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The understanding of physical properties of fermions in the unitary regime, where the s-wave scattering
length in the collisional channel of particles is longer than both the interparticle distance and the size of the
interaction potential, is a crucial issue for electron systems of high-temperature superconductivity, dilute
nucleons in nuclei, and neutron stars. We experimentally determine various thermodynamic quantities of
interacting two-component fermions at the zero-temperature limit from the BCS region to the unitarity
limit. The obtained results are very accurate in the sense that the systematic error is within 4% in the unitary
regime. Using this advantage, we can compare our data with various many-body theories. We find that an
extended T-matrix approximation, which is a strong-coupling theory involving fluctuations in the Cooper
channel, well reproduces our experimental results. We also find that the superfluid order parameter Δ
calculated by solving the ordinary BCS gap equation with the chemical potential of interacting fermions is
close to the binding energy of the paired fermions directly observed in a spectroscopic experiment and that
obtained using a quantum Monte Carlo method.
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I. INTRODUCTION

A many-body system of fermions interacting with
s-wave scattering length a is a fundamental model that
extends the ideal Fermi gas model for various interacting
Fermi systems. Understanding the ground-state properties
of fermions in the unitary regime, where the absolute value
of the scattering length is larger than the interparticle
distance, is crucial in condensed-matter physics and nuclear
physics, beyond the framework of atomic, molecular, and
optical physics.
Ultracold atomic gases provide an ideal research envi-

ronment in which we can investigate such many-body
Fermi systems universally and systematically [1–3]. Many-
body systems composed of ultracold atoms have an ideal
hierarchy of length and energy, where the interparticle
distance and the wavelength of matter are sufficiently long

compared to the size of the short-range interaction poten-
tial. Furthermore, it is possible to tune the scattering length
between two fermions using Feshbach resonances [4].
These features realize universal many-body systems, where
various physical phenomena are independent of the details
of particles [5].
The ground state of many-body fermions interacting with

an s-wave scattering length is an s-wave superfluid state,
which has a nonzero superfluid order parameter Δ of the
paired fermions and fluctuations of the order parameter. The
origin of such superfluid fluctuations is the repetition of pair
formations and their dissociations as well as noncondensed
pairs that are kicked out from the condensate. Far below the
superfluid phase transition temperature Tc, where thermal
excitations are almost absent, many-body corrections to
physical quantities are dominated by quantum fluctuations
associated with superfluid fluctuations.
At the BCS limit, the BCS mean-field (MF) wave

function has been considered to be an adequate approxi-
mation to describe the ground-state properties because the
influence of quantum fluctuations appears to be small due
to weak interaction between fermions. In this BCS-MF
approximation, the magnitude of the order parameter Δ is
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equivalent to the binding energy of a paired fermion and to
the energy gap in single-particle excitations [6]. The
relation between the thermodynamic quantities and Δ is
given by the gap equation and the number equation. The
influence of quantum fluctuations on the ground-state
energy has also been theoretically analyzed at the BCS
limit. The thermodynamic quantities of such fermions have
been expressed analytically up to the order of ðkFaÞ2
beyond the MF approximation [7].
In the unitary regime, on the other hand, it is not obvious

whether the BCS-MF wave function is an adequate
approximation for describing the ground-state properties
because considerable quantum fluctuations are induced by
strong interaction between fermions. While there are
several exact universal relations among the thermodynamic
quantities [8–13], they cannot link thermodynamic quan-
tities to the order parameter, the binding energy of a paired
fermion, and the superfluid fluctuations. Thus far, the
binding energy of a paired fermion [14], a single-particle
excitation spectrum [15–17], and internal energy density E
[18], which is the ground-state energy per unit volume,
have been experimentally determined in the unitary regime.
Other thermodynamic quantities, such as pressure [18,19],
isothermal compressibility [19,20], speed of sound [21],
and contact density [17], were also measured. However, the
magnitude of the order parameter and chemical potential μ
have not yet been determined experimentally in the unitary
regime. While several theories have demonstrated qualita-
tive agreement with these experimental results, quantitative
evaluation of these theories has not been achieved because
of experimental accuracies, lack of data points, and
inhomogeneity effects.
In the present study, we determine the relations among

thermodynamic quantities, such as pressure P, number
density n, internal energy density E, chemical potential μ,
isothermal compressibility κ, and contact density C, for
homogeneous spin-1=2 superfluid fermions at the zero-
temperature limit from the BCS region to the unitarity limit.
All of these quantities are determined within 4% systematic
error around the unitarity limit without using any model
functions. We provide their thermodynamic functions in
universal form as a function of an interaction parameter.
Therefore, these functions are applicable to other similar
many-body Fermi systems, such as dilute neutron matter.
We compare our experimental data with various many-body
theories and find that one theoretical model can reproduce
our data.We also calculate the superfluid order parameter by
solving the ordinary BCS gap equation with the determined
chemical potential.We compare the obtained resultswith the
binding energies of paired fermions, whichwere determined
in previous studies through a spectroscopic experiment and
quantum Monte Carlo (QMC) calculation.
The remainder of the present paper is organized as

follows. In Sec. II, we introduce the theoretical framework
used in our data analysis. In Sec. III, we explain our

experimental procedure, data analysis, and experimental
results. In Sec. IV, we compare our experimental results
with the results of various previous experimental and
theoretical studies and discuss calculation of the superfluid
order parameter. Finally, in Sec. V, we conclude this study.

II. THEORETICAL FRAMEWORK

A. Thermodynamics of homogeneous fermions from
the BCS limit to the unitarity limit at zero temperature

We consider homogeneous spin-1=2 fermions at T ¼ 0,
which have a number density of n↑ ¼ n↓ ¼ n=2 and a
chemical potential of μ↑ ¼ μ↓ ¼ μ for each spin state. We
assume that the interaction between fermions in different
spin states is modeled by the s-wave scattering length a. In
the following, for convenience, we use a−1 instead of a. We
consider the parameter region a−1 ≤ 0, where the Fermi
system ranges from the BCS limit (a−1 ¼ −∞) to the
unitarity limit (a−1 ¼ 0). Letm be the mass of the fermions
and let ℏ be the reduced Plank constant.
The internal energy density Eðn; a−1Þ is a function of n

and a−1. Let us write its differential form as

dE ¼ μdn −
�

ℏ2

4πm
C
�
da−1: ð1Þ

The thermodynamic quantity C defined in the above
relation is called the contact density [8–13]. The pressure
P is derived from Eðn; a−1Þ as

P ¼ μn − E: ð2Þ

The functional dependence Pðμ; a−1Þ has a simple differ-
ential form:

dP ¼ ndμþ
�

ℏ2

4πm
C
�
da−1: ð3Þ

Isothermal compressibility κ and speed of sound v have the
same thermodynamic relations as an ideal Fermi gas under
a fixed scattering length:

