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The deconfined quantum critical point (QCP), separating the Néel and valence bond solid phases in a 2D
antiferromagnet, was proposed as an example of ð2þ 1ÞD criticality fundamentally different from standard
Landau-Ginzburg-Wilson-Fisher criticality. In this work, we present multiple equivalent descriptions of
deconfined QCPs, and use these to address the possibility of enlarged emergent symmetries in the low-
energy limit. The easy-plane deconfined QCP, besides its previously discussed self-duality, is dual to
Nf ¼ 2 fermionic quantum electrodynamics, which has its own self-duality and hence may have an
Oð4Þ × ZT

2 symmetry. We propose several dualities for the deconfined QCP with SU(2) spin symmetry
which together make natural the emergence of a previously suggested SO(5) symmetry rotating the Néel
and valence bond solid orders. These emergent symmetries are implemented anomalously. The associated
infrared theories can also be viewed as surface descriptions of ð3þ 1ÞD topological paramagnets, giving
further insight into the dualities. We describe a number of numerical tests of these dualities. We also discuss
the possibility of “pseudocritical” behavior for deconfined critical points, and the meaning of the dualities
and emergent symmetries in such a scenario.

DOI: 10.1103/PhysRevX.7.031051 Subject Areas: Condensed Matter Physics,
Particles and Fields,
Statistical Physics

I. INTRODUCTION

Zeus, the ruler of the Olympian gods, often conceals his
identity by changing himself into different forms. Strongly
interacting conformal field theories (CFTs), which underlie
many different states of matter, can sometimes also be
described by Lagrangians with very different forms. In
other words, two seemingly different “dual Lagrangians
may correspond to the same CFT. The classic example of
such a duality is the equivalence between the 3D O(2)
Wilson-Fisher fixed point and the Higgs transition of
bosonic quantum electrodynamics (QED) with one flavor
of complex boson [1–3]. Either theory describes interacting
lattice bosons at the quantum phase transition between a
superfluid phase, in which U(1) symmetry is spontaneously
broken, and a Mott insulating phase, in which it is not.
This paper studies dualities for quantum phase transi-

tions in two spatial dimensions that lie outside the Landau
paradigm. Our focus is on non-Landau transitions between
two conventional phases, each of which is well described

by a Landau order parameter. The paradigmatic example of
such a phase transition occurs in two-dimensional quantum
magnets. Square lattice spin-1=2 magnets allow (as the
interactions are changed) a conventional Néel antiferro-
magnetic phase which breaks spin-rotation symmetry and a
valence bond solid (VBS) phase: a crystal of spin singlets
which preserves the spin-rotation symmetry while breaking
lattice symmetries. A field theory for a putative continuous
phase transition between the Néel and VBS phases was
described in Refs. [4,5]. The theory—known as the non-
compact CP1 model (NCCP1) is formulated in terms of
fractionalized “spinon” degrees of freedom [a bosonic
field zα, with α ¼ 1, 2 an SU(2) flavor index] coupled
to a noncompact U(1) gauge field b. Neither the spinon nor
the gauge photon, however, exist as deconfined quasipar-
ticles in either phase. The phase transition has, hence, been
dubbed a “deconfined quantum critical point.” Numerical
work on specific quantum magnets and related systems
[6–22] shows a striking (apparently [23]) continuous phase
transition with properties broadly consistent with field-
theoretic expectations. The deconfined criticality scenario
also generalizes to SUðNÞ magnets with large N, where
there is a second-order phase transition that is under good
theoretical control.
Analytic progress on the field theories for SU(2) decon-

fined quantum critical points [27] has been challenging.
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References [28,29] showed that a formulation directly in
terms of the Landau order parameters for the two phases
was possible using a nonlinear sigma model, but required
the addition of a “topological” term to correctly capture
their competition or intertwinement. This term endows the
topological defects of each order parameter with nontrivial
symmetry properties, enabling the Landau-forbidden phase
transition. This sigma model formulation gave rise to the
possibility that the phase transition may have a large
emergent symmetry, which rotates the two Landau order
parameters (Néel and VBS) into each other.
Remarkably, recent numerical work finds evidence for

the emergence of such a higher symmetry. Specifically, a
model described by NCCP1 [a field theory which naively
has only SOð3Þ × Oð2Þ symmetry] was seen to have an
emergent SO(5) symmetry at the critical point, at the length
scales accessible in the calculations [15]. A good under-
standing of this emergent extra symmetry is currently not
available.
In a different direction, many fascinating new dualities

for field theories with U(1) gauge fields have been found
very recently [30–37]. These dualities originated from
studies of the surface of three-dimensional symmetry-
protected topological (SPT) phases [30,31,33], their rela-
tion to three-dimensional quantum spin liquids with an
emergent U(1) gauge field [31,38,39], and the physics of
the half-filled Landau level of two-dimensional electrons
[40–42]. Other related dualities were discussed in a high-
energy context (see Ref. [43] and references therein).
From a modern point of view, the classic infrared duality

between the O(2) Wilson-Fisher theory and bosonic QED is
natural because the two field theories have the same global
symmetry, namely, U(1), the same allowed quantum
numbers for gauge-invariant local operators (here, bosons
of integer charge). and the same anomalies (none in this
case). The two ultraviolet Lagrangians can therefore be
viewed as descriptions of the same physical system with
different bare interactions, making it possible that their
long-distance behavior is the same. The dualities men-
tioned above are extensions of this idea to situations in
which the operator content and anomalies are nontrivial. In
this paper, we apply this philosophy to the field theories for
deconfined critical points.
We propose and analyze dualities involving these field

theories, paying special attention to the realization of
symmetries. These dual descriptions give a new way of
understanding emergent symmetries relating the Landau
order parameters of the Néel and VBS phases.
For the easy-plane version of the NCCP1 model (describ-

ing the Néel-VBS transition in magnets with XY spin
symmetry) several dual descriptions have been discussed in
the old and recent literature, as we review below. Some of
these dual theories are formulated in terms of bosonic fields
while others involve fermionic fields. These boson or
fermion fields are coupled to a dynamical U(1) gauge

field. Here, we unify these different dual descriptions into a
common duality web and clarify the emergent symmetries
of the putative critical fixed point.
For the SU(2)-symmetric NCCP1 model, we propose a

dual fermionic description as massless QED3 coupled to a
critical real scalar field. We refer to this theory as QED3-
Gross-Neveu (GN). We show that this duality implies the
emergent SO(5) symmetry at this deconfined critical point
(as observed in numerical simulations). We are then led to
propose a duality web for the SU(2)-symmetric NCCP1

theory as well. The existence of this duality web provides
an alternate point of view on the emergence of the SO(5)
symmetry at the deconfined critical point.
Remarkably, the duality web implies that the SU(2)-

symmetric NCCP1 model is itself self-dual. Indeed, if we
assume this self-duality, the SO(5) symmetry follows as an
inescapable consequence. Conversely, the existing evidence
for the emergent SO(5) symmetry strongly supports the
conjectured self-duality of the SU(2)-symmetric NCCP1

model.
We show that useful insight into these field theories is

obtained by realizing them at the boundary of ð3þ 1ÞD
bosonic symmetry-protected topological phases. This
allows the theories to be regularized in a way that preserves
the full internal symmetry of the putative IR fixed point.
By contrast, the full internal symmetry of the IR theory
cannot be incorporated microscopically in a strictly 2D
quantum magnet: it can only be emergent. In field-theoretic
parlance, the symmetry of the IR theory is anomalous, and
the anomaly is canceled when the theory resides at the
boundary of a ð3þ 1ÞD SPT phase. Furthermore, in the
easy-plane case, we show how the “bulk” ð3þ 1ÞD
description provides a very simple explanation for the
existence of the duality web and the symmetry realizations
of the various theories contained therein. For the SU(2)-
invariant case, with its putative emergent SO(5) symmetry,
we describe a manifestly SO(5)-invariant formulation in
terms of massless fermions coupled to an SU(2) gauge
field, a theory we denote Nf ¼ 2 QCD3. This ð2þ 1ÞD
theory is shown to have the same anomaly as the proposed
SO(5)-invariant fixed point associated with the NCCP1

theory. This allows us to show that there is a corresponding
bulk SPT phase of bosons with global SO(5) symmetry
[i.e., an SO(5) “topological paramagnet”]. This boson SPT
is characterized in the bulk by its response to an external
background SO(5) gauge field. This response includes a
nontrivial discrete theta angle, introduced in Ref. [44],
which distinguishes it from a trivial gapped phase of SO(5)-
symmetric bosons. The ð2þ 1ÞD theories with anomalous
SO(5) symmetry are alternative descriptions of the surface
of this ð3þ 1ÞD boson SPT phase.
It is important to distinguish two different versions of

statements about duality of quantum field theories that are
conflated in the literature. First, there are “weak” duality
statements. These assert that the two theories in question
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have the same local operators, the same symmetries, and
the same anomalies (if any). In condensed-matter parlance,
this means that the two theories “live in the same Hilbert
space” and can be viewed as descriptions of the same
microscopic system in different limits. These weak dual-
ities are nontrivial statements that can be unambiguously
derived. In the context of the present paper their main
interest is that they open up the possibility of “strong”
dualities. The strong dualities will hold if the putatively
dual theories flow, without fine-tuning, to the same non-
trivial IR fixed point. For the theories we discuss here, it is
these strong dualities that would imply the emergence of
large, exact symmetries in the infrared. We do not derive
the strong dualities in this paper, but rather view them as
plausible conjectures suggested by the weak dualities.
In fact, the strong dualities can be relevant to the physics

up to a very large length scale even in the absence of a true
fixed point, if the system shows quasiuniversal “pseudoc-
ritical” behavior up to a large length scale. We emphasize
that it is not yet clear whether the theories we discuss do
flow to nontrivial IR fixed points: this is an ongoing
question for numerical work. But for the SU(2)-symmetric
NCCP1 model, simulations show that there is at least
apparent critical behavior up to a remarkably large length
scale. Numerical evidence for SO(5) in this regime supports
the applicability of the SO(5) web of dualities. For QED3,
very recent simulations argued for a flow to a conformal
fixed point [45–47], while earlier studies argued for (very
weak) chiral symmetry breaking [48]. For the easy-plane
NCCP1 model the current numerical consensus is that the
transition is weakly first order. The duality to QED3

suggests that it may be worth revisiting the Néel-VBS
transition in easy-plane magnets and related models to look
for a second-order transition.
We describe consequences of the strong duality con-

jectures that may be tested in future numerical work. Our
proposed duality web for SU(2)-invariant NCCP1 and
QED3-Gross-Neveu involves an emergent SO(5) symmetry,
and leads to clear and testable predictions for the behavior of
two-flavor QED3 when it is coupled to a critical real scalar
field. Theweb of dualities involving easy-plane NCCP1 and
two-flavor QED3 are naturally thought of in terms of a
“mother” theory with an O(4) symmetry which rotates the
Néel and VBS order parameters. For QED3 this emergent
symmetry should have striking numerically accessible
consequences. Our results also show how numerical and
analytical studies of QED3 andQED3- GNwill provide new
information about deconfined criticality.
The duality transformations we employ involve global

symmetries with a U(1) subgroup. For a ð2þ 1ÞD CFT
with a global U(1) symmetry there are two basic formal
transformations—denoted S and T—which map the theory
to other inequivalent theories with a global U(1) symmetry,
assumed also to be CFTs [49,50]. Our duality transforma-
tions can be viewed within this framework. However, there

are a number of caveats about the standard use of the S and
T transformations that we discuss in Appendix C. Making
standard assumptions about the effect of S and T on CFTs
allows stronger assertions about deconfined critical points
and their symmetries than those discussed above. However,
it is not clear at this point whether these standard assump-
tions can be trusted far from the context in which they were
originally discussed, i.e., in nonsupersymmetric theories
that are far from any large-N limit.

II. PRELIMINARIES AND SUMMARY
OF RESULTS

A. Deconfined quantum criticality: NCCP1

and related models

We first briefly recall the theory of deconfined quantum
critical points in quantummagnets. For a spin-1=2 quantum
antiferromagnet on a two-dimensional square lattice, the
transition between the Néel ordered magnet and the VBS
paramagnet is potentially second order and is described by
the NCCP1 field theory:

L0 ¼
X
α¼1;2

jDbzαj2 − ðjz1j2 þ jz2j2Þ2: ð1Þ

Here, zα (α ¼ 1, 2) are bosonic spinons coupled to a
dynamical U(1) gauge field b, and Db;μ ¼ ∂μ − ibμ is the
covariant derivative. (This action and subsequent similar
actions are shorthand for the appropriate strongly coupled
Wilson-Fisher critical theory where a background gauge
field has been promoted to a dynamical field; unless
otherwise specified, they are written in Minkowski signa-
ture.) The model has a global SO(3) symmetry under which
zα transforms as a spinor. [51] In the microsopic lattice spin
model, this corresponds to the SO(3) spin rotation. It also
has a global U(1) symmetry associated with the conserva-
tion of the flux [52] of b. In the microsopic lattice spin
model, this is not an exact symmetry. Consequently,
monopole operators [which pick up a phase under a
U(1) rotation] must be added to the Lagrangian.
However, it is known that lattice symmetries ensure that
the minimal allowed monopole operator (with continuum
angular momentum l ¼ 0) has strength 4. Analytic argu-
ments [4,5] and numerical calculations [6,8,14] strongly
support the possibility that these monopoles are irrelevant
at the critical fixed point of Eq. (1). The Néel phase is
obtained when zα is condensed, and the VBS phase when
zα is gapped. The Néel phase breaks SO(3) to a U(1)
subgroup while the VBS phase breaks the U(1) flux
conservation symmetry. The Néel order parameter is simply
N ¼ z†σz (σ are Pauli matrices), and the VBS order
parameter is the strength-1 monopole operator Mb which
creates 2π flux of b.
If the underlying spin model has only O(2) (XY) spin

symmetry—corresponding to conservation of the z
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component of spin, together with a discrete π rotation of the
spins around the x axis, which we denote S—then the Néel-
VBS phase transition is described by the theory

Lep−cp1 ¼
X
α¼1;2

jDbzαj2 − ðjz1j4 þ jz2j4Þ þ � � � : ð2Þ

This is known as the easy-plane NCCP1 model. In this
model the XY Néel order parameter is Nx þ iNy ¼ 2z�1z2,
while the VBS order parameter is the monopole operator
Mb. Note that under the Z2 spin-flip symmetry S, we have

S∶ z → σxz; b → b: ð3Þ

Then, under S the XY Néel order parameter transforms as
Nx þ iNy → Nx − iNy and the VBS order parameterMb is
invariant, as expected microscopically. Later in the paper
we describe the action of time-reversal and lattice sym-
metries for square lattice antiferromagnets (Sec. III B).
The easy-plane theory is known to be self-dual [53], in

the sense that it is dual to another easy-plane NCCP1

theory,

Lep−cp1−dual ¼
X
α¼1;2

jD ~bwαj2 − ðjw1j4 þ jw2j4Þ þ � � � ; ð4Þ

in which the roles of the two order parameters are switched:
w�
1w2 is the VBS order parameter, while M ~b is the XY

order parameter. This self-duality is obtained by applying
the particle-vortex duality to both spinons: z1 → w2,
z2 → w�

1. Since the boson mass term is odd under the
particle-vortex duality, the self-duality sends jz1j2→−jw2j2
and jz2j2 → −jw1j2.
The IR fates of the two NCCP1 models, and their

generalizations with an N-component spinon field zα, have
been discussed extensively. They flow to conformal field
theories within a 1=N expansion. Directly at N ¼ 2,
numerical calculations see an apparently continuous tran-
sition in the SU(2)-invariantNCCP1model, butwith drifts in
some critical properties (which we discuss in Sec. IX).
Further recent studies show the emergence of an SO(5)
symmetry that rotates the Néel and VBS order parameters
into one another. For the easy-plane case, the current
wisdom is that the Néel-VBS transition is weakly first
order. However, as we discuss at length, the potential duality
with QED3 may make it interesting to examine this further.
These gauge theories give a natural route to a second-

order transition between two distinct symmetry-broken
phases, despite the fact that such a transition is naively
forbidden by the Landau theory. In contrast to the standard
Landau-Ginzburg-Wilson description, the critical theory is
expressed in terms of “deconfined” degrees of freedom (the
spinons and the gauge field) which do not describe sharp
quasiparticles in either phase. Physically the breakdown of
the Landau paradigm occurs because the topological defects

of either order parameter carry nontrivial quantum numbers:
the Skyrmion defect of the Néel phase carries quantum
numbers under lattice symmetries [4,5,54,55], and the
vortex defect of the VBS phase carries spin 1=2 [56].
There is an alternative formulation [28,29] for the

competition between the two order parameters directly in
terms of a nonlinear sigma model. In the SU(2)-invariant
case, we define a real five-component unit vector na

(a ¼ 1;…; 5) such that n3;4;5 correspond to the three
components of the Néel vector, and n1;2 to the two real
components of the VBS order parameter. The intertwined
fluctuations of the two order parameters are then described
by an SO(5) action with a Wess-Zumino-Witten (WZW)
term at level 1:

S ¼ 1

2g

Z
d3xð∂naÞ2 þ 2πΓ½na�: ð5Þ

The WZW term Γ is defined in the standard way: the field
na defines a map from spacetime S3 to the target space S4,
and Γ is the ratio of the volume in S4 traced out by na to the
total volume of S4. If naðx; uÞ is any smooth extension of
naðxÞ such that naðx; 0Þ ¼ ð0; 0; 0; 0; 1Þ and naðx; 1Þ ¼
naðxÞ, then

Γ ¼ ϵabcde
areaðS4Þ

Z
1

0

du
Z

d3xna∂xnb∂ync∂tnd∂une: ð6Þ

In order to share the symmetry of the NCCP1 model, the
above action must also be supplemented with anisotropy
terms that break SO(5) to SOð3Þ × Uð1Þ. The WZW term
correctly captures the nontrivial quantum numbers of the
topological defects and is responsible for the non-Landau
physics. For example, if the U(1) symmetry is sponta-
neously broken, a vortex in the U(1) order parameter will
carry spin 1=2 under the unbroken SO(3).
The easy-plane case can be obtained from this theory by

setting n5 ¼ 0. This then leads to an O(4) nonlinear sigma
model in 2þ 1 spacetime dimensions supplemented with a
θ term at θ ¼ π:

S ¼
Z

d3x

�
1

2g
ð∂naÞ2 þ θϵabcd

areaðS3Þ n
a∂tnb∂xnc∂ynd

�
: ð7Þ

The value θ ¼ π is robust as a result of the Z2 spin-flip
symmetry S of the easy-plane NCCP1 model, which
changes the sign of n5 and therefore acts as θ → −θ.
This topological term is once again responsible for the
nontrivial structure of the topological defects.
The sigma model formulation raises the possibility that

the phase transition described by Eq. (1) may have an
emergent SO(5) symmetry [O(4) in the easy-plane case].
However, we should emphasize that the sigmamodel is well
defined as a continuum field theory only in the weak
coupling limit, where it is ordered. Here, there is a clear
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semiclassical picture for the effect of the WZW term
[θ term in the O(4) case] on the topological defects in the
ordered state. For the transition itself—driven by anisotropy
for the SO(5) or O(4) vector—this ordered state corresponds
to a first-order phase transition. To study second-order
Landau-forbidden transitions, we need to extend the model
to strong coupling, and look for a disordered but power-law
correlated SO(5)-invariant fixed point. [57] At strong
coupling the sigma model theory is nonrenormalizable
and requires an alternative formulation as a continuum field
theory. Physically, disordered phases of the sigma model
(defined with an explicit UV cutoff) correspond to phases
where topological defects of the order parameter have
proliferated. Thus, a modification of the topological defects
leads to modifications of the corresponding disordered
phases. The sigma model formulation thus exposes the
seed, in the ordered phase, of the impending non-Landau
physics of the disordered critical regime.
Yet another formulation [28,29] of the intertwinement of

the Néel and VBS orders that maintains manifest SO(5)
symmetry may be obtained by starting with a fermionic
spinon description of the square lattice spin-1=2 magnet.
This naturally leads to a low-energy theory of two flavors of
massless Dirac fermions coupled to a dynamical SU(2)
gauge field—a theory we denote Nf ¼ 2 QCD3. This
theory will be useful for some purposes: we discuss it
further in Secs. VI and VII.
Finally, deconfined critical field theories also arise in the

context of phase transitions between trivial and SPT phases
[46,47,58]. We review this connection as needed later in
the paper.

