σzj−1σ

z
jþ1Þ=2 annihilates any configuration with zero or two

kinks adjacent to j, and gives the identity if there is a single
one. Thus we arrive at the expression given above for D̂0.
At each step of the ADHH recursive procedure, new

terms are included in D̂ and the coefficient of the error term
is reduced by a power of h=J. At the very first recursive
step, the error term can be canceled by using the relation

½N̂IK; γAj γ
A
jþ1� ¼ −½N̂IK; γBj−1γ

B
j � ¼ 2ðγAj γBj þ γBj−1γ

A
jþ1Þ:

For simplicity, we impose periodic boundary conditions
and define

Gn ¼
1

4

X
j

ðγAj γAjþn − γBj γ
B
jþnÞ: ð42Þ

Then, after the first step in the recursive procedure, the
transformed Hamiltonian has the form given on the right-
hand side of the following equation:

�
1 −

h
2J

G1

�
HIK

�
1þ h

2J
G1

�

¼ −JN̂IK − hD̂0 þO

�
h2

J

�
:

Thus all terms in the transformed Hamiltonian that do not
commute with N̂IK are at least of order h2=J. The terms of
this order can be split into pieces that do commute with
N̂IK, which then comprise D̂1, and those that do not, which
comprise another error term. This procedure can be
repeated, so that an order ðh=JÞ2 term can be added to
U to yield an error term of order hðh=JÞ2.

The ADHH theorem guarantees that this procedure can
be repeated, at least up to order n�. Not surprisingly, the
procedure can be implemented to all orders in a free-
fermion system and so n� and hence t� become infinite as
L → ∞ when h < J in the Ising-Kitaev chain. This method
was, in essence, how Onsager originally computed the free
energy of the two-dimensional Ising model. His original
calculations [77] are manipulations of fermion bilinears,
just as is required to find the unitary transformation U.
We find

U ¼ exp

�
−
X∞
n¼1

1

2n

�
h
J

�
n
Gn

�
; ð43Þ

where the fermion bilinears Gn are defined in Eq. (42).
The key to deriving Eq. (43) is to utilize the Onsager

algebra, as derived in the original paper [77]. This is simply
the algebra of fermion bilinears, and a quick glance at the
paper shows that Onsager defines them in terms of the
conventional Jordan-Wigner expressions (given the clarity
of his expression, one wonders why he missed defining
individual fermions). The generators of the algebra are then
given by the Gn in Eq. (42) and

Am ¼ −i
X
j

γBj γ
A
jþ1−m: ð44Þ

The Hamiltonian of the Ising-Kitaev chain HIK ¼ −JN̂ þ
ŶIK is then written in terms of these generators as N̂IK ¼
−A0 and ŶIK ¼ hA1. Onsager carefully works out the effect
of periodic and antiperiodic boundary conditions, but we
simplify matters here by taking L → ∞. It is then easy to
work out the Onsager algebra

½Gn;Gm� ¼ 0

½Gn; Am� ¼ Amþn − Am−n

½An; Am� ¼ 8Gn−m ð45Þ
for all integer n and m. These are exactly Eqs. (61a), (61),
and (60) of Ref. [77], with a rescaling of the generators Gn.
A key property of the Onsager algebra is that when Gn is

commuted with any linear combination of the Am, the result
remains linear in the Am. Moreover, because by definition
G−n ¼ −Gn, a series of quantities preserving the Uð1Þ
symmetry is given by Am þ A−m. This suggests then
building the unitary transformation out of the Gn, a task
made even easier by the fact that they commute among
themselves. Such a construction is done straightforwardly
by Fourier-transforming the Am as

~AðkÞ≡ X∞
m¼−∞

e−ikmAm; ð46Þ

where k takes values in the Brillouin zone −π < k ≤ π.
Commuting any Gn with ~AðkÞ is then diagonal in k:
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½Gn; ~AðkÞ� ¼ ðe−ink − einkÞ ~AðkÞ: ð47Þ