κ ¼ 1

n

�∂n
∂P

�
a−1

¼ 1

n2

�
dn
dμ

�
a−1

ð4Þ

v ¼
ffiffiffiffiffiffiffiffiffi
1

mnκ

r
: ð5Þ

B. Dimensionless thermodynamic functions

Here, we use the fact that the theory involves only two
constants, m and ℏ. If we change the unit of length by a
factor of λ and that of time by λ2, the values of the two
constants remain unchanged. Hence, the functional
dependence of any dimensionless qualities A on n and
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a−1 should satisfy Aðn; a−1Þ ¼ Aðλ3n; λa−1Þ. This implies
that A can be written as a function AðxÞ of a parameter x
proportional to a−1n−1=3 [5]. Similarly, when a dimension-
less quantity B is a function of μ and a−1, it should be
written as a function BðXÞ of a parameter X proportional
to a−1μ−1=2.
In the present paper, we choose the two parameters to be

the grand-canonical interaction parameter,

Xðμ; a−1Þ ¼ 1

kμðμÞa
; ð6Þ

and the canonical interaction parameter,

xðn; a−1Þ ¼ 1

kFðnÞa
: ð7Þ

Here, we define two wave numbers as kμðμÞ ¼ffiffiffiffiffiffiffiffiffi
2mμ

p
=ℏ and kFðnÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mεFðnÞ

p
=ℏ, where εFðnÞ¼

ðℏ2=2mÞð3π2nÞ2=3 is the Fermi energy for ideal fermions.
For each thermodynamic quantity, we define an associated
dimensionless thermodynamic function by normalizing it
with the value for an ideal Fermi gas as follows:

pressure∶ fPðXÞ ¼
P

P0ðμÞ
; ð8Þ

number density∶ fnðXÞ ¼
n

n0ðμÞ
; ð9Þ

internal energy density∶ fEðxÞ ¼
E

E0ðnÞ
; ð10Þ

chemical potential∶ fμðxÞ ¼
μ

εFðnÞ
; ð11Þ

isothermal compressibility∶ fκðxÞ ¼
κ

κ0ðnÞ
; ð12Þ

speed of sound∶ fvðxÞ ¼
v

v0ðnÞ
; ð13Þ

where P0ðμÞ ¼ ð2=15π2Þð2m=ℏ2Þ3=2μ5=2, n0ðμÞ ¼
5
2
½P0ðμÞ=μ�, E0ðnÞ ¼ 3

5
nεFðnÞ, κ0ðnÞ ¼ 3

2
ð1=nεFðnÞÞ, and

v0ðnÞ ¼ ½ðmnκ0ðnÞ�−1=2. An exception is the contact den-
sity C, which vanishes for the ideal gas. Here, we choose its
dimensionless thermodynamic function as

contact density∶ fCðxÞ ¼
C

kFðnÞ4
: ð14Þ

In an experiment with interacting Fermi gas in a trap
potential in Sec. III, we obtain data including various
combinations of ðμ; PÞ with a fixed value of the scattering
length a. It is convenient for data analysis to introduce

dimensionless versions of μ and P by using normalizing
factors solely determined from a as

G ¼ μ

εa
; χ ¼ P

a3

εa
; ð15Þ

where we define energy as εa ¼ ðℏ2=2ma2Þ. According to
the dimensionless analysis discussed above, we can see that
G is given as a function of χ, i.e., GðχÞ. Since X and fP are
simply related to GðχÞ as

X ¼ −GðχÞ−1=2; fP ¼ −
15π2

2
χGðχÞ−5=2; ð16Þ

GðχÞ can be directly converted to fPðXÞ.
The function fnðXÞ is derived from fPðXÞ as

fnðXÞ ¼ fPðXÞ −
X
5

dfPðXÞ
dX

: ð17Þ

The function fEðxÞ is constructed by

fE ¼ 5fnðXÞ − 2fPðXÞ
3f5=3n ðXÞ

; x ¼ XfnðXÞ−1=3: ð18Þ

The function fμðxÞ is derived from fEðxÞ as

fμðxÞ ¼ fEðxÞ −
x
5

dfEðxÞ
dx

: ð19Þ

When fμðxÞ is given, fκðxÞ can be determined by

fκðxÞ ¼
�
fμðxÞ −

x
2

dfμðxÞ
dx

�−1
: ð20Þ

The function fvðxÞ has a simple relation to fκðxÞ:

fvðxÞ ¼ fκðxÞ−1=2: ð21Þ

The function fCðxÞ is obtained from the derivative
of fEðxÞ as

fCðxÞ ¼ −
2

5π

dfEðxÞ
dx

: ð22Þ

Equations (17)–(20) indicate that there is a universal
value ξ at the unitarity limit (X ¼ x ¼ 0), which is
ξ¼fPð0Þ−2=3¼fnð0Þ−2=3¼fEð0Þ¼fμð0Þ¼fκð0Þ−1. Note
that ξ is sometimes called the Bertsch parameter [1].

C. Behavior of the dimensionless functions
at the BCS limit

The asymptotic behavior of fEðxÞ at the BCS limit is
known up to the second order of 1=x [7,22] as
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fasymE ðx→ −∞Þ ¼ 1þ 10

9π
x−1 þ 4ð11− 2 log2Þ

21π2
x−2: ð23Þ

Here, we omit the condensation energy term [7]. Moreover,
fasymμ ðxÞ is given by Eq. (19) with fasymE ðxÞ, and fasymP ðXÞ is
obtained using the following relations:

fP ¼ 5fμðxÞ − 3fEðxÞ
2f5=2μ ðxÞ

; X ¼ xfμðxÞ−1=2: ð24Þ

The asymptotic behavior of the other thermodynamic
quantities at the BCS limit can be obtained from
fasymP ðXÞ using Eqs. (17)–(22).

III. EXPERIMENT

A. Data acquisition

We have an experimental apparatus that can produce
dual Bose-Einstein condensates (BECs) of paired 6Li
(fermion) and one spin state of 7Li (boson) in the hybrid
trap of an optical dipole trap (ODT) and a magnetic trap
(MT) [23]. A schematic drawing of the experimental
apparatus is shown in Fig. 1. Detailed information about
our experimental apparatus and experimental procedure is
provided in a previous study [23]. In this experiment, only
6Li atoms are used. The shape of the trapping potentialUtrap

is analytically given without using a harmonic approxima-
tion in terms of the parameters of the laser power, the
wavelength, the beam waists of the ODT, and the magnetic
curvature of the MT. The trap has an elliptic symmetry
and can be written as Utrapðx̂; ŷ; ẑÞ ¼ Utrapðρ̂; ẑÞ, with

ρ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ η2ðẑÞŷ2

p
, where ηðẑÞ is the ellipticity, where

the variables with hats mean the spatial coordinates.
The ODT is produced by a focused 1070-nm laser beam.

