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We show that the dynamics of particles in a one-dimensional harmonic trap with hard-core interactions
can be solvable for certain arrangements of unequal masses. For any number of particles, there exist two
families of unequal mass particles that have integrable dynamics, and there are additional exceptional cases
for three, four, and five particles. The integrable mass families are classified by Coxeter reflection groups
and the corresponding solutions are Bethe-ansatz-like superpositions of hyperspherical harmonics in the
relative hyperangular coordinates that are then restricted to sectors of fixed particle order. We also provide
evidence for superintegrability of these Coxeter mass families and conjecture maximal superintegrability.
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I. INTRODUCTION

The complexity of interacting quantum systems can be
partially tamed by extrapolating from solvable models,
especially in one dimension [1–3]. Prominent examples
include the Lieb-Liniger model with zero-range contact
interactions in free space [4], the Tonks-Girardeau gas with
hard-core contact interactions [5], the Calogero-Moser
(CM) model with inverse square interactions either free
or in a harmonic trap [6,7], and the extended family of
Calogero-Sutherland-Moser (CSM) models [8]. Such mod-
els provide insights about the dynamics and thermody-
namics of few-body and many-body physics, and they are
proving grounds for inquiry into the nature of integrability,
solvability, and chaos.
Interest in one-dimensional models has surged because

of experiments with ultracold atoms trapped in tight wave
guides with interactions controlled by Feshbach and con-
finement-induced resonances [9,10]. These systems are
well described by a one-dimensional model with contact
interactions [11]. Dynamical effects predicted by this
model like delayed thermalization due to integrability at
the hard-core limit have been observed [12]. Controllable
dynamics and extended coherence times, possibly com-
bined with internal degrees of freedom (d.o.f.) like spin or

hyperfine structure, make such atomic systems suitable for
exploring fundamental few-body and many-body quantum
physics [13,14] as well as for applications in quantum
technologies [15–17].
However, the famous models mentioned above primarily

consider equal-mass particles [18]. This article analyzes
one-dimensional particles with different masses (but the
same frequencies) in a harmonic trap with hard-core
contact interactions. Our analysis shows that for particles
with certain masses in a certain order, the mass-imbalanced
hard-core system is integrable. Conversely, we provide
numerical evidence that for other masses, or even the same
masses but in a different order, the dynamics are quantum
ergodic. Both of these limits possess potentially observable
signatures in the energy level statistics [20,21], particle
correlations [22], and thermalization dynamics [23,24].
Measurements probing the relationship between ergodicity
and entanglement in a closed quantum system have recently
been performed in superconducting qubits [25], showing
the power for controllable quantum systems to test non-
equilibrium thermodynamics.
The possibility for experimental implementation of

mass-imbalanced atomic systems has driven multiple
recent analyses. For general masses with contact inter-
actions in an equal-frequency harmonic trap there are no
exact solutions, so most previous approaches have relied on
approximation schemes and numerical methods [26–33]. In
this article, we show that for hard-core interactions there
exist families of unequal masses for which there are
exact solutions for the ground state and all excited states.
This extends results first derived for hard-core interactions
in free space [34–36]. Exact solutions for hard-core
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interactions form the basis for approximation schemes for
strongly interacting systems, providing a valuable bench-
mark for testing numerical methods [37–39]. This pos-
sibility is of special importance for mass-imbalanced
systems where ab initio calculations for strong interaction
are especially challenging [40].
We derive the criteria for which sets of imbalanced

masses are solvable and integrable using a geometrical
approach. In the hard-core limit, configuration space is
sectioned into N! disconnected sectors, one for each order
of particles. After separating out the center-of-mass and
relative hyperradial d.o.f., the dynamics in each ordering
sector of relative angular configuration space can be
mapped onto hard-wall quantum billiards on a (N − 2)-
dimensional sphere. The domain is a simplex whose shape
depends on the mass ratios. For three particles, the six
ordering sectors are just arcs of a circles and every set of
masses is therefore integrable by separation of variables.
For four particles, the 24 ordering sectors are spherical
triangles. Quantum billiards in a general spherical
triangle cannot be solved by separability, nor can higher-
dimensional generalizations to (N − 2)-simplexes on
(N − 2)-spheres. However, when a particular ordering
sector tiles the sphere under reflections, then the problem
is exactly solvable using something like the method of
images. The possible spherical tilings are classified using
Coxeter groups. Described in more detail below, Coxeter
groups are point symmetry groups generated by reflections.
They were originally developed for the purpose of analyz-
ing symmetric polytopes [41]. In hard-core contact inter-
action models, the (N − 1)-dimensional hyperplanes where
two particles coincide define planes of reflection. If the
particle masses are correct, then these coincidence reflec-
tion planes generate a Coxeter group.
This logic can be reversed: we show that for every finite,

connected, nonbranching Coxeter group with rank r there is
a one-parameter family of masses for which the dynamics
of rþ 1 ordered particles is integrable. These models are
nontrivial when N > 3; we focus on the case N ¼ 4, where
there are three families of solvable masses and the
symmetries in relative configuration space are the same
as the Platonic solids. We give special attention to the
exceptional Coxeter group H3 of icosahedral symmetries,
and therefore this work is closely related to CSM models
based on exceptional reflection groups [42–44]. The role of
Coxeter groups in providing integrability criteria for this
model is perhaps not surprising because they have pre-
viously played an important role in the theory of classical
and quantum dynamical systems. For example, extensions
of the CSM model have a closely related classification
scheme [8], and so do Gaudin models [3].
Besides applications to mass-imbalanced ultracold

atomic gases, a motivating interest in this model is that
it sits at the intersection of related notions of integrability
and solvability. For sectors with Coxeter tiling symmetry,

the energies can be calculated algebraically and all excited
states can be expressed as orthogonal polynomials times the
ground state; this property is called exact solvability
[45,46]. These solutions are constructed by Bethe-
ansatz-like superpositions, not of plane waves, but of
spherical (or hyperspherical) harmonics. The conditions
on the masses can be seen as the requirement that the
scattering is nondiffractive, i.e., integrable in the Bethe-
ansatz sense [2,47–49]. On the other hand, we provide
evidence that these models are also integrable in the
classical, Liouvillian sense. Classically, Liouvillian inte-
grability means there are N functionally independent
invariant operators in involution that act continuously on
2N-dimensional phase space. The quantum versions of
these operators commute with each other and therefore all
states can be characterized by the spectrum of this set of
operators (for a discussion of ambiguities in defining
integrability in quantum systems, see Ref. [50]). As an
example, we construct these operators for the four-particle
case of H3. Further, we conjecture that these solvable
models are superintegrable, meaning they have more
integrals of motion than d.o.f., and even maximally super-
integrable with 2N − 1 integrals of motion (for a more
complete discussion, see Ref. [51]). Superintegrable sys-
tems can have a rich mathematical structure, like multi-
separability and exact solvability. Further, perturbations
from superintegrable models sometimes remain integrable.
For example, the unitary (hard-core) limit of equal-mass
particles in a harmonic trap with contact interactions is a
maximally superintegrable system isomorphic to one limit
of the CM model [7,52,53]. In the near-unitary limit,
defined as a first-order perturbation from the hard-core
limit, maximal superintegrability is broken. However, the
system still retains enough symmetry in the near-unitary
limit that it can be mapped onto a spin-chain model [37,38].
At the other extreme from maximal superintegrability, the
Coxeter group criteria could be used to identify mass-
imbalanced systems where quantum ergodic dynamics
should be expected. In the experimental outlook, we
discuss the connections to quantum billiards and the
consequences of integrability for thermalization in ultra-
cold atomic gases.

II. MODEL AND SYMMETRY

We consider the N-particle Hamiltonian with contact
interactions. All particles are harmonically trapped with the
same frequency. Written in terms of the particle coordinates
x ¼ ðx1; x2;…; xNÞ, the Hamiltonian has the form

H ¼
XN
i¼1

�
−ℏ2

2mi

∂2

∂x2i þ
1

2
miω

2x2i

�
þ g
X
i<j

δðxi − xjÞ: ð1Þ

In the limit g → ∞ of hard-core contact interactions, the
order of the particles is a dynamical invariant [39].
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Configuration space is divided into N! ordering sectors by
NðN − 1Þ=2 impenetrable coincidence hyperplanes, one
for each pair of particles. The order xp1

≤ xp2
≤ � � � ≤ xpN

is labeled by a permutation p ¼ fp1; p2;…; pNg, or more
briefly p ¼ p1p2 � � �pN. We denote by Xij the coincidence
hyperplane defined by xi − xj ¼ 0.
In Appendix A, we show that solving for the eigenstates

of Eq. (1) in a particular ordering sector p is equivalent to
solving for the motion of a free quantum particle confined
to an (N − 2)-sphere and trapped inside an angular sector
Ωp bounded by (N − 1) hard walls. We establish this
equivalence by making a mass-dependent transformation
T of the position coordinates z ¼ Tx, and then separating
out the scaled center of mass zN and the scaled relative
hyperradius ρ:

zN ¼
ffiffiffiffiffiffiffiffi
ω

ℏM

r XN
i¼1

mixi and ρ2 ¼
XN−1

j¼1

z2j ; ð2Þ

where M is the total mass. The remaining relative coor-
dinates are the (N − 2) hyperangles fϕ; θ1;…; θN−3g that
cover the sphere SN−2. The transformation to these coor-
dinates gives the harmonic potential a spherically sym-
metric form, but the coincidence hyperplanes, now
transformed to Zij ¼ TðXijÞ, break that symmetry. For
later convenience, we denote by γ̂ij the unit normal vector
to the Zij coincidence hyperplane.
The specific angular ordering sector Ωp is bounded by

the intersection of the sphere with the (N − 1) coincidence
hyperplanes Zp1p2

, Zp2p3
; …; ZpN−1pN

. Each sector Ωp has
(N − 2) angles ωijk of the form

ωijk ¼ arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjðmi þmj þmkÞ

mimk

s !
: ð3Þ

corresponding to the intersections of coincidence planes Zij

and Zjk that share a particle, and ðN − 3ÞðN − 2Þ=2 angles
of ωij;kl ¼ π=2 for the intersections of coincidence planes
Zij and Zkl that do not share a particle. For four particles,
each ordering sector Ωp ¼ Ωijkl is a spherical triangle
bounded by three great circles; see Fig. 1.
Solving the (hyper)spherical Helmholtz equation on an

angular sector Ωp with Dirichlet boundary conditions is an
example of quantum billiards. The problem of quantum
and classical billiards in planar triangles is well studied
[54–62], and the integrability and solvability of the
dynamics depends critically on the domain shape of the
billiards. For example, the only three triangular billiards in
a plane that have classically integrable dynamics are the
three triangles with distinguishable sides that tile the plane
under reflections, without gaps or overlaps (see footnote 3
of Ref. [34]). This serves as our guide for the following
result for spherical quantum billiards. The dynamics in an

angular sector Ωp is integrable and exactly solvable when
the following are satisfied.