Because G†
n ¼ −Gn, then

U ¼ e
P

∞
n¼1

unGn

is indeed unitary when un is real. Then

U ~AðkÞU† ¼ exp

�X∞
n¼1

unðe−ink − einkÞ
�
~AðkÞ: ð48Þ

Finding the appropriate coefficients un for the ADHH
transformation then becomes easy by rewriting the
Hamiltonian using the inverse Fourier transformation as

HIK ¼
Z

π

−π

dk
2π

ðJ − heikÞ ~AðkÞ:

Note then if we take un ¼ −ðh=JÞn=ð2nÞ as in (43), then
(48) gives

U ~AðkÞU† ¼
�
J − he−ik

J − heik

�
1=2

~AðkÞ:

Thus, by making this choice, we find

UHIKU† ¼
Z

π

−π

dk
2π

(J2 þ h2 − 2hJ cosðkÞ)1=2 ~AðkÞ: ð49Þ

This transformed Hamiltonian commutes with N̂IK, since
~AðkÞ þ ~Að−kÞ does, and the function in the integrand
of Eq. (49) is even in k. The unitary transformation in
Eq. (48) thus indeed does the job required of the ADHH
theorem. It also shows that n� → ∞ for L → ∞, since
Eq. (49) shows that the error goes to zero in this limit.
In an integrable model such as the XYZ model, there is

no free-fermion representation, so the zero mode can
interact with bulk excitations. Nonetheless, it is possible
to show by rewriting the exact strong zero mode of
Ref. [21] as a matrix-product operator that n� is indeed
infinite here as well [78], at least for the edge mode. That
tantalizingly suggests that n� is infinite for all integrable
systems.

IX. DISCUSSION

We show that prethermalization can extend topological
protection into regimes where it might have been expected
to fail. Perhaps the simplest experimental realization of the
prethermal protection of edge modes, albeit in a system
without topological order, would be in a trapped ion or
neutral atom chain governed by a perturbed transverse-field
Ising model. In a solid state system, prethermalization is
ultimately interrupted by the thermalization driven by the
electron-phonon interaction. However, over intermediate

time scales, a chain of quantum dots tuned to a Kitaev-type
Hamiltonian may have prethermal strong zero modes that
survive until the late time at which the electron-phonon
interaction causes thermalization. We emphasize that pre-
thermalization can occur in any dimension, and the long-
lived zero modes can, as a result, occur in two or three
dimensions. Our work is therefore relevant to the proposal
of Ref. [70] for a universal topological quantum computer.
In a more theoretical direction, we note that the ADHH

theorem applies to much more general systems than those
with topological order. It provides a precise and rigorous
approach to finding an approximately conserved charge.
Integrable models are so because of the presence of
nontrivial conserved charges, and the resemblance of the
Onsager analysis of the Ising model to the results the
unitary transform used in this paper hints at a more general
connection between the ADHH procedure and integrability.
For example, the Uð1Þ quantum number conservation
implied by the theorem is strongly reminiscent of the
conservation of quasiparticle number in integrable field
theories. Moreover, the general connection between inte-
grability breaking and prethermalization suggests that the
extremely long lifetime of the prethermal strong zero
modes is a consequence of the structure of integrability
still affecting the perturbed system, at least in one dimen-
sion. In higher dimensions, the role of integrability seem-
ingly is being played by the requirement of integer
eigenvalues of N̂, but why this is so is somewhat mysteri-
ous. Clearly more research in both more formal and
experimental directions is warranted.
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APPENDIX A: EXTENDING THE ADHH
THEOREM TO NON-SINGLE-SITE N̂

Here, we explain how the proof of ADHH can extended
to the case where the unperturbed Hamiltonian N̂ can be
written as a sum N̂Γ ¼ P

ΓN̂Γ, where each N̂Γ is supported
on a set of sites Γ of finite radius. Recall that the original
proof of ADHH assumed that each N̂Γ acts on just a single
site. The only place where this assumption was used is
Sec. 5.4 of Ref. [31], in which it was implicitly assumed
that

∥eisN̂Ve−isN̂∥κ ¼ ∥V∥κ; ðA1Þ
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where ∥ · ∥κ is the norm for potentials introduced in
Sec. 2.2 of Ref. [31]. This assumption no longer holds
if the terms of N̂ do not act on one site each, because then
evolution by N̂ does not preserve the support of local terms.
We can get around this problem quite straightforwardly.