The 1=e2 beam radii are ðw0x̂; w0ŷÞ ¼ ð43.5; 46.9Þ μm, and

the final laser power after evaporative cooling is
PODT ¼ 45 mW. The depth of the ODT is 38 μK, and
the trapping frequency realized by the ODT is
ðωx̂;ωŷ;ωẑÞ ¼ 2π × ð250; 230; 1.3Þ Hz. The MT is pro-
duced by the magnetic curvature of a bias magnetic field for
the Feshbach resonance and produces magnetic curvature
ωmag ¼ 2π × 0.24

ffiffiffiffi
B

p
Hz in the ẑ direction, where B is the

produced bias magnetic field in gauss. The effective
trapping frequency along the ẑ direction is given by

ωẑ;eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
ẑ þ ω2

mag

q
. Typically, 2 × 105 degenerate fer-

mions are prepared in this experiment.
6Li atoms have a broad s-wave Feshbach resonance

for collisions between the two lowest spin states:
j1i≡ jmL ¼ 0;mS ¼−1=2;mI ¼þ1i and j2i≡ jmL ¼ 0;
mS ¼ −1=2; mI ¼ 0i, where mL, mS, and mI are, respec-
tively, the electronic orbital angular momentum projec-
tion, the electronic spin projection, and the nuclear
spin projection. The scattering length is given by aðBÞ¼
abg½1þðWres=B−BresÞ� with parameters of abg¼−1582a0,
Bres ¼ 832.18 G, and Wres ¼ 262.3 G, where a0 is the
Bohr radius [24,25]. Then, the Fermi system is in the BEC
region (a > 0) at B < Bres. On the other hand, the Fermi
system is in the BCS region (a < 0) at B > Bres. At
aðB ¼ BresÞ ¼ �∞, the Fermi system reaches the unitarity
limit.
In the present study, we are interested in the ground-

state properties of the interacting fermions from the BCS
limit to the unitarity limit. In order to prepare highly
degenerate Fermi gas [t ¼ kBT=εFðnÞ ≪ 1] in the inter-
action region, we produce an almost pure molecular BEC
consisting of two fermions in the state of j1i and j2i at
777 G in the BEC regime. We then change the scattering
length adiabatically by sweeping the magnetic field to
832.18–1050 G in 1.5 s.
We can accurately obtain their density distribution

in situ using the imaging techniques developed in a
previous study [26]. We measure the optical depth (OD)
of the trapped fermions at each magnetic field, as shown
in Fig. 2(a). From the OD and the absorption cross
section σabs, we evaluate the column density n̄ðx̂; ẑÞ ¼Rþ∞
−∞ nðx̂; ŷ; ẑÞdŷ by n̄ðx̂; ẑÞ ¼ ODðx̂; ẑÞ=σabs. We deter-
mine the effective value of σabs within 4% uncertainty
[26]. Note that this uncertainty results in one of the
systematic errors in our final results.
The local pressure of the trapped fermions can be

calculated from the column density n̄ðx̂; ẑÞ and the trapping
potential Utrapðρ̂; ẑÞ using the following formula [26–28]:

Pðρ̂; ẑÞ ¼ ηðẑÞ
π

Z
∞

ρ̂
dx̂ n̄ðx̂; ẑÞ

� ∂Utrap

∂ρ̂ ðx̂; ẑÞ
ðx̂2 − ρ̂2Þ1=2

þ
Z

x̂

ρ̂
dρ̂0

ρ̂0 ∂Utrap

∂ρ̂ ðx̂; ẑÞ − x̂ ∂Utrap

∂ρ̂ ðρ̂0; ẑÞ
ðx̂2 − ρ̂02Þ3=2

�
; ð25Þ

Objective lens

Optical trap

y

x

z

Feshbach coils

Trapped fermions

P
robe laser

Vacuum glass cell

FIG. 1. Schematic diagram of the experimental apparatus. The ẑ
axis is defined as the axial direction of the optical trap.
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which is derived from the Gibbs-Duhem equation [Eq. (3)],
the local density approximation (LDA), i.e., μ ¼ μ0 − Utrap,
and the inverse Abel transformation of the column density,
i.e., nðρ̂; ẑÞ ¼ −½ηðẑÞ=π�R∞

ρ̂ ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 − ρ̂2

p
Þ½∂n̄ðx̂; ẑÞ=∂x̂�dx̂.

This calculation can be carried out without the knowledge
of the global chemical potential μ0 of the trapped system.
Finally, we can obtain pressure P as a function of the
trapping potentialUtrap by relating Pðρ̂; ẑÞ andUtrapðρ̂; ẑÞ at
each position.
Figure 2(b) shows a typical example of PðUtrapÞ at

882.86 G. The data are averaged at 241 potential heights in
the region of Utrap=kB ∈ ½0; 600 nK� with an interval of
ΔUtrap=kB ¼ 2.5 nK. We also evaluate the local number
density from the local pressure PðUtrapÞ according to
nðUtrapÞ ¼ −½dPðUtrapÞ=dUtrap� under the LDA, as shown
in Fig. 2(c).
We extract PðUtrapÞ and nðUtrapÞ in the highly degenerate

region, where the number density is larger than half of the
peak density for the following data analysis, because
t¼kBT=εFðnÞ∝n−2=3. The red curves plotted in Figs. 2(b)
and 2(c) show the regions. We acquire data sets of
fPðUtrapÞ; nðUtrapÞ; aðBÞ−1g at 44 magnetic fields of from
832.54 to 1050 G for the BCS region and of 832.18 G for
the unitarity limit. The 44 magnetic fields are
chosen in order that the canonical interaction parameter
x½nðUtrapÞ; aðBÞ−1� obtained at B overlaps one another. In
this experiment, we repeat data acquisition 8 times at each
magnetic field to decrease statistical errors.
We hereinafter express physical quantities at B by adding

the superscript B, for example, PB, nB, and UB
trap.

B. Evaluation of f κðxÞ
The dimensionless isothermal compressibility fκðxÞ

can be constructed model independently from data
sets of fPBðUB

trapÞ; nBðUB
trapÞg. We calculate fBκ ðUB

trapÞ and
xBðUB

trap; BÞ from these sets using the thermodynamic
relation of Eq. (5) and the definitions of xðn; a−1Þ and
κ0ðnÞ. We collect fBκ ðxBÞ from the BCS region to the
unitarity limit and average the values at the given x, as shown
by the red circles in Fig. 3. The error bars indicate the
systematic errors in fκ and x caused by the uncertainty of the
absorption cross section σabs. From the error propaga-
tion rule, these errors are ðδfκ=fκÞ ¼ 2