(i) The sector Ωp tiles the (N − 2)-sphere under reflec-
tions across its boundaries. The tiling covers the sphere
with no gaps or overlaps and distinguishable sides. In
other words, the ðN − 2ÞðN − 1Þ=2 angles of a sector
ωijk and ωij;kl define a spherical kaleidoscope.

(ii) The (N − 1) reflections across the bounding hyper-
planes Zp1p2

, Zp2p3
;…; ZpN−1pN

generate a finite
Coxeter reflection group. The (N − 1) reflection
normals γ̂p1p2

, γ̂p2p3
;…; γ̂pN−1pN

are the simple roots
of the Coxeter group.

All finite reflection groups (in all dimensions) were
classified by Coxeter [41,63]. Abstractly, a Coxeter group
of rankm is a finite group generated bym reflections,where a
reflection is a group element that squares to the identity.
Every point symmetry group in m dimensions is either a
Coxeter group or a subgroup of a Coxeter group of rank m.
For example, the three-dimensional point groups familiar
fromchemical and solid-state physics are all subgroups of the
Coxeter groups A3 (tetrahedral symmetry), C3 (cubic sym-
metry), and H3 (icosahedral symmetry), or they are sub-
groups of products of lower-rank Coxeter groups.
The structure of the reflection group can be encoded by

the Coxeter diagram, which can be branching or non-
branching and connected or not connected. There is a
family of N masses that determines a “good” sector for
every nonbranching and connected Coxeter reflection
group with rank N − 1. These groups are listed in
Table I. Only the nonbranching Coxeter groups are rel-
evant, because in one dimension each pair can have at most

FIG. 1. The relative configuration space for four particles in the
simplest case when all masses are the same, an example of the
one-parameter mass family of the Coxeter group A3. The gray
sphere represents an equipotential of the harmonic trap in the
mass-normalized coordinates ðz1; z2; z3Þ. The six colored disks
that intersect the plane represent the coincidence planes Z12 (red),
Z13 (yellow), Z14 (green), Z23 (cyan), Z24 (blue), Z34 (magenta).
Twelve sectors are visible and are labeled by Ωp, where p is the
order of the four particles. For two sectors Ω1234 and Ω1324, the
three angles are also labeled.
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two adjacent pairs. Geometrically, this enforces that the
coincidence planes of nonadjacent pairs like Zij and Zkl

are orthogonal, ωij;kl ¼ π=2. We focus our attention on the
connected Coxeter groups because they are relevant
when all masses are finite. Disconnected graphs realize
limiting cases of extreme mass imbalances. For example,
for four particles, if the first or fourth particle is much
more massive, i.e., like the “Born-Oppenheimer” case of
Ref. [26], then the reducible Coxeter groups like I2ðqÞ × A1

could be employed.
For each group in Table I, there exists a one-parameter

family of mass sequences for which there are integrable
sectors. The bracket notation for the Coxeter group
½q1; q2;…; qN−2� determines the sector angle by Eq. (3),
where ωiðiþ1Þðiþ2Þ ¼ π=qi. In Fig. 2, we show the integrable
mass spectra for the three four-particle families A3, C3, and
H3. This can be reversed: given a set of N masses in a
particular order, one could check how close the sector angles
derived from themasses come to the angles π=q1;…; π=qN−2
that define a rank N − 1 Coxeter group.
ForN particles that define a good sector, one that tiles the

(N − 2)-sphere, the generators of the Coxeter group can be
chosen as the m ¼ N − 1 reflections Rij across the boun-
dary hyperplanes Zij of the sector p ¼ 12…N. For N ¼ 4,
the Coxeter groups are rank m ¼ 3 and are generated by

R12, R23, and R34. All three generators square to the
identity, and the relations

ðR12R34Þ2 ¼ ðR34R23Þ3 ¼ ðR23R12Þq ¼ 1 ð4Þ

hold for q ¼ 3, q ¼ 4, and q ¼ 5 for A3, C3, and H3,
respectively. Generally, within each Coxeter group Gm,
there is a conjugacy class K ⊂ Gm of all reflections
R ∈ Gm. We denote the number of reflection planes (and
the order ofK) by λ0 and denote the normals to these planes
by γ̂ðRÞ, but remember that only N − 1 of these planes and
normals are “real”; i.e., they correspond to the actual
coincidence planes and normals. See Fig. 3.
Note that for the Coxeter groups in the A series, C series,

and the exceptional group F4, the sector angles are all π=2,
π=3, or π=4. Inspecting Eq. (3), we see that for these cases the
masses are all rational fractions of each other. For example,
for the group C3 there are a countably infinite number of
rationalmass sequences that give integrable sectors. The four
with the lowest rational denominators are given by
ð3m;m;2m;6mÞ, ð10m;2m;3m;5mÞ, ð12m; 3m; 5m; 10mÞ,
and ð56m; 7m; 9m; 12mÞ. As we discuss below, this allows
the possibility of building integrable systems out of clusters
of particles with the same mass.

TABLE I. Connected, nonbranching, finite Coxeter reflection
groups. For N particles, each rank m ¼ N − 1 Coxeter group
defines a one-parameter family of masses for which the system is
exactly solvable. For each group Gm, the following data are
provided [64]: the Coxeter bracket ½q1;…; qm� from which one
determines the angles of the integrable sector; the number of
reflections λ0 in the group which determines the relative angular
momentum of the ground-state solution; and the order G of the
group which gives the number of integrable sectors required to
tile the sphere. Note that there are two series of groups Am and Cm
that provide integrable mass families for any number of particles.

N A series C series H type Others

3 A2 ≡ I2ð3Þ C2 ≡ I2ð4Þ H2 ≡ I2ð5Þ I2ðqÞ
½3� ½4� ½5� [q]

λ0 ¼ 3 λ0 ¼ 4 λ0 ¼ 5 λ0 ¼ q
G ¼ 6 G ¼ 8 G ¼ 10 G ¼ 2q

4 A3 C3 H3

[3, 3] [4, 3] [5, 3]
λ0 ¼ 6 λ0 ¼ 9 λ0 ¼ 15
G ¼ 24 G ¼ 48 G ¼ 120

5 A4 C4 H4 F4

½3; 3; 3� ½4; 3; 3� ½5; 3; 3� ½3; 4; 3�
λ0 ¼ 10 λ0 ¼ 16 λ0 ¼ 60 λ0 ¼ 24
G ¼ 120 G ¼ 384 G ¼ 14400 G ¼ 1152

≥ 6 AN−1 CN−1
½3N−1� ½4; 3N−2�

λ0 ¼ ½NðN − 1Þ=2� λ0 ¼ ðN − 1Þ2
G ¼ ðN − 1Þ! G ¼ 2NN!

1

2

3

4

3A

3C

3H

0.2

1

0.75

0.5

0.25

1

0.75

0.5

0.25

1

0.75

0.5

0.25

0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0

FIG. 2. The integrable mass families for four particles with the
Coxeter symmetries A3, C3, and H3. The mass fractions μi ¼
mi=M are plotted versus μ4 (legend is in the top graph). The case
where all masses are the same μi ¼ 1=4 is in mass family A3.
Mass family C3 includes two cases where two finite masses are
the same, and H3 includes one.
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III. EXACT SOLVABILITY AND
BETHE-ANSATZ INTEGRABILITY

For each Coxeter group, there is therefore a one-
parameter family of masses such that the complete spec-
trum of energy eigenstates can be exactly solved in the
ordering sector Ω1…N and its inverted sector ΩN…1. The
ground state in each of these “Coxeter sectors” is non-
degenerate and its hyperangular wave function can be
expressed as