B. Fermionic Nf = 2 QED3 and related models

We now turn our attention to fermionic massless
QED3 models with Nf ¼ 2 flavors of two-component
fermions [59]:

LQED ¼
X2
j¼1

iψ̄ jDaψ j þ � � � ; ð8Þ

where Da ¼ γμDa;μ is the gauge covariant Dirac operator
that involves a dynamical noncompact U(1) gauge field aμ
(we choose γ0;1;2 ¼ fσy; iσz; iσxg and ψ̄ ¼ ψ†γ0). The
flavor symmetry of the model will play an important role
in our discussion. We often, but not always, restrict
attention to the case with symmetry under SU(2) rotations
between the two flavors. In addition, there is a global U(1)
symmetry associated with the conservation of the flux of
the gauge field a. The theory then has manifest global
f½SUð2Þ × Uð1Þ�=Z2g symmetry. [61] (The full manifest
symmetry of the field theory is larger once charge con-
jugation is included. [62]) It is sometimes, however,
convenient to consider a more general class of QED3

theories where the two fermion species are not related by

SU(2) rotations but only by a discrete exchange, so that
SU(2) is reduced to Pinð2Þ−. Below, we often neglect
discrete symmetry generators, and we refer to this case as
having Uð1Þ × Uð1Þ symmetry [63].
By applying the fermion-fermion duality of a single

species of Dirac fermion to each of the two fermion species,
Refs. [33,35,37] demonstrated that, similar to the bosonic
easy-plane CP1 model, this theory is self-dual, i.e., it is dual
to another Nf ¼ 2 QED:

LQED-dual ¼
X2
j¼1

iχ̄jD ~aχj þ � � � : ð9Þ

Given that a particular basis in flavor space had to be
selected to perform this duality, we are, strictly speaking,
restricting to theories with just Uð1Þ × Uð1Þ continuous
symmetry. The dual theory in Eq. (9) then should also only
be taken to have Uð1Þ × Uð1Þ continuous symmetry.
However, we later discuss the possibility that with full
SU(2) flavor symmetry this duality survives. As in the easy-
plane NCCP1 model, the roles of the gauge-flux conserva-
tion symmetry and the relative phase rotation symmetry
between the two Dirac fermions are exchanged in the dual
QED theory. The self-duality is obtained by applying the
fermionic particle-vortex duality [30,31,38,40] to both
flavors of fermions: ψ1 → χ2, ψ2 → χ1. Since the Dirac
mass term is odd under the particle-vortex duality, the self-
duality sends ψ̄1ψ1 → −χ̄2χ2 and ψ̄2ψ2 → −χ̄1χ1.
The IR fate of QED3 at Nf ¼ 2 is controversial at this

stage. It is not clear whether at low energy the Dirac
fermions will spontaneously break the flavor symmetry and
gain a mass of the form mψ̄σzψ—a long-standing issue
known as chiral symmetry breaking. Recent numerics [45],
however, suggests the possibility that this theory may be
stable in the IR (although an earlier study suggests
spontaneous chiral symmetry breaking [48]).
We are also interested in the phases and phase transition

of this model when a coupling to an extra scalar ϕ is
allowed. The resulting model has the Lagrangian

LQED-GN ¼
X2
j¼1

iψ̄ jDaψ j þ ϕψ̄ψ þ VðϕÞ: ð10Þ

Here, we include a potential VðϕÞ ¼ Vð−ϕÞ for the scalar
field ϕ (we suppress its kinetic term for notational
simplicity). The theory is time-reversal symmetric if under
time reversal ϕ → −ϕ. As the potential VðϕÞ is tuned, we
expect a phase transition between a time-reversal symmet-
ric phase where hϕi ¼ 0 and a time-reversal broken one
where hϕi ≠ 0. We usually refer to Eq. (10) when tuned to
this transition as the QED3-Gross-Neveu model (QED3-GN
for short).
Interestingly, with some assumptions, Ref. [29] showed

that the low-energy behavior of Nf ¼ 2 QED3 was
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described by the O(4) sigma model at θ ¼ π discussed in
the previous section, again with the proviso that the sigma
model needs to extend to strong coupling. This suggests a
connection between the bosonic NCCP1 theories and the
fermionic QED3 theories. Below, we sharpen this con-
nection through precise duality statements. This also
enables us to understand the emergent IR symmetries of
these theories at their critical point.

C. Summary of results

We now summarize the key results in this paper. We also
point out the sections that discuss these statements (and

their subtleties) in detail. This section can be viewed as a
map of the paper.
(1) Both the easy-plane and the SU(2)-symmetric

NCCP1 models are part of a web of dualities.
We begin with the easy-plane model. It turns out

that the easy-plane NCCP1 model is dual to fer-
mionic QED3 with Nf ¼ 2 Dirac fermions. This
duality was first mentioned in Ref. [35], and is
discussed in detail in Sec. III. As discussed in the
literature and reviewed earlier in this section, the two
theories also possess their own self-dualities. This
leads to a web of four theories, mutually dual to each
other, as summarized below:

jDbþBz1j2 þ jDbþB0z2j2 − jz1j4 − jz2j4 −
1

2π
bdðBþ B0Þ − 1

2π
BdB0 −

1

2π
B0dB0

⇔ jD ~b−Bw1j2 þ jD ~bþB0w2j2 − jw1j4 − jw2j4 −
1

2π
~bdðB0 − BÞ þ 1

2π
BdB0 −

1

2π
B0dB0

⇔ ψ̄1iDa−Bψ1 þ ψ̄2iDaþBψ2 þ
1

2π
adB0 þ 1

4π
ðBdB − B0dB0Þ

⇔ χ̄1iD ~a−B0χ1 þ χ̄2iD ~aþB0χ2 þ
1

2π
~adBþ 1

4π
ðBdB − B0dB0Þ: ð11Þ

Here, b and ~b are ordinary dynamical U(1) gauge
fields, a and ~a are dynamical gauge fields whose
charge-1 fields are fermions (they are formally known
as spinc connections). We also include background
U(1) gauge fields B and B0. [64] Various background
Chern-Simons terms are included to ensure that all
the theories have the same response. Despite the
profusion of background terms, the dynamical con-
tent of the theories in Eq. (11) is simple. In Sec. III we
also discuss various possibilities for the IR fates of the
theories in the dualityweb, paying careful attention to
symmetries.
There is a similar web of dualities for the SU(2)-

invariant NCCP1 model, which we discuss in Sec. IV.
The structure of this dualityweb is very similar to that
of the easy-plane case: the SU(2)-invariant NCCP1

model is dual to the QED3-Gross-Neveu theory with
Nf ¼ 2, and the two theories both admit their own
self-dualities. We summarize the mutual dualities of
the four theories in the web below:

X
α¼1;2

jDbzαj2 − ðjz1j2 þ jz2j2Þ2

⇔
X
α¼1;2

jD ~bwαj2 − ðjw1j2 þ jw2j2Þ2

⇔
X
j¼1;2

ψ̄ jiDaψ j þ ϕ
X
j¼1;2

ψ̄ jψ j þ VðϕÞ

⇔
X
j¼1;2

χ̄jiD ~aχj − ϕ
X
j¼1;2

χ̄jχj þ VðϕÞ; ð12Þ

where the potential of Ising scalar field VðϕÞ is tuned
to the critical point.

(2) Understanding the duality web allows some power-
ful statements about emergent symmetries of pos-
sible IR fixed points for the two NCCP1 models,
which is one of the main goals of this paper. In the
context of deconfined quantum criticality, we show
that in both the easy-plane and SU(2)-symmetric
cases the emergent symmetry enables rotating the
Landau order parameters of the two phases on either
side of the transition.
In the easy-plane case, the duality web in its

strongest form implies an emergent O(4) symmetry.
The most basic local (gauge-invariant) operators are
the order parameters ðn1; n2; n3; n4Þ, which form a
vector representation of the O(4) symmetry. Since
SOð4Þ ∼ ½SUð2Þ × SUð2Þ�=Z2, the vector operators
can be rearranged into SU(2) spinors. The complex
doublet

ðΦ1;Φ2Þ ∼ ðn3 þ in4
zfflfflfflffl}|fflfflfflffl{Néel

; n1 þ in2
zfflfflfflffl}|fflfflfflffl{VBS

Þ ð13Þ

is a fundamental under the first SU(2), and
ðΦ�

1;−Φ2Þ is a fundamental under the second.
The improper O(4) reflection is represented as
complex conjugation on one of the components of
Φ. The two complex operators are represented in
each theory as
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ðΦ1;Φ2Þ ∼ ðz†1z2;MbÞ
∼ ðM†

~b
; w†

2w1Þ
∼ ½ψ†

2Ma; ðψ†
1MaÞ†�

∼ ½ðχ†2M ~aÞ†; ðχ†1M ~aÞ†�; ð14Þ

where Mb is the monopole (instanton) operator for
the gauge field b. (In QED the monopole configu-
ration induces one zero mode for each Dirac
fermion, and gauge invariance requires exactly

one of the two zero modes to be filled [65]. The
notation ψ†

1Ma denotes a monopole in a with the
zero mode from the Dirac fermion ψ1 filled.) The O
(4) symmetry is discussed in detail in Sec. III. Its
implications for numerical simulations are discussed
in Sec. VIII.
In the SU(2)-invariant case, the duality web

implies an emergent SO(5) symmetry. The most
basic local operators form a vector representation of
this SO(5): ðn1; n2; n3; n4; n5Þ. They are represented
in NCCP1 and QED-GN theories as

ðn1; n2; n3; n4; n5Þ ∼ ð2ReMb; 2ImMb; z†σxz; z†σyz; z†σzzÞ
∼ ðw†σxw;−w†σyw; 2ReM ~b;−2ImM ~b; w

†σzwÞ
∼ ½Reðψ†

1MaÞ;−Imðψ†
1MaÞ;Reðψ†

2MaÞ; Imðψ†
2MaÞ;ϕ�

∼ ½Reðχ†1M ~aÞ;−Imðχ†1M ~aÞ;Reðχ†2M ~aÞ;−Imðχ†2M ~aÞ;ϕ�: ð15Þ

This SO(5) symmetry is discussed in detail in
Sec. IV. It has been numerically observed in
Ref. [15], providing a strong support to our duality
web. Its further implications are discussed in
Secs. IV E and VIII.

(3) The easy-plane theory has several Z2 (or Z2-like)
symmetries which are anomalous. In the context of
lattice quantum magnetism these symmetries in-
clude the Z2 spin-flip, time-reversal, and lattice
translation symmetries (see Sec. III B 2). Under
these symmetries the Lagrangian is invariant only
up to a background term:

L → L −
1

2π
B1dB2; ð16Þ

where B1 ¼ B − B0 and B2 ¼ Bþ B0 are the prop-
erly quantized background U(1) gauge fields. On the
lattice this anomaly is harmless since one of the U(1)
symmetries is really a discrete lattice rotation sym-
metry. However, if one wants to formulate the theory
with all these symmetries realized in an on-site
manner, the theory can only exist on the surface
of a three-dimensional bulk. The symmetry anomaly
can be canceled by a bulk mutual Θ term:

−
1

4π

Z
Bulk

dB1 ∧ dB2: ð17Þ

All the dualities on the surface are then related to the
electric-magnetic dualities in the bulk. Many sym-
metry actions that appear to be complicated on the
surface (in certain pictures) become obvious once

the bulk view is taken. We discuss this in Sec. V for
the easy-plane theory.

(4) None of the field theories in the duality web,
Eq. (12), possess the full SO(5) symmetry
explicitly—the symmetry is at best emergent in
the IR. Further, just as in the easy-plane case, the
SO(5) symmetry is anomalously realized. We also
discuss two (renormalizable) field theories with
explicit SO(5) symmetry in Sec. VI. The first one
is QCD3 with Nf ¼ 2:

L ¼
X
v¼1;2

iψ̄vγ
μð∂μ − iaμÞψv; ð18Þ

where a is an SU(2) gauge field and ψ1;2 are two
SU(2)-fundamental fermions. This theory can be
obtained from the square lattice spin-1=2 model
through a standard parton construction with a π-flux
mean-field ansatz, and it has an SO(5) symmetry
which becomes manifest when Eq. (18) is written in
terms of Majorana fermions. The second theory is a
Higgs descendent of QCD3, where the SU(2) gauge
symmetry is Higgsed down to U(1):

L ¼
X4
i¼1

iψ̄ iγ
μð∂μ − iaμÞψ i þ ðλMa þ H:c:Þ; ð19Þ

where aμ is now a U(1) gauge field, and the term
Ma represents (schematically) monopole tunneling
(instanton) events. In both theories the Dirac fer-
mions transform in the spinor representation of
SO(5). The SO(5)-vector operators are simply the
mass operators that are time-reversal invariant.
While the IR fates of the theories Eqs. (18) and

(19) are unknown, both theories have the same
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symmetry anomaly as the deconfined critical point.
Therefore, one possible scenario, among others, is
that one of these theories will flow to the deconfined
critical point in the IR.

(5) The full SO(5) symmetry of the deconfined critical
point is anomalous, as revealed already by the sigma
model approach. The manifestly SO(5)-invariant
QCD theory makes it possible to analyze the
anomaly in more detail. We show in Secs. VI C
and VII that QCD3 with Nf ¼ 2, with the full
SOð5Þ × ZT

2 symmetry, can only be realized on
the surface of a three-dimensional bosonic sym-
metry-protected topological state. To characterize
this SPT state, we can introduce a background SO(5)
gauge bundle A5 in the ð3þ 1ÞD bulk. The topo-
logical response to A5 is given by a discrete theta
angle [in contrast to the more familiar theta angle in
ð3þ 1ÞD which can be continuously varied]. Sec-
tion VI C provides a physical derivation of these
results which are then rederived by more formal
methods in Sec. VII. [66] We show that the partition
function of the ð3þ 1ÞD SPT for a given SO(5)
gauge field configuration is

Z½A5� ¼ jZ½A5�jeiπ
R

w4½A5�; ð20Þ

where w4½A5� is known as the fourth Stiefel-Whitney
class of the SO(5) gauge bundle. Though the IR fate
of QCD3 with SOð5Þ × ZT

2 symmetry is not known,
we show that it must either break this symmetry
spontaneously or flow to a CFT. Gapped symmetry-
preserving phases (even with topological order) are
prohibited.

(6) We also discuss the implications of these dualities
(for example, for numerical simulations) extensively
in Sec. VIII. We outline a variety of numerical tests
of many aspects of the dualities. We also show how
numerical calculations on fermionic QED3 and
QED3- GN may provide a new handle on issues
associated with deconfined critical points.

(7) In Sec. IX, we discuss what is currently known about
the deconfined critical points from simulations. In
particular, we discuss the possibility of “pseudoc-
ritical” behavior for deconfined critical points [14].
It is possible that the theories discussed in this paper
do not flow to stable CFTs, which in the context of
deconfined critical point means that the transition is
ultimately first order. But the flow to instability
could be very slow, giving rise to a very large
correlation length, and scaling behavior can still
hold up to this very large scale (with exponents
drifting as the scale increases). This pseudocritical
scenario could potentially reconcile various seem-
ingly conflicting results from numerical simulations:
the observance of the emergent SO(5) symmetry, the

drifting of the scaling behavior, and the constraints
on exponents of SO(5)-invariant CFTs from con-
formal bootstrap [25,26]. In this scenario, the dual-
ities and emergent symmetries discussed in this
paper can still hold below the (very large) correlation
length.
We should point out that the pseudocritical

scenario may be more broadly relevant to many
quantum phase transitions: in such a scenario the
system shows quantum critical behavior above a
very low temperature scale T�, below which the
criticality eventually disappears.

Related field-theoretic work on these dualities has
recently appeared in Ref. [67].

III. EASY-PLANE NCCP1 AND FERMIONIC
Nf = 2 QED3

We propose a duality of the easy-plane NCCP1 model to
fermionic Nf ¼ 2 QED3:

jDbþBz1j2 þ jDbþB0z2j2 − jz1j4 − jz2j4 −
1

2π
bdðBþ B0Þ

−
1

2π
BdB0 −

1

2π
B0dB0 ð21Þ

⇔ ψ̄1iDa−Bψ1 þ ψ̄2iDaþBψ2 þ
1

2π
adB0

þ 1

4π
ðBdB − B0dB0Þ: ð22Þ

Here, b and a are the dynamical U(1) gauge fields, [68]
and we also include background U(1) gauge fields B and
B0. Various background Chern-Simons terms are included
to ensure that the theories on the two sides have the same
response (we elaborate on this below). In Appendix A, we
present the above duality in a more precise and compact,
but less physically intuitive, form. The identification of the
Néel and VBS order parameters in the z theory is reviewed
in Sec. II A above. We identify these order parameters in
the fermionic description in Sec. III A below.
Both theories have been examined in independent

numerical studies. This duality implies that two topical
issues (fixed points of QED3 at Nf ¼ 2 and the easy-plane
NCCP1) are closely related. A “weak” form of the duality is
the assertion that easy-plane NCCP1 is equivalent to QED3

perturbed by interactions that break the flavor SU(2)
symmetry to U(1). These perturbations are formally irrel-
evant at the free UV fixed point of QED3, where the gauge
field aμ is decoupled from the fermions. If these interactions
are not important for the IR behavior, as one would naively
guess, then the IR fate of easy-planeNCCP1will be the same
as the fate of QED3 with full flavor SU(2) symmetry, and the
IR behavior will have an enlarged emergent symmetry if
QED3 flows to a nontrivial fixed point.
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In the deconfined criticality context, the easy-plane
models that have been studied show first-order transitions
[20,69–72]. However, on the fermionic side, a recent
numerical study [45] found evidence for an IR CFT in
Eq. (8) with SU(2) flavor symmetry (in contrast to earlier
calculations [48]). Recent numerics on the quantum phase
transition between a particular 2D bosonic SPT state and
the trivial state, which presumably is described by Eq. (8)
with tuning parameter

P
2
j¼1 mψ̄ jψ j, also show evidence of

a continuous phase transition [46,47]. [73] In light of the
duality it may be interesting to revisit easy-plane decon-
fined criticality.

A. Justification for the duality

We first show how the fermionic dual of the easy-plane
NCCP1 model may be justified. This duality has already
been mentioned in Ref. [35].
First, recall the “basic” boson-fermion duality [34]

relating the free Dirac fermion to a Wilson-Fisher boson
coupled to Uð1Þ1. There are two closely related versions of
this duality (for early works on related dualities see
Refs. [74,75]). The Dirac side is (with our conventions)

Lf1 ¼ iψ̄DAψ : ð23Þ
One version of the dual boson theory is

Lb1 ¼ jDbϕj2 − jϕj4 þ 1

2π
bdAþ 1

4π
bdbþ 1

8π
AdA: ð24Þ

The other dual boson theory is

Lb2 ¼ jDb̂ϕ̂j2 − jϕ̂j4 − 1

2π
b̂dA −

1

4π
b̂db̂ −

1

8π
AdA: ð25Þ

The two boson theories are simply related: ϕ̂ is the vortex
dual of ϕ. Let us also recall the mapping of the relevant
“mass” operators. On the Dirac side, a mass termmψ̄ψ with
m > 0maps to rjϕj2 with r > 0 in Eq. (24) while it maps to
−r̂jϕ̂j2 with r̂ > 0 in Eq. (25). This change of sign of the
boson mass between the two bosonic theories is exactly
what we expect given that ϕ̂ is the vortex dual of ϕ.
Now, starting with the interacting fermionic theory in

Eq. (22), we use the dual theory in Eq. (24) for the first
flavor of fermion and the dual theory in Eq. (25) for the
second flavor. The resulting dual theory, in terms of bosons
ϕI and dynamical gauge fields bI (I ¼ 1, 2), is

L0
b12 ¼

X
I¼1;2

L½ϕI; bI� þ
1

2π
b1dða− BÞ þ 1

4π
b1db1

þ 1

8π
ða− BÞdða− BÞ− 1

2π
b2dðaþ BÞ− 1

4π
b2db2

−
1

8π
ðaþBÞdðaþ BÞ þ 1

2π
adB0

þ 1

4π
ðBdB− B0dB0Þ; ð26Þ

where L½ϕI; bI� contains the kinetic and potential terms for
ϕI and bI . Integrating out the dynamical gauge field a will
impose the following constraint:

b1 − b2 − Bþ B0 ¼ 0: ð27Þ

This implies that we can define a new dynamical gauge
field b such that b1 ¼ bþ B and b2 ¼ bþ B0. Then,
Eq. (26) becomes exactly the first line of Eq. (22) (after
identifying ϕ with z1 and ϕ̂ with z2).
In addition to the formal derivation above, in the

following we perform various consistency checks of the
duality and make a few further comments. We defer until
Sec. III B a detailed discussion of the matching of sym-
metries (explicit or emergent) on the two sides, and their
implications.
(1) Clearly both sides have (at least) Uð1Þ × Uð1Þ

symmetry, probed by the two background gauge
fields B and B0. On the boson side the gauge-
invariant operator z�1z2 has charges qB ¼ þ1,
qB0 ¼ −1, and the monopole operator Mb has
qB ¼ qB0 ¼ þ1. It is actually more natural to define
B1 ¼ B − B0 andB2 ¼ Bþ B0 and to defineΦB1

and
ΦB2

as the order parameters charged under the
corresponding global U(1)’s. That is, if we let
ðq1; q2Þ denote the charges under UB1

ð1Þ and
UB2

ð1Þ, then ΦB1
carries charges (1,0) and ΦB2

carries (0,1). We have

ΦB1
¼ z�1z2; ΦB2

¼ Mb: ð28Þ

These are the two Landau order parameters (Néel
and VBS, respectively, in the quantum magnet
realization), one of which orders on each side of
the putative deconfined QCP.
On the fermion side, a monopole operator Ma is

associated with two complex fermion zero modes
f1;2 from the two Dirac fermions, and gauge
invariance requires filling one of the zero modes
[65]. Therefore, the operators f†jMa are gauge-
invariant bosons with charges qB ¼ −1, qB0 ¼ −1
(for j ¼ 1) and qB ¼ þ1, qB0 ¼ −1 (for j ¼ 2).
Clearly they can be identified with the correspond-
ing Landau order parameters on the bosonic side.
The bosonic side of Eq. (22), after a redefinition

b → b − B0, can be written as simply

jDbþB1
z1j2þjDbz2j2− jz1j4− jz2j4−

1

2π
bdB2: ð29Þ

Below, we use both forms of the easy-plane NCCP1

Lagrangian.
(2) The derivation above makes clear that the corre-

spondence for mass operators is
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m1ψ̄1ψ1 þm2ψ̄2ψ2 ⇔ m1jz1j2 −m2jz2j2: ð30Þ
This is because we use the first boson-fermion
duality Eq. (24) for the first fermion, and the second
boson-fermion duality Eq. (25) for the second
fermion. It is easy to check that the phases obtained
by adding such mass operators match in the bosonic
and fermionic descriptions.
On the bosonic side turning on rðjz1j2 þ jz2j2Þ

will drive the system into an ordered phase with
hΦB1

i ≠ 0 or one with hΦB2
i ≠ 0 depending on the

sign of r [76]. If r > 0, we have hz1i, hz2i ≠ 0, a
Higgsed gauge field bμ, and a nonzero expectation
value hz�1z2i ≠ 0, which leads to a Meissner effect
for B1. If r < 0, we have a free dynamical
Maxwell photon at low energy which leads to the
Meissner effect for B2, via the mutual Chern
Simons term in Eq. (29). The mass term corresponds
on the fermionic side to rψ̄σzψ , which gaps out
the fermions. Integrating them out produces the
term ½1=ð2πÞ�sgnðmÞadB. Together with the
½1=ð2πÞ�adB0 term in Eq. (22), this again leads to
the Meissner effect of either B1 or B2 depending on
the sign of m. This is consistent with the operator
identification discussed above.