3
ðδσabs=σabsÞ ¼

2.7% and ðσx=xÞ ¼ 1
3
ðδσabs=σabsÞ ¼ 1.3%. The statistical

errors are within the error bars.
At the unitarity limit, our data indicate that

fκð0Þ ¼ 2.66ð7Þ, which corresponds to the universal value
of ξ ¼ 0.375ð10Þ. This value is very consistent with the
accurate experimental value of 0.376(4) determined by
measuring thermodynamics for homogeneous unitary
Fermi gases [19]. In the BCS region, our data approach
the theoretical asymptotic behavior of fκðxÞ.
Experimentally, it is impossible to prepare fermions at

zero temperature, even if we start from a molecular BEC.
Therefore, experimental temperature Texpt always has a
nonzero value, i.e., texpt > 0. Since the superfluid critical
temperature tc decreases monotonically to zero from the
unitarity limit to the BCS limit as a function of the
interaction parameter x, it is inevitable that tcðxÞ intersects
texpt somewhere between the two interaction limits. Here,
we define the transition point as texpt ¼ tcðx�Þ.
Based on another experiment, as we describe in

Appendix A, the transition point is determined to be

3

z

x

2

1

0
4003002001000

2

1

0
4003002001000

)c((b)

1.7 mm 70 μm

(a)

Utrap [nK]

P
 [p

Pa
]

n  
[μ

m
–3

]

Utrap [nK]

FIG. 2. Typical experimental data at 882.86 G. (a) Absorption
image. (b) Local pressure PðUtrapÞ. (c) Local number density
nðUtrapÞ. The red curves in (b) and (c) show the data region used
in the analysis, where the number density is larger than half of the
peak density.

3.0

2.5

2.0

1.5

1.0
-4 -3 -2 -1 0

k

*

FIG. 3. Experimental data of isothermal compressibility from
the BCS region to the unitarity limit. The red circles are
experimental data. The dotted curve and the dashed curve show
their asymptotic behavior at the BCS limit up to the first and
second order of 1=x, respectively. The vertical dash-dotted line
indicates interaction parameter x�, where superfluid transition
occurs. The fermions are in the superfluid state in the
region of x > x�.
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x� ¼ −1.14, and the temperature parameter of the fermions
is estimated to be 0.06≲ texpt ≲ 0.1 for our experimental
condition. We indicate the superfluid transition point x�
with a vertical dash-dotted line in Fig. 3. In the region of
x > x�, the fermions are in the superfluid state. A cusp in
fκðxÞ appears around the transition point, as shown in
Fig. 3, which is similar to that observed in a previous
study [19].

C. Construction of Gðχ Þ
In order to determine the other thermodynamic quan-

tities, it is necessary to determine the chemical potential μ
or contact density C along with P and n. In this experiment,
we apply an almost homogeneous magnetic field to the gas,
which implies that the Fermi gas has a homogeneous
scattering length. In this case, it is impossible to determine
C from the gradient of P relative to a−1 under the same μ for
each data.
The local chemical potential μB is given by μB ¼ μB0 −

UB
trap under the LDA, where μB0 is the global chemical

potential at magnetic field B. If we have experimental data
corresponding to the fermions in the ground state at the
BCS limit, we can determine μB0 in such a way that fPðXÞ
matches the asymptotic theory at the BCS limit. In this
case, μB0 toward the unitarity limit can be determined by
iterative fitting from the BCS limit with the same principle
as demonstrated in a previous study [29]. However, as
shown in Fig. 3, it is difficult to judge whether our data
reach the BCS limit, and the data contain some finite-
temperature effects at x < x� because the fermions are in
the normal state there. Consequently, this method cannot be
used to determine μB for our data.
Although the value of μB0 for each value of B is

unknown, we can still determine the relative difference
among the various values of B using the general pro-
perties of dimensionless parameters described in Sec. II B.
Equation (15) and the LDA suggest that all of the
experimental data acquired at various magnetic fields for
the Feshbach resonance B should be related through a
common function GðχÞ as

G(χðUB
trap; BÞ; B) ¼

μB0 − UB
trap

εaðBÞ
; ð26Þ

where χðUB
trap; BÞ ¼ PBðUB

trapÞ½aðBÞ3=εaðBÞ�. We plot ðχ;GÞ
with different choices of μB0 for all data in Fig. 4. In the case
of μB0 ¼ 0 for all B, the plots do not overlap each other as
the curves (i). However, we can overlap the plots model
independently by simply adjusting each value of μB0 from
the BCS limit (B ¼ 1050 G) to the unitarity limit, as in the
curves (ii). This leaves only a single ambiguous parameter,
namely, the arbitrary choice of μB¼1050 G

0 . As a result, the

experimentally constructed value GðχÞ deviates from
the true value GtrueðχÞ by a constant offset as GðχÞ ¼
GtrueðχÞ þ ΔG, where ΔG is independent of χ.
We can derive a lower and an upper bound on the

offset value in the following way. The contact density
should be positive in the BCS-BEC crossover (C > 0), and
C is related to fPðXÞ by ðC=k4μÞ ¼ ð4=15πÞf0PðXÞ, which
can be derived from Eq. (3). Then, fPðXÞ must have
positive gradient f0PðXÞ > 0 at an arbitrary interaction
parameter X. This restriction gives the lower bound on
GðχÞ through Eq. (16) as

GðχÞ > 5

2
χG0ðχÞ: ð27Þ

The border of this condition is plotted by the dash-
dotted red curve in Fig. 4(a). This condition should be
satisfied for the entire experimental curve GðχÞ. The
condition is most restrictive at χmax ¼ −1.0 × 10−4, which
is the maximum value achieved in this experiment. Thus,
the lower bound is given by GðχmaxÞ > 0.13, which gives a
lower bound on the experimental range of X from Eq. (16)
as Xmin > −2.77.
In addition, the experimental data for fP must satisfy

the condition of fP > fPðXminÞ from the requirement
of f0PðXÞ > 0. This condition gives an upper bound on
GðχÞ as

GðχÞ <
�
−

15π2

2fPðXminÞ
χ

�
2=5

ð28Þ

for χ < χmax. In order to use the above inequality, we still
need a lower bound on fPðXminÞ. Here, we invoke the
theoretical asymptotic behavior to derive a bound that is
better than the obvious bound of fPðXminÞ > 1. We confirm
that calculations of fasymP ðXÞ up to the first and second orders
of x−1 in Eq. (23) give almost the same values at X ¼ −5,
which is fPðX ¼ −5Þ ¼ 1.1. By assuming that this value is
reliable, we have the bound fPðXminÞ > 1.1, because
Xmin > −5. Using this bound, the condition of Eq. (28) is
represented by the dashed red curve in Fig. 4(a). We confirm
that the entire experimental curve GðχÞ lies below the red
curve if and only if GðχmaxÞ < 0.14.
Having established that 0.13 < GðχmaxÞ < 0.14, we

choose the offset such that GðχmaxÞ ¼ 0.135, which is
shown as curve (iii) in Fig. 4(a). This leads to a systematic
error of jΔGj < 0.05. Note that this constant uncertainty in
the offset value becomes negligible toward the unitarity
limit, because the value of GðχÞ around the unitarity limit is
approximately 4 orders of magnitude larger than that
around the BCS limit, as shown in Fig. 4. In terms of
parameter X, the relative systematic error jΔGj=GðχÞ
is bounded by 0.05jXj2 because GðχÞ ¼ jXj−2 from
Eq. (16).
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D. Determination of f PðXÞ, f nðXÞ, fEðxÞ, f μðxÞ,
and fCðxÞ