We say that an operator VZ is “strongly supported” on a set
Z if VZ is supported on the set Z, and VZ also commutes
with all N̂Γ’s such that Γ ⊈ Z. For N̂ finite range, this just
requires increasing the size of Z slightly. We then redefine
the norm ∥ · ∥κ so that it is based on the strong support of
local terms rather than the support. With this modification,
we see that Eq. (A1) is recovered, since the “strong
support” of an operator does not grow under N̂. We observe
that if AZ and BZ0 are strongly supported on sets Z, Z0, then
½AZ; BZ0 � ¼ 0 if Z ∩ Z0 ¼ ∅, and moreover in general,
½AZ; BZ0 � is strongly supported on Z ∪ Z0. This allows the
rest of the proof in Ref. [31] to carry over without change.

APPENDIX B: ENERGY BANDWIDTH

Here we prove the claim we made about the energy
bandwidth of the M̂ ¼ m sector under the Hamiltonian
JM̂ þ D̂. The starting point is the observation that a
consequence of Ref. [31] is a bound on the “local norm”
of D̂. Namely,

∥D̂∥0 ≤ CJ0; ðB1Þ

where we define J0 ≡ ð1=κ20Þ∥Ŷ∥κ0 and fix κ0 such that
J0 < ∞. The dimensionless constant C is proportional
to κ20. We define the local norm ∥H∥κ of a Hamiltonian
H ¼ P

ΓHΓ (where the Γ are subsets of the lattice Λ, and
HΓ is an operator supported on Γ), as

∥H∥κ ¼ sup
x∈Λ

X
Γ∋x

eκjΓj∥HΓ∥: ðB2Þ

We derive Eq. (B1) by applying the bound in the unnum-
bered equation just after Eq. (4.10) of Ref. [31], invoke the
fact that ∥ · ∥0 ≤ ∥ · ∥κ for κ > 0, and then sum over n.
Now, we state our results in some degree of generality.

Rather than considering any particular form of M̂, we just
assume that it can be written as

M̂ ¼
X
x∈X

Px; ðB3Þ

where the Px’s are commuting projectors, andX is some set
to index the projectors. We assume that each projector Px is
supported on a set Bx ⊆ Λ (where Λ is the set of all sites in
the lattice).
We can label eigenstates of M̂ by their simultaneous

eigenvalue under the projectors Px, which we refer to
as a “syndrome.” More precisely, a syndrome is a subset
S ⊆ X , whose corresponding projectors are not satisfied.

Moreover, for each syndrome s, we can construct a
corresponding projector Ps ≡ ðQx∈SPxÞð

Q
x∉sð1 − PxÞÞ.

We let P denote the projector corresponding to the trivial
syndrome, P≡ P∅ (i.e., the projector onto the ground state
subspace of N̂).
We also introduce the notion of a “partial syndrome”

ðY; sYÞ, where Y ⊆ X and sY ⊆ Y. We say that ðY; sYÞ is
the “restriction” of a syndrome s if sY ¼ Y ∩ s. A partial
syndrome specifies the eigenvalue of only those projectors
indexed by x ∈ Y. The projector corresponding to a partial
syndrome is

QY;sY ¼
�Y

x∈sY

Px

�� Y
x∈YnsY

ð1 − PxÞ
�
: ðB4Þ

We now state the following condition under which we
prove our results.
Local-TQO. There exists a constant K such that, for any

syndrome s, there exists a region Rs, of size at most Kjsj,
such that Bx ⊆ Rs for all x ∈ s, and furthermore for any
region Γ with Γ ∩ Rs ¼ ∅, we have