(3) We can also turn on an antisymmetric mass
μðjz1j2 − jz2j2Þ on the bosonic side. For μ > 0, we
have hz1i ≠ 0 but hz2i ¼ 0, which gaps out b and
sets b ¼ −B. So we get a gapped phase with
response ½1=ð2πÞ�ðBdB−B0dB0Þ¼½1=ð2πÞ�B1dB2.
If we reinterpret B as a “charge” probe and B0 as
a “spin” probe, this corresponds to the response of
the bosonic integer quantum Hall (BIQH) state
[77,78]. For μ < 0, we get a gapped phase with a
trivial response. [In the context of deconfined
criticality in quantum magnets, where Uð1ÞB2

is
only emergent, both of these are trivial phases in
which the Néel order parameter is polarized along
the z axis.]
On the fermionic side these phases can be repro-

duced by a symmetric mass term μðψ̄1ψ1þψ̄2ψ2Þ:
integrating out the fermions leaves the action

1

4π
sgnðμÞðadaþ BdBÞ þ 1

2π
adB0

þ 1

4π
ðBdB − B0dB0Þ: ð31Þ

Since the term �½1=ð4πÞ�ada is a trivial topological
field theory, it can be integrated out safely and we
produce the same response theory as on the bosonic
side. It is also easy to see that no thermal-Hall
conductance (i.e., no chiral edge state) is generated
for either phase (in either picture), in agreement with
known results [77,78] for the trivial insulator and the
bosonic integer quantum Hall state.

The responses above indicate that the massless
theories of primary interest to us can also be viewed
as describing the phase transition between the trivial
and bosonic integer quantum Hall insulators. The
fermionic picture for this transition was discussed in
Refs. [79,80] using parton constructions (see also
Appendix B for a different perspective) and more
recently in Ref. [81] using a coupled-wire construc-
tion. This BIQH transition has been seen numeri-
cally, and the results show evidence of a continuous
phase transition [46,47].
The mean-field phase diagram implied by the

above is summarized in Fig. 1, both in the decon-
fined criticality context [where Uð1ÞNéel is an exact
microscopic spin symmetry and Uð1ÞVBS is emer-
gent at the critical point] and for the boson integer
quantum Hall transition. This mean-field picture
captures only the topology of the phase diagram
adjacent to the putative critical point: in general,
the phase boundaries will meet at a cusp (since
jz1j2 þ jz2j2 and jz1j2 − jz2j2 will have different
scaling dimensions) and will not lie along the axes.

(4) There is potentially a dual formulation of N ¼ 2
QED3 directly in terms of the bosonic monopoles
f†jMa which are precisely the ΦB1

, ΦB2
defined in

Eq. (28). The most we know about this theory if we
want to formulate it directly in terms of the physical
bosons is that it has the structure of an (anisotropic)
O(4) sigma model at θ ¼ π [29] discussed in

FIG. 1. Mean-field phase diagram for the mass term m1jz1j2 þ
m2jz2j2 in the easy-plane NCCP1 model. The same phase
diagram is obtained from the QED theory with mass term
m1ψ̄1ψ1 −m2ψ̄2ψ2. The upper panel is realized in the context
of the quantum magnet, where the Uð1ÞB2

symmetry is only
emergent. The lower panel is realized in the context of the integer
quantum Hall transition of bosons, where the two superfluid
phases correspond to superfluids of the first or second layer, i.e.,
up or down components of the pseudospin. (Going beyond mean
field will move the phase boundaries away from the axes.)
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Sec. II A. This is consistent with the various other
known connections between this sigma model and
the QED3 theory. This effective field theory is a
convenient language for discussing the emergent
O(4) symmetry that would be required if the strong
duality conjecture holds for these theories.

B. Symmetries

We now study the symmetries of the various dual
actions, and the implications of the dualities for emergent
symmetries of the easy-plane deconfined quantum critical
points. Here, we discuss the symmetries from a physical
point of view natural in condensed-matter physics. This
will make plausible the statements about nontrivial emer-
gent symmetries.

1. Continuous symmetries

In this section, we see how the duality web leads to the
possibility that the easy-plane NCCP1 theory could have an
emergent Oð4Þ × ZT

2 symmetry. [82] In Sec. III C, we
express the requirements for this symmetry enhancement
more formally in terms of the properties of the putative
“mother” O(4) fixed point. Here, we discuss how the
dualities, if they hold in a “strong” form, lead to this
emergent symmetry.
In the duality between easy-plane NCCP1 and QED3 we

naively expect only that the continuous symmetry of the
resulting fermion theory is Uð1Þ × Uð1Þ. As explained in
Sec. II B, the fermionic action we write down apparently,
however, has manifest ½SUð2Þ × Uð1Þ�=Z2 symmetry with
the SU(2) corresponding to rotations between the two
fermion flavors. Thus, we should allow for terms that break
this apparent flavor SU(2) down to U(1). The mass term
ψ̄σzψ will accomplish that, but this is precisely the operator
whose coefficient is tuned to zero at the transition. The
minimal operators with no derivatives that break the flavor
SU(2) symmetry are thus four fermion terms, e.g.,
ðψ̄σzψÞ2. At the free Dirac fermion fixed point these
operators are strongly irrelevant. So if the SU(2)-symmetric
QED theory has a nontrivial IR fixed point, it is plausible
that perturbations breaking SU(2) to U(1) are also irrelevant
here, and that the theory with microscopic U(1) flavor
symmetry flows to this point and has emergent SU(2) flavor
symmetry in addition to the other symmetries already
present.
Now consider the self-duality of QED3. In the derivation

of Ref. [33] of this self-duality a priori we know only
that the Uð1Þ × Uð1Þ symmetry of one side maps to the
Uð1Þ × Uð1Þ symmetry of the other side, with the role of
the two U(1) symmetries being exchanged by duality (the
flavor conservation symmetry on one side becomes the flux
conservation symmetry on the other side). Again, it is
naively plausible that the SU(2) flavor symmetry emerges
in the infrared on both sides of the duality (see Sec. III C for

a more careful discussion). The two flavor SU(2) sym-
metries on the two sides are distinct from each other,
implying that the full continuous symmetry of the QED3

theory is then ½SUð2Þ × SUð2Þ�=Z2 ¼ SOð4Þ. A version of
this argument was previously made in Refs. [37,83]. [84]
We will clarify the conditions under which this symmetry
enhancement actually happens.
On the fermionic side, the two flavors of Dirac fermions

ψ j form a spin-1=2 representation under one of the two
SU(2) subgroups in SO(4), and the dual Dirac fermions χj
form a spin-1=2 representation under the other SU(2)
subgroup. These fermions do not transform in a simple
way under the whole SO(4) group, but this is not prob-
lematic since they are not gauge invariant. The gauge-
invariant operators M†

afj transform as a spinor under the
flavor SU(2) of the ψ theory. As these are identified with
the boson operators z�1z2 and Mb, it follows that these two
operators are a spinor under this SU(2). Thus, this SU(2)
rotates

� Φ�
B1

−ΦB2

�
∼
�

n3 − in4
−n1 − in2

�
ð32Þ

as a spinor. It is easy to see that under the flavor SU(2) of
the dual QED3 theory,

�ΦB1

ΦB2

�
∼
�
n3 þ in4
n1 þ in2

�
ð33Þ

is rotated as a spinor. This means that the SO(4)
simply rotates the four real components of ΦB1

, ΦB2
,

i.e., ðn1; n2; n3; n4Þ, into one another. In the quantum
magnetism realization these are precisely the Néel and
VBS order parameters.

2. Discrete symmetries

Let us now turn to discrete symmetries. We have already
mentioned the Z2 spin-flip symmetry S. For the quantum
magnetism realization in spin-1=2 square lattice magnets,
we must also discuss lattice translation, lattice rotation,
lattice reflection, and time-reversal symmetries.
Z2 spin-flip symmetry.—The Z2 spin flip S corresponds

in the microscopic spin model to a rotation of the spin at
each site by π around the x axis. This is a subgroup of spin
SO(3) symmetry that is presumed to be retained in the easy-
plane model. In the context of easy-plane deconfined
criticality, this symmetry ensures that the only tuning
parameter across the transition is the symmetric mass term
rðjz1j2 þ jz2j2Þ.
The full action of S in the easy-plane NCCP1 theory in

the presence of background fields is

z1 ↔ z2; B ↔ B0; b → b: ð34Þ
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Equivalently, S takes B1 ↔ −B1, B2 ↔ B2. As empha-
sized in Sec. II A, the corresponding action on the Néel and
VBS order parameters is

SðΦB1
Þ ¼ Φ�

B1
; SðΦB2

Þ ¼ ΦB2
: ð35Þ

Thus, this Z2 acts as an improper O(4) rotation on the
vector ðn1; n2; n3; n4Þ formed from the four real compo-
nents of these fields.
In QED3, S is a transformation between ψ j and its dual

fermion χj. Since the mass terms transform under the
fermion self-duality as ψ̄1ψ1 ↔ −χ̄2χ2, the antisymmetric
fermion mass term ψ̄σzψ is invariant, which is consistent
with the operator identification described above.
We should point out that in the continuum field theory

this symmetry is actually anomalous. In both the boson and
fermion pictures the Lagrangian picks up an extra term
under this symmetry operation:

L → Lþ 1

2π
ðB0dB0 − BdBÞ ¼ L −

1

2π
B1dB2: ð36Þ

For deconfined criticality realized in a lattice spin system,
this anomaly is harmless because the U(1) symmetry
probed by B2 is really a discrete lattice rotation symmetry.
However, if the symmetries are on site, this theory can only
be regularized on the surface of a three-dimensional bulk.
We discuss this in more detail in Sec. V.
Including time reversal, which we discuss below, the full

symmetry of the easy-plane NCCP1 fixed point may thus be
Oð4Þ × ZT

2 . Note that the enlargement of SO(4) to O(4) is
also expected from the standpoint of the nonlinear sigma
model with a theta term, Eq. (7). If O(4) is broken to SO(4),
the value of θ can be varied away from π: this is plausibly a
relevant perturbation.
Bosonic self-duality symmetry.—There is also a Z2

subgroup, which we denote Sψ , of the SU(2) flavor
symmetry of the QED3:

Sψ∶ψ1 ↔ψ2; B→−B; a→ a; B0→B0: ð37Þ

This Sψ symmetry is not a microscopic symmetry for the
quantum magnet. In NCCP1 it becomes the bosonic self-
duality, zα → wα:

ΦB1
↔ Φ�

B2
: ð38Þ

This also shows that the SU(2) flavor group of the QED3

theory must act in a highly nonlocal fashion in the NCCP1

theory.
On the QED side, imposing Sψ symmetry forces the

mass term to be symmetric, mψ̄ jψ j, which gives a
transition between two distinct (SPT) gapped phases. On
the bosonic side, this symmetry allows the antisymmetric

mass term μðjz1j2 − jz2j2Þ, which also gives the SPT
transition.
Time reversal.—We now specialize to realizations of

these deconfined critical points at the Néel-VBS transition
in square lattice spin-1=2 magnets. Microscopic sym-
metries then include—in addition to the spin-rotation
and spin-flip S symmetries—time-reversal and lattice
symmetries.
Time reversal T is antiunitary and acts on the NCCP1

fields as

TðzαÞ ¼ ϵαβzβ; ð39Þ

TðbÞ ¼ −b − B − B0; ð40Þ

TðBÞ ¼ B; TðB0Þ ¼ B0: ð41Þ

(For the gauge fields we indicate only the time-reversal
action on the spatial components; the time component will
transform with the opposite sign.) Here, ϵ ¼ iσy is anti-
symmetric with ϵ12¼1. This is consistent withΦB1

→−Φ�
B1

and ΦB2 → Φ�
B2, as befits the Néel and VBS order

parameters, respectively (written in complex form). Note
that, as with the Z2 spin-flip symmetry, the bosonic
Lagrangian is invariant only up to an anomaly:

L → Lþ 1

2π
ðB0dB0 − BdBÞ ¼ L −

1

2π
B1dB2: ð42Þ

On the dual QED3 side, time reversal acts as the product
SψT transformation under which

TðψÞ ¼ Sψγ0ψ ; TðaÞ ¼ −a: ð43Þ

Note that the QED3 theory also has the same anomaly
in Eq. (42).
Translation symmetry.—It suffices to discuss unit

lattice translations along one direction, say, the y direction
(x → x, y → yþ a, where a is the lattice spacing), which
we dub Ty. The Néel and VBS orders clearly transform as

TyðΦB1
Þ ¼ −ΦB1

; TyðΦB2
Þ ¼ Φ�

B2
: ð44Þ

In the NCCP1 theory, this is implemented as

TyðzαÞ ¼ ϵαβz�β; ð45Þ

TyðbÞ ¼ −b; ð46Þ

TyðBÞ ¼ −B0; TyðB0Þ ¼ −B: ð47Þ

Just like with the Z2 spin flip, or time-reversal symmetry,
the NCCP1 Lagrangian is invariant under Ty only up to an
anomaly (shift by ½1=ð2πÞ�B1dB2). On the QED3 side, Ty

takes the fermions ψ to their fermionic duals χ though the
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detailed transformation is different from that of the Z2 spin-
flip symmetry. Specifically, we have

ψ1 ↔ −χ†1; ψ2 ↔ χ†2; a ↔ − ~a: ð48Þ

Note that the symmetric mass ψ̄ψ is odd under Ty, while
the antisymmetric mass ψ̄σzψ is even, exactly as expected
from the corresponding operators on the bosonic side.
A simpleway to understand the action of Ty is as follows.

From Eq. (44) we see that the action of Ty on the physical
order parameters is similar to that of S if we exchange the
Néel and VBS orders. To make this precise, consider the
modified translation ~Ty¼UB1

ðπÞTy, which combines trans-
lation with a π rotation of the easy-plane Néel vector. Then
the physical order parameters transform as

~TyðΦB1
Þ ¼ ΦB1

; ~TyðΦB2
Þ ¼ Φ�

B2
: ð49Þ

Thus, we see that it is precisely the S operation performed
after a charge-conjugation transformation C that takes all
the fields to their charge conjugate. This identification is
nicely consistent with the action of Ty in the QED3 theory
in Eq. (48). The extra ð−Þ sign in Eq. (48) is simply due to
the additional UB1

ðπÞ in the definition of ~Ty.
Rotation and reflection symmetries.—Lattice rotations

by π=2 about a square lattice site act very simply on the
Néel and VBS vectors. We have

Rπ
2
ðΦB1

Þ ¼ ΦB1
; Rπ

2
ðΦB2

Þ ¼ iΦB2
: ð50Þ

This is part of a UB2
ð1Þ rotation whose role in the various

dualities we have already discussed. A site-centered lattice
reflection Ry, say, about the x axis (x → x, y → −y), acts as

RyðΦB1
Þ ¼ ΦB1

; RyðΦB2
Þ ¼ Φ�

B2
: ð51Þ

To define its action simply let us denote for any gauge field
A¼ðA0;Ax;AyÞ the reflected version by RA¼ðA0;Ax;−AyÞ.
Then, Ry acts in the z formulation as

RyðzαÞ ¼ zα; RyðbÞ ¼ Rbþ RBþ RB0; ð52Þ

RyðBÞ ¼ −RB0; RyðB0Þ ¼ −RB: ð53Þ

It is readily checked that the NCCP1 Lagrangian is invariant
under this transformation and there is no anomaly. On the
fermion side, Ry again involves a duality transformation
between ψ and χ:

ψ1 → γyχ2; ψ2 → γyχ1; a → R ~a: ð54Þ

C. Allowed symmetry-breaking terms

The strong forms of the dualities we discuss here involve
the emergence of higher symmetries than are present in the

UV Lagrangians. In order for the dualities to hold in the IR
without fine-tuning, the hypothetical higher-symmetry
fixed point must exist and must be stable to all perturba-
tions allowed by the symmetry of the UV theory. Here, we
clarify these stability requirements. As we discuss in
Sec. IX, it is also possible that there is no fixed point
with the higher symmetry, but that there is a pseudocritical
regime up to a large but finite length scale ξ; in this case, the
requirements should be interpreted in terms of the effective
scaling dimensions in this regime.
We consider perturbations of the hypothetical O(4)-

symmetric point relevant to Nf ¼ 2 QED3 and the easy-
plane NCCP1 model. Here, we take QED3 to be defined
with full SU(2) flavor symmetry, as done, for instance, in
the lattice calculations of Ref. [45]. We see that the
conditions for the emergence of O(4) are more stringent
for easy-plane NCCP1 than for QED. Therefore, in prin-
ciple, it is possible that the self-duality of QED3 could hold,
with emergent O(4), but that easy-plane NCCP1 could fail
to flow to this fixed point. (By contrast, the requirements
for the emergence of SO(5) are similar for the bosonic and
fermionic theories, as we see in Sec. IV D.)
To begin, the hypothetical fixed point must be stable to

O(4)-singlet scalar perturbations. We certainly expect a
relevant perturbation that is invariant under SOð4Þ ¼
½SUð2Þ × SUð2Þ�=Z2 but not under improper O(4) trans-
formations: in the language of the sigma model for the field
ðn1; n2; n3; n4Þ (Secs. II A and III B 1), this corresponds to
varying the coefficient of the θ term away from π. But this
perturbation is harmless as it is forbidden by time reversal,
and in the easy-plane NCCP1 model also by the Z2 spin-flip
symmetry S (Sec. III B 2).
Apart from the O(4) vector order parameters na defined

in Eq. (33), it is natural to expect the next leading scalar
operators to be those in the two- and four-index symmetric

tensor representations of O(4). We denote these Xð2Þ
ab and

Xð4Þ
abcd. At the level of symmetry,

Xð2Þ
ab ∼ nanb − δabn2=4;

Xð4Þ
abcd ∼ nanbncnd − ð� � �Þ; ð55Þ

where the subtraction ð� � �Þ makes the operator traceless.
Xð2Þ is certainly relevant.
The two-index symmetric tensor Xð2Þ

ab corresponds to the
(1,1) representation of SUð2Þ × SUð2Þ. All components of
this operator are therefore forbidden by the explicit SU(2)
of QED. In the easy-plane model one component,P

2
a¼1 X

ð2Þ
aa , is allowed but is precisely the tuning parameter

for the Néel-VBS transition: i.e., 1
2
ðjΦB2

j2 − jΦB1
j2Þ in

terms of the complex Néel and VBS order parameters.
The four-index symmetric tensor Xð4Þ is the (2,2) repre-
sentation of SUð2Þ × SUð2Þ, so again all components are
forbidden by the explicit SU(2) of QED. However, in the

DECONFINED QUANTUM CRITICAL POINTS: … PHYS. REV. X 7, 031051 (2017)

031051-13



easy-plane NCCP1 model, the Néel-VBS anisotropyP
2
a¼1

P
4
b¼3 X

ð4Þ
aabb is allowed, and microscopic models

on the square lattice will also allow
P

2
a¼1 X

ð4Þ
aaaa [85].

Since the easy-plane model allows an O(4)-breaking
perturbation that is forbidden for QED, it is conceivable
that the QED self-duality holds, with emergent O(4), but
that the strong duality with easy-plane NCCP1 does not
hold. This scenario would apply if there was an O(4)
(pseudo)critical regime in which Xð4Þ was relevant, but the
perturbations allowed in the QED theories were irrelevant.
The explicit SU(2) of QED restricts such perturbations to

representations of the form (0, integer). In the sigma model
language, the simplest such terms involve two derivatives
and four powers of n, so are plausibly irrelevant, as argued
in Ref. [29]. In other words, if there is an O(4) fixed point
that is stable to O(4)-singlet perturbations, it is very likely
that QED flows to it.
From the point of view of the fermionic Lagrangians,

both types of perturbation (those allowed in the easy-plane
model and those allowed in QED) can be cast as four-
fermion terms, giving a plausibility argument for their
irrelevance. The breaking of the symmetry of QED to that
of the easy-plane model allows a four-fermion operator, as
discussed in Sec. III B 1. For the possible emergence of
SUð2Þ × SUð2Þ, consider the following “weak” form of the
fermion-fermion duality. We expect that in principle there is
an exact UV duality between a cutoff version of QED with
SUð2ÞB × Uð1ÞB0 symmetry and an effective field theory
version of QED (with a highly fine-tuned Lagrangian) in
which the explicit continuous symmetry is Uð1ÞB × Uð1ÞB0 .
[For convenience, we label the groups by the probe field for
the U(1) part.] Since the simplest terms that break SUð2ÞB0

are four-fermion terms in this dual description, it is
plausible that SUð2ÞB0 will emerge in the continuum,
giving full SUð2ÞB × SUð2ÞB0 .