We convert GðχÞ to fPðXÞ according to Eq. (16) and
derive the other dimensionless functions from fPðXÞ
using the thermodynamic relations of Eqs. (17)–(20).
Figure 5 shows the results. The red regions indicate
systematic errors caused by uncertainty ΔG for determin-
ing the offset value of GðχÞ, which depend on X. The
blue regions indicate systematic errors caused by uncer-
tainty of the absorption cross section σabs, which do not
depend on X. In the interaction region of X > −0.18 or
x > −0.12, the former errors become 1 order smaller than
the latter. Therefore, all of the thermodynamic quantities
are determined by the uncertainty of σabs as ðδfP=fPÞ¼
ðδfn=fnÞ¼ðδσabs=σabsÞ¼4% and ðδfE=fEÞ¼ðδfμ=fμÞ¼
2
3
ðδσabs=σabsÞ¼3% around the unitarity limit.
We find that the superfluid transition point corresponds

to X� ¼ −1.33 at x� ¼ −1.14, as shown in Fig. 5(f). The
dotted bars at X� and x� indicate the superfluid transition
points. Changes in fP, fn, fE , and fμ and a cusp in fC
around the points can be seen. Such critical behavior can be
seen at the normal to the superfluid transition point because
of appearing the condensation energy [30]. [We have not
identified the origin of the other cusps in fCðxÞ around
x ¼ −0.6 and x ¼ −0.2.]
While the Fermi system is nonzero temperature and the

data show the phase transition, our experimental data can
be well considered as the ground-state values. Deviations of
the dimensionless thermodynamic quantities from the
ground-state values due to finite-temperature effects such
as the condensation energy and the thermal energy are

estimated to be smaller than 1% at the unitarity limit and
about 5% even for the BCS region in the normal state
(x < x�). The validity of the zero-temperature limit is
discussed in Sec. IV C.

IV. DISCUSSIONS

A. Comparison with previous experiments
and many-body theories

1. Isothermal compressibility: f κðxÞ
The obtained dimensionless compressibility is shown by

the red circles in Fig. 6, along with previously obtained
experimental data and a theoretical curve. The vertical axis
follows a logarithmic scale.
At the unitarity limit, fκð0Þ ¼ 2.66ð7Þ obtained in the

preset study is consistent with a previously reported
experimental value [2.66(3)], which was determined
accurately by measuring the thermodynamics for homo-
geneous unitary Fermi gases [19]. The results for two
different experiments are shown around the unitarity
limit. One experiment measured density fluctuations
[20]. The compressibility was determined based on
density fluctuations according to the fluctuation-dissipa-
tion theorem. The other experiment measured the speed
of sound propagating in the Fermi gas [21]. The speed of
sound can be easily converted to isothermal compress-
ibility, as shown in Eq. (21). While the results of these
experiments are not the exact values for a homogeneous
system because they were measured for a trapped system,
the results of the present study show good qualitative
agreement.

0.6

0.4

0.2

0.0

-0.2

-0.4
-2.0 -1.5 -1.0 -0.5 0.0

2.0

1.5

1.0

0.5

0

-0.5

-1.0

-4 -3 -2 -1 0

(a) (b)

(ii)

(iii)

(i)

(ii)

(i)

FIG. 4. Construction of dimensionless function GðχÞ. The different colors indicate the contributions of data taken at each magnetic
field for the Feshbach resonance. (a) Around the BCS limit. The dash-dotted red curve and the dashed red curve indicate the lower and
upper limits of GðχÞ. The gray areas correspond to the forbidden area for GðχÞ. (i) Unconnected data with μB0 ¼ 0 for all data.
(ii) Connected data located in the forbidden area. (iii) Connected data for which the offset value is tuned appropriately. (b) Around the
unitarity limit. (i) Unconnected data with μB0 ¼ 0 for all data. (ii) Connected data for which the offset value is tuned appropriately.
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The theoretical curve is calculated using an extended T-
matrix approximation (ETMA) developed in a previous
study [31,32] without using any fitting parameters. The
theory excellently reproduces our experimental results in
the superfluid region.

2. Pressure: f PðXÞ
The determined dimensionless pressure is shown by the

red curve in Fig. 7, along with previous experimental data
and a theoretical curve. The width of the red curve indicates
the overall systematic error. The vertical axis follows a
logarithmic scale.
Our value of fPð0Þ ¼ 4.35ð17Þ at the unitarity limit is

consistent with the experimental value of 4.34(7), which
is obtained by fPð0Þ ¼ ξ−3=2, with ξ ¼ 0.376ð4Þ deter-
mined using spin-balanced unitary Fermi gases in a
previous study [19]. Our values from the BCS region
to the unitarity limit agree qualitatively with the values
determined using spin-imbalanced Fermi gases in a
previous study [18], whereas our results are slightly
larger. The ETMA [31,32] again reproduces our exper-
imental results.

3. Internal energy density: fEðxÞ
The determined dimensionless internal energy density

is shown by the red curve in Fig. 8, along with previous
experimental data and various theoretical curves. The
width of the red curve indicates the overall systematic
errors.
At the unitarity limit, our value of fEð0Þ ¼ 0.375ð10Þ

agrees with the experimental value of 0.376(4) [19].
In a previous experiment [18], an approximated curve
of fPadéP ðXÞ was prepared using the Padé approximation.
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FIG. 5. Dimensionless thermodynamic functions derived from GðχÞ. (a) Pressure. (b) Number density. (c) Internal energy density.
(d) Chemical potential. (e) Contact density. (f) Canonical interaction parameter. The red colors indicate ranges of statistical errors caused
by the uncertainty of the offset value of GðχÞ. The blue colors indicate additional statistical errors resulting from the uncertainty of the
absorption cross section. The dotted curves and the dashed curves show their asymptotic behavior at the BCS limit up to the first and
second order of 1=x, respectively. The vertical dash-dotted lines indicate interaction parameters X� and x� where superfluid transition
occurs. The Fermi system is in the superfluid state in the region of X > X� or x > x�.
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FIG. 6. Experimental and theoretical dimensionless isothermal
compressibility. The vertical axis follows a logarithmic scale. The
red circles indicate the experimental data of the present study. The
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imental values obtained based on the speed of sound [21], density
fluctuations [20], and thermodynamicmeasurements at the unitarity
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the superfluid transition point x� obtained in the present study.
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An approximated curve fPadéE ðxÞ was obtained from

fPadéP ðXÞ using Eqs. (17) and (18), as shown by the dotted
green curve. We find our data to be inconsistent with this
approximated curve fPadéE ðxÞ.
The results of the ETMA [31,32] and the quantum

Monte Carlo method [33] agree with our result within

the error bars. A fixed-node diffusion Monte Carlo
(FNDMC) method [34] and the Nozières and Schmitt-
Rink (NSR) theory [35] provide larger values around the
unitarity limit. A Luttinger-Ward (LW) approach [36]
shows smaller values than our data around the unitar-
ity limit.