QA;sAVΓQA;sA ¼ cðVΓÞQA;sA ; ðB5Þ
where cðVΓÞ ¼ TrðPVΓPÞ=TrðPÞ, and A ¼ Xns, which
implies that the restriction sA ¼ s ∩ A ¼ ∅.
Roughly, this is saying that there is a topologically

protected degeneracy in the ground state of M̂ (by applying
it to the trivial syndrome), and moreover, that an excited
state with eigenvalue m is localized to a region of size at
most Km, and looks like the ground state elsewhere. The
condition “Local-TQO” is closely related to the conditions
under which stability of the topological order in the ground
state subspace of M̂ was proven in Refs. [79–81] (though
the result we want to prove here is somewhat different). We
observe that “Local-TQO” is indeed satisfied for the N̂ of
the Kitaev chain [Eq. (6)], with K ¼ 2.
Now we can prove the following theorem:
Theorem 1. If the condition “Local-TQO” is satisfied,

then for any Hamiltonian V ¼ P
ΓVΓ that commutes with

M̂, the spectrum of JM̂ þ V in the eigenspace of M̂ with
eigenvalue m lies within the interval

½cðVÞ þmðJ − K∥V∥0Þ; cðVÞ þmðJ þ K∥V∥0Þ�: ðB6Þ
Proof.—Consider an operator VΓ supported on a set

Γ ⊆ Λ. We want to consider the circumstances under which
PsVΓPt − δs;tcðVΓÞPs can be nonzero for two syndromes
s, t ∈ S such that jsj ¼ jtj. Let us partition the set X into
XΓ and Xc

Γ, where XΓ ¼ fx ∈ X∶Bx ∩ Γ ≠ ∅g. We con-
sider the following cases:

(i) s ≠ t and s ∩ Xc
Γ ≠ t ∩ Xc

Γ.
Without loss of generality, we can say that there

exists x ∈ s ∩ Xc
Γ such that x∉t. Then we note

that PsPx ¼ 1 and PxPt ¼ 0. Furthermore, x ∈ Xc
Γ
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implies that ½Px; VΓ� ¼ 0. Hence, we can write
PsVΓPt ¼ PsPxVΓPt ¼ PsVΓPxPt ¼ 0.

(ii) s ≠ t, s ∩ Xc
Γ ¼ t ∩ Xc

Γ and Rs ∩ Γ ¼ ∅.
Rs ∩ Γ ¼ ∅ implies that for all x ∈ s, Bx ∩ Γ ¼

∅ (since Bx ⊆ Rs). This implies that s ⊆ Xc
Γ, and

hence that s ¼ s ∩ Xc
Γ ¼ t ∩ Xc

Γ. Since jsj ¼ jtj,
this implies that s ≠ t, which contradicts our
assumption.

(iii) s ¼ t and Rs ∩ Γ ¼ ∅.
We decompose s into partial syndromes ðA; sAÞ

and ðB; sBÞ, where A ¼ s and B ¼ XnA. Then we
can write Ps ¼ QA;sAQB;sB . We observe that Rs ∩
Γ ≠ ∅ ensures thatQB;sB commutes with VΓ. Hence,
we find that

PsVΓPs ¼ QB;sBðQA;sAVΓQA;sAÞQB;sB

¼ cðVΓÞPs; ðB7Þ

by Eq. (B5).
In conclusion, we find that PsVΓPt − δs;tcðVΓÞPs ¼ 0

except when Rs ∩ Γ ≠ ∅ and Rt ∩ Γ ≠ ∅.
Now consider a Hamiltonian V ¼ P

ΓVΓ. Let Pm ¼P
s∈S∶jsj¼EPs (that is, Pm is the projector onto the subspace

with eigenvalue m under M̂). Furthermore, let PΓ
m ¼P

s∈S;jsj¼m;Rs∩Γ≠∅Pm. Then we see that

PmVPm−cðVÞPm¼
X
Γ
PmVΓPm−cðVΓÞPn

¼
X
Γ
PΓ
mVΓPΓ

m−cðVΓÞPΓ
m

≤
X
Γ
∥VΓ∥PΓ

m

¼
X

s∶jsj¼m

� X
Γ∶Rs∩Γ≠0

∥VΓ∥
�
Ps

≤
X

s∶jsj¼m

jRsj∥V∥0Ps

≤Km∥V∥0
X

s∶jsj¼m

Ps

¼Km∥V∥0Pm:

Hence,

∥PmVPm − cðVÞPm∥ ≤ Km∥V∥0: ðB8Þ

The theorem immediately follows. ▪
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