ϒλ0ðẑÞ ¼ Nλ0

Y
R∈K

(γ̂ðRÞ · ẑ); ð5Þ

where ẑ ¼ ðz1;…; zN−1Þ=ρ is a unit vector expressed in
hyperspherical coordinates and Nλ0 is a normalizing factor.
For all R ∈ K, the function from Eq. (5) is reflection
antisymmetric,ϒλ0ðRẑÞ ¼ −ϒλ0ðẑÞ, and therefore vanishes
on all reflections planes, including the coincidence planes.
Note that ρλ0ϒλ0ðẑÞ is the lowest degree anti-invariant
polynomial of the corresponding group [63]. The function
from Eq. (5) is defined on the entire sphere, but its
restriction to the ordering sectors Ω1���N or ΩN���1 provides
that sector’s ground state with energy ℏωðλ0 þ N=2Þ.
Exploiting separability, a tower of states are laddered from
the ground-state manifold with energies ℏωðnþ 2νþ λ0þ
N=2Þ, where n is the center-of-mass excitation and ν is the
relative hyperradial excitation [see Appendix A].
For N equal masses, the Coxeter group is AN−1 and the

ground state corresponds to the lowest-energy fermionic
state in a harmonic trap restricted to a sector (à la
Girardeau) as expected [65,66]. This equal-mass solution
can also be seen as the limiting case of the ground state of

the Calogero-Moser model with inverse-square interactions
in a harmonic trap with zero coupling constant [67,68].
However, unlike the equal-mass solutions, the nonequal-
mass solutions cannot be considered as restrictions of
fermionic solutions to a single sector.
In addition to the ground state Eq. (5), the excited state

relative hyperangular wave functions in a Coxeter sector
are also constructed using a Bethe-ansatz-like superposi-
tion of hyperspherical harmonics. Hyperspherical harmon-
ics are homogeneous polynomials in ẑi that are eigenstates
of the relative angular momentum L2

rel with eigenvalue
λðλþ N − 3Þ [69,70]. The method takes advantage of
the fact that reflections Rij commute with L2

rel, or in other
words, the Coxeter group of rank (N − 1) is a subgroup of
the orthogonal transformations OðN − 1Þ [see
Appendix B]. Like Eq. (5), excited solutions are first
constructed over the whole sphere, and then restricted to
the Coxeter sectors. By construction, the excited states are
antisymmetric with respect to reflections in the Coxeter
group. Not all values λ > λ0 for the relative angular
momentum support such solutions. For the three groups
A3, C3, and H3, the allowed spectra of λ are

A3∶λ ¼ 6þ 3n1 þ 4n2; ð6aÞ

C3∶λ ¼ 9þ 4n1 þ 6n2; ð6bÞ

H3∶λ ¼ 15þ 6n1 þ 10n2: ð6cÞ

In each case, the first number in the sum is λ0, the relative
angular momentum of the ground state and the number of
reflections in the Coxeter group. Then the non-negative
integers n1 and n2 label the excited states. Degeneracies in
the hyperangular d.o.f. arise when multiple pairs of integers
provide the same λ, and the pattern of degeneracies matches
the prediction of Weyl’s law for a spherical triangle
(see below). The series of positive integers 3n1 þ 4n2,
4n1 þ 6n2, and 6n1 þ 10n2 in Eq. (6) corresponds pre-
cisely to the orders of homogeneous polynomials that have
definite relative angular momentum and are symmetric
under the action of reflections in the groups A3, C3, andH3,
respectively [63]. Incorporating the center-of-mass and
hyperradial d.o.f., all energy eigenstates are uniquely
identified by four quantum numbers: fn; ν; n1; n2g.
For N ≥ 4 and general masses, or for Coxeter masses but

in an arbitrary order, we believe the dynamics within
sectors are not integrable in any sense. In the case of
H3, we provide evidence by numerically solving the
spherical Laplacian for Coxeter masses in all sectors. We
use the following method [31]: Each spherical triangle is
flattened into an isosceles right triangle. The flattening
coordinate transformation distorts the spherical Laplacian
into a new operator whose spectrum must be solved inside
the triangle with hard-wall boundary conditions. The
spectrum is found by diagonalizing this transformed

FIG. 3. The top row [(a),(c),(e)] depicts the arrangement of the
λ0 reflection planes (gray and colored disks) and the tiling of
sphere into G spherical triangle sectors for A3, C3, and H3,
respectively. The bottom row [(b),(d),(f)] shows the coincidence
planes (colored disks) for specific, nonsymmetric choices of
masses within the mass families for A3, C3, and H3, respectively.
The disk colors are the same as in Fig. 1. The black spherical
triangle tiles the sphere in the top figure and it is similar to the
integrable sector Ω1234 in the bottom figure. This sector is
bounded by the planes Z12 (red), Z23 (cyan), Z34 (magenta),
which are the generating planes for the Coxeter symmetry.
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Laplacian in a basis of exact solutions for the right triangle.
Details about this procedure and its convergence are
described in Appendix C.
The level spacing statistics (after the standard unfolding

[20]) for a set of four particles with H3 mass ratios are
depicted in Fig. 4. The first sector depicted is the integrable
sector, whose numerical solution agrees with the prediction
of Eq. (6c), the other five sectors are for the same masses
arranged in other orders. For integrable sectors, the
unfolded energy level statistics are expected to follow a
Poissonian distribution. In our case, within the Coxeter
sector the extra degeneracies of the system due to super-
integrability distort the distribution so that it is peaked even
more strongly at zero-energy gap [21]. What we demon-
strate in Fig. 4 is that even for Coxeter mass families, the
incorrectly ordered sectors show numerical evidence for

quantum ergodicity in the form of Wigner-Dyson distri-
butions for their eigenvalues.
Our numerical results for the spacing statistics open

questions about the transition from integrability to ergo-
dicity. We perform numerical simulations on a variety of
integrable mass families. While the characteristics of the
Coxeter sectors remains stable, the other sectors sometimes
look closer or farther from Wigner-Dyson distributions, as
is already visible in Fig. 4. We investigate several pos-
sibilities for these intermediate distributions, such as
integrable subclusters, but we have not arrived at any
conclusive results. We also investigate small random
deviations from integrable mass sectors of the order of
5%. For this scale of deviation, the formerly integrable
sectors still look far from Wigner-Dyson, but closer to
Poissonian than the energy level statistics for exact Coxeter
masses. Understanding the ragged edge between integra-
bility and ergodicity using this model seems to be a
productive avenue for future investigation.
To demonstrate that we find all the spectrum from this

procedure, we compare our results for Nð ~EÞ, the total
number of energy eigenvalues below scaled energy ~E, to the
prediction of Weyl’s law [71] for a sphere:

Nð ~EÞ ¼ A
4π

~E −
l
4π

ffiffiffiffi
~E

p
; ð7Þ

where ~E ¼ ð2mR2=ℏ2ÞE and R and m are arbitrary length
and mass parameters constrained by ℏω ¼ ℏ2=ð2mR2Þ. The
second term is the correction due to the Dirichlet boundary
conditions proportional to the boundary length l. The area
of the spherical triangle Ωijkl is A=R2 ¼ ωijk þ ωjkl þ
ωij;kl − π (Girard’s theorem [72]). The perimeter is
l=R ¼ φijk þ φjkl þ φij;kl, where the vertex angles (φijk,
φjkl, φij;kl) satisfy [73]

cosφijk ¼
cosωijk þ cosωjkl cosωij;kl

sinωjkl sinωij;kl
ð8Þ

and cyclic permutations of (φijk, φjkl, φij;kl) and (ωijk, ωjkl,
ωij;kl). Figure 4 compares numerical solutions to this
prediction.

IV. LIOUVILLE INTEGRABILITY
AND SUPERINTEGRABILITY

The separability of the model defined in Eq. (1) provides
four functionally independent integrals of the motion for
N ≥ 3 particles with any masses: the center-of-mass
Hamiltonian Hc:m:., the relative Hamiltonian Hrel, the total
angular momentum squared L2, and the relative angular
momentum squared L2

rel. Three of these integrals
fHc:m:; Hrel; L2

relg are in involution, but L2 does not
commute with them. This set of four integrals of motion
is sufficient to prove integrability and superintegrability

FIG. 4. Unfolded spectrum statistics forH3 Coxeter masses with
mass fractions μ1 ¼ μ4 ¼ 0.442 79, μ2 ¼ 0.033 81, and μ3 ¼
0.080 61. There are only six different sectors because of two equal
masses m1 ¼ m4 and because Ωp1p2p3p4

is congruent to Ωp4p3p2p1

by inversion. Thevariable s is the normalized unfolded energy level
difference [20]. The integrable sector Ω1234 is depicted in the top
left graph and agrees with the prediction from Eq. (6c). The blue
lines depict the Poissonian statistics expected for an integrable
system; the red lines are Wigner-Dyson distribution derived from
random matrix theory expected for quantum ergodic systems with
time-reversal symmetric Hamiltonians. The bottom graph shows
the quality of Weyl’s law Eq. (7) in the integrable sector Ω1234 as
well as the nonintegrable sectors.
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(but not maximal superintegrability) for N ¼ 3 with any
masses. ForN ¼ 4, this is not enough to prove integrability,
which requires four integrals in involution, nor is it enough
for superintegrability, requiring at least five total conserved
quantities, and certainly not enough for maximal super-
integrability, requiring seven conserved quantities.
Nonetheless, we conjecture that our model is maximally

superintegrable for N ≥ 3 when in a sector with Coxeter
mass ratios. Our evidence is the following: (1) using the
method of images [55,74], the classical problem can be
shown to support closed orbits indicating maximal super-
integrability; (2) the correspondence of our model as a
limiting case of certain CSM models which are maximally
superintegrable [52,53]. The general construction of a set of
observables that provide maximal superintegrability for all
reflection groups in any number of spatial dimensions
requires the methods of algebraic geometry. This ongoing
project will be the subject of a future publication.
Let us outline a potential strategy for searching for the

missing integrals of motion for four particles usingH3 as an
example. The key role is played by the invariant poly-
nomials of the group qmðz1; z2; z3Þ with order m. These are
the lowest-order, homogeneous, functionally independent
polynomials that remain unchanged under any of the group
transformations. They are known and tabulated for all the
reflection groups [75]. For H3, there are three invariant
polynomials qm with order m ¼ 2, 6, and 10 and (up to a
normalization) they are constructed as

qmðz1; z2; z3Þ ¼
X
fσg

(σ · ðz1; z2; z3Þ)m; ð9Þ

where fσg are the set of vectors describing the six fivefold
rotation axes ofH3. From the three polynomials q2, q6, and
q10, we define the three operators Jm ≡ qmðL12; L23; L31Þ.
Here, Lij are the components of the vector of the relative
angular momentum in the ij plane. Note that J2 is
proportional to L2

rel and so it does not give an additional
integral of motion.
However, the operator J6 completes the commuting set

fHc:m:; Hrel; L2
relg to a Liouvillian set. Since J6 commutes

with mirror reflections of the H3 group, by Schur’s lemma
it must act as a multiple of the identity on the antisymmetric
states. It commutes with the previous three members of the
Liouvillian set, and all four can be readily shown to be
functionally independent in the classical sense. The five-
member set fHc:m:; L2; Hrel; L2

rel; J6g now establishes
superintegrability for the H3 mass family.
This set can be further extended to a maximally super-

integrable set using the operator J10 and another invariant
operator I6 defined by

I6 ≡ q6ða†1; a†2; a†3Þq6ða1; a2; a3Þ; ð10Þ

where aj ¼ ð−i∂zj − izjÞ=
ffiffiffi
2

p
is an annihilation operator

for the jth component of the relative motion. The operator

I6 naturally commutes with the total Hamiltonian H. The
resulting seven-member set is (classically) functionally
independent and establishes maximal superintegrability
for the H3 model. The scheme can readily be generalized
to the other two three-dimensional reflection groups, A3

and C3. However, no ready generalization to higher
dimensions exists for the Liouvillian sets, because, a priori,
the operators Jm do not commute between themselves.
Finding Liouvillian sets for higher-dimensional groups is a
subject of future work. Identifying and classifying the
maximal superintegrablty sets, and ideally connecting them
to the known integrals for the Calogero-Moser model
[52,53,76], is another ongoing project.