IV. SU(2)-SYMMETRIC NCCP1

AND FERMIONIC QED3- GN

We now turn to the deconfined critical point with full
SU(2) symmetry. We propose a duality between the SU(2)-
symmetric NCCP1 model and the Nf ¼ 2 QED3- GN
theory,

X
α¼1;2

jDbzαj2 − ðjz1j2 þ jz2j2Þ2 ð56Þ

⇔
X
j¼1;2

ψ̄ jiDaψ j þ ϕ
X
j¼1;2

ψ̄ jψ j þ VðϕÞ; ð57Þ

where ϕ is a critical Ising field (real scalar), with the Ising
terms ð∂ϕÞ2 − ϕ4 suppressed for notational convenience.
The QED3- GN model has not been studied numerically as
far as we know. The duality suggests the possibility of
critical behavior with emergent symmetry.

To justify this duality, we consider the phases of the
QED3- GN Lagrangian in Eq. (57), making use of the
results for the pure QED in Sec III. First, the phase with a
positive mass term for ϕ and hϕi ¼ 0 is expected to be
equivalent to QED3, and dual to the critical easy-plane
NCCP1 theory. What does the coupling to ϕ mean in the
bosonic theory? The mass term ψ̄ψ is identified with
ðjz1j2 − jz2j2Þ in Eq. (30), so the coupling to the scalar
field becomes

ϕðjz1j2 − jz2j2Þ: ð58Þ

Now consider the QED3- GN theory in the phase where
hϕi ≠ 0, induced by turning on a negative mass term for ϕ.
This gives the symmetric mass term for QED3 and the
antisymmetric mass for easy-plane NCCP1, as discussed
under Eq. (31). The theory becomes trivially gapped
(except for response terms). Finally, what does the phase
transition associated with the onset of hϕi of the
QED3- GN model correspond to on the boson side? We
propose that it is the critical point of the SU(2)-invariant
NCCP1 model.
The discussion of the phase diagram above gives a basic

consistency check on this duality. The operator identifica-
tion goes as follows: the Ising field ϕ on the fermionic side
is dual to jz1j2 − jz2j2 on the bosonic side. The Ising mass
−λϕ2 is dual to the anisotropy λjz1j2jz2j2 on the bosonic
side [86]. The phases with hϕi ¼ 0 and hϕi ≠ 0 corre-
spond, respectively, to the easy-plane critical theory and to
a gapped state with easy-axis Néel order.
To be more precise, the duality with the critical SU(2)-

invariant NCCP1 model requires an emergent SO(5)
symmetry: the basic assumption underlying the duality is
that allowed terms in each theory which break this
symmetry are irrelevant. We make this explicit in
Sec. IV D. Once again we postpone a detailed discussion
of the matching of the symmetries of the two sides and their
implications until Sec. IV C.

A. Duality from the sigma model

We now provide an alternative understanding of the
proposed duality, from the standpoint of the nonlinear
sigma model description of the SU(2)-invariant NCCP1

model. We propose the equivalence between the ð2þ 1ÞD
SO(5) nonlinear sigma model with a WZW term at level 1
(extended to a strong-coupling fixed point) and N ¼ 2
QED3 deformed with a quartic interaction term to a critical
point at λ ¼ λc:

L ¼ 1

g
ð∂μnÞ2 þ

2π

Ω4

Z
1

0

duna∂unb∂xnc∂ynd∂tne

⇔ L ¼
X2
j¼1

ψ̄ jiDaψ j þ
λ

2

�X2
j¼1

ψ̄ jψ j

�2

: ð59Þ
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We also identify a relevant perturbation on both sides of the
duality:

uðn5Þ2 ∼ u

�X2
j¼1

ψ̄ jψ j

�2

: ð60Þ

When u > 0, we expect that n5 can be treated as
effectively zero in the SO(5) sigma model, so that this
theory reduces to an O(4) nonlinear sigma model with a Θ
term at Θ ¼ π:

L ¼ 1

g
ð∂μnÞ2 þ

Θ
Ω3

na∂tnb∂xnc∂ynd; Θ ¼ π: ð61Þ

This theory has been shown [29], with some assumptions,
to be the low-energy effective theory of N ¼ 2 QED3.
Consistent with this, a positive u in the QED3-Gross-Neveu
model will drive the system back to QED3.
When u < 0, the SO(5) sigma model develops a nonzero

expectation value hn5i. This spontaneously breaks the Z2

subgroup of the SO(5). Depending on the sign of hn5i, the
effective O(4) sigma model for the remaining components
(which we may imagine deriving by integrating out
fluctuations in n5) will flow to either Θ ¼ 2π or Θ ¼ 0.
The QED3-Gross-Neveu model with u < 0 spontaneously
condenses hPjψ̄ jψ ji. This precisely yields the two phases
with Θ ¼ 0 and 2π. A condensate of hPjψ̄ jψ ji sponta-
neously breaks the Z2 subgroup of O(4) [the Z2 trans-
formation that exchanges the two SU(2) subgroups],
which is also the Z2 subgroup of SO(5): Z2 takes
ðn1; n2; n3; n4; n5Þ to ð−n1;−n2;−n3; n4;−n5Þ.

B. Self-dualities

We show that the easy-plane duality Eq. (22) naturally
motivates the duality of the SU(2)-symmetric NCCP1

theory in Eq. (56). Following the same logic, the self-
dualities of easy-plane NCCP1 and the QED3 theories also
motivate further self-dualities with higher symmetries. For
the NCCP1 model, this self-duality reads

X
α¼1;2

jDbzαj2 − ðjz1j2 þ jz2j2Þ2

⇔
X
α¼1;2

jD ~bwαj2 − ðjw1j2 þ jw2j2Þ2: ð62Þ

In the dual theory, the U(1) phase rotation symmetry of the
local operator w�

1w2 corresponds to the flux conservation of
the b gauge field in the original theory; likewise, the flux
conservation of ~b in the dual theory corresponds to the U(1)
phase rotation symmetry of z�1z2 in the original theory. One
can check the consistency of this duality by turning on an
anisotropy term:

λjz1j2jz2j2 ∼ λjw1j2jw2j2: ð63Þ

When λ > 0, both theories flow to easy-plane NCCP1,
where the self-duality holds [87]. When λ < 0, both
theories flow to the easy-axis limit, where the system
becomes trivially gapped.
Similarly, for the QED3- GN model we have the self-

duality

X
j¼1;2

ψ̄ jiDaψ j þ ϕ
X
j¼1;2

ψ̄ jψ j þ VðϕÞ

⇔
X
j¼1;2

χ̄jiD ~aχj − ϕ
X
j¼1;2

χ̄jχj þ VðϕÞ: ð64Þ

The switching of the two global U(1) symmetries in the two
pictures is similar to that in the self-duality of NCCP1. The
consistency of this duality is checked by turning on a mass
term for the Ising scalar fields on both sides: when hϕi ≠ 0,
both sides are trivially gapped, and when ϕ is gapped, the
duality follows from the self-duality of QED3.

C. Symmetries

We now study the symmetries of the NCCP1 theory and
its duals. We simply assume the correctness of the proposed
dualities.
The bosonic side has a manifest SOð3Þ × Oð2Þ sym-

metry, where the z bosons are SO(3) spinors, and the
global U(1) symmetry is simply the flux symmetry of the
gauge field b. The fermionic side also has a (different)
manifest ½SUð2Þ × Uð1Þ�=Z2 symmetry [more precisely,
½SUð2Þ × Pinð2Þ−�=Z2 when charge conjugation is
accounted for].
How do these symmetries act on physical operators?

Collecting the various gauge-invariant order parameters, we
have (recall that Mb is the monopole operator in the
NCCP1 model)

ð2ReMb; 2ImðMbÞ; z†σxz; z†σyz; z†σzzÞ
∼ ðn1; n2; n3; n4; n5Þ: ð65Þ

The operators ðn3; n4; n5Þ ∼ ðz†σxz; z†σyz; z†σzzÞ form a
fundamental representation of the SO(3) symmetry in the
NCCP1 model, while ðn1 þ in2; n3 − in4Þ ∼ 2ðMb; z�2z1Þ
transforms as a spin-1=2 representation of the flavor SU(2)
symmetry of the QED3 theory. It is easy to see that the
vector in Eq. (65) then forms a vector representation of an
enlarged SO(5) symmetry.
The O(2) symmetry of the NCCP1 theory acts as follows:

proper rotations act on only ðn1; n2Þ, while improper
rotations also multiply ðn3; n4; n5Þ by a minus sign.
[Therefore, the SOð3Þ × Oð2Þ of NCCP1 is indeed a
subgroup of SO(5).] The U(1) flux symmetry of the
QED3 theory acts as a common phase rotation of both
n1 þ in2 and n3 − in4. Finally, the charge-conjugation
symmetry of QED3, which reverses the charge under this
U(1), acts as ðn1; n2; n3; n4Þ → ð−n3;−n4; n1; n2Þ.
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A different and interesting perspective is provided by
taking the proposed strong self-duality of the SU(2)-
invariant NCCP1 model as our logical starting point. In
the original model, the operators ðz†σxz; z†σyz; z†σzzÞ form
a vector under a global SO(3) symmetry. In the dual model,
the operators ðw†σxw; w†σyw; z†σzwÞ form a vector under
another global SO(3). Since z†σzz ∼ w†σzw, it is easy to see
that the operators ðw†σxw; w†σyw; z†σxw; z†σyz; z†σzzÞ
form a vector under an enlarged SO(5) symmetry. Thus,
the strong self-duality of the SU(2)-invariant NCCP1 model
implies the presence of an enlarged SO(5) symmetry.
Conversely, the numerical evidence for the emergence of
SO(5) symmetry at the Néel-VBS transition may be taken
as support for the proposed self-duality of the SU(2)-
invariant NCCP1 model.
Further support comes from considering a deformation

of the model to reach the easy-plane model. In the z theory,
this can be accomplished by perturbing with the operator
ðz†σzzÞ2. In the w theory, the same operator is represented
as ðw†σzwÞ2. We expect that this is a relevant perturbation
(see Sec. IV D). The resulting flow leads directly to the
self-duality of the easy-plane NCCP1 model, which has
been independently derived (in its weak form). This is a
good consistency check on the self-duality of the SU(2)-
invariant model.
The action of discrete symmetries is similar to the easy-

plane case discussed above. Note, however, that the S
symmetry is a subgroup of the SU(2) flavor symmetry of
the NCCP1 theory, and that Sψ is a subgroup of the SU(2)
flavor symmetry of QED3. We, thus, do not need to
consider them separately. For square lattice spin-1=2
magnets, the action of time-reversal and lattice symmetries
may be readily inferred from the easy-plane case once we
recognize that the extra field ϕ transforms identically
to z†σzz.

D. Allowed symmetry-breaking terms

We now study the SO(5)-breaking operators that are
allowed by microscopic symmetries. These operators must
be irrelevant in order for the dualities and the emergent
symmetries to hold in the IR without fine-tuning. Again, we
point out that in the situation where there is no fixed point
with the higher symmetry, there could still be a pseudoc-
ritical regime up to a large but finite length scale ξ (see
Sec. IX); in this case, the requirements should be inter-
preted in terms of the effective scaling dimensions in this
regime.
The putative emergent symmetry for the NCCP1 model

and QED-Gross-Neveu model is SO(5). A natural guess is
that the leading scalar operators, apart from the SO(5)
vector na defined in Eq. (65), are those in the two- and four-
index symmetric tensor representations of SO(5). We

denote these Xð2Þ
ab and Xð4Þ

abcd. At the level of symmetry,

Xð2Þ
ab ∼ nanb − δabn2=5;

Xð4Þ
abcd ∼ nanbncnd − ð� � �Þ; ð66Þ

where the subtraction ð� � �Þ makes the operator traceless.
Xð2Þ is certainly relevant [88]. The microscopic symmetries

of NCCP1 allow the perturbation
P

5
a¼3 X

ð2Þ
aa , which is an

anisotropy between Néel and VBS (∼ 2
5
½n23 þ n24 þ n25�−

3
5
½n21 þ n22�), and QED-GN allows Xð2Þ

55 , corresponding to
the mass term for the scalar field ϕ. Since these are the
perturbations that are tuned away to reach the critical point,
they do not pose a problem for stability. However, stability
does require the irrelevance of Xð4Þ, as this gives rise to
further symmetry-allowed perturbations. The symmetries
of NCCP1 allow the higher Néel-VBS anisotropyP

2
a¼1

P
5
b¼3 X

ð4Þ
aabb. For a quantum antiferromagnet on

the square lattice, [89] the anisotropy
P

2
a¼1 X

ð4Þ
aaaa, which

breaks the U(1) symmetry for the VBS down to Z4, is also

allowed. In QED-GN the anisotropy Xð4Þ
5555 is allowed.

Stability also requires the irrelevance of all SO(5)-singlet
scalar operators. As we discuss in Sec. IX, this requirement
is in tension with conformal bootstrap results [25,26].
However, the numerical evidence for SO(5) suggests that
there is at least a pseudocritical regime where allowed
SO(5)-breaking perturbations, including Xð4Þ, are effec-
tively irrelevant.

E. Phase diagram

We now discuss the phase diagram of the quantum
magnet near the SU(2)-invariant deconfined critical point,
allowing for a perturbation that breaks the spin symmetry to
easy plane. We assume the emergence of SO(5) symmetry
at the SU(2) critical point.
It is useful to organize perturbations into representations

of the SO(5) symmetry. The two perturbations that we must
consider live in the symmetric tensor representation Xð2Þ of
SO(5) discussed above (we drop the superscript),

Xab ∼ nanb −
δab
5

n2; ð67Þ

and we denote them

O1 ¼ X11 þ X22; O2 ¼ X55: ð68Þ

First, the leading perturbation allowed in an SU(2)-
symmetric spin model is δL ¼ λ1O1, which drives the
system into the Néel ordered phase for λ1 < 0 and into the
VBS phase for λ1 > 0. Second, breaking the spin symmetry
down to that of the easy-plane model allows the anisotropy
δL ¼ λ2O2. Again, we already know the effect of this
operator on its own: it drives the system into an easy-axis-
ordered gapped phase for λ2 > 0, and to the Néel-VBS
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phase transition of the easy-plane model, potentially with
O(4) symmetry, for λ2 < 0.
The full phase diagram for small ðλ1, λ2Þ follows by

SO(5) symmetry, assuming that the only ordered phases in
the vicinity of the SU(2) critical point are those mentioned
above. Essentially, each of the three ordered phases is
determined by which components of na are favored by the
potential λ1ðX11 þ X22Þ þ λ2X55. More formally, the tran-
sition line λ1 ¼ λ2 > 0 between the Ising and VBS ordered
phases may be fixed by noting that it corresponds to the
perturbation

λ1ðX11 þ X22 þ X55Þ ¼ −λ1ðX33 þ X44Þ; ð69Þ

where we use the tracelessness of X. This is related to the
Néel ordered line λ1 < 0, λ2 ¼ 0 by the SO(5) rotation
n1 ↔ n3, n2 ↔ n4, which is precisely the self-duality of
the NCCP1 theory. The phase diagram in the ðλ1; λ2Þ basis
is shown in Fig. 2.
If we neglect perturbations that are irrelevant at the

SO(5) fixed point, the transition between VBS and easy-
axis order is governed by a Lagrangian with an emergent
O(3) symmetry rotating ðn1; n2; n5Þ. This is spontaneously
broken to SO(2) once λ1 ¼ λ2 flows to an order 1 value,
yielding a pair of Goldstone modes. In reality, these
Goldstone modes are only approximate if the bare
λ1 ¼ λ2 is finite; the emergent O(3) is explicitly broken
by dangerously irrelevant higher anisotropies [90] which
are allowed by the symmetries of the lattice model.
However, these anisotropies will appear only at a para-
metrically large length scale when the bare λ1 ¼ λ2 is small.
Similarly, the line λ1 ¼ 0, λ2 < 0, which leads to the

easy-plane deconfined transition, has an emergent O(4)
symmetry when higher anisotropies are neglected. Here,
however, it is possible that the O(4) symmetry survives to
asymptotically long length scales: this depends on the
ultimate fate of the easy-plane theory.
The structure of the phase diagram above could be tested

numerically. The most basic test is that the phase bounda-
ries all meet at nonzero angles, showing that the distinct
components of X have the same scaling dimension [91].
There is also universal information in the slopes of the

phase boundaries. In the microscopic model a more natural
basis for perturbations is δL ¼ ~λ1O1 þ ~λ2 ~O2, where O1 is
the lattice operator that drives the Néel-VBS transition
and ~O2 ∼ X55 þ 1

3
ðX11 þ X22Þ is a modified easy-plane

anisotropy. The numerical coefficient in the latter is
fixed by demanding that it belongs to the traceless
symmetric tensor representation of spin SO(3): Aij ∼
Xij þ 1

3
ðX11 þ X22Þ, where i, j ¼ 3, 4, 5. In NCCP1, O1 ∼

−jzj2 and ~O2 ∼ ½jz1j2 − jz2j2�2 − 1
3
½jz1j2 þ jz2j2�2. When we

draw the phase diagram in the ð~λ1; ~λ2Þ plane, the easy-axis
Néel-VBS transition line is at ~λ1 ¼ 2c~λ2, and the easy-
plane Néel-VBS transition line is at ~λ1 ¼ −c~λ2. The
constant c > 0 is arbitrary since the normalization of the
lattice operators is arbitrary, but the ratio of the slopes of the
two lines is a fixed constant which could be checked
numerically. The phase diagram in this ð~λ1; ~λ2Þ basis is
shown schematically in Fig. 3.
Alternately, we may check universal amplitudes using

correlation functions, once the location of one of the
nontrivial transition lines is determined. Let us normalize
Xab so that

hXabðxÞXcdð0Þi ¼
1

2

�
δacδbd þ δadδbc −

2

5
δabδcd

�
1

x2Δ2
;

ð70Þ

where Δ2 is the scaling dimension of Xab. Assume that
we can identify (numerically) either the perturbation
O2 ∼ −X55, which drives the system along the VBS-
easy-plane Néel phase boundary, or the perturbation O3 ∼
X11 þ X22 þ X55 that drives the system to the first-order
transition between the VBS and the easy-axis Néel state.
Then by Eq. (70) the following statements, independent of
normalization, should be true:

FIG. 2. Phase diagram near the SO(5)-invariant fixed point with
perturbation of the form λ1ðX11 þ X22Þ þ λ2X55.

FIG. 3. Phase diagram near the SO(5)-invariant fixed point with
perturbation of the form −~λ1ðjz1j2 þ jz2j2Þ þ ~λ2½ðjz1j2 − jz2j2Þ2−
1
3
ðjz1j2 þ jz2j2Þ2�. This is the natural perturbation to consider in

the context of deconfined criticality in quantum magnets. The
emergent SO(5) symmetry requires that the slope of the lower
transition line is twice that of the upper transition line.
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hO1ðxÞO2ð0Þi2
hO1ðxÞO1ð0ÞihO2ðxÞO2ð0Þi

¼ 1

6
;

hO1ðxÞO3ð0Þi2
hO1ðxÞO1ð0ÞihO3ðxÞO3ð0Þi

¼ 4

9
: ð71Þ

Similar tests are possible in the QED-Gross-Neveu
theory, if the fixed point is found. There, O2 ∼ ϕ2 is the
Ising mass operator that drives the system through the
Gross-Neveu transition between QED3 and the gapped
phase in which ϕ has condensed. The fermion chiral mass
ψ̄1ψ1 − ψ̄2ψ2 is a mixture of O1 and O2. The SU(2) flavor
symmetry of QED requires the chiral mass to be orthogonal
to O2, so by Eq. (70)

ψ̄1ψ1 − ψ̄2ψ2 ∼O1 þ
1

2
O2: ð72Þ

Now if we consider a perturbation of the form
mϕϕ

2 þmψðψ̄1ψ1 − ψ̄2ψ2Þ, the phase diagram will look
like Fig. 4. The phase diagram is symmetric under the
reflection across themϕ axis simply because of the fermion
flavor symmetry. The two transition lines near the gapped
phase are given by mϕ ¼ �½1=ð2c0Þ�mψ > 0, with c0 > 0

being a normalization-dependent constant. So c0 alone does
not provide nontrivial information. However, it enters into
the ratio of correlation functions:

hϕ2ðxÞϕ2ð0Þi
hðψ̄1ψ1 − ψ̄2ψ2ÞðxÞðψ̄1ψ1 − ψ̄2ψ2Þð0Þi

¼ 4

5
ðc0Þ2; ð73Þ

which is, in principle, testable.
We end this section with a discussion on the nature of the

transitions at mϕ ¼ �½1=ð2c0Þ�mψ > 0 in Fig. 4. As dis-
cussed already, we expect the two transitions to be direct
first order, instead of broadening into coexistence phases.
How do we understand this from a fermion mean-field
point of view? We can calculate the mean-field free energy
with respect to mψ and hϕi, treating the fermions as almost

noninteracting, which is valid when the fermion flavor
number Nf → ∞. The result is proportional to

E ∼ jmψ þ hϕij3 þ jmψ − hϕij3: ð74Þ

Interestingly, this function gives no preference to either
scenario (first order or coexistence). Presumably, fluctua-
tions beyond mean field will break this degeneracy and lead
to a direct transition.