4. Contact density: fCðxÞ
The obtained contact density is shown by the red curve

in Fig. 9, along with previous experimental data and
various theoretical curves. The width of the red curve
indicates the overall systematic error. The vertical axis
follows a logarithmic scale. The vertical dash-dotted line
indicates the superfluid transition point at x ¼ x�.
In the previous experiment [17], contact density was

measured using fermions in the normal state at t ¼
0.18ð2Þ≳ tc by radio frequency spectroscopy (rf line
shape) and photon emission spectroscopy (PES). The
temperature parameter is approximately 3 times higher
than in our experimental condition. Nevertheless, the
results of the present study agree quantitatively within
the error bars, indicating that the short-range correlation is
insensitive to both temperature and whether the many-body
state is the normal state or the superfluid state.
We compare our results with the results of the FNDMC

method [34], the NSR theory [37], the LW approach [38],
the T-matrix approximation (TMA) [39], and ETMA
[31,32]. All of these results agree quantitatively with our
data in the BCS region.
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FIG. 7. Experimental and theoretical dimensionless pressure.
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indicates the experimental data of the present study. The width
indicates the total systematic error. The green circles and the
black square indicate the experimental values obtained using spin
imbalanced Fermi gases [18] and spin balanced unitary Fermi gas
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B. Superfluid order parameter

In several strong-coupling theories, the order parameter
Δ and chemical potential μ are calculated for given values
of n and a by an equation obtained by combining a gap
equation and a number equation. The gap equation is
often approximated by the ordinary BCS gap equation
[7,31,32,35,40,41], whereas the number equation is derived
from the single-particle Green’s function or the thermody-
namic potential, which includes quantum fluctuations. In
this case, Δ can be uniquely determined by the chemical
potential of interacting fermions at T ¼ 0. If this theoretical
approach is adequate, we can calculateΔ by solving the gap
equation with the chemical potential determined in the
present study. Note that it is not obvious that the superfluid
order parameter should satisfy the gap equation in the
unitary regime. Nonetheless, it is interesting to evaluate Δ
from thermodynamic quantities using the ordinary BCS
gap equation and to compare it with values obtained by
other methods.
The BCS gap equation at T ¼ 0 is given by

−
1

a
¼ 2

π

�
2mΔ
ℏ2

�
1=2

I1

�
μ

Δ

�
; ð29Þ

where the function I1ðμ=ΔÞ is defined in a previous study
[42]. When we define the dimensionless superfluid gap as

fΔ ¼ Δ
εFðnÞ

; ð30Þ

the gap equation can be expressed in dimensionless form,
relating x and fΔ as

1 ¼ −
2

π

ffiffiffiffiffiffi
fΔ

p
x

I1

�
fμðxÞ
fΔ

�
: ð31Þ

Note that Δ and μ determined by the gap equation of
Eq. (29) have the universal ratio of Δ=μ ¼ 1.16 at the
unitarity limit.
We substitute fμðxÞ determined in the superfluid range

(x > x�) into Eq. (31) and calculate fΔ as a function of x.
The result is shown by the red curve in Fig. 10. This curve
essentially represents the relation among Δ, n, and a under
the assumption that the gap equation holds true. The width
of the red curve indicates the overall systematic error. The
obtained values are close to the binding energy of the paired
fermions directly observed by a spectroscopic experiment
[14] as well as that obtained by the quantum Monte Carlo
method [43,44]. Consequently, we find that the binding
energy of the paired fermions can be simply estimated by
substituting fμðxÞ into the gap equation. Note that the
above observation does not indicate whether the magnitude
of the order parameter obeys the gap equation, because the
order parameter can deviate from the binding energy in the
unitary regime. Direct measurement of the order parameter,

such as the measurement of the Higgs mode, is desired in
this regard [45].

C. Validity of the experimental result

Here, we discuss the validity of the dilute condition,
LDA, scale invariance, and zero-temperature limit for our
experimental condition, and confirm that the determined
dimensionless thermodynamic quantities show those for
homogeneous fermions in the zero-temperature limit from
the BCS region to the unitarity limit.

1. Dilute condition

The dilute condition is given by r0 ≪ jaj, λðTÞ, k−1F , lρ̂,
lẑ, where r0 is the interaction potential size (van der Waals
radius), λðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ2=mkBT

p
is the thermal length, and

lρ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωρ̂

p
and lẑ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωẑ

p
are the harmonic oscil-

lation lengths in the radial and the axial directions,
respectively. For our experimental conditions, m ¼ 1.0 ×
10−26 kg for 6Li, B ¼ 832.18–1050 G, n ∼ 1 μm−3 (see
Fig. 2), T=TF ∼ 0.06, T ∼ 24 nK, ωρ̂=2π ∼ 250 Hz, and
ωẑ=2π ∼ 7 Hz, where ωρ̂ is the approximate trapping
frequency along the radial direction, each length in the
system is r0 ¼ 1.6 nm for 6Li [25], jaj ¼ 185 nm ∼∞,
λ¼ 730 nm, k−1F ¼ 320 nm, lρ̂ ¼ 16 μm, and lẑ ¼ 100 μm.
Therefore, the dilute condition is satisfied.

2. Local density approximation

The LDA is valid under the condition of k−1F , λðTÞ,
ξpair ≪ lρ̂, lẑ for the superfluid fermions and k−1F ,
λðTÞ ≪ lρ̂, lẑ for the normal fermions [46], where ξpair is
the fermion pair size. In this experiment, the superfluid
transition point occurs at x� ∼ −1 due to the nonzero
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FIG. 10. Dimensionless superfluid gap. The red curve indicates
the gap calculated by substituting our fμðxÞ into the gap equation
in Eq. (31). The dashed black curve was obtained by BCS-MF
calculation [42]. The green triangle and the green inverse
triangles indicate the theoretical values obtained by the QMC
method [43,44]. The blue circles are experimental values
obtained by quasiparticle spectroscopy [14].
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temperature of the fermions. For this interaction para-
meter, the superfluid gap is estimated to be Δ ∼ 0.1εF from
Fig. 10. We estimate the fermion pair size by the Pippard
coherence length by ξpair ¼ ½ℏvFðnÞ�=ðπΔÞ [47], where
vFðnÞ ¼ ℏkFðnÞ=m is the Fermi velocity. At the critical
point, the value is ξpair ¼ 2 μm. This value gives the upper
limit of the fermion pair size for superfluid fermions
realized in this experiment because the gap has smaller
values at smaller interaction parameter values. As a result,
all the conditions for the LDA are satisfied in the superfluid
region and the normal region.
We also note that the trapping energy does not prevent

pairing near x ¼ x� in this experiment because the inequal-
ity Δ > ℏωρ̂, ℏωẑ is satisfied at the critical point. The
superfluid-normal transition we observe in this experiment
results from the nonzero temperature of the fermions.