V. EXPERIMENTAL OUTLOOK

At the moment, three possible experimental applications
of the models we consider in this article can be foreseen. The
first possibility is the straightforward idea of finding a
collection of atoms that naturally have the right mass ratios
and seeking the signatures of integrability in the spectral,
coherence, and thermalization properties of the system. Even
if the particles are only close to a Coxeter family, our
numerical results for the energy spectrum suggest that traces
of integrability should still be present. More generally, the
Coxeter criteria can be used to measure how far from
integrability particular arrangements of imbalanced masses
are expected to be, orwhether there are integrable subclusters
possible within a multispecies ultracold atomic gas.
In the second scheme, if real masses with the correct ratio

are not available, the atomic mass is controlled using
optical lattices. Given sufficient laser power, the effective
mass [77] can be tuned from its “bare” value to almost zero
[78]. In particular, the effective mass can be made 3 times
greater than its bare counterpart in a lattice of a depth
V0 ¼ 7ER, and 23 times greater for V0 ¼ 16ER, respec-
tively. Here, ER ¼ ℏ2k2=ð2mÞ is the so-called recoil
energy, k is the wave vector of light that creates the lattice,
and m is the bare atomic mass. In both cases, harmonic
confinement represents the most natural experimental
environment, unlike the box and ring geometries tradition-
ally studied using Bethe-ansatz methods.
In the third scheme, described in more detail in Ref. [36],

the role of massive particles is played by bosonic solitons in
an atom waveguides [79–81]. The solitons are made
of atoms in two alternating internal states where the
intraspecies interaction is attractive and the interspecies
interaction is repulsive. The goal would be to engineer
clusters of atoms whose combined masses satisfy the
Coxeter criteria. For example, the clustering pattern
ð3m;m; 2m; 6mÞ has C3 symmetry. A mixture of 7Li atoms
with mF ¼ −1 and mF ¼ 0 in a magnetic field of 855 G
constitutes an example [82].
Any implementation of the models considered in

our article may constitute an efficient experimental
realization of spherical triangular (or higher-dimensional,
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simplex-shaped) quantum billiards [83]. The ergodicity of
classical flat triangular billiards is conjectured to strongly
depend on the rationality of the billiard angles [59,62].
Numerically, such questions about ergodicity are difficult,
requiring long propagation for averages to converge to their
infinite time limits. A study of the eigenstate-to-eigenstate
variance of the expectation values of observables
[23,84,85], which is a faithful quantum analogue of
classical deviations from ergodicity (cf. Ref. [86] for a
comparison), may provide an efficient alternative to
classical long-time averages. Experimentally, one may
conjecture an appearance of a memory of initial conditions,
if the billiard is not ergodic [87]. The mass mixtures we
consider in our paper could constitute a way to study
multidimensional classical and quantum hard-wall billiards
with continuously tunable geometry, a powerful extension
of the existing experimental techniques [88].
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APPENDIX A: COORDINATE
TRANSFORMATIONS AND THE MAP TO

QUANTUM BILLIARDS

Here, we establish the map from the model Hamiltonian
from Eq. (1) to a free particle in a bounded region on the
(N − 2)-sphere. Much of this is well known [31,89], but we
reproduce it here for the readers’ convenience and to
establish notation.
The equipotentials of Eq. (1) are N-dimensional ellip-

soids segmented into N! sectors by (N − 1)-dimensional
hyperplanes Xij defined by the particle coincidences
xi − xj ¼ 0; see Fig. 5. In the limit g → ∞, these planes
are impenetrable. The angle between coincidence hyper-
planes Xij and Xjk that share a particle is π=3 (possible for
only N ≥ 3); the angle between hyperplanes Xij and Xkl

that do no share a particle is π=2 (possible for only N ≥ 4).
As a first step, we scale the position coordinates into

unitless position variables yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miω=ℏ

p
xi. Then the

Hamiltonian from Eq. (1) becomes

H ¼ ℏω
2

XN
i¼1

�
−

∂2

∂y2i þ y2i

�

þ
X
i<j

~gijδ

� ffiffiffiffiffiffi
μij
mi

r
yi −

ffiffiffiffiffiffi
μij
mj

r
yj

�
; ðA1Þ

where μij ¼ mimj=ðmi þmjÞ and ~gij ¼ gij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μijω=ℏ

p
. This

scaling transformation y ¼ Sx has brought the harmonic
potential into a form with N-spherical symmetry but at the
cost of desymmetrizing the coincidence planes. To describe
the geometry, we define the transformed coincidence planes
Yij ≡ SXij with normals β̂ij. The contact interaction then
has the form X

i<j

~gijδðβ̂ij · yÞ: ðA2Þ

The angle ωijk between coincidence planes Yij and Yjk with

normals β̂ij and β̂jk is now

ωijk ¼ arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjðmi þmj þmkÞ

mimk

s !
: ðA3Þ

Whereas in the equal mass case, ωijk is always π=3, for
three arbitrary masses it can range from 0 (mj much lighter
than the other two masses) to π=2 (mj much heavier). The
angle ωij;kl between coincidence planes Yij and Ykl that do
not share a particle remains π=2.
In the limit g → ∞, the Hamiltonian from Eq. (A1)

separates in hyperspherical coordinates with radius
R2 ¼Piy

2
i . The interaction term Eq. (A2) is proportional

to 1=R, so it is not separable for finite values of ~gij, but as
~gij → ∞ there is no distinction between 1=R or 1=R2 times
the sum of delta functions. So hyperspherical symmetry of
Eq. (A1) emerges and there is SOð2; 1Þ dynamical symmetry
in the total hyperradial coordinate R [89]. To develop
physical intuition, it is sometimes useful to imagine a single,
classical particle bouncing around in this N-dimensional
landscape. In this mass-rationalized geometry, the classical
particle trajectory changes its direction of angular momen-
tumwhen it bounces off of a coincidence hyperplaneYij, but

FIG. 5. Coordinate transformation for three particles with the
A2 masses m1 ¼ 1=13M, m2 ¼ 9=52M, and m ¼ 3=4M, where
M is the total mass. (a) Configuration space in natural particle
positions x. The gray ellipsoid represents an equipotential for the
equal frequency (and therefore not equal strength), and the red,
green, and blue disks represent the X12, X23, and X31 coincidence
planes, respectively. (b) Configuration space in mass-scaled and
rotated coordinates z ¼ Jx, with a spherical equipotential and
transformed coincidence planes Z12, Z23, and Z31. (c) Projection
of structure in (b) into relative coordinate z1 − z2 plane. The
sector with angle ω123 ¼ π=3 is the Coxeter sector.
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it does not change its magnitude of “angular momentum” in
configuration space. However, total angular momentum
does not respect the center-of-mass separability and does
not commute with the relative Hamiltonian or relative
angular momentum (see below), sowe do not exploit it here.
Next, we rotate the coordinate system z ¼ Jy so that the

component zN ≡ Z is the scaled center of mass Z ¼P
iyi

ffiffiffiffiffiffiffiffiffiffiffiffi
mi=M

p
and M is the total mass. The orthogonal

transformation J with this property is not unique and its
selection determines a particular choice for Jacobi relative
coordinates z1 through zN−1. The transformation J also
rotates the coincidence planes Zij ≡ JYij and their normals

γ̂ij ≡ Jβ̂ij, but leaves the angles between planes like ωijk

and ωij;kl invariant. Since all the normal vectors γ̂ij have
zero Z components, the Hamiltonian in z coordinates
separates into H ¼ Hc:m: þHrel, where Hc:m: is the
Hamiltonian for a one-dimensional harmonic oscillator
in the center-of-mass Z coordinate and the relative
Hamiltonian is

Hrel ¼
ℏω
2

XN−1

i¼1

�
−

∂2

∂z2i þ z2i

�
þ
X
i<j

~gijδðγ̂ij · zÞ: ðA4Þ

Finally, we go to hyperspherical coordinates in the
relative space, where the relative hyperradius ρ is

ρ2 ¼
XN−1

i¼1

z2i ¼
XN
i¼1

y2i − Z2; ðA5Þ

and there are (N − 2) angles charting the sphere SN−2,
conventionally chosen as Ω ¼ fϕ; θ1;…; θN−3g, with ϕ ∈
½0; 2πÞ and θi ∈ ½0; π�. The relative Hamiltonian now
becomes

Hrel ¼
ℏω
2

�
−

1

ρN−2
∂
∂ρ
�
ρN−2 ∂

∂ρ
�
−

1

ρ2
ΔΩ þ ρ2

�

þ
X
i<j

~gij
ρ
δðγ̂ij · ẑÞ; ðA6Þ

where ΔΩ is the angular part of the Laplacian in relative
configuration space. As before, the relative Hamiltonian
Eq. (A6) is ρ −Ω separable in the limit ~gij → ∞. A general
energy eigenstate can be separated into a product of center
of mass ζðZÞ, relative hyperradial RðρÞ, and relative
hyperangular ϒðΩÞ functions,