V. BULK INTERPRETATION:
Uð1Þ × Uð1Þ THEORY

From the sigma model point of view, it is known that the
symmetries of the field theories discussed so far have to be
anomalous [58,92]. Deconfined criticality can nevertheless
be realized in quantum magnets because lattice rotation
symmetries are not on site, and therefore can be imple-
mented in a seemingly anomalous fashion in the continuum
theory. If we want all the symmetries to be on site, the
theories must be regularized on the boundary of a ð3þ 1ÞD
bulk. In this section, we discuss the bulk physics corre-
sponding to the easy-plane deconfined critical point. This
provides considerable insight into the duality web and the
unconventional symmetry actions of the theory.
In Eq. (36), we see that the spin-flip S, time-reversal, and

other symmetries are anomalous:

L → L −
1

2π
B1dB2: ð75Þ

We initially focus on the S symmetry. This anomaly is
natural from the sigma model approach: the S symmetry
is an improper O(4) rotation ðn1; n2; n3; n4Þ →
ðn1;−n2; n3; n4Þ, which fixes θ ¼ π, and such a symmetry
is typically expected to be anomalous.
The anomaly can be cured by placing the ð2þ 1ÞD

theory at the boundary of a ð3þ 1ÞD bosonic SPT insulator
with ½Uð1Þ ⋊ Z2� × Uð1Þ symmetry. Let us couple ð3þ
1ÞD background gauge fields B1 and B2 to the two U(1)
symmetries such that under S they transform as

S∶B1 → −B1; B2 → B2: ð76Þ

A nontrivial SPT phase of such a bosonic system then has a
response characterized by a mutual Θ term at Θ ¼ π for the
two gauge fields B1 and B2 of the form

−
Θ

ð2πÞ2
Z
Bulk

dB1 ∧ dB2; Θ ¼ π: ð77Þ

Notice that under S, Θ → −Θ, and therefore Θ ¼ π is
protected [93] by the S symmetry.
Now consider the surface of this boson SPT phase. The

bulk Θ term leads to a surface state with anomalous
symmetry realization. Clearly, this anomaly is exactly

FIG. 4. Phase diagram near the SO(5)-invariant fixed point with
perturbation of the form mϕϕ

2 þmψ ðψ̄1ψ1 − ψ̄2ψ2Þ. This is the
natural perturbation to consider in the context of QED3-Gross-
Neveu theory. The emergent SO(5) symmetry predicts that the
slope of the transition lines is related to the relative amplitude of
the correlation functions of the two operators, Eq. (73)
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the same as in the ð2þ 1ÞD easy-plane NCCP1 field theory,
Eq. (36). Specifically, if we add a bulk contribution,
−½1=ð4πÞ�B1dB2, to the Lagrangian, defining

Lz;SPT ¼ Lz −
1

4π
B1dB2 ð78Þ

[where the extra term, which is not well defined as a mutual
Chern-Simons term in pure ð2þ 1ÞD, is really a shorthand
notation for the bulk mutual Θ term at Θ ¼ π], it is easy to
check that Lz;SPT is indeed invariant under the spin-flip
symmetry.
Now imagine gauging the Uð1ÞB1

× Uð1ÞB2
symmetry in

the bulk. An important observation is that, due to the
mutual Θ term, the monopole of one species carries
charge �1=2 of the other species. Let us label the
charge-monopole lattice by ðqe1; qe2; qm1; qm2Þ. Here,
ðqe1; qm1Þ are the electric and magnetic charges under
Uð1ÞB1

, and so on. The mutual Θ term implies the relations

qe2 ¼
qm1

2
ðmod ZÞ; qe1 ¼

qm2

2
ðmod ZÞ: ð79Þ

Note that qm1, qm2 ∈ Z.
There is a correspondence between fields in the boun-

dary theory and particles in the bulk theory: bulk electric
charges correspond to electrically charged surface fields,
and bulk magnetic charges correspond to vortices on the
surface. For the “physical” bosons the correspondence is
ΦB1

∼ ð1; 0; 0; 0Þ and ΦB2
∼ ð0; 1; 0; 0Þ. The surface fields

z1;2 are vortices in ΦB2
, and they carry charge qB1

¼ �1=2.
Their bulk avatars are thus the dyons z1;2 ∼ ð� 1

2
; 0; 0; 1Þ.

The bosonic self-duality of the easy-plane NCCP1 theory
leads to a description in terms of complex fields w1;2, which
are vortices of ΦB1

and carry charges qB2
¼ �1=2. Clearly,

their bulk avatars are w1;2 ∼ ð0;� 1
2
; 1; 0Þ. The surface self-

duality is thus connected to the obvious bulk duality
between descriptions in terms of these two sets of dyons.
Consider the bound states of these two kinds of dyons

with quantum numbers

�
1

2
;
1

2
; 1;−1

�
;

�
−
1

2
;−

1

2
; 1;−1

�
: ð80Þ

These are both fermions. We identify them as the bulk
avatars of ψ1;2. This can be confirmed directly from the
surface theory. Consider the QED3 theory with ψ1;2

fermions in Eq. (22) with the added “bulk” contribution
−½1=ð4πÞ�B1dB2. Notice that B ¼ ðB1 þ B2Þ=2. We see
that the ψ1;2 fermions indeed have the right charges and
vorticities to correspond to these bulk fermionic dyons.
Thus, the duality between the easy-plane NCCP1 theory

and the QED3 theory can be understood in terms of a bulk
duality that trades the bosonic ð� 1

2
; 0; 0; 1Þ particles with

the fermionic particles of Eq. (80).

What about the dual fermions χ1;2? They correspond to
�
1

2
;−

1

2
; 1; 1

�
;

�
−
1

2
;
1

2
; 1; 1

�
: ð81Þ

Indeed, this is exactly what is implied by the dual fermionic
surface theory.
The fermion-fermion duality of QED3 can thus be related

to a corresponding bulk fermion-fermion duality of the
Uð1Þ × Uð1Þ gauge theory.
Notice that ðqe1;qe2;qm1;qm2Þ→ð−qe1;qe2;−qm1;qm2Þ

under S. It is immediately clear that the two fermionic
dyons corresponding to ψ1;2 become the two dyons
corresponding to χ1;2 under S. This offers a bulk inter-
pretation of the nontrivial action of S on the surface QED3

theory, which exchanges ψ1;2 and their dual fermions χ1;2.
Likewise, under the fermion flavor exchange symmetry

Sψ , which acts as B1 ↔ −B2, the dyons corresponding to
z1;2 and w1;2 are exchanged. This is a simple bulk picture of
the symmetry action in the boundary NCCP1 model, which
is implemented through the self-duality transform.
Note that the Uð1Þ × Uð1Þ gauge theory has an Spð4; ZÞ

invariance corresponding to basis changes in the four-
dimensional charge-monopole lattice. This is because the
basis change must preserve the area of the unit cell of each
two-dimensional subspace corresponding to each of the
two U(1) gauge theories. The surface web of dualities we
discuss herein can be understood as the effects of various
Spð4; ZÞ transformations of the bulk gauge theory.
We should also emphasize that the bulk duality offers a

simple picture of the surface duality, but does not prove the
surface duality between IR fixed point theories.
Now let us turn briefly to time reversal, which acts on

B1;2 as

TðB1;2Þ ¼ B1;2: ð82Þ

Under this the bulk Θ term is odd, but as before, Θ ¼ π is
time-reversal symmetric. Correspondingly, when a surface
is present, the contribution from this bulk Θ term will
exactly cancel the time-reversal anomaly of the surface
theories. The bulk charges transform under time reversal as

T∶ðqe1; qe2; qm1; qm2Þ → ð−qe1;−qe2; qm1; qm2Þ: ð83Þ

It is readily checked that this is precisely consistent with the
time-reversal action on each of the surface theories.
We already saw that the translation ~Ty can be related to a

combination of S and Sψ and therefore does not need
separate discussion.

VI. THEORIES WITH MANIFEST
SO(5) SYMMETRY

Thus far, none of our field-theoretic descriptions of the
deconfined critical point have possessed explicit SO(5)
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symmetry in the UV: this symmetry, at best, emerges in the
IR. An exception is the SO(5) non-linear sigma model
(NLSM) with a WZW term at level 1; however, this model
is nonrenormalizable, so while one can infer symmetry
information from it, strictly speaking its dynamics in the
disordered phase is not well defined. Here, we present two
renormalizable theories with explicit SO(5) symmetry,
namely, Nf ¼ 2 QCD3 and its Higgs descendent Nf ¼ 4
compact QED3. While the IR fates of these theories are
unknown, they share the same anomaly with the deconfined
critical point. So there is the possibility (among others) that
either of them may flow to the deconfined critical point.

A. Parton construction of Nf = 2 QCD3

To see the connection between deconfined criticality and
these theories, we now review the construction of the π-flux
state on the square lattice [94] and demonstrate that its low-
energy theory, QCD3, has an emergent SO(5) symmetry.
The Néel and VBS order parameters transform, as
expected, as the five components of an SO(5) vector.
Consider the standard fermionic parton decomposition:

Si ¼
1

2
f†iασαβfiβ; f†αifαi ¼ 1; ð84Þ

where i labels a lattice site and the spin indices α, β are
summed over. Let us form a matrix:

Xi ¼
� fi↑ −f†i↓
fi↓ f†i↑

�
: ð85Þ

The decomposition Eq. (84) is invariant under local SU(2)
gauge rotations:

SUð2Þg∶ Xi → XiðUg
i Þ†: ð86Þ

The physical SU(2) spin rotations act as

SUð2Þs∶ Xi → UsXi; ð87Þ

and we can rewrite Eq. (84) as Si ¼ 1
4
trðX†

i σXiÞ. It will
occasionally be convenient to write f↑¼ð1= ffiffiffi

2
p Þðχ0þiχ3Þ,

f↓ ¼ ð1= ffiffiffi
2

p Þð−χ2 þ iχ1Þ, i.e., X ¼ ð1= ffiffiffi
2

p Þðχ0 þ iχaσaÞ,
where χm, m ¼ 0, 1, 2, 3 are Majorana fermions. χm
transforms as an SO(4) vector under the combined action of
SUð2Þs and SUð2Þg.
We consider a mean-field state on the square lattice,

HMF ¼ −
i
2

X
ij

tijχimχjm; ð88Þ

where tij ¼ −tji, and tiþx̂;i ¼ 1, tiþŷ;i ¼ ð−1Þix , so that
there is π flux through each plaquette. This mean-field

explicitly preserves the SUð2Þs and SUð2Þg symmetries,
while lattice symmetries now act in a projective manner
(see below). Each flavor m of Majorana fermions produces
two gapless Majorana cones, so the low-energy theory
becomes

HMF ¼ i
X
v¼1;2

χm;vðτx∂x − τz∂yÞχm;v; ð89Þ

with τ acting on suppressed sublattice indices σ ∈ A, B (see
below). The index v runs over two valleys, and lattice fields
are related to continuum ones in the following way. The
unit cell is doubled by tij. We label sites with even ix by A
and odd ix by B, and label unit cells by ī ∈ ð2Zþ 1=2;ZÞ.
Letting χ ī ¼ ðχ ī−x̂=2;A; χ īþx̂=2;BÞ,

χm;ī ∼ τxχm;v¼1ðxÞ þ ð−1Þīyχm;v¼2ðxÞ: ð90Þ

We can rewrite the mean-field Lagrangian as

LMF ¼ iχ̄v;mγμ∂μχv;m; ð91Þ
where χ̄ ¼ χTγ0, γ0 ¼ τy, γx ¼ iτz, γy ¼ iτx. The action of
lattice symmetries is

Tx∶ χ → μxχ; ð92Þ

Ty∶ χ → μzχ; ð93Þ

Rπ=2;A∶ χ → eπiτ
y=4e−πiμ

y=4χð−y; xÞ; ð94Þ

Px;A∶ χ → τzμzχð−x; yÞ; ð95Þ

T∶ χ → τyμyχ; i → −i; ð96Þ

where μ acts on the valley index v and spin or color indices
m have been suppressed. The subscript A on π=2 rotation R
and reflection P indicates that these are around an A site.
These symmetries prohibit any quadratic term in χ with no
derivatives in LMF.
The mean-field theory has an O(8) symmetry acting on

m, v. However, this is broken by fluctuations of SUð2Þg
gauge field and four-fermi interactions. Let us first focus on
the gauge field fluctuations. For this purpose it is conven-
ient to introduce a 4 × 2 matrix, Xα;v;β, via

Xα;v;β ¼
1ffiffiffi
2

p ðχ0;vδαβ þ iχa;vσaαβÞ: ð97Þ

The sublattice index is suppressed above. The Hermiticity
of χ imposes an important relation:

X� ¼ σyXσy: ð98Þ
SU(2) spin and SU(2) gauge transformations act on X from
the left and right. The covariant derivative with respect to
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the dynamical SUð2Þg gauge field a acts on X as
Da

μX ¼ ∂μX þ iXaμ, and a transforms as

SUð2Þg∶ X→XU†
g; aμ →UgaμU

†
g − i∂μUgU

†
g: ð99Þ

The Lagrangian including the dynamical gauge field then is

LQCD3
¼ itrðX̄γμDa

μXÞ; ð100Þ

with X̄ ¼ X†γ0. We see that Eq. (100) is invariant under a
global symmetry,

Spð4Þ∶ X → LX; ð101Þ

with L ∈ Spð4Þ—a unitary matrix acting on spin or valley
indices α, v of Xα;v;β. The fact that L lies in Sp(4), i.e.,
LTσyL ¼ σy, instead of in the larger group U(4) comes
from the reality condition Eq. (98). The lattice symmetries
in Eq. (96) are elements of this Sp(4) global symmetry
combined with spatial symmetries of the Dirac theory. We
note that the global symmetry Sp(4) and the gauge group
SUð2Þg share a common nontrivial element: the center −1.
Thus, the physical global symmetry after modding out by
SUð2Þg is actually Spð4Þ=Z2 ¼ SOð5Þ [it is useful to recall
that Spð4Þ ¼ Spinð5Þ]. An order parameter for this SO(5)
symmetry is given by a five-component vector:

na ¼ trðX̄ΓaXÞ; ð102Þ

with Γ ¼ fμz;−μx; σxμy; σyμy; σzμyg. The first two com-
ponents, n1, n2, have precisely the transformation proper-
ties of the x and y components of the VBS order parameter,
while the last three components trðX̄σaμyXÞ correspond to
the Néel order parameter.
We note in passing that if we want to be less explicit

about the full emergent symmetry of Eq. (100), we can
express the Lagrangian in terms of two flavors of SUð2Þg
charged complex Dirac fermions, ψα;v ¼ iσyα;βX1;v;β, with α
being the color index, and

L ¼ iψ̄vγ
μð∂μ − iaμÞψv; ð103Þ

with ψ̄v¼ψ†
vγ0. In other words, this theory isNf¼2QCD3.

There are (at least) three possible scenarios for this
theory. First, Nf ¼ 2 QCD3 could confine, and in the
process spontaneously break SO(5) symmetry by generat-
ing a condensate hnai ≠ 0. In the setting of the spin system,
quartic terms in the Lagrangian will then select either the
VBS state or the Néel state. This is the boring scenario.
Second, Nf ¼ 2 QCD3 could, in principle, flow to a

stable gapless fixed point at which all perturbations (e.g.,
four-fermi couplings and velocity anisotropies) that pre-
serve lattice and SOð3Þs symmetries are irrelevant. We
would then have a completely stable gapless spin-liquid

phase with emergent SO(5) symmetry. [In principle, QCD
could also flow to a gapped SO(5)-invariant spin liquid; as
shown in Sec. VI E, this is possible only if time-reversal
symmetry is broken.]
Third, Nf ¼ 2 QCD3 could flow to a gapless fixed point

which is stable in the presence of SO(5), but which allows a
single relevant perturbation when SO(5) is broken to the
physical symmetry: the operator O1 in Sec. IV E [breaking
SO(5) to SOð3Þs × SOð2ÞVBS]. Then Nf ¼ 2 QCD3 tuned
to an SO(5)-symmetric point describes the deconfined
critical point, and perturbing it by O1 drives it into either
the VBS phase or the Néel phase. This is the scenario
relevant for this paper.

B. Higgs descendent: Nf = 4 compact QED3

Starting from Nf ¼ 2 QCD3, we now Higgs the gauge
group from SU(2) down to U(1). We introduce and
condense a scalar field ϕ that transforms as a spin-1 vector
under SUð2Þg and as a scalar under SO(5) (such a field is
allowed in the theory). After a charge-conjugation redefi-
nition of half of the Dirac fermions, the resulting theory is

L ¼
X4
i¼1

iψ̄ iγ
μð∂μ − iaμÞψ i þ ðλMa þ H:c:Þ; ð104Þ

where aμ is now a U(1) gauge field, and the monopole
operator Ma represents instanton events that change the
flux of aμ by 2π. In general, such a term should be expected
when the U(1) gauge field comes from Higgsing of a higher
gauge symmetry. In condensed-matter language [95] such
theories are called compact QED3.
The fermion fields ψ i transform as a spinor representa-

tion under the global SO(5)—this follows simply from the
symmetry properties of QCD3. Naively one might expect
the Lagrangian Eq. (104) to have a larger flavor symmetry,
say, SU(4), respected by the Dirac term. However, it turns
out that the monopole term breaks the symmetry down to
SO(5). This can be seen by analyzing the fermion zero
modes [65] associated with the monopole operator M0a:
each Dirac fermion ψ i contributes a complex fermion zero
mode fi in the monopole background, and gauge invari-
ance requires two of the four zero modes to be filled in the
ground state, so a gauge-invariant operator should be
represented as f†i f

†
jM0a. There are in total six of them,

and it is straightforward to check that they split into 6 ¼
1 ⊕ 5 with respect to the SO(5) symmetry. The monopole
operator that appears in the Lagrangian in Eq. (104) is
precisely the SO(5) scalar monopole. It transforms non-
trivially under higher flavor symmetries, and SO(5) is the
maximal flavor group that is compatible with it.
Since this Nf ¼ 4 compact QED3 is just a Higgs

descendent of Nf ¼ 2 QCD3, they must have the same
anomaly structure. Therefore, they share the same set of
possible IR behaviors, including those discussed at the end
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of Sec. VI A. Of course, the two theories could pick
different choices.