3. Scale invariance

Scale invariance can be satisfied at the local position of
the trapping system, if both the dilute condition and the
LDA are satisfied. As discussed above, both conditions are
satisfied. Therefore, scale invariance is a valid assumption
at the local position of the three-dimensional trapping
system in our experimental condition.

4. Zero-temperature limit

The estimated temperature parameter of the experimental
data used in data analysis is a small value of
0.06≲ texpt ≲ 0.1. At the unitarity limit, it is valid to
consider that the fermions are in the ground state because
the superfluid fraction is expected to be unity at this
temperature parameter [19,48]. Therefore, the systematic
errors in the unitary regime are determined only by the
uncertainty of the absorption cross section σabs.
Outside of the unitarity limit, however, there are

systematic errors caused by finite-temperature effects in
fPðXÞ because the superfluid density becomes smaller
at smaller X. When there are normal components, it
works to increase the pressure due to the thermal energy
by δfTP > 0, and also it works to decrease the pressure due
to loss of the condensation energy by δfΔPðXÞ > 0.
Therefore, the exact value in the ground state fgPðXÞ is
given by fgPðXÞ ¼ fPðXÞ − δfTP þ δfΔPðXÞ, and the upper
and the lower limit of the relative error is given by
−½δfΔPðXÞ=fgPðXÞ� < δPðXÞ < ½δfTPðXÞ=fgPðXÞ�, where
δPðXÞ≡ ½fPðXÞ − fgPðXÞ=fgPðXÞ�.
While we need to evaluate the systematic errors exper-

imentally, it is beyond the scope of this work. Here, we
estimate the possible errors at the level of the BCS
mean-field approximation. Under the approximation,
they are estimated by δfTP ¼ ð5π2=12Þt2 and δfΔPðXÞ ¼
ð15=16Þf2ΔðXÞ [22]. We also assume fgPðXÞ ≈ fPðXÞ ≫
δfTPðXÞ; δfΔPðXÞ. Then we find that ½δfTPðXÞ=fgPðXÞ�
has the maximum value of 0.02 at X ¼ −∞, and

½δfΔPðXÞ=fgPðXÞ� has the maximum value of 0.04 at
X ¼ 0 from the BCS limit to the unitarity limit. Hence,
the range of the systematic error in the measured fPðXÞ is
estimated to be −4% < δPðXÞ < 2% from the BCS region
to the unitarity limit. It gives the range of the systematic
error in fEðxÞ from the exact value in the ground state fgEðxÞ
as −1% < δEðxÞ < 3% by using general thermodynamic
properties, where δEðxÞ≡ ½fEðxÞ − fgEðxÞ=fgEðxÞ�. Details
are described in Appendix B.
Consequently, these small relative errors mean that the

experimentally determined dimensionless thermodynamic
values canbe considered as thevalues at the zero-temperature
limit from the BCS region to the unitarity limit.

V. CONCLUSION

This paper reports experimental determination of thermo-
dynamic quantities for homogeneous fermions interacting
with an s-wave scattering length in the zero-temperature
limit from the BCS region to the unitarity limit. They are
determined by using standard thermodynamic relations, the
scale-invariant property, and the local density approxima-
tion. In previous works, the number of data points in the
BCS region was not adequate to understand many-body
physics [18]. The BCS region is of interest in electron
systems, nuclear physics, etc. In order to increase the number
of high-accuracy data points in the BCS region, we develop a
new method to determine the chemical potential of spin-
balanced Fermi gases. As a result, the data density in the
BCS region has been significantly improved, and various
thermodynamic quantities are directly derived without using
model functions such as the Padé approximation. In par-
ticular, we determine fEðxÞ for internal energy density
directly from experimental data.
All of the quantities are determined within systematic

errors of 4% around the unitarity limit. Consequently, we
are able to evaluate the many-body theory and find the
extended T-matrix approximation as a valid theory. The
ETMA, which is a strong-coupling theory involving
fluctuations in the Cooper channel, provides the closest
results to those of the present study. Our results will
promote the understanding of superfluid fluctuations
on the thermodynamic quantities of the superfluid Fermi
gas. The details of the ETMA can be found in previous
studies [31,32,41].
In addition, our paper includes new findings about the

relationship between the thermodynamic quantities and the
superfluid gap. Future experiments, such as experiments
involving the measurement of the Higgs mode of the order
parameter, will reveal the magnitude of the order parameter
as well as the relation between the order parameter and the
binding energy.
The s-wave interacting Fermi gas is an effective model,

beyond the free-Fermi gas model, which describes inter-
acting Fermi systems qualitatively. This study certainly
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advances the quantum many-body physics beyond atomic,
molecular, and optical physics. We introduce two specific
examples of application of this experimental result in
condensed-matter physics and nuclear physics.
(i) The mechanism of the high-temperature (high-Tc)

superconductivity by using the BCS-BEC crossover con-
jecture has been discussed since Eagles’s theoretical work
in 1969 [49]. The BCS-BEC crossover physics is still
considered as a valid theoretical framework for high-Tc
superconductivity qualitatively, whereas there are lattice
and Coulomb interactions in electron systems [50,51].
Recently, it has been found that the electron system of
FeSe has a surprisingly large superconducting gap of
Δ=εF ∼ 1 in the superconducting state [52]. In addition,
it has been confirmed that superconducting fluctuations
significantly affect the physical properties of the super-
conducting state [53]. It is expected that the FeSe system
can be near the unitary regime because of such large pairing
gap and large fluctuations. By comparing such electron
systems with cold Fermi gases, for example, the relation
between the chemical potential and the gap energy, we can
distinguish universal physics and specific physics in the
FeSe system. It may lead to elucidation of the mechanism
of high-temperature superconductivity in FeSe and other
high-Tc materials.
(ii) The dilute nucleon system is a nonrelativistic four-

component (spin-1=2 and isospin-1=2) Fermi gas of neu-
trons and protons at zero temperature. Their interaction can
be considered as s-wave scattering in the dilute system. The
s-wave scattering lengths between a proton and a neutron
are determined to be at ≃ 5.4 fm in the 3S1 channel with a
shallow bound state of the deuteron, and as ≃ −23.7 fm in
the 3S1 channel [54]. The neutron-neutron scattering length
is also determined to be aNN ¼ −18.63 fm [55]. While
these scattering lengths are constant values, the interaction
parameters x ¼ 1=kFðnÞa depend on the particle density,
and they reach the unitary regime at densities around
n0=10, where n0 ¼ 0.16 fm−3 is the nuclear saturation
densities. In particular, the equation of state of neutron
matter, which is a relation between the neutron density and
the internal energy, is important in nuclear physics in terms
of the symmetry energy of nuclei, neutron skin thickness of
neutron-rich nuclei, and physical properties of neutron stars
[56–58]. While there are dilute neutron systems in the
neutron skin or neutron halo of neutron-rich nuclei [59,60]
and the tetra-neutron state [61], it is generally difficult to
prepare dilute nucleon matter on Earth directly. Therefore,
experimental simulation of such a dilute nucleon system
using cold Fermi atomic gases is essential to understand the
elemental physics such as thermodynamics, the equation of
state, and the pairing gap. Thus far, there have been no
experimental studies to test nuclear theories at low den-
sities. This study enables us to confirm the validity of
nuclear theories at low densities.
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APPENDIX A: SUPERFLUID TRANSITION POINT
AND EXPERIMENTAL TEMPERATURE