Φn;ν;λ;μðZ; ρ;ΩÞ ¼ ζnðZÞRνλðρÞϒλ;μðΩÞ; ðA7Þ
where n is the center-of-mass quantum number, the
function ζnðZÞ is the one-dimensional harmonic oscillator
wave function, and ν is the relative hyperradial quantum
number. At this point, λ is just derived from the judiciously
parametrized relative hyperangular separation constant
λðλþ N − 3Þ and μ is just an additional label to distinguish
any possible degenerate states for a given λ. If there was no

angular potential ~gij ¼ 0, then λ would be a non-negative
integer, the eigenfunctions on SN−2 would be the hyper-
spherical harmonics, and μ would be a collective index to
label degeneracies [69,70]. However, since there is an
angular potential in Eq. (A6), the hyperangular solutions
are unknown and we must explicitly solve for λ, including
any possible degeneracies. Whatever value λ takes
(including noninteger values), the relative hyperradial
function RνλðρÞ is the standard solution for the radial
factor of an (N − 1)-dimensional isotropic harmonic
oscillator in hyperspherical coordinates [70] with energy
ℏω½2νþ λþ ðN − 1Þ=2�:

RνλðρÞ ¼ Aν;λρ
λLλþ½ðN−3Þ=2�

ν ðρ2Þe−ρ2=2; ðA8Þ

where Aν;λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ν!=Γ½νþ λþ ðN − 1Þ=2�p

.
We have achieved our desired result: this series of

coordinate transformations has reduced solving the N-
particle Hamiltonian from Eq. (1) with equal frequencies
and infinite-strength contact interactions into solving hard-
wall quantum billiards in (N − 2)-simplexes on (N − 2)-
spheres.

APPENDIX B: CONSTRUCTION OF EXACT
SOLUTIONS

Here, we construct the wave functions within the Coxeter
sectors, i.e., sectors of the SN−2 hypersphere defined by the
relative hyperangular coordinates that have the right shape to
tile the sphere under reflection. For convenience, we choose
theCoxeter sector to be the ordering sectorΩ12…N so that it is
bounded by the coincidence hyperplanes Z12 through
ZðN−1ÞN . These (N − 1) hyperplanes define the reflections
R12 though RðN−1ÞN that generate the Coxeter group.
The Coxeter groupGm is generated bym reflections inm

dimensions. As such, it can considered as a subgroup of
OðmÞ, orthogonal transformations inm dimensions, and the
symmetry of the sphere Sm−1. To summarize the method,
there is a solution to the Hamiltonian in the Coxeter sectors
Ω12…N and ΩN…21 whenever an irreducible representation
(irrep) of GN−1 that is antisymmetric under all reflections
appears in the decomposition of an irrep of OðN − 1Þ. The
irreps of OðmÞ generally are reducible with respect to
the subgroup Gm. The method of characters can answer the
question as to whether an irrep of a subgroup appears in the
decomposition of the irreps of the group. When it does
exist, the corresponding states can be constructed using
projection operators and (in the case of degeneracies) an
orthonormalization procedure.
The irreducible representations for OðmÞ and their

realizations by hyperspherical harmonics are well known
[90,91], and so we just summarize a few facts here for the
readers’ convenience. The subgroup SOðmÞ is a Lie group
with mðm − 1Þ=2 generators in the Lie algebra. We denote
these generators as Lij for i < j, with i; j ∈ f1;…; mg,
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where Lij generates a rotation in the ij plane. The quadratic
Casimir of SOðmÞ is the sum of all of these generators
squared:

L2 ¼
X
hi;ji

L2
ij:

For SO(3) this is the familiar angular momentum squared
operator with eigenvalues λðλþ 1Þ. The SO(3) irreps are
labeled by λ and have degeneracy 2λþ 1. In m > 3

dimensions, the operator L2 is the hyperangular momentum
squared operator with eigenvalue λðλþm − 2Þ and an irrep
labeled by λ has degeneracy [69]

dðλÞ ¼ ðmþ 2λ − 2Þðmþ λ − 3Þ!
λ!ðm − 2Þ! :

Once the representation of total inversion is chosen, the
irreps of SOðmÞ also naturally carry a representation of
OðmÞ. For example, inversion is represented in the λ irrep
by multiplication by ð−1Þλ for O(3).
To reduce an OðmÞ irrep λ into the irreps of Coxeter

groupGm, the G elements are sorted into conjugacy classes
Ki with ki elements. Each irrep W of Gm has a unique
pattern of characters χWðKiÞ. In particular, we are interested
in the Gm irrep W ¼ A of all anti-invariant states, meaning
χAðKiÞ ¼ 1 when Ki is a conjugacy class whose elements
are an even composition of reflections and χAðKiÞ ¼ −1
when Ki is a class composed of odd compositions. Further,
each conjugacy class has a character χλðKiÞ in the Gm-
reducible OðmÞ irrep denoted by λ. When these characters
are known, then the number of times theGm irrep A appears
in the decomposition of the OðmÞ irrep λ is [90]

aλ ¼
1

G

X
Ki

kiχAðKiÞχλðKiÞ: ðB1Þ

Note that χAðKiÞ ¼ (χAðKiÞ)� because Coxeter groups are
ambivalent. The number aλ is an integer that counts how
many solutions there are with relative angular momentum
λ. The projection operator onto the anti-invariant irrep A is
given by

PA ¼ 1

G

X
g∈Gm

χAðgÞDλðgÞ; ðB2Þ

whereDλðgÞ is the representation of group element g acting
irreducibly on the dðλÞ-dimensional representation space. If
aλ ¼ 1, any vector in the λ irrep space with a nonzero
projection will be proportional to the solution we seek. If
aλ > 1, then a set of orthonormal solutions can be found by
projecting multiple vectors and then applying Gram-
Schmidt orthogonalization.

As an example, consider the Coxeter group H3. This
group has ten conjugacy classes summarized in Table II.
The H3 character χAðKiÞ for the anti-invariant irrep is þ1
for the five even conjugacy classes and −1 for the five odd
classes. The OðmÞ character χλðKiÞ for irrep λ is

χλðKiÞ ¼
Xλ
μ¼−λ

cosðmϕiÞðπiÞλ−μ; ðB3Þ

where ϕi is the angle of rotation and πi is the reflection
parity for the conjugacy class Ki. Plugging this into
Eq. (B1), we find the pattern of degeneracies given in
Eq. (6c) of the main text. The same method is used in
Ref. [92] to find which OðmÞ irreps have symmetric irreps
of the spherical triangle groups in their reduction.
To construct the actual states ϒλðθ;ϕÞ, we use the

projection operator Eq. (B2) acting on the spherical har-
monics. Instead of explicitly constructing the ð2λþ 1Þ ×
ð2λþ 1Þ unitary matrices DλðgÞ that act on the spherical
harmonics Yμ

λðθ;ϕÞ for each of the 120 elements of H3, we
choose a slightly different method that takes advantage of
two facts: (1) the spherical harmonics can be written as
polynomials of the relative coordinates, and (2) we already
have the 3 × 3 matrices OðgÞ ∈ Oð3Þ that represent H3 as
rotation and reflections.
The first step is to express the spherical harmonics in

terms of the relative coordinates ðz1; z2; z3Þ. We work with
the real form of the spherical harmonics, defined as

Yλμðθ;ϕÞ ¼

8>><
>>:

ffiffiffi
2

p
NλμP

μ
λðcos θÞ cosðμϕÞ μ > 0

Nλ0P0
λðcos θÞ μ ¼ 0ffiffiffi

2
p

NλμP
jμj
λ ðcos θÞ sinðjμjϕÞ μ < 0;

TABLE II. Conjugacy classes of H3. The first column is the
Schönflies notation for the elements in the class Ki. The second
column gives the angle of rotation ϕi of the element realized in O
(3). The third column is whether it is generated by an even or odd
number of reflections πi ¼ �1. All odd elements that are
rotations can be considered as rotoreflections, i.e., a rotation
followed by a reflection in the plane perpendicular to the rotation
axis. The fourth and fifth columns are the order of the elements in
the class Ki and the number of elements ki in the class,
respectively.

Elements Angle Even or odd Order Number

E 0 þ 1 1
C5, C4

5
2π=5 þ 5 12

C2
5; C

3
5

4π=5 þ 5 12
C3, C2

3
2π=3 þ 3 20

C2 π þ 2 15
I π − 2 1
S10, S910 π=5 − 10 12
S310; S

7
10

3π=5 − 10 12
S6, S56 π=3 − 6 20
σ 0 − 2 15
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where

Nλμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λþ 1

4π

ðλ − jμjÞ!
ðλþ jμjÞ!

s
:

The real spherical harmonics can be written in terms of the
relative coordinates:

YλμðẑÞ≡ Yλμ½cos−1ðz3=ρÞ; tan−1ðz2=z1Þ�:
Noting the relations

cosðμϕÞ ¼ ðz21 þ z22Þ−μ=2
Xμ
k¼0

�
μ

k

�
zμ−k1 zk2 cos

πk
2
;

sinðjμjϕÞ ¼ ðz21 þ z22Þ−μ=2
Xμ
k¼0

�
μ

k

�
zμ−k1 zk2 sin

πk
2
;

Pμ
λðxÞ ¼ ð−1Þμðz21 þ z22Þμ=2

dμ

dðz3=ρÞμ
Pλðz3=ρÞ;

we can show that ρλYλμðẑÞ are homogeneous polynomials
of order λ in ðz1; z2; z3Þ.
The projection Eq. (B2) is applied using the trans-

formation matrix OðgÞ:

ρλPAYλμðẑÞ ¼
ρλ

G

X
g∈Gm

χAðgÞYλμ½OðgÞẑ�: ðB4Þ

This projection will be zero unless λ is in the spectrum
given by Eq. (6c) in the main text. Note that it may also be
zero for any particular μ, but there must be as many linearly
independent polynomials (that also solve the spherical
Laplacian) as there are solutions for n1 and n2 for a given
λ in Eq. (6c). For H3, the first time there are multiple
solutions is when λ ¼ 45. Explicit calculation for λ ¼ λ0 ¼
15 confirms Eq. (5) from the main text for the ground state
of H3, and we perform the same calculations for the other
N ¼ 4 Coxeter groups.