C. INTERPRETATION AS SURFACE THEORY
OF ð3 + 1ÞD BOSON SPT

Here, we show that SO(5)-symmetric Nf ¼ 2 QCD3

(and hence Nf ¼ 4 compact QED3) can be interpreted as a
surface theory of a bosonic SO(5)-protected ð3þ 1ÞD SPT
phase. This statement is independent of the dynamics of
QCD3: it remains true even if the theory spontaneously
breaks SO(5). To make this statement, we have to under-
stand how an SO(5) background gauge field A5 enters in
QCD3 and show that this theory has an anomaly, which is
precisely compensated by the ð3þ 1ÞD SPT bulk. Here, we
establish this using a physical argument. In Sec. VII, we
provide a precise formal proof.
Let us first determine the anomaly of this theory by

thinking about a background gauge field that couples to
the SO(5) currents. An SO(5) gauge field A5 admits Z2-
indexed monopole configurations, since π1(SOð5Þ) ¼
Z2. In ð2þ 1ÞD these correspond to instanton events,
and we can ask whether there is anything nontrivial about
them.
We examine a monopole background of the following

form. Consider an SOð2Þ × SOð3Þ subgroup of SO(5), with
SO(2) acting on the first two components of vector na in
Eq. (102) and SO(3) on the last three. Place a unit magnetic
monopole in the SO(2) subgroup, i.e.,

A5
μ ¼ Amon

μ ðxÞT1; ð105Þ

where T1 is the generator of SO(2) andAmon is the standard
potential associated with a unit magnetic monopole. In the
presence of such a backgroundA5 field, only a subgroup of
the global SO(5) symmetry survives: these are rotations in
an SO(3) subgroup (whose generators commute with T1)
and the SO(2) rotations generated by T1 itself.
The following argument provides a hint of the properties

of the instanton. Rather than considering the QCD3 theory
directly, suppose we add in an extra field n̂, transforming in
the vector representation of SO(5), that couples to fermion
bilinears through a Yukawa coupling. In the limit that this
coupling is strong, we can integrate out the fermions, and
standard methods [28,29,96] produce an SO(5) nonlinear
sigma model in the n̂ field with a level-1 WZW term
(Sec. II A). Now the SU(2) gauge field does not couple
directly to any matter field, and is expected to confine at
low energy, leaving behind the SO(5) WZW model as the
remaining nontrivial theory. Indeed, this supports the idea
that QCD3 correctly describes the Néel-VBS intertwine-
ment in square lattice quantum magnets. Physically the
SO(5) instanton in Eq. (105) has the effect of creating
a vortex in two components of the n̂ field. We now ask how
this vortex transforms under the unbroken symmetry
SOð2Þ × SOð3Þ. The vortex carries no charge under

SO(2), but we know that the vortex transforms as a spinor
under SO(3) due to the WZW term. We conclude that the
instanton configuration described above transforms as an
SO(3) spinor with zero SO(2) charge also.
For a conventional SO(5) sigma model (i.e., without the

WZW term) the SO(5) instanton will transform trivially
under SOð2Þ × SOð3Þ. The projective transformation of the
instanton under the SO(3) subgroup tells us that in the
presence of the level-1 WZW term the SO(5) symmetry is
realized anomalously. It cannot be realized as the on-site
symmetry of any strictly ð2þ 1ÞDmodel. Clearly, the same
instanton structure also characterizes the QCD3 theory.
This is the physics of the desired anomaly. Note also that

this instanton operator is bosonic (i.e., in relativistic
parlance it has spin 0 under spatial rotations).
It is instructive to rederive the instanton structure of

QCD3 directly from the UV Majorana fermion theory. We
now briefly indicate how this works out. It is important to
recognize that the fermions that enter QCD3 transform as a
fundamental of Sp(4), although the physical global
symmetry is SOð5Þ ¼ Spð4Þ=Z2. We therefore need to lift
the SO(5) gauge field A5 to an Sp(4)A5, which enters the
theory Eq. (100) via DμX → ð∂μ − iA5

μÞX þ iXaμ. For
instance, consider

A5 ¼ Amon

2
μy; ð106Þ

where μ are Pauli matrices that act on the valley index.
Naively this may seem to require creating a π flux through
the nonzero component of A5 which apparently violates
Dirac quantization for the monopole. However, we should
remember that we also have a dynamical SU(2) gauge field
a that the fermions are coupled to: if the lift to Sp(4) is
accompanied by a π-flux instanton in one of the three
components of the SU(2) gauge field, then we have a
sensible configuration that satisfies Dirac quantization [97].
For instance, we may give the dynamical gauge field a
background value a ¼ a3σ3, with

a3 ¼ Amon

2
: ð107Þ

It is then convenient to rewrite Eq. (100) in terms of a single
color component of X, e.g., Xαv;↑:

L ¼ iX̄αv;↑γ
μ½ð∂μ þ ia3μÞδαα0δvv0 − iA5

α;v;α0;v0 �Xα0v0;↑: ð108Þ

Observe that two Dirac fermions Xα− with μy ¼ −1 see a
2π-flux instanton, and another two Dirac fermions Xαþ
with μy ¼ þ1 see no background flux (we drop the color
index ↑ here). Further, each pair of Dirac fermions trans-
forms as a spin 1=2 under the global SOð3Þs subgroup left
unbroken by the SO(5) monopole. In the language of the
state-operator correspondence, in the presence of the

WANG, NAHUM, METLITSKI, XU, and SENTHIL PHYS. REV. X 7, 031051 (2017)

031051-22



instanton background the Xα− fermions will form two zero
modes. Charge neutrality with respect to the color gauge
field a3 then implies that we occupy one of these zero
modes. Thus, the instanton will transform as an SO(3)
spinor in agreement with the arguments above. It is also
easy to see that it has zero charge under the unbroken SO(2)
subgroup of the global SO(5) symmetry.
Next, we want to show that this nontrivial instanton

structure is consistent at the surface of a ð3þ 1ÞD boson
SPT with SO(5) symmetry. In other words, we can
regularize QCD3 with its full SO(5) symmetry as an on-
site symmetry at the boundary of a ð3þ 1ÞD bosonic
SPT phase.
First, let us discuss possible SO(5)-symmetric boson

SPTs in ð3þ 1ÞD. Consider any short-range entangled
gapped phase of an SO(5)-symmetric boson theory, and
again couple in background SO(5) gauge fields. The bulk
again admits Z2-indexed monopoles in this gauge field,
which can be chosen to break SO(5) to SOð2Þ × SOð3Þ.
Now there are logically two sharply distinct possibilities:

does the monopole transform as a spinor under the
unbroken SO(3) symmetry or not? If it is a spinor, then
the original gapped state is a SPT state. The other question
we may ask is what the charge is under the unbroken SO(2)
symmetry. This charge can be continuously tuned by
changing the SO(5) θ angle:

L ¼ θ

4ð2πÞ2 TrSOð5ÞðF
5 ∧ F 5Þ; ð109Þ

where F 5
μν ¼ ∂μA5

ν − ∂νA5
μ − i½A5

μ;A5
ν� is the SO(5) field

strength. Since θ is a continuous parameter, in the absence
of additional symmetries (e.g., time reversal) it does not
label a distinct SPT phase. It is crucial to note that changing
θ does not affect the SO(3) transformation properties of the
monopole. Thus, the SO(5) SPTwhere the SO(2) monopole
is an SO(3) spinor is an SPT rather distinct from the more
familiar boson and fermion topological insulators protected
by U(1) and time-reversal symmetries. Below, we discuss
the topological action for this SPT. Finally, we may ask
whether the monopole is a boson or fermion [98]. This
property may be altered by shifting θ → θ þ 2π [99,100].
Now, let us assume the monopole is a boson that carries

no SO(2) charge. Then if it does not transform as a spinor
under SO(3), the original gapped state is totally trivial. If it
is a spinor under SO(3), then the original gapped state is a
SPT state which has the exact same monopole structure to
compensate for the instanton structure of QCD3 with
Nf ¼ 2 as a potential boundary state.

D. Explicit constructions for the SO(5) SPT

First, let us argue that such a ð3þ 1ÞD SPT state indeed
exists in a system of SO(5)-symmetric bosons by a coupled
layer construction. Notice that though Nf ¼ 2 QCD3 has
an anomalous SO(5) symmetry, the anomaly disappears if

we take two copies of it [101]. This is because the SO(5)
monopole (instanton) then gets a spin 1=2 [under SOð3Þ]
from each copy and hence can always be made trivial.
We can now construct the required ð3þ 1ÞD bosonic

SPT state by starting with a stack of 2D layers, each
containing two copies of QCD3. We take one copy from
one layer and trivialize it by pairing with another copy from
the next layer. This will give a trivial gapped bulk, but at the
boundary we are left with a single copy of QCD3.
We can also construct the bulk boson SPT more

explicitly using fermionic partons, following a similar
approach to Refs. [102,103]. Consider first a ð3þ 1ÞD
fermionic toplogical superconductor with SOð8Þ × ZT

2

symmetry. A continuum model for this state consists
simply of 8 relativistic, free, massive Majorana fermions,

L ¼
X8
i¼1

χ̄iðiγμ∂μ þmÞχi; ð110Þ

with χ̄i ¼ χTi γ
0. For one sign of the Majorana mass m we

will have a trivial gapped state, while for the other sign we
will have a topological superconductor. The ð2þ 1ÞD
surface of this free-fermion state correspondingly has 8
massless Majorana cones. Now let us couple this system to
a dynamical SU(2) gauge field a. As in our ð2þ 1ÞD
discussion, we label the 8 Majoranas χ by indices
m ¼ 0, 1, 2, 3, v ¼ 1, 2, and form the field Xα;v;β in
Eq. (97). The SU(2) gauge symmetry acts on X from the
right, as in Eq. (86), and the ð3þ 1ÞD gauge action has the
form

LQCD4
¼ tr½X̄ðiγμDa

μ þmÞX�: ð111Þ

In the bulk this gauge theory describes a bosonic system
with SOð5Þ × ZT

2 symmetry. SO(5) is realized projectively
on the Majorana fermions, which form an Sp(4) funda-
mental Eq. (101). As in ð2þ 1ÞD [Eq. (103)], we can
rewrite Eq. (111) as two flavors of Dirac fermions with the
same mass m coupled to an SU(2) gauge field.
What state does the theory Eq. (111) realize? First,

consider this theory on a closed manifold. Then integrating
out the massive fermions produces, at long wavelengths,
the standard Yang-Mills action for the dynamical SU(2)
gauge field with no topological term. Indeed, each flavor of
Dirac fermions with inverted mass would give rise to an
SU(2) θ term in the action with θ ¼ π:

Lθ ¼
θ

2ð2πÞ2 trSUð2Þf ∧ f: ð112Þ

Thus, two flavors of Dirac fermions with the same mass
give θ ¼ 2π, which is equivalent to θ ¼ 0 (see Sec. VII for
a more careful discussion). It is expected that the pure
Yang-Mills theory will confine, and so the ground state is
seemingly trivial. Now consider the theory in the presence
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of a boundary. Though the bulk is confined, the boundary is
precisely the QCD3 theory of interest to us with global
SOð5Þ×ZT

2 symmetry. As promised, the bulk theory there-
fore describes the SPT phase of bosons with SOð5Þ × ZT

2

symmetry. In principle, this construction could also be used
to write a variational (Gutzwiller-projected) wave function
for a lattice SO(5) topological paramagnet [104].
How do we formally describe the bulk response to a

background SO(5) gauge field that captures the structure of
the Z2-indexed monopole in these systems? In Sec. VII we
show that the partition function of the bulk SPT phase takes
the form

Z½A5� ¼ jZ½A5�jeiπ
R

w4½A5�: ð113Þ

Here, w4½A5� ¼ 0, 1 is a quantity known as the fourth
Steifel-Whitney class of the SO(5) gauge bundle A5 [105].

The phase eiπ
R

w4½A5� is the analog of the familiar θ-term
response of the standard topological insulator to back-
ground U(1) gauge fields. In contrast to the usual case, here
the θ angle is restricted to two discrete values: 0 (corre-
sponding to a totally trivial state) or π (corresponding to the
SPT phase of interest to us here). Precisely such a discrete θ
term was introduced a few years ago in Ref. [44] for non-
Abelian gauge theories. In that work the possibility of such
θ terms was pointed out and some of their physical
consequences were discussed. We see that such θ terms
emerge naturally in the response of bosonic SPT phases.
Our discussion above can be viewed as a construction of an
SO(5)-symmetric bosonic ð3þ 1ÞD model whose response
includes these discrete θ terms. Indeed, in Sec. VII, we
show explicitly that the theory Eq. (111) has this discrete θ
term in its response to a background SO(5) gauge field.

E. Symmetry-enforced gaplessness

As mentioned above, the IR fate of Nf ¼ 2 QCD3 is at
present unclear. However, our understanding of the anoma-
lous symmetry realization in this theory enables us to
derive some general restrictions. We show that either the
SOð5Þ × ZT

2 symmetry is spontaneously broken or the
theory is gapless in the IR. This result follows purely from
the anomalous symmetry realization. Indeed, it is a general
feature of the surface of the bulk ð3þ 1ÞD boson SPTwith
SOð5Þ × ZT

2 symmetry discussed in the previous section.
Such a phenomenon was first described for some fermion
SPTs in Ref. [106] and dubbed “symmetry-enforced gap-
lessness.” Other examples, including some boson SPTs, are
described in Refs. [107,108].
Consider a putative gapped state of the ð2þ 1ÞD theory

that preserves the SOð5Þ × ZT
2 symmetry. All the quasi-

particles of this state must transform under some repre-
sentation, possibly projective. As usual, if a quasiparticle
transforms nonprojectively under SO(5), we can “screen” it
using composites of the n̂ vector to make it a singlet under

SO(5). Therefore, the only nontrivial symmetry possibility
is a quasiparticle transforming under the four-dimensional
spinor representation [fundamental of Sp(4)]. Let us call
such quasiparticles XI .
We think of QCD3 as living on the surface of the

ð3þ 1ÞD SPT described above. Now let us tunnel in a
Z2-valued SO(5) monopole through the surface. We know
that the monopole breaks SO(5) to SOð2Þ × SOð3Þ, and
that it transforms in the ð0; 1=2Þ representation of
SOð2Þ × SOð3Þ. Therefore, in order for SOð2Þ × SOð3Þ
charge to be conserved, there must be a quasiparticle in this
putative gapped surface state with these properties.
However, the only quasiparticles that transform nontrivially
under SO(5) are the “spinors” XI. They transform with
SO(2) charge of 1=2 and as a spinor under the SO(3), and
not under the ð0; 1=2Þ representation. It follows that the
gapped state we imagined cannot have the right anomaly,
and hence is not a possible surface state.
Note, however, that if time reversal is broken, then there

can be a Hall conductivity for the SO(5) currents. Then the
SO(5) monopole threading will nucleate an SO(2) charge
determined by the Hall conductivity. This can then combine
with the SO(5) spinor XI to produce an object with ð0; 1=2Þ
quantum numbers under the SOð2Þ × SOð3Þ symmetry, as
required. Thus, if time reversal is broken, a gapped SO(5)-
symmetry-preserving state is no longer prohibited. Indeed,
it is easy to construct a “chiral spin-liquid” state explicitly;
see Sec. VII D.
The conclusion therefore is that, in the IR,Nf ¼ 2QCD3

with SOð5Þ × ZT
2 symmetry must either spontaneously

break the symmetry or be gapless, i.e., flow to a CFT. It
cannot be fully gapped while preserving symmetries even if
we allow for nontrivial topological order.
As another application of this result, consider the fate of

the Néel-VBS transition at the longest distances. One
interpretation of the existing numerics is to say that the
renormalization group (RG) flows are attracted to a ray with
SOð5Þ × ZT

2 symmetry. If so, then the eventual destination of
this ray is either a weak first-order transition, a ZT

2 broken
spin liquid, or a gapless CFT—a gapped, symmetry-
preserving, topologically ordered state is ruled out [109].

VII. QCD3 AS THE SURFACE OF AN
SO(5)-INVARIANT ð3 + 1ÞD SPT:

FORMAL DESCRIPTION

Here, we expand on the discussion in Sec. VI C and
demonstrate more formally that SO(5)-symmetric Nf ¼ 2
QCD3, Eq. (100), can be interpreted as a surface theory of a
bosonic SO(5)-protected ð3þ 1ÞD SPT phase. We first
develop a precise formal description of the anomaly of
QCD3 and show how it is compensated by the ð3þ 1ÞD
SPT bulk. We also sharpen the parton construction of this
SPT outlined in Sec. VI C to derive the bulk partition
function in the presence of a background SO(5) gauge field.
We explicitly derive the advertised discrete theta term. See
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Appendix D for a brief summary of math concepts that will
be useful in this section and Appendix E for a review of the
field-theoretic description of topological superconductors.

A. Gauging SOð3Þs
First, it is useful to recall how the gauge field associated

with the SOð3Þs spin-rotation symmetry enters in QCD3.
Since SOð3Þs symmetry is a true on-site symmetry of the
lattice spin system, its implementation in QCD3 must be
nonanomalous. Given an SOð3Þs gauge bundle Es over our
spacetime 3 manifold M, [110] we attempt to lift it to an
SUð2Þs gauge bundle Ês. The resulting SUð2Þs transition
functions Ûs

ij might fail to satisfy the cocycle condition:

Ûs
ikÛ

s
kjÛ

s
ji ¼ ð−1Þw2ðEsÞkji , where w2ðEsÞ ∈ H2ðM;Z2Þ is a

representative of the second Stiefel-Whitney class of Es
[111]. In this case, we take the transition functions of
our dynamical gauge field SUð2Þg to violate the cocyle
condition by precisely the same factor in the center of
SUð2Þg. That is, if we project the SUð2Þg transition

functions Ûg to SOð3Þg, we get an SO(3) bundle Eg with
w2ðEgÞ ¼ w2ðEsÞ. The fermions χm;v then see an SOð4Þ ¼
½SUð2Þs × SUð2Þg�=Z2 gauge field which satisfies the
cocycle condition. In the background of this SO(4) gauge
field As;g, the action Eq. (100) becomes

L ¼ iχ̄vγμð∂μ − iAs;gÞχv; ð114Þ

where As;g lives in soð4Þ Lie algebra and acts on the spin-
color indexm of χm;v but not on the valley index v. We note
that in addition to the soð4Þ gauge field, the fermions χm;v

also see a spin structure (we suppress the spin connection
above) with transition functions hij ∈ Spinð3Þ. Every
three-manifold is spin, so hij can always be chosen to
satisfy the cocycle condition (as we assume in the dis-
cussion above). However, it will be more useful to think of
hij as arbitrary lifts to Spin(3) of the SO(3) transition
functions in the tangent bundle. The fermions see only a
combination of SUð2Þs, SUð2Þg, and Spinð3ÞTM transition
functions, so we require only this combination to satisfy the
cocycle condition [112]. A change hij → ζijhij, ζij ¼ �1,
can be compensated by modifying the SUð2Þg bundle,

Ûg
ij → ζijÛ

g
ij, so the theory does not depend on the spin

structure. Further, w2ðEsÞþw2ðEgÞþw2ðTMÞ¼0 (mod 2),
where we are now thinking of w2 ’s as concrete cochains
representing H2ðM;Z2Þ [as already noted, as a cohomol-
ogy class, w2ðTMÞ ¼ 0].
We now discuss the regularization of Eq. (114)—in

principle, such regularization is provided by the lattice we
started with. An equivalent continuum regularization is
obtained by using Pauli-Villars (PV) regulators with
opposite mass for the Majoranas in the two valleys
v ¼ 1, 2. Recall that for a single SOðnÞ vector Majorana

fermion coupled to an SOðnÞ gauge field A, the PV
regulated partition function is given by [60]

Zχ;PV;�ðAÞ ¼ jZχðAÞj exp ½∓πiηðiDAÞ=4�; ð115Þ
where the sign in the exponent is determined by the sign of
the Pauli-Villars mass. Here, ηðiDAÞ is the η invariant of the
Dirac operator iDA ¼ iγμð∂μ þ iωμ − iAμÞ, [113]

η ¼ ηð0Þ þ N0;

ηðsÞ ¼
X
λ≠0

sgnðλÞjλj−s; ð116Þ

where λ in the above sum are eigenvalues of iDA, and N0

are the number of zero modes of iDA. So, when we use PV
regulators of opposite mass for the two valleys v ¼ 1, 2, we
obtain, after integrating the Majorana fermions out,

exp ð−SQCD3
½As;g�Þ ¼ jZχv¼1

ðAs;gÞj2; ð117Þ

with Zχv¼1
ðAs;gÞ the partition function of Majoranas in just a

single valley v ¼ 1. The theory thus defined obviously
preserves SOð3Þs as a nonanomalous symmetry. Likewise,
time-reversal symmetry [last line of Eq. (96)] is preserved
and nonanomalous—this must be the case, as it is an on-site
symmetry of the initial lattice model [115]. The discrete
lattice symmetries in Eq. (96) are global symmetries of
Eq. (117); however, they are (in a certain sense) anomalous:
there is no contradiction here, since they are not realized by
the original lattice model in an on-site manner.
For future reference, we note that we can obtain an

equivalent theory [Eq. (117)] by regulating both valleys in
the same way (with the same sign of PV mass) and
supplementing the action by a Chern-Simons term for As;g:

SQCD3
¼

Z
M
½ χ̄vγμð∂μ þ iωμ − iAs;gÞχv�PV;þ

− iCSSOð4Þ½As;g; Y4� − 4iCSg½Y4�; ð118Þ
where the subscript PVþ indicates that the PV mass is the
same for both valleys; see Eq. (115). We use the notation
where CSSOðnÞ½A; Y4� is the Chern-Simons action for SOðnÞ
gauge field A at level 1, [116] and CSg½Y4� is the
gravitational Chern-Simons action (corresponding to the
gravitational response of a px þ ipy superconductor).
The significance of the parameter Y4 is as follows. We
recall that a technical trick to define a Chern-Simons term is
to extend the three-manifold M to a four-manifold Y4, and
also extend the gauge field A from M to Y4:

CSSOðnÞ½A; Y4� ¼
π

2ð2πÞ2
Z
Y4

trSOðnÞF ∧ F;

CSg½Y4� ¼
π

8ð24π2Þ
Z
Y4

trR ∧ R; ð119Þ
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where F ¼ dA − iA ∧ A is the SOðnÞ field strength, R is
the Riemann curvature tensor, and the trace trSOðnÞ is in the
n-dimensional vector representation. In order for a theory
to be a well-defined strictly ð2þ 1ÞD theory, it must be
independent of the choice of the four-manifold Y4 and the
particular extension of the gauge field to Y4. For our theory,
Eq. (118), this is actually guaranteed by the Atiyah-Patodi-
Singer (APS) theorem. Indeed, recall that by the APS
theorem, if our three-manifold M is endowed with an
½SOðnÞA × Spinð3ÞTM�=Z2 bundle E (where n is even) and
M is the boundary of a four-manifold Y4 such that E
extends to a ½SOðnÞA × Spinð4ÞTY4

�=Z2 bundle over Y4,
then [114]

π

2
ηðiDSOðnÞ

A;M Þ ¼ CSSOðnÞ½A; Y4� þ nCSg½Y4� − 2πJ ½A; Y4�;
ð120Þ

where 2J ½A; Y4� is the index of the Dirac operator iDA on
Y4 with APS boundary conditions [117]. Since the left-hand
side of Eq. (120) depends only on the boundary data, the
sumCSSOðnÞ½A; Y4� þ nCSg½Y4� is independent of the exten-
sion chosenmodulo 2π [118]. This means that Eq. (118) is a
well-defined strictly ð2þ 1ÞD theory. Furthermore, inte-
grating the fermions in Eq. (118) out using Eq. (115) and
applying Eq. (120), we recover the original regulariza-
tion Eq. (117).
Given the definition Eq. (119) of the SO(4) Chern-

Simons term via the extension to Y4, we can rewrite it in
terms of field strength of SUð2Þs and SUð2Þg gauge fields
As and ag, or, alternatively, their SO(3) representations,
[119] obtaining

CSSOð4Þ½As;g;Y4�þ4CSg½Y4�
¼CSSUð2Þ½As;Y4�þCSSUð2Þ½ag;Y4�þ4CSg½Y4� ð121Þ

¼1

2
CSSOð3Þ½As;Y4�þ

1

2
CSSOð3Þ½ag;Y4�þ4CSg½Y4�; ð122Þ

where, as usual for an SU(2) gauge field A,

CSSUð2Þ½A; Y4� ¼
1

4π

Z
Y4

trSUð2ÞF ∧ F; ð123Þ

and the trace is in the spin-1=2 representation. The half-
integer-level SO(3) Chern-Simons terms in Eq. (122) are
not independent of Y4 individually, but the full sum is
independent of Y4 [the integer-level SU(2) terms in
Eq. (121) are also not individually independent of Y4,
since transition functions for SUð2Þs and SUð2Þg do not
independently satisfy the cocycle condition]. It is instruc-
tive to check this statement without appealing to the APS
theorem. To show that Eq. (122) is independent of Y4, it
suffices to check that it vanishes modulo 2π when Y4 has no

boundary. Recalling that for an SOðnÞ gauge bundle on a
closed manifold Y4 the first Pontryagin number is given
by [111]

p1 ¼
1

2ð2πÞ2
Z
Y4

trSOðnÞF ∧ F ð124Þ

and the signature of the manifold is [111]

σ ¼ −
1

24π2

Z
Y4

trR ∧ R; ð125Þ

we must show that

pSOð3Þ
1 ½As; Y4� þ pSOð3Þ

1 ½ag; Y4� − σ½Y4� ¼ 0 ðmod 4Þ
ð126Þ

for any closed Y4. Now, for an SOðnÞ gauge bundle [44],

p1 ¼ Pðw2Þ þ 2w4 ðmod 4Þ; ð127Þ

where wi are the Stiefel-Whitney classes of the bundle and
P∶H2ðZ2Þ → H4ðZ4Þ is the Pontryagin square operation,
which satisfies Pðaþ bÞ ¼ PðaÞ þ PðbÞ þ 2a ∪ b
(mod 4) (see Appendix D for details). Recalling that
w2½As� þ w2½ag� þ w2ðTY4Þ ¼ 0, and that for SO(3) bun-
dles w4 ¼ 0, Eq. (126) reduces to

p1½As;Y4� þp1½ag;Y4�− σ½Y4�

¼
Z
Y4

f2Pðw2½As�Þ þ 2w2½As� ∪ w2½TY4� þPðw2½TY4�Þg

− σ½Y4�; ð128Þ

where all manipulations are modulo 4. On an orientable
four-manifold Y4, for any a ∈ H2ðZ2Þ, a∪a¼a∪w2½TY4�
(see, e.g., Ref. [120], p. 132); furthermore, PðaÞ ¼ a ∪ a
(mod 2), so the first two terms on the rhs of Eq. (128) add
to 0 mod 4. The remaining statement,

R
Y4
Pðw2½TY4�Þ ¼ σ

(mod 4), is also true [121].