Experimentally, it is impossible to prepare fermions at
zero temperature, even if we start from a molecular BEC,
and so fermions are always prepared at finite temperature.
In the case of Fermi systems, it is proper to discuss
temperature in terms of a temperature parameter defined
as t ¼ kBT=εF. When investigating the properties of
interacting fermions in the ground state, the experimental
temperature texpt should not only be sufficiently lower than
1 in order to exclude temperature and entropy from the
thermodynamics, but should also be lower than the super-
fluid critical temperature tc to take into account the
condensation energy [30]. Therefore, texpt < tc < 1 should
be satisfied in order to investigate the ground state. Since tc
decreases monotonically to zero from the unitarity limit to
the BCS limit as a function of the interaction parameter x, it
is inevitable that tcðxÞ intersects texpt somewhere between
the two interaction limits. Here, we define the intersection
as texpt ¼ tcðx�Þ.
We determine the superfluid transition point x� by

measuring the condensate fraction (CF) of paired fermions.
The value of x� can be determined even if we know neither
the experimental temperature texpt nor the function for the
critical temperature tcðxÞ. Since the local density has a peak
value at the bottom of the trap, the ratio texpt=tc takes the
minimum value there. Therefore, CF takes finite values
when fermions satisfy texpt=tc < 1 at the bottom, and CF
becomes zero at texpt ¼ tcðx�Þ.
We carry out the measurement of CF as follows. We

prepare ultracold fermions at various magnetic fields for the
Feshbach resonance using the same experimental pro-
cedure as in the present study. Instead of measuring the
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in situ column density of the fermions, we measure the
center-of-mass (c.m.) momentum distribution of the paired
fermions [23]. We turn off the ODT and the magnetic field
simultaneously within 10 μs. At that time, the paired
fermions are converted to molecules because the Fermi
system is changed to the BEC regime. These molecules
expand with the original c.m. momentum distribution of the
paired fermions during time of flight. We measure the
momentum distribution after a time of flight of 11 ms by
absorption imaging.
Figure 11 shows the CF evaluated by fitting a bimodal

function to the measured momentum distribution. In
order to estimate the magnetic field B�, at which CF
becomes zero, we fit an empirical function of CF ¼
aðB� − BÞbΘðB� − BÞ to the data with fitting parameters
B�, a, and b. The fitting result yields B� ¼ 951 G. We then
evaluate the value of x� by x� ¼ ½1=kFðnÞaðB�Þ� with the
peak density and the scattering length at the magnetic field.
In this way, the superfluid transition point is determined to
be x� ¼ −1.14. In the region of x > x�, fermions are in the
superfluid state.
Next, we estimate the experimental temperature texpt. At

the unitarity limit (832.18 G), we observe a condensate
fraction of 0.6, as shown in Fig. 11. This suggests that texpt <
0.1 at x ¼ 0, according to a previous experimental result
[19]. At x� ¼ −1.14, the critical temperature is calculated to
be tcðx�Þ ¼ 0.06 [36]. Since texpt ¼ tcðx�Þ, we estimate
texpt ∼ 0.06 at x ¼ −1.14. At x < −1.14, it is difficult to
estimate the temperature parameter from our experimental
data. According to a theoretical work of Ref. [62], the
temperature parameter at the trap center decreases during
an adiabatic change from the BEC region to the BCS region
along the isentropic curve. Consequently, we estimate the
temperature parameter to be 0.06≲ texpt ≲ 0.1 from around
the BCS region to the unitarity limit.

APPENDIX B: ESTIMATION OF THE
RELATIVE ERROR OF fEðxÞ

We can estimate the range of the relative error of fEðxÞ
from upper and lower bounds −δ−P ≤ δPðXÞ ≤ δþP of the
relative error of fPðXÞ by using general thermodynamic
properties.
There is an exact thermodynamic relation given by

Pg(μgðnÞ) ¼ nμgðnÞ − EgðnÞ at a given density n at the
ground state, where “g” in the superscript means thermo-
dynamic values at the ground state. Since PgðμÞ is a
downward-convex function due to mechanical stability
(κg > 0), an inequality of PgðμÞ ≥ nμ − EgðnÞ ∀ μ is
satisfied. When a lower bound on the measured pre-
ssure is given by PðμÞ ≥ ð1 − δ−PÞPgðμÞ ∀ μ, it leads to
PðμÞ≥ ð1−δ−PÞ½ðn=1−δ−PÞμ−Egðn=1−δ−PÞ�∀ μ by using
the inequality of PgðμÞ with density ðn=1 − δ−PÞ. It
reduces to PðμÞ ≥ nμ − ð1 − δ−PÞEgðn=1 − δ−PÞ ∀ μ. Since
the functions EðnÞ and μðnÞ derived from PðμÞ
should satisfy PðμÞ ¼ nμðnÞ − EðnÞ, we have EðnÞ ≤
ð1 − δ−PÞEgðn=1 − δ−PÞ ∀ n. Then we obtain EðnÞ − EgðnÞ≲
δ−PP

g(μgðnÞ) ≤ 2
3
δ−PE

gðnÞ, where we use an inequality of
Pg(μgðnÞ) ≤ 2

3
EgðnÞ for a ≤ 0 due to the universal pres-

sure-energy relation [8–13]. We thus arrive at δEðxÞ ≤ 2
3
δ−P.

Since the lower bound on the measured pressure is given by
δ−P ¼ ðδfΔP=fgPÞ ¼ 4%, we have an upper bound on the
internal energy density as δE ≤ 3%.
Next, suppose that an upper bound on the measured

pressure is given by PðμÞ ≤ ð1þ δþP ÞPgðμÞ ∀ μ. Since
the measured pressure PðμÞ is also a downward-convex
function, we have PðμÞ ≥ nμ − EðnÞ ∀ μ. Considering
a specific case of μ ¼ μgðnÞ, we have nμgðnÞ − EðnÞ ≤
ð1þ δþP ÞPg(μgðnÞ) ∀ n. As a result, we get δEðxÞ ≥ − 2

3
δþP .

Since the upper bound of the measured pressure is given by
δþP ¼ ðδfTP=fgPÞ ¼ 2%, we have a lower bound on the
internal energy density as δE ≥ −1%.
As a result, the boundary of the relative error of fEðxÞ

can be estimated to be −1% ≤ δEðxÞ ≤ 3% from the BCS
region to the unitarity limit.
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