APPENDIX C: NUMERICAL METHOD
FOR SOLVING SPHERICAL TRIANGLE

Here, we present the numerical method to calculate the
energy spectrum for N ¼ 4 particles with arbitrary masses,
which is an extension of the method found in Ref. [31] to
spherical triangles. The general strategy is outlined in the
main text: here, we provide details about the coordinates,
the flattening, and the exact diagonalization we use to
construct Fig. 4.
After separation of variables, we must solve for the

hyperangular wave function ϒðΩÞ within a sector Ωp. This
function must satisfy

ΔΩϒðΩÞ ¼ λðλþ 1ÞϒðΩÞ; ðC1Þ
with Dirichlet boundary conditions on the three bounding
coincidence planes, Zp1p2

, Zp2p3
, and Zp3p4

. To solve the

problem for arbitrary masses, a particular rotation J in
z ¼ JSx must be specified. For numerical simplicity, we
choose the H-type four-body coordinates [93]. Then the
rotation J aligns the coordinate plane Z12 with the plane
z1 ¼ 0 and aligns the coordinate plane Z34 with z2 ¼ 0 (see
Fig. 1). The other four coincidence planes are given by the
following equations:

Z13∶

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðm3 þm4Þ

m1M

s
z1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4ðm1 þm2Þ

m3M

s
z2 þ z3 ¼ 0;

Z14∶

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðm3 þm4Þ

m1M

s
z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3ðm1 þm2Þ

m4M

s
z2 þ z3 ¼ 0;

Z23∶

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1ðm3 þm4Þ

m2M

s
z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4ðm1 þm2Þ

m3M

s
z2 − z3 ¼ 0;

Z24∶

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1ðm3 þm4Þ

m2M

s
z1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3ðm1 þm2Þ

m4M

s
z2 − z3 ¼ 0:

The numerical problem is solved independently in each
sector Ωp1p2p3p4

and checked for consistency with the
similar sector Ωp4p3p2p1

. In the following, as an example,
we solve the sector Ω1342, which is limited by Z34, Z13, and
Z24 coincidence planes. We isolate z1 in the above
equations and introduce (nonstandard) spherical coordi-
nates with z1 ¼ ρ cos θ, z2 ¼ ρ sin θ cosϕ, and z3 ¼
ρ sin θ sinϕ, so that cos θ > 0 in sector Ω1342. Then,
substituting spherical coordinates into the coincidence
plane equations and dividing by z1 ¼ ρ cos θ > 0, we find

tan θ cosϕ ¼ 0;

1 − a tan θ cosϕþ b tan θ sinϕ ¼ 0;

1 − c tan θ cosϕ − d tan θ sinϕ ¼ 0; ðC2Þ

with

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 þm2Þm1m4

ðm3 þm4Þm3m2

s
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mm1

ðm3 þm4Þm2

s
;

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 þm2Þm2m3

ðm3 þm4Þm1m4

s
; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mm2

ðm3 þm4Þm1

s
:

Introducing new coordinates u ¼ tan θ cosϕ and
v ¼ tan θ sinϕ, the boundary conditions

u ¼ 0;

1 − auþ bv ¼ 0;

1 − cu − dv ¼ 0

are simple and describe a triangle in flat space. However,
the differential operator ΔΩ has become more complicated:
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ΔΩ ¼ ð1þ u2 þ v2Þ
�
ð1þ u2Þ ∂2

∂u2 þ ð1þ v2Þ ∂2

∂v2

þð2uvÞ ∂2

∂u∂vþ ð2uÞ ∂
∂uþ ð2vÞ ∂

∂v
�
: ðC3Þ

Next, we introduce a final coordinate transformation:

s ¼ 2d
ðbþ dÞ ð−auþ bvÞ − ðb − dÞ

ðbþ dÞ ;

t ¼ 2b
ðbþ dÞ ð−cu − dvÞ − ðd − bÞ

ðbþ dÞ :

This can be inverted as

u ¼ −
ðbþ dÞ

2ðadþ bcÞ ðsþ tÞ;

v ¼ −
aðbþ dÞ

2bðadþ bcÞ ðsþ tÞ þ ðb − dÞ þ ðbþ dÞs
2bd

:

Notice that with this choice the coincidence planes are
mapped into the nicely symmetric form:

sþ t ¼ 0; 1þ s ¼ 0; 1þ t ¼ 0: ðC4Þ

These are the boundaries of a right, isosceles triangle with
corners at ðs; tÞ ¼ ð−1;−1Þ, ð−1; 1Þ, and ð1;−1Þ. The
transformation of ΔΩ induced by the coordinate change
ðu; vÞ to ðs; tÞ is lengthy but straightforward and we do not
show it here.
A complete, normalized basis for Lebesgue square-

integrable functions on this domain bounded by
Eq. (C4) is provided by the functions hn;mðs; tÞ:

hn;mðs; tÞ ¼
1

4

�
eðiπ=2Þf−nðsþ1Þþmðt−1Þg

− eðiπ=2Þf−nðsþ1Þ−mðt−1Þg þ eðiπ=2Þfnðsþ1Þ−mðt−1Þg

− eðiπ=2Þfnðsþ1Þþmðt−1Þg − eðiπ=2Þf−mðsþ1Þþnðt−1Þg

þ eðiπ=2Þf−mðsþ1Þ−nðt−1Þg − eðiπ=2Þfmðsþ1Þ−nðt−1Þg

þ eðiπ=2Þfmðsþ1Þþnðt−1Þg
�
; ðC5Þ

where n and m are positive integers and n < m. The matrix
elements of the transformed spherical Laplacian can be
calculated in this basis and then diagonalized to find the
spectrum. In our calculations we set n, m to go up to
Nmax ¼ 80. With this upper bound the first 300 energies
were quite converged up to the second decimal place. We
know this because we did convergence analysis from 60–80
and found out that the eigenenergies up to the second
decimal place were not changing. The calculation time for
Nmax ¼ 80 was approximately 10 days on a reasonably
powerful desktop computer. If one is interested in higher

excited state energies, then one needs to increase Nmax in
order to get a better precision at the higher end of the
spectrum.
Additionally, numerical results are compared to the exact

algebraic results for the integrable Coxeter sector for
several mass families in A3, C3, and H3 to confirm the
uncertainty estimates. And as we describe in the main text,
we compare the level density of the spectrum to the
prediction of Weyl’s law in order to establish that all
eigenstates are found by this method.

[1] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden,
Solvable Models in Quantum Mechanics (Springer-Verlag,
Berlin, 1988).

[2] B. Sutherland, Beautiful Models: 70 Years of Exactly Solved
Quantum Many-Body Problems (World Scientific Publish-
ing Company, River Edge, NJ, 2004).

[3] M. Gaudin, The Bethe Wavefunction (Cambridge University
Press, Cambridge, England, 2014).

[4] E. H. Lieb and W. Liniger, Exact Analysis of an Interacting
Bose Gas. I. The General Solution and the Ground State,
Phys. Rev. 130, 1605 (1963).

[5] M. Girardeau, Relationship between Systems of Impen-
etrable Bosons and Fermions in One Dimension, J. Math.
Phys. (N.Y.) 1, 516 (1960).

[6] F. Calogero, Solution of the One-Dimensional N-Body
Problems with Quadratic and/or Inversely Quadratic Pair
Potentials, J. Math. Phys. (N.Y.) 12, 419 (1971).

[7] F. Calogero, Calogero-Moser System, Scholarpedia 3, 7216
(2008).

[8] M. A. Olshanetsky and A.M. Perelomov, Quantum Inte-
grable Systems Related to Lie Algebras, Phys. Rep. 94, 313
(1983).

[9] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M.
Rigol, One Dimensional Bosons: From Condensed Matter
Systems to Ultracold Gases, Rev. Mod. Phys. 83, 1405
(2011).

[10] X.-W. Guan, M. T. Batchelor, and Chaohong Lee, Fermi
Gases in One Dimension: From Bethe Ansatz to Experi-
ments, Rev. Mod. Phys. 85, 1633 (2013).

[11] M. Olshanii, Atomic Scattering in the Presence of an
External Confinement and a Gas of Impenetrable Bosons,
Phys. Rev. Lett. 81, 938 (1998).

[12] T. Kinoshita, T. Wenger, and D. S. Weiss, A Quantum
Newton’s Cradle, Nature (London) 440, 900 (2006).

[13] F. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein, A. N.
Wenz, and S. Jochim, Deterministic Preparation of a
Tunable Few-Fermion System, Science 332, 336 (2011).

[14] A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe,
and S. Jochim, From Few to Many: Observing the For-
mation of a Fermi Sea One Atom at a Time, Science 342,
457 (2013).

[15] D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K.
B. Whaley, Universal Quantum Computation with the
Exchange Interaction, Nature (London) 408, 339 (2000).

[16] S. Bose, Quantum Communication through an Unmodu-
lated Spin Chain, Phys. Rev. Lett. 91, 207901 (2003).