B. Gauging SO(5)

We are now ready to discuss gauging of the full SO(5)
global symmetry of QCD3. Given an SO(5) gauge bundle
with connection A5 on our three-manifoldM, we attempt to
lift it to Spð4Þ ¼ Spinð5Þ. The resulting transition functions
may not satisfy the cocycle condition: the defect is w2½A5�.
As before, we choose SUð2Þg transition functions so that
the combination of Spð4Þ, SUð2Þg, and Spinð3ÞTM tran-
sition functions satisfies the cocycle condition, i.e.,
w2½A5� þ w2½ag� þ w2½TM� ¼ 0 (mod 2), with w2½ag� being
the second Stiefel-Whitney class of the SOð3Þg gauge
bundle. Thinking of ½Spð4Þ × SUð2Þg�=Z2 as a subgroup
of so(8), the (unregulated) action becomes

WANG, NAHUM, METLITSKI, XU, and SENTHIL PHYS. REV. X 7, 031051 (2017)

031051-26



LQCD3
¼ χ̄γμð∂μ þ iωμ − iA5;g

μ Þχ; ð129Þ

with A5;g living in the so(8) Lie algebra, i.e., acting on spin-
color m and valley indices v of χ. We must now specify
how to regulate the above action. We can no longer use PV
regulators of opposite mass for the two valleys since this
will break SO(5) symmetry. Instead, we use a common PV
regulator for the so(8) vector χ and supplement the action
by an so(8) Chern-Simons term,

SQCD3
¼

Z
M
½χ̄γμð∂μ þ iωμ − iA5;g

μ Þχ�PV;þ

−
i
2
CSSOð8Þ½A5;g; Y4� − 4iCSg½Y4�; ð130Þ

with the Chern-Simons terms again defined by extending to
a four-manifold Y4, as before. When the SO(5) bundle
reduces to an SOð3Þs bundle, Eq. (130) reduces to Eq. (118)
as needed. But are the Chern-Simons terms in Eq. (130)
independent of Y4 for an arbitrary SO(5) bundle? We show
that the answer is no: Eq. (130) is not well defined as a
purely ð2þ 1ÞD theory. However, we are able to define it
as a surface of an SO(5)-protected ð3þ 1ÞD bosonic
SPT phase.
First, we observe that if A5;g was an arbitary SO(8)

bundle, Eq. (130) obviously would not define a purely
ð2þ 1ÞD theory, as the SO(8) level is fractional. In fact,
physically, Eq. (130) is just the action of eight identical
copies of a ð3þ 1ÞD topological superconductor living on
the space Y4 and coupled to an SO(8) gauge field. The bulk
of such a state has a nontrivial SO(8) response. Indeed, by
the APS theorem Eq. (120), the partition function of
Eq. (130) after integrating the fermions out becomes

exp ð−SQCD3
½A5;g�Þ ¼ jZχ ½A5;g�jð−1ÞJ ½A5;g;Y4�; ð131Þ

with jZχ ½A5;g�j the absolute value of the partition function
for our eight ð2þ 1ÞD Majorana fermions coupled to A5;g,
and 2J the index of iDA5;g on Y4. For closed Y4 and a
general SO(8) gauge field, J is not necessarily even, so
SQCD3

½A5;g� depends on the extension to Y4. However, our
A5;g is not the most general SO(8) gauge field; rather, we are
dealing with an ½Spð4Þ × SUð2Þg × Spinð3ÞTM�=ðZ2 × Z2Þ
bundle: when this bundle is extended to the four-manifold
Y4, is Eq. (130) independent of the extension? [123] We
rewrite,

1

2
CSSOð8Þ½A5;g; Y4� ¼

1

2
CSSOð5Þ½A5; Y4� þ

1

2
CSSOð3Þ½ag; Y4�:

ð132Þ

Thus, to check whether Eq. (130) is well defined as a
ð2þ 1ÞD theory, we must determine whether for closed Y4

pSOð5Þ
1 ½A5; Y4� þ pSOð3Þ

1 ½ag; Y4� − σ½Y4� ¼? 0 ðmod 4Þ:
ð133Þ

We again use the identity Eq. (127), and w2½A5� þ w2½ag� þ
w2½TM� ¼ 0. Repeating the manipulations below Eq. (126),
we obtain

p1½A5;Y4�þp1½ag;Y4�−σ½Y4� ¼ 2w4½A5;Y4�≠ 0 ðmod 4Þ:
ð134Þ

Thus, Eq. (130) generally depends on the extension to Y4:
given two extensions to Y4 and ~Y4, we have

expf−SQCD3
½A5;g; ~Y4� þ SQCD3

½A5;g; Y4�Þg

¼ exp

�
πi

Z
~Y4∪Ȳ4

w4½A5�
�
; ð135Þ

where the last integral is over the manifold obtained by
gluing together ~Y4 and Y4 with reversed orientation.
Crucially, the variation Eq. (135) depends only on the
extension of the SO(5) bundle A5, but not on the SUð2Þg
bundle. Still, we cannot promote SO(5) to an on-site
symmetry of a strictly ð2þ 1ÞD theory. However, we can
think of the theory Eq. (130) as the surface of an SO(5)-
protected ð3þ 1ÞD SPT, as follows. Let X4 be the physical
ð3þ 1ÞD manifold that our SPT phase lives on. There is an
SO(5) gauge field A5 on X4. When X4 has no boundary, we
let the partition function be

Z3þ1½A5; X4� ¼ exp

�
πi

Z
X4

w4½A5�
�
: ð136Þ

When X4 has a boundary, ∂X4 ¼ M, Eq. (136) is not well
defined [not gauge invariant under using different repre-
sentatives of the cohomology class w4½A5� ∈ H4ðX4; Z2Þ].
However, we can combine the surface action Eq. (130) with
the bulk action Eq. (136), to obtain

Sbulkþbound
QCD3

¼
Z
M
½χ̄vγμð∂μ þ iωμ − iA5;gÞχv�PV;þ

−
i
2
CSSOð5Þ½A5; Y4� −

i
2
CSSOð3Þ½ag; Y4�

− 4iCSg½Y4� þ πi
Z
X4∪Ȳ4

w4½A5�: ð137Þ

Again, the Chern-Simons terms in the second line of
Eq. (137) are defined with the help of an extension to an
auxiliary four-dimensional manifold Y4. The term in the last
line of Eq. (137) involves an integral over a manifold
obtained by gluing X4 and Y4 with its orientation reversed.
Every line in Eq. (137) is well defined; however, the second
and third lines individually depend on the extension to Y4.
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However, the Y4 dependence of the second and third lines
cancels, due to Eq. (135). Therefore, Eq. (137) is overall
independent of Y4. It does, however, depend on A5 on the
physical ð3þ 1ÞD manifold X4 and reduces to Eq. (136)
when X4 has no boundary. Therefore, Eq. (137) is a
perfectly well-defined action of an SO(5)-protected SPT
phase on the ð3þ 1ÞD manifold X4 with boundaryM: only
the background SO(5) gauge field A5 lives in the bulk; the
fields ag, χ live on the surface. The independence of the
variation Eq. (135) of ag is crucial for such a SPT
interpretation to be possible.
Let us obtain some intuition for the bulk topological

term Eq. (136). First, consider gauging just the
SOð3Þs×SOð2ÞVBS subgroup of SO(5); i.e., the SO(5)
bundle is a direct sum of SOð3Þs and SOð2ÞVBS bundles.
Label the corresponding gauge bundles as As and AVBS. We
have

2wSOð5Þ
4 ½A5� ¼ p1½A5� − Pðw2½A5�Þ

¼ pSOð3Þ
1 ½As� þ pSOð2Þ

1 ½AVBS�
− Pðw2½As� þ w2½AVBS�Þ

¼ −2w2½As� ∪ w2½AVBS� ðmod 4Þ; ð138Þ

where we repeatedly use Eq. (127), together with the fact
that w2 and p1 are additive under SOðnÞ bundle addition,
and that w4 ¼ 0 for SOðnÞ with n ≤ 3. So,

w4½A5� ¼ w2½As� ∪ w2½AVBS� ¼ w2½As� ∪ FVBS

2π
; ð139Þ

where we use the fact that for an SO(2) gauge field, w2 and
the first Chern class ½F=ð2πÞ� coincide mod 2: w2 ¼
½F=ð2πÞ� (mod 2) [124]. What is the physical interpretation
of Eq. (139)? Imagine we take our bulk manifold to be
S2 × Σ, with Σ an arbitrary two-dimensional surface. Place
flux 2π of FVBS through S2. Then the partition function
Eq. (136) is Z ¼ expðπi RΣ w2½As�Þ. This is precisely the
partition function of a SOð3Þs-protected ð1þ 1ÞD Haldane
phase on Σ [125]. We know that the Haldane phase on a
spatial interval I ¼ ½0; 1� has dangling spin 1=2’s at the
boundary. So, we can guess that if we consider the theory
on the spatial manifold S2 × I, then there are dangling spin
1=2’s at the two ends of I—i.e., at the locations of
SOð2ÞVBS monopoles. We, therefore, conclude that the
topological term Eq. (139) makes monopoles of SOð2ÞVBS
transform in the spin-1=2 representation of SOð3Þs. This is
precisely the conclusion reached by less formal methods in
Sec. VI C.
We can further focus on just the easy-plane subgroup

SOð2Þs of SOð3Þs, then Eq. (139) reduces to

S ¼ πi
Z
X4

w4½A5� ¼ πi
Z
X4

Fs

2π
∪ FVBS

2π
: ð140Þ

This is precisely the mutual θ¼π term for Uð1Þs×Uð1ÞVBS.
Note that to protect this θ value from shifting, one needs to
rely on some discrete symmetry, such as spin-flip sym-
metry or time reversal.
What if we restrict ourselves to an SO(4) subgroup of

SO(5)? Let us write SOð4Þ ¼ ½SUð2ÞL × SUð2ÞR�=Z2.
Label associated SOð3ÞL and SOð3ÞR gauge fields as AL

and AR. We have w2½AL� ¼ w2½AR� ¼ w2½A5�. Now,

2w4½A5� ¼ p1½A5� − Pðw2½A5�Þ

¼ 1

2
pSOð3Þ
1 ½AL� þ 1

2
pSOð3Þ
1 ½AR� − Pðw2½AR�Þ

¼ 1

2
p1½AL� − 1

2
p1½AR� ðmod 4Þ: ð141Þ

Therefore, Eq. (136) reduces to

S ¼ 1

4
CSSOð3Þ½AL; X4� −

1

4
CSSOð3Þ½AR; X4�

¼ 1

2
CSSUð2Þ½AL; X4� −

1

2
CSSUð2Þ½AR; X4�: ð142Þ

In SU(2) terminology Eq. (112), this corresponds to
opposite θ angles for SUð2ÞL and SUð2ÞR: θL¼−θR¼π.
Again, discrete symmetries, e.g., Z2 ¼ Oð4Þ=SOð4Þ, which
maps R ↔ L, and time reversal, are required to fix these θ
angles from flowing.

C. Bulk parton construction for boson SPT
with SOð5Þ × ZT

2 symmetry: Formal derivation

In this section, we reconsider from a more formal stand-
point the parton construction of the ð3þ1ÞD SOð5Þ×ZT

2

boson SPT presented at the end of Sec. VI C. We show that
this construction precisely recovers the bulk SPT “discrete
θ-angle” response in Eq. (136). This provides a more
physical motivation for our ð3þ 1ÞD bulk “completion”
of QCD3 in Eq. (137).
As in Sec. VI C, we begin by considering a ð3þ 1ÞD

“topological superconductor” of fermions with SOð8Þ × ZT
2

symmetry. We will then gauge an SU(2) subgroup and
show that the result is precisely the boson SPT of interest.
As explained in Sec. VI C, we represent the SOð8Þ × ZT

2 -
symmetric topological superconductor by eight massive
Majorana fermions with an inverted mass, Eq. (110). Let us
consider the partition function on a manifold X4 in the
presence of a background SO(8) gauge bundle A8. We
restrict ourselves to closed oriented manifolds. The parti-
tion function takes the form (see Appendix E)

ZTSC½A8� ¼ jZTSCjeiπfðp1½A8�=2Þ−ðσ=2Þg; ð143Þ

with the p1, σ given by Eqs. (124) and (125). Further, by
the Atiyah-Singer index theorem Eq. (120), we have
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p1½A8�
2

−
σ

2
¼ J ∈ Z: ð144Þ

Here, 2J is the index of the ð3þ 1ÞD massless Dirac
operator on X4. This implies that the partition function in
Eq. (143) is real (but not necessarily positive), as required
for a time-reversal invariant SPT state.
Note that on a spin manifold f½p1ðA8Þ�=2g is itself an

integer (and so is σ=2). This follows because by Eq. (127),
p1½A8� ¼w2½A8�∪w2½A8� ðmod 2Þ¼w2½A8�∪w2½TX4� ¼ 0
ðmod 2Þ. However, as we eventually want to describe a
boson SPT, it is important to be able to formulate the theory
on a nonspin manifold. As usual, since the fermions
see transition functions in ½SOð8Þ × Spinð4ÞTX4

�=Z2, we
require only these transition functions to satisfy the cocycle
condition. Then, though f½p1ðA8Þ�=2g and σ=2 are not
separately integers, their sum is.
Now, to construct the boson SPT phase, we gauge the

SUð2Þg subgroup of SO(8), as in Eq. (111). We further
couple the system to a background SO(5) gauge field A5.
As we discuss in Sec. VI C, the partons χ transform as
Sp(4) spinors under SO(5), so they see a combined
½Spð4Þ × SUð2Þg�=Z2 gauge field. Together with the
Spinð4ÞTX4

transition functions, this yields overall transi-
tion functions in ½Spð4Þ × SUð2Þ × Spinð4ÞTX4

�=ðZ2 × Z2Þ.
This gives the by now familiar condition

w2½A5� þ w2½ag� þ w2½TX4� ¼ 0 ðmod 2Þ: ð145Þ

For such an SO(8) bundle, we have

p1½A8� ¼ p1½A5� þ p1½ag�: ð146Þ

Thus, applying Eq. (134), we obtain

ZTSC½A5; ag� ¼ jZTSCjeiπ
R
X4

w4½A5�
: ð147Þ

Thus far we have treated ag as a background gauge field.
Now we make it dynamical; i.e., we integrate the partition
function over ag. There is no topological term for ag and its
dynamics will be governed by the usual Yang-Mills action,
which is expected to confine all fields charged under ag
leaving behind a trivial gapped vacuum. The resulting
theory has a partition function with a phase given precisely

by e
iπ
R
X4

w4½A5�
. Further, it can be formulated on a nonspin

manifold with only a background SO(5) gauge field. The
local operators are bosonic and transform nonprojectively
under SO(5). Thus, we have constructed the desired boson
SPTwith SOð5Þ × ZT

2 symmetry, and the partition function
matches Eq. (136) proposed in Sec. VII B based on
consistency arguments.

D. Chiral spin liquid

We note that if we break time reversal in QCD3 with an
Sp(4)-preserving mass term,

δL ¼ mχ̄χ; ð148Þ
and make the mass m large enough (compared say to the
gauge coupling), we drive the system into a topologically
ordered phase. Integrating the gapped χ’s in Eq. (137) out,

Sbulkþbound
QCD3

¼ sgnðmÞ
hi
2
CSSOð5Þ½A5; Y4� þ iCSSUð2Þ½ag; Y4�

þ 4iCSg½Y4�
i
þ πi

Z
X4∪Ȳ4

w4½A5�: ð149Þ

Without loss of generality, choosem > 0. By looking at the
action for ag, we see that we get a ð2þ 1ÞD SUð2Þ1
topological order, which is just a semion state f1; sg. The
semion s is just the Majorana χ. The chiral central charge
c ¼ 2 − 1, with 2 ¼ 4 × 1=2 coming from the gravitational
Chern-Simons term and −1 from integrating ag out. The
semion χ transforms projectively under the SO(5) sym-
metry—as an Sp(4) spinor. In particular, it carries spin 1=2
under SOð3Þs. Further, the SO(5) response is given by a
Chern-Simons term with level k ¼ 1=2, so the level of
Chern-Simons response to SOð3Þs gauge field is also 1=2.
We see that this state has all the properties of a chiral spin
liquid [94].
Now, it would be a little surprising if the chiral spin

liquid was in the vicinity of the deconfined quantum critical
point. If we consider the NCCP1 formulation Eq. (1), then
one operator with the same quantum numbers as χ̄χ is
ϵμνλ∂ρfbρμfbνλ, with fbμν ¼ ∂μbν − ∂νbμ. Given the number
of derivatives, one would naively expect this term to be
irrelevant in the NCCP1 model. If NCCP1 and QCD3

indeed share the same fixed point, this would then imply
that χ̄χ is irrelevant at the QCD3 fixed point—an unex-
pected, but not impossible scenario. It would be interesting
to determine the scaling dimension of this operator numeri-
cally at the deconfined critical point. In the lattice magnet, it
corresponds to the imaginary part of the plaquette ring
exchange:

χ̄χ ∼
−i
2
ðPiþŷ;iþx̂þŷPiþx̂þŷ;iþx̂Piþx̂;i − H:c:Þ

∼ Siþx̂þŷ · ðSi × Siþx̂Þ þ Siþŷ · ðSi × Siþx̂Þ
þ Siþŷ · ðSiþx̂ × Siþx̂þŷÞ þ Siþŷ · ðSi × Siþx̂þŷÞ;

where Pij ¼ 2Si · Sj þ 1=2 is the exchange operator.

VIII. DISCUSSION AND IMPLICATIONS
OF THE DUALITIES

The most fundamental question about both the SU(2)-
invariant and the easy-plane NCCP1 theories is whether
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they describe CFTs in the IR. We do not tackle this question
head-on in this paper. We first discuss what follows if the
dualities are assumed to hold in their strong forms in the IR.
As mentioned in the Introduction, the various theories
could fail to flow to nontrivial fixed points. In this scenario
the dualities may still be relevant to the “quasiuniversal”
physics up to a large length scale. We discuss these issues,
and what is known about the IR fate of the deconfined
critical transitions, in Sec. IX.

A. Deconfined criticality

Many consequences of the emergent SO(5) symmetry
have been explored numerically in Ref. [15]. In Sec. IV E,
we discuss an additional consequence for the phase dia-
gram in the presence of perturbations that break SO(5).
This will be interesting to explore in future numerical work.
We argue that the proposed duality web provides an

explanation of this emergent SO(5) symmetry, despite the
fact that the SO(5) symmetry is not manifest in any single
member of the duality web. In particular, the proposed self-
duality of the SU(2)-invariant NCCP1 model immediately
implies emergent SO(5) symmetry in the IR. We discuss
other numerical tests of the fermionic versions of this
theory separately below.
We also discuss the continuum Nf ¼ 2 QCD3 theory

which has manifest SO(5) symmetry and which shares the
same anomaly as the putative deconfined critical point, and
may possibly flow to it in the IR. The IR fate of the QCD3

theory is not currently known and is a good target for future
numerical work. It will be particularly interesting to see if it
shares the (quasi)universal power-law correlations seen in
other models equivalent to the SU(2)-invariant NCCP1.
For the easy-plane model, direct numerical simulations

of quantum magnets find a first-order transition. As we
have emphasized several times, the nature of the transition
in this model is worth revisiting. We have seen that this
model is dual to a version of fermionic Nf ¼ 2 QED3 with
Uð1Þ × Uð1Þ symmetry. For fermionic QED3 with SU(2)
flavor symmetry, there is some recent evidence that the
theory is conformal in the IR [45]. Further the results do not
seem to be sensitive to whether the lattice regulator
employed actually preserves full SU(2) flavor symmetry
or whether it has only U(1) flavor symmetry. In light of all
this, more numerical studies of the models in the easy-plane
duality web are clearly called for.
The strongest form of the duality web of these theories

asserts that all these theories flow in the IR to the same
Oð4Þ × ZT

2 -invariant CFT. Below, we describe some impli-
cations of the enhanced symmetry expected in such a
putative critical theory.
If an Oð4Þ × ZT

2 -symmetric fixed point does exist,
then for the easy-plane NCCP1 to flow to it in the IR it
must be that perturbations that break the symmetry to
fUð1Þ × ½Uð1Þ ⋊ Z2�g × Z2T are irrelevant. As we discuss
in Sec. III C, the simplest such perturbation is a Néel-VBS

anisotropy which lies in the (2,2) representation of SO(4)
(the quadrupled monopole operator Φ4

2 þΦ�4
2 pertinent to

the lattice magnet lies in the same representation). Thus, for
enlarged O(4) symmetry we need the scaling dimension
Δð2;2Þ > 3 at the O(4) fixed point.
If an Oð4Þ × ZT

2 -symmetric fixed point exists, and the
strongest form of the duality web holds, then a square
lattice spin-1=2 quantum magnet with XY symmetry can
show a direct continuous Néel-VBS transition with
enlarged O(4) symmetry.
An alternate possibility is that the Oð4Þ × ZT

2 CFT exists
and that SU(2) flavor symmetric QED3 flows to it, but the
Uð1Þ × Uð1Þ theories (easy-plane NCCP1 and QED3 with
the same symmetry) do not flow to that fixed point. This
scenario can be tested by numerical simulations of the
SU(2)-symmetric QED3 theory. We detail below how to
test for emergent O(4) symmetry. Should such a fixed point
be found, it will be interesting to calculate the scaling
dimension of operators transforming under the (2,2) rep-
resentation to test for relevance.
Finally, it is possible that an Oð4Þ × ZT

2 fixed point of the
kind we describe does not exist in the first place. Therefore,
we next turn to the fermionic theories where this question is
best addressed numerically.
Useful analytical insights will also come from conformal

bootstrap [25,26,127–129]. Note also that the duality
webs open up the possibility of analytical results for
deconfined critical points using large N in the fermionic
language [130–132].

B. QED3 and QED-GN

The strong self-duality for SU(2) flavor symmetric
QED3 implies an emergent O(4) symmetry which leads
to simple testable predictions.
The fermion bilinears ψ̄σψ are expected to be scaling

fields, with dimension smaller than their engineering
dimension of two, transforming in the (1,1) representation
of SO(4). O(4) symmetry relates them to strength-2
monopole operators in the QED3 theory, so calculating
correlations of monopole operators will allow interesting
tests of the emergent symmetry. Presumably this requires
some modifications of existing numerical calculations of
correlators in the QED3 theory. We therefore also describe
several tests using more ordinary correlators.
It should be fruitful to focus on correlations of the

conserved SO(4) currents. The operator ψ̄γ0σψ [the time
component of one of the SU(2) currents] was already
studied in Ref. [45] and shown to have the expected scaling
dimension 2. One of the three currents of the other SU(2) is
a simple operator in QED3: this is the gauge flux ϵμνλ∂νaλ.
Therefore, its time component, the magnetic flux, is related
by symmetry to ψ̄γ0σψ . Right at the critical point these
operators should have scaling dimension 2; this follows
from their conservation and is not a test of the symmetry
rotating them. A simple consequence of emergent O(4) is
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that the universal amplitudes of the two point functions
should also be the same for these different currents.
Specifically, if we compare the correlators of the SU(2)
currents with the correlators of ½1=ð2πÞ�ϵμνλ∂νaλ, they
should have the same universal amplitude in addition to
the same scaling dimension.
A more dramatic consequence arises if we perturb the

critical point by turning on either a nonzero temperature T
or a fermion mass m, both of which preserve SO(4). Then
the current correlations will involve a nontrivial universal
scaling function:

jkjF
�
m
T
;
ω

jkj ;
jkj
m

�
: ð150Þ

Now SO(4) symmetry predicts that this scaling function is
identical for the SU(2) current and for the 3-flux of the
gauge field. It will be very interesting to test this.
For instance, the SU(2) spin susceptibility should be
described by the same crossover function as the diamag-
netic susceptibility of the gauge field, and likewise the
SU(2) phase stiffness should be described by the same
crossover function as the Meissner stiffness of the
gauge field.
Finally, a representative of the important (2,2) operator

will be given by, e.g., 2ðψ̄σzψÞ2 − ðψ̄σxψÞ2 − ðψ̄σyψÞ2 [we
are assuming that the other SO(4) representations contrib-
uting to this operator are less relevant, as expected from the
discussion in Sec. III C]. If O(4) symmetry is established
numerically, then the irrelevance of this O(4)-breaking
perturbation can be tested.
For the QED3–GN model, the first issue that should be

addressed numerically is whether the transition is second
order at all (the duality with the NCCP1 model suggests
there should be critical behavior at least up to a large length
scale). Should such a second-order transition be found,
a number of its properties can be predicted using our
results.
First, if we measure ϕ correlations at this fixed point, we

are measuring correlations of the SO(5) vector. They can
therefore be compared with the Néel and VBS correlation
functions known from NCCP1 simulations. Second, the ϕ2

operator takes us to the QED3 or easy-plane NCCP1 fixed
point. We know that with SO(5) this is in the same
representation as the operator that tunes through the
transition in the NCCP1 theory (a component of Xð2Þ in
the notation of Sec. IV D). Hence, the ϕ2 scaling dimension
can be compared with results for ν at the SU(2)-symmetric
deconfined critical point.
More interestingly, the fermion bilinear ψ̄σzψ also

corresponds to an element of Xð2Þ. Thus, the vector
ψ̄σψ should have the same correlations as ϕ2 at the
QED3- GN fixed point (modulo subleading contributions)
if there is full SO(5) symmetry. This last statement is
particularly interesting as it does not involve comparing

with a different theory—both quantities are calculated in the
same simulation.

C. Comparison between the N = 2 QED3,
bilayer honeycomb lattice model,

and easy-plane spin models

For the putative O(4) fixed point, there are (at least)
three lattice model realizations that can be (and have been)
studied numerically: N ¼ 2 lattice QED3, spin models
that realize the easy-plane deconfined transition (if a model
with a second-order transition exists), and the bilayer
honeycomb lattice interacting fermion model, studied
in Refs. [46,47], that realizes the transition between a
trivial and SPT boson insulator with explicit SO(4)
symmetry. The critical exponents measured in different
models should be related to each other, which we dis-
cuss below.
The N ¼ 2 QED3 was treated as a stable CFT in

Ref. [45], so there is no correlation length critical exponent.
But there is still the anomalous dimensions associated
with the mass operators Mz ¼ ψ̄1ψ1 − ψ̄2ψ2, M0 ¼
ψ̄1ψ1 þ ψ̄2ψ2,

hMzð0ÞMzðrÞi ∼
1

r1þηψ̄σzψ
; hM0ð0ÞM0ðrÞi ∼

1

r1þηψ̄ψ
:

ð151Þ
According to Ref. [45], ηψ̄σzψ ∼ 1.0. To our knowledge, a
careful study of ηψ̄ψ has not been performed in numerical
simulations of QED3—we hope that future simulations will
also address this exponent.
The bilayer honeycomb lattice model describes a bosonic

transition, which may potentially also be described by the
N ¼ 2QED3 [133]. The tuning parameter for this transition
corresponds to the fermion mass mðψ̄1ψ1 þ ψ̄2ψ2Þ in the
field theory. There is a correlation length exponent νbh
defined as

ξ ∼m−νbh ∼ ðJ − JcÞ−νbh ; ð152Þ
where J is the interaction on the lattice that is tuned to the
critical point. The O(4) order parameter na has an anoma-
lous dimension ηbh:

hnað0ÞnaðrÞi ∼
1

r1þηbh
: ð153Þ

The easy-plane spin models have three different exponents,
ηxy (the same as ηvbs), ηz, and νjq:

ξ ∼ ðQ −QcÞ−νjq ;

hSxð0ÞSxðrÞi ∼ ð−1Þr
r1þηxy

;

hSzð0ÞSzðrÞi ∼ ð−1Þr
r1þηz

; ð154Þ
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where Q is a tuning parameter for the transition. If the
strong duality holds, we have the following relations:

3 −
1

νjq
¼ 1þ ηψ̄σzψ

2
;

ηz ¼ ηψ̄ψ ; ηxy ¼ ηbh;

3 −
1

νbh
¼ 1þ ηz

2
: ð155Þ

IX. CRITICAL AND PSEUDOCRITICAL POINTS

It is not yet certain whether the SU(2)-symmetric NCCP1

model has a true critical point, or whether it instead shows
pseudocritical behavior with a very large but finite corre-
lation length. Here, we review what is currently known
from simulations, and clarify what the latter possibility
would mean for the dualities we present here. We also
briefly discuss the easy-plane case.
Various lattice models that show a phase transition “in

the NCCP1 universality class” have been studied numeri-
cally [6–22,134]. The basic feature of these simulations is
that the correlation length ξ appears to diverge as the critical
point is approached, certainly becoming larger than
numerically accessible system sizes (up to 640 lattice
spacings in the model of Ref. [14]). At these length scales
the standard signs of first-order behavior, e.g., double-
peaked probability distributions, are absent. The qualitative
features of the transition are as expected from the theory of
deconfined criticality, [139] and finite-size estimates of
critical exponents are roughly consistent between different
lattice models.
These features are consistent with a continuous transition

(which much recent work assumes). However, it was
noted some time ago that various naively “universal”
quantities instead drift with system size, leading to con-
troversy about whether the transition was ultimately con-
tinuous or first order [9–13,17]. Reference [14] argued that
these drifts are not merely conventional finite-size correc-
tions to CFT scaling behavior, since making this
assumption leads to unphysical negative values for the
anomalous dimensions at large sizes, and suggested two
possible scenarios for reconciling the various numerical
results. One scenario is that the NCCP1 model shows a
continuous transition, but with unconventional finite-size
scaling behavior due to a dangerously irrelevant variable
[140] (see also Refs. [24,137]). The second scenario is that
NCCP1 shows a first-order transition [12,13,17] which is
rendered anomalously weak by a quasiuniversal mecha-
nism [14], which we discuss below.
Further complicating the issue, it was found numerically

that critical fluctuations at the deconfined transition are
SO(5) symmetric to a high level of precision [15]. Level
degeneracies found in the JQ model [141] also support this
enhanced symmetry (the approximate equality of Néel and

VBS scaling dimensions had been noticed earlier by
Sandvik [142]). At first sight SO(5) symmetry seems to
be strong evidence that the critical NCCP1 model flows to
an SO(5)-invariant CFT. However, subsequent investiga-
tions [25,26] of SO(5)-symmetric CFTs using the con-
formal bootstrap [127,128] did not find a sufficiently stable
[143] CFT in the expected region of parameter space. The
bootstrap shows that any sufficiently stable SO(5)-invariant
CFT must have a larger anomalous dimension for the SO(5)
vector than is expected from simulations of deconfined
criticality [25,26]. In view of this, it makes sense to revisit
the weakly-first-order scenario with SO(5) symmetry
in mind.
At first sight a first-order transition with ξ ≫ 1 is

implausible because of a fine-tuning problem. If a theory
has no nontrivial stable fixed point, the obvious way to get a
large ξ is to fine-tune it close to an unstable fixed point
[144]. Since this mechanism relies on fine-tuning, it is
unlikely to be the explanation for the apparent critical
behavior at the deconfined critical point (DCP), which
seems to be generic. However there is an alternative generic
mechanism for pseudocritical behavior with very large ξ
[145–147]. In this scenario, the large ξ can be understood in
terms of a fixed point which exists slightly outside the
physical parameter space of the model—for example, at
slightly smaller spatial dimension dc. The structure of the
RG flows close to dc implies an exponentially large
correlation length for d ≳ dc. This mechanism depends
on an accident in the universal structure of the RG flows,
but it does not require fine-tuning of a given microscopic
Hamiltonian. Additionally, this scenario is plausible for the
NCCP1 model (and indeed NCCPn−1 for nearby values of
n), given what is known about the d-dimensional NCCPn−1

model in various limits [14].
The basic mechanism is the annihilation of a stable and

an unstable fixed point as a parameter τ is varied. Here, τ is
a quantity that does not flow under RG, such as the spatial
dimension (in the case of NCCP1) or the rank of a
symmetry group. Quite generally, close to τc the RG
equation for the coupling λ which is becoming marginal
looks like

dλ
d lnL

¼ aðτc − τÞ − λ2; ð156Þ

where a and τc are universal constants and a > 0. For
τ < τc, both fixed points exist, and for τ > τc, neither do.
But for τ ≳ τc the RG flows become very slow close to
λ ¼ 0: the long RG time required to traverse the
“pseudocritical” region corresponds to a large length scale
ξ ∼ l0 exp ½π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðτ − τcÞ

p �, where l0 is nonuniversal. The
large amount of RG time spent near λ ¼ 0 implies that the
properties of the pseudocritical regime are quasiuniversal in
the limit of small τ − τc.
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In more detail, this is because (in the formal limit of
small τ − τc) the subleading RG couplings gi have time to
flow to well-defined pseudocritical values, independent of
their bare values in a given microscopic model. (The
relevant coupling that drives the transition is zero since
we consider the theory in the critical plane.) The RG flow is
attracted to a quasiuniversal trajectory through coupling
constant space, given by setting gi ¼ 0 up to corrections
that are exponentially small in 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
τ − τc

p
. A key point is

that quasiuniversality holds to exponentially good precision
in 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
τ − τc

p
, despite the fact that the flow of λ during a

stretch of RG time of order ln ξ is larger than this [148].
This flow of λ will lead to quasiuinversal drifts in, e.g.,
effective exponents.
TheQ-state Pottsmodel in 2D provides an example of this

phenomenon with τ ¼ Q [145–147,150–153] (in this con-
text λ was originally thought of as a fugacity for Potts
vacancies [145]). For Q < 4, both a critical and a tricritical
point exist, and they merge at Q ¼ 4. For Q≳ 4, the Potts
transition is very weakly first order. A priori the above
picture applies only for ðQ − 4Þ ≪ 1, but empirically it is
found that the transition remainsweakly first order at least for
Q ¼ 5, 6, 7, where ξ≃ 2512; 159; 48, respectively, on the
square lattice [153]. This mechanism for generating a small
mass scale has also been discussed in the context of 4DQCD
[154–156], with τ ¼ −Nf=Nc. (Fixed point annihilation
phenomena have also been discussed in QED3 [156–158],
and in a Landau-Ginsburg theory obtained from NCCPn−1

by condensing the monopole [159,160].) In the NCCPn−1

model, it is plausible that there is a range of n where the
transition is weakly first order but can be rendered continu-
ous by slightly decreasing the spatial dimension.
It should be noted that the choice of deformation

parameter τ is not unique; for example, in the weakly-
first-order regime of the Potts model, the transition can be
made continuous by reducing either Q or d (and in
NCCPn−1 we can certainly render the transition continuous
by a large enough increase in n). Alternately, one may
consider the theory only at the physical value of τ, and
attribute the pseudocritical behavior to proximity to the
nonunitary fixed points at λ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðτ − τcÞ

p
.

A possible explanation for the various numerical results
for the deconfined transition is that there is a pseudocritical
regime within the SO(5)-symmetric subspace of theory
space. If the effective scaling dimensions of allowed SO(5)-
breaking perturbations—specifically, the symmetric tensor

Xð4Þ
abcd discussed in Sec. IV D—are greater than three, the

NCCP1 model and QED-Gross-Neveu model can lie in the
basin of attraction of this regime, and will also show
pseudocritical behavior. In this scenario the dualities we
discuss apply to the physics at length scales up to ξ (and
somewhat beyond; see below).
To make the above possibility more concrete, we

may think of NCCP1 as a perturbation of an exactly

SO(5)-invariant theory whose RG behavior could in prin-
ciple be pinned down. The nonlinear sigma model is one
possibility: in the above scenario we would expect the
sigma model at strong coupling to exhibit pseudocritical
behavior. However, the language of the sigma model does
not give us an obvious candidate for the deformation
parameter τ. Tentatively, a renormalizable alternative
may be the Nc ¼ 2, Nf ¼ 2 QCD3 discussed in Sec. VI.
This theory has an SO(5) symmetry which becomes explicit
when it is written in terms of Majorana fermions. The
theory may spontaneously break SO(5) on the scale set by
the coupling, in which case it is not very interesting. But
another possibility is that it generates a long length scale by
the above mechanism. If so, Nf and d are candidates for
deformation parameters τ which could produce a true
fixed point.
Another way to think about the possibility of an SO(5)-

invariant pseudocritical regime is to hypothesize an exact
SO(5) symmetry for the nearby nonunitary fixed points at
imaginary λ. We would then view the NCCP1 model and
QED-Gross-Neveu model on length scales ≲ξ as pertur-
bations away from this fixed point.
As an aside, note that in the present scenario SO(5)

symmetry survives to length scales even larger than ξ. The
simplest possibility is that on scales larger than ξ the system
flows to the ordered phase of the SO(5) sigma model,
representing a first-order transition for NCCP1—although
in principle it is possible that the theory could flow to a new
nontrivial fixed point. This ordered sigma model is subject
to anisotropies due to the SO(5)-breaking perturbations that
are allowed in the microscopic model. However, these
anisotropies are small since the effective RG eigenvalue y4
of the four-index symmetric tensor is negative in the
pseudocritical regime: they do not become apparent until
a length scale L� ∼ ξ1þjy4j=3 × ðbare couplingÞ. Simulations
in the range ξ≲ L≲ L� would find four apparent
Goldstone modes [161].
A similar conjecture could in principle apply to the

dualities between O(4)-invariant theories, although
numerical results for the easy-plane Néel-VBS transition
suggest that a first-order transition with a rather shorter
correlation length than in the SU(2) case may be generic
there [20,69–72]. As noted in Sec. III C, it is also
conceivable that the fermionic theories flow to an O(4)-
symmetric fixed point (or pseudocritical point), but that the
easy-plane model does not, as a result of an additional
perturbation allowed by microscopic symmetry. Further
numerical studies of both the easy-plane model and of
QED3 along the lines described in Sec. VIII are clearly
called for.
For quantum phase transitions, the pseudocriticality

scenario implies that the system will show quantum critical
behavior above a parametrically low-temperature scale
T� ∼ J exp½−π= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðτ − τcÞ
p �, where J is a microscopic

energy scale, with critical exponents drifting as the

DECONFINED QUANTUM CRITICAL POINTS: … PHYS. REV. X 7, 031051 (2017)

031051-33



temperature changes. Criticality eventually disappears
below T�, and the system possibly crosses over to a
first-order transition. But for sufficiently low T�, a quantum
critical regime (the famous “critical fan”) should be
observable above T�. Pseudocritical systems thus present
interesting possibilities for phenomenology near quantum
phase transitions.
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APPENDIX A: MORE PRECISE
LAGRANGIANS

In this Appendix, we present the easy-plane dualities in a
more precise notation. We define a Dirac fermion through a
Pauli-Villars regulator, such that its partition function
[under a general U(1) gauge field a and metric g] is given
by Zψ ¼ jZψ je−iπη½a;g�=2. In the usual notation (used in the
main text), this would correspond to a Dirac Lagrangian
supplemented with a Chern-Simons term at level k ¼ −1=2
for both a and g. In general, it is more precise to use the η
invariant instead of the less well-defined k ¼ −1=2 Chern-
Simons terms (for more details, see, for example, Ref. [60]
for a review).
We also enforce the proper quantization of all the

U(1) gauge field (including dynamical and background
ones) from the beginning, by working directly with
B1;2 (instead of B, B0) in the main text. The duality now
reads:

jDbz1j2 þ jDb−B1
z2j2 − jz1j4 − jz2j4 þ

1

2π
bdB2

⇔ ψ̄1iDaψ1 þ ψ