N. L. HARSHMAN et al. PHYS. REV. X 7, 041001 (2017)

041001-12

https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1665604
https://doi.org/10.4249/scholarpedia.7216
https://doi.org/10.4249/scholarpedia.7216
https://doi.org/10.1016/0370-1573(83)90018-2
https://doi.org/10.1016/0370-1573(83)90018-2
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.85.1633
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1038/nature04693
https://doi.org/10.1126/science.1201351
https://doi.org/10.1126/science.1240516
https://doi.org/10.1126/science.1240516
https://doi.org/10.1038/35042541
https://doi.org/10.1103/PhysRevLett.91.207901


[17] A. G. Volosniev, D. Petrosyan, M. Valiente, D. V. Fedorov,
A. S. Jensen, and N. T. Zinner, Engineering the Dynamics of
Effective Spin-Chain Models for Strongly Interacting
Atomic Gases, Phys. Rev. A 91, 023620 (2015).

[18] An exception is the free-space CSMmodel with mass-scaled
interaction strengths in Ref. [19].

[19] D. Sen, A Multispecies Calogero-Sutherland Model, Nucl.
Phys. B479, 554 (1996).

[20] O. Bohigas, in Chaos and Quantum Physics, Proceedings of
the Les Houches Summer School, Session No. LII, edited by
M.-J. Gianoni, A. Voros, and J. Zinn-Justin (North-Holland,
Amsterdam, 1991).

[21] C. B. Whan, Hierarchical Level-Clustering in Two-
Dimensional Harmonic Oscillators, Phys. Rev. E 55,
R3813 (1997).

[22] I. Brouzos and A. Foerster, Trace of Broken Integrability in
Stationary Correlation Properties, Phys. Rev. A 89, 053623
(2014).

[23] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and
Its Mechanism for Generic Isolated Quantum Systems,
Nature (London) 452, 854 (2008).

[24] J. De Nardis, B. Wouters, M. Brockmann, and J.-S. Caux,
Solution for an Interaction Quench in the Lieb-Liniger Bose
Gas, Phys. Rev. A 89, 033601 (2014).

[25] C. Neill et al., Ergodic Dynamics and Thermalization in an
Isolated Quantum System, Nat. Phys. 12, 1037 (2016).

[26] N. P. Mehta, Born-Oppenheimer Study of Two-Component
Few-Particle Systems Under One-Dimensional Confine-
ment, Phys. Rev. A 89, 052706 (2014); , Erratum Phys.
Rev. A, 92, 029901(E) (2015).

[27] A. S. Dehkharghani, A. G. Volosniev, and N. T. Zinner,
Quantum Impurity in a One-Dimensional Trapped Bose
Gas, Phys. Rev. A 92, 031601 (2015).

[28] D. Pęcak, M. Gajda, and T. Sowiński, Two-Flavour Mixture
of a Few Fermions of Different Mass in a One-Dimensional
Harmonic Trap, New J. Phys. 18, 013030 (2016).

[29] N. P. Mehta and C. D. Morehead, Few-Boson Processes in
the Presence of an Attractive Impurity Under One-Dimen-
sional Confinement, Phys. Rev. A 92, 043616 (2015).

[30] D. Pęcak and T. Sowiński, Few Strongly Interacting Ultra-
cold Fermions in One-Dimensional Traps of Different
Shapes, Phys. Rev. A 94, 042118 (2016).

[31] A. S. Dehkharghani, A. G. Volosniev, and N. T. Zinner,
Impenetrable Mass-Imbalanced Particles in One-Dimen-
sional Harmonic Traps, J. Phys. B 49, 085301 (2016).

[32] D. Pęcak, M. Gajda, and T. Sowiński, Experimentally
Accessible Invariants Encoded in Interparticle Correlations
of Harmonically Trapped Ultra-Cold Few-Fermion
Mixtures, arXiv: 1703.08116.

[33] D. Pęcak, A. S. Dehkharghani, N. T. Zinner, and T.
Sowiński, Four Fermions in a One-Dimensional Harmonic
Trap: Accuracy of a Variational-Ansatz Approach, Phys.
Rev. A 95, 053632 (2017).

[34] M. Olshanii and S. G. Jackson, An Exactly Solvable Quan-
tum Four-Body Problem Associated with the Symmetries of
an Octacube, New J. Phys. 17, 105005 (2015).

[35] M. Olshanii, T. Scoquart, J. Seaward, and S. G. Jackson,
Exactly Solvable Quantum Few-Body Systems Associated
with the Symmetries of the Three-Dimensional and Four-
Dimensional Icosahedra, SciPost Phys. 1, 005 (2016).

[36] Maxim Olshanii, Thibault Scoquart, Dmitry Yampolsky,
Vanja Dunjko, and Steven Glenn Jackson, Creating En-
tanglement Using Integrals of Motion, arXiv:1610.01060.

[37] A. G. Volosniev, D. V. Fedorov, A. S. Jensen, M. Valiente,
and N. T. Zinner, Strongly Interacting Confined Quantum
Systems in One Dimension, Nat. Commun. 5, 5300 (2014).

[38] F. Deuretzbacher, D. Becker, J. Bjerlin, S. M. Reimann, and
L. Santos, Quantum Magnetism without Lattices in Strongly
Interacting One-Dimensional Spinor Gases, Phys. Rev. A
90, 013611 (2014).

[39] N. L. Harshman, One-Dimensional Traps, Two-Body Inter-
actions, Few-Body Symmetries. II. N Particles, Few-Body
Syst. 57, 45 (2016).

[40] D. Roscher, J. Braun, J.-W. Chen, and J. E. Drut, Fermi
Gases with Imaginary Mass Imbalance and the Sign
Problem in Monte-Carlo Calculations, J. Phys. G 41,
055110 (2014).

[41] H. S. M. Coxeter, Regular Polytopes, 3rd ed. (Dover
Publications, New York, 1973).

[42] K. G. Boreskov, A. V. Turbiner, and J. C. L. Vieyra, Solv-
ability of the Hamiltonians Related to Exceptional Root
Spaces: Rational Case, Commun. Math. Phys. 260, 17
(2005).

[43] M. A. G. García and A. V. Turbiner, The Quantum H3

Integrable System, Int. J. Mod. Phys. A 25, 5567 (2010).
[44] M. A. G. García and A. V. Turbiner, The Quantum H4

Integrable System, Mod. Phys. Lett. A 26, 433 (2011).
[45] P. Tempesta, A. V. Turbiner, and P. Winternitz, Exact

Solvability of Superintegrable Systems, J. Math. Phys.
(N.Y.) 42, 4248 (2001).

[46] S. Post, S. Tsujimoto, and L. Vinet, Families of Super-
integrable Hamiltonians Constructed from Exceptional
Polynomials, J. Phys. A 45, 405202 (2012).

[47] J. B. McGuire, Study of Exactly Soluble One-Dimensional
N-Body Problems, J. Math. Phys. (N.Y.) 5, 622 (1964).

[48] B. Sutherland, Nondiffractive Scattering: Scattering from
Kaleidoscopes, J. Math. Phys. (N.Y.) 21, 1770 (1980).

[49] A. Lamacraft, Diffractive Scattering of Three Particles in
One Dimension: A Simple Result for Weak Violations of the
Yang-Baxter Equation, Phys. Rev. A 87, 012707 (2013).

[50] J.-S. Caux and J. Mossel, Remarks on the Notion of
Quantum Integrability, J. Stat. Mech. (2011) P02023.

[51] N.W. Evans, Superintegrability in Classical Mechanics,
Phys. Rev. A 41, 5666 (1990).

[52] S. Wojciechowski, Superintegrability of the Calogero-
Moser System, Phys. Lett. A 95, 279 (1983).

[53] T. Hakobyan, O. Lechtenfeld, and A. Nersessian, Super-
integrability of Generalized Calogero Models with Oscil-
lator or Coulomb Potential, Phys. Rev. D 90, 101701
(2014).

[54] G. Casati and J. Ford, Computer Study of Ergodicity and
Mixing in a Two-Particle, Hard Point Gas System, J.
Comput. Phys. 20, 97 (1976).

[55] P. J. Richens and M. V. Berry, Pseudointegrable Systems
in Classical and Quantum Mechanics, Physica D
(Amsterdam) 2D, 495 (1981).

[56] E. Gutkin, Billiards in Polygons: Survey of Recent Results,
J. Stat. Phys., 83, 7 (1996).

[57] S. L. Glashow and L. Mittag, Three Rods on a Ring and the
Triangular Billiard, J. Stat. Phys. 87, 937 (1997).

INTEGRABLE FAMILIES OF HARD-CORE PARTICLES … PHYS. REV. X 7, 041001 (2017)

041001-13

https://doi.org/10.1103/PhysRevA.91.023620
https://doi.org/10.1016/0550-3213(96)00420-8
https://doi.org/10.1016/0550-3213(96)00420-8
https://doi.org/10.1103/PhysRevE.55.R3813
https://doi.org/10.1103/PhysRevE.55.R3813
https://doi.org/10.1103/PhysRevA.89.053623
https://doi.org/10.1103/PhysRevA.89.053623
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevA.89.033601
https://doi.org/10.1038/nphys3830
https://doi.org/10.1103/PhysRevA.89.052706
https://doi.org/10.1103/PhysRevA.92.029901
https://doi.org/10.1103/PhysRevA.92.029901
https://doi.org/10.1103/PhysRevA.92.031601
https://doi.org/10.1088/1367-2630/18/1/013030
https://doi.org/10.1103/PhysRevA.92.043616
https://doi.org/10.1103/PhysRevA.94.042118
https://doi.org/10.1088/0953-4075/49/8/085301
http://arXiv.org/abs/ 1703.08116
https://doi.org/10.1103/PhysRevA.95.053632
https://doi.org/10.1103/PhysRevA.95.053632
https://doi.org/10.1088/1367-2630/17/10/105005
https://doi.org/10.21468/SciPostPhys.1.1.005
http://arXiv.org/abs/1610.01060
https://doi.org/10.1038/ncomms6300
https://doi.org/10.1103/PhysRevA.90.013611
https://doi.org/10.1103/PhysRevA.90.013611
https://doi.org/10.1007/s00601-015-1025-5
https://doi.org/10.1007/s00601-015-1025-5
https://doi.org/10.1088/0954-3899/41/5/055110
https://doi.org/10.1088/0954-3899/41/5/055110
https://doi.org/10.1007/s00220-005-1401-y
https://doi.org/10.1007/s00220-005-1401-y
https://doi.org/10.1142/S0217751X10050597
https://doi.org/10.1142/S0217732311034839
https://doi.org/10.1063/1.1386927
https://doi.org/10.1063/1.1386927
https://doi.org/10.1088/1751-8113/45/40/405202
https://doi.org/10.1063/1.1704156
https://doi.org/10.1063/1.524628
https://doi.org/10.1103/PhysRevA.87.012707
https://doi.org/10.1088/1742-5468/2011/02/P02023
https://doi.org/10.1103/PhysRevA.41.5666
https://doi.org/10.1016/0375-9601(83)90018-X
https://doi.org/10.1103/PhysRevD.90.101701
https://doi.org/10.1103/PhysRevD.90.101701
https://doi.org/10.1016/0021-9991(76)90104-2
https://doi.org/10.1016/0021-9991(76)90104-2
https://doi.org/10.1016/0167-2789(81)90024-5
https://doi.org/10.1016/0167-2789(81)90024-5
https://doi.org/10.1007/BF02183637
https://doi.org/10.1007/BF02181254


[58] R. Artuso, G. Casati, and I. Guarneri, Numerical Study on
Ergodic Properties of Triangular Billiards, Phys. Rev. E 55,
6384 (1997).

[59] G. Casati and T. Prosen, Mixing Property of Triangular
Billiards, Phys. Rev. Lett. 83, 4729 (1999).

[60] J. B. McGuire and C. Dirk, Extending the Bethe Ansatz: The
Quantum Three-Particle Ring, J. Stat. Phys. 102, 971
(2001).

[61] T. Araújo Lima, S. Rodríguez-Pérez, and F. M. de Aguiar,
Ergodicity and Quantum Correlations in Irrational
Triangular Billiards, Phys. Rev. E 87, 062902 (2013).

[62] J. Wang, G. Casati, and T. Prosen, Nonergodicity and
Localization of Invariant Measure for Two Colliding
Masses, Phys. Rev. E 89, 042918 (2014).

[63] J. E. Humphreys, Reflection Groups and Coxeter Groups
(Cambridge University Press, Cambridge, England, 1992).

[64] R. Goodman, Alice through Looking Glass after Looking
Glass: The Mathematics of Mirrors and Kaleidoscopes,
Am. Math. Mon. 111, 281 (2004).

[65] V. I. Yukalov and M. D. Girardeau, Fermi-Bose Mapping for
One-Dimensional Bose Gases, Laser Phys. Lett. 2, 375
(2005).

[66] N. L. Harshman, Spectroscopy for a Few Atoms Harmoni-
cally Trapped in One Dimension, Phys. Rev. A 89, 033633
(2014).

[67] L. Brink, T. H. Hansson, and M. A. Vasiliev, Explicit
Solution to the N-Body Calogero Problem, Phys. Lett. B
286, 109 (1992).

[68] K. Vacek, A. Okiji, and N. Kawakami, Eigenfunctions for
SUðνÞ Particles with 1=r2 Interaction in Harmonic Con-
finement, J. Phys. A 27, L201 (1994).

[69] J. S. Avery, Hyperspherical Harmonics: Applications in
Quantum Theory (Springer, Dordrecht, 1989).

[70] R. J. Yáñez, W. Van Assche, and J. S. Dehesa, Position and
Momentum Information Entropies of the D-Dimensional
Harmonic Oscillator and Hydrogen Atom, Phys. Rev. A 50,
3065 (1994).

[71] V. Ivrii, 100 Years of Weyl’s Law, Bull. Math. Sci. 6, 379
(2016).

[72] J. Brooks and J. Strantzen, Spherical Triangles of Area π
and Isosceles Tetrahedra, Math. Mag. 78, 311 (2005).

[73] E.W. Weisstein, Spherical Trigonometry. From Wolfram
MathWorld–A Wolfram Web Resource, http://mathworld
.wolfram.com/SphericalTrigonometry.html.

[74] A. Hobson, Ergodic Properties of a Particle Moving
Elastically Inside a Polygon, J. Math. Phys. (N.Y.) 16,
2210 (1975).

[75] M. L. Mehta, Basic Sets of Invariant Polynomials for Finite
Reflection Groups, Communications in Algebra 16, 1083
(1988).

[76] A. Saghatelian, Constants of Motion of the Four-Particle
Calogero Model, Phys. At. Nucl. 75, 1288 (2012).

[77] C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley,
Hoboken, NJ, 2004).

[78] B. Gadway, D. Pertot, J. Reeves, M. Vogt, and D. Schneble,
Glassy Behavior in a Binary Atomic Mixture, Phys. Rev.
Lett. 107, 145306 (2011).

[79] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J.
Cubizolles, L. D. Carr, Y. Castin, and C. Salomon,
Formation of a Matter-Wave Bright Soliton, Science 296,
1290 (2002).

[80] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G.
Hulet, Formation and Propagation of Matter-Wave Soliton
Trains, Nature (London) 417, 150 (2002).

[81] S. L. Cornish, S. T. Thompson, and C. E. Wieman, For-
mation of Bright Matter-Wave Solitons during the Collapse
of Attractive Bose-Einstein Condensates, Phys. Rev. Lett.
96, 170401 (2006).

[82] R. G. Hulet (private communication).
[83] We note that in principle the relative Hamiltonian for any of

the N ¼ 4 families also could be realized with a non-
interacting Bose-Einstein condensate in a spherically
symmetric harmonic trap sliced by six sheets of intense
laser light, or even just three sheets to create a sector.

[84] J. M. Deutsch, Quantum Statistical Mechanics in a Closed
System, Phys. Rev. A 43, 2046 (1991).

[85] M. Srednicki, Chaos and Quantum Thermalization, Phys.
Rev. E 50, 888 (1994).

[86] Z. Zhang, V. Dunjko, and M. Olshanii, Atom Transistor
from the Point of View of Nonequilibrium Dynamics, New J.
Phys. 17, 125008 (2015).

[87] V. A. Yurovsky and M. Olshanii, Memory of the Initial
Conditions in an Incompletely Chaotic Quantum System:
Universal Predictions with Application to Cold Atoms,
Phys. Rev. Lett. 106, 025303 (2011).

[88] N. Friedman, A. Kaplan, D. Carasso, and N. Davidson,
Observation of Chaotic and Regular Dynamics in Atom-
Optics Billiards, Phys. Rev. Lett. 86, 1518 (2001).

[89] F. Werner and Y. Castin, Unitary Gas in an Isotropic
Harmonic Trap: Symmetry Properties and Applications,
Phys. Rev. A 74, 053604 (2006).

[90] M. Hamermesh, Group Theory and Its Application to
Physical Problems, (Dover Publications, New York, 1989).

[91] B. G. Wybourne, Classical Groups for Physicists, 1st ed.
(John Wiley & Sons Inc, New York, 1974).

[92] M. Harmer, The Spectra of the Spherical and Euclidean
Triangle Groups, J. Aust. Math. Soc. 84, 217 (2008).

[93] S. T. Rittenhouse, J. von Stecher, J. P. D’Incao, N. P. Mehta,
and C. H. Greene, The Hyperspherical Four-Fermion
Problem, J. Phys. B 44, 172001 (2011).

N. L. HARSHMAN et al. PHYS. REV. X 7, 041001 (2017)

041001-14

https://doi.org/10.1103/PhysRevE.55.6384
https://doi.org/10.1103/PhysRevE.55.6384
https://doi.org/10.1103/PhysRevLett.83.4729
https://doi.org/10.1023/A:1004815406443
https://doi.org/10.1023/A:1004815406443
https://doi.org/10.1103/PhysRevE.87.062902
https://doi.org/10.1103/PhysRevE.89.042918
https://doi.org/10.2307/4145238
https://doi.org/10.1002/lapl.200510011
https://doi.org/10.1002/lapl.200510011
https://doi.org/10.1103/PhysRevA.89.033633
https://doi.org/10.1103/PhysRevA.89.033633
https://doi.org/10.1016/0370-2693(92)90166-2
https://doi.org/10.1016/0370-2693(92)90166-2
https://doi.org/10.1088/0305-4470/27/7/002
https://doi.org/10.1103/PhysRevA.50.3065
https://doi.org/10.1103/PhysRevA.50.3065
https://doi.org/10.1007/s13373-016-0089-y
https://doi.org/10.1007/s13373-016-0089-y
https://doi.org/10.2307/30044179
http://mathworld.wolfram.com/SphericalTrigonometry.html
http://mathworld.wolfram.com/SphericalTrigonometry.html
http://mathworld.wolfram.com/SphericalTrigonometry.html
http://mathworld.wolfram.com/SphericalTrigonometry.html
https://doi.org/10.1063/1.522470
https://doi.org/10.1063/1.522470
https://doi.org/10.1080/00927878808823619
https://doi.org/10.1080/00927878808823619
https://doi.org/10.1134/S1063778812100171
https://doi.org/10.1103/PhysRevLett.107.145306
https://doi.org/10.1103/PhysRevLett.107.145306
https://doi.org/10.1126/science.1071021
https://doi.org/10.1126/science.1071021
https://doi.org/10.1038/nature747
https://doi.org/10.1103/PhysRevLett.96.170401
https://doi.org/10.1103/PhysRevLett.96.170401
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1088/1367-2630/17/12/125008
https://doi.org/10.1088/1367-2630/17/12/125008
https://doi.org/10.1103/PhysRevLett.106.025303
https://doi.org/10.1103/PhysRevLett.86.1518
https://doi.org/10.1103/PhysRevA.74.053604
https://doi.org/10.1017/S1446788708000281
https://doi.org/10.1088/0953-4075/44/17/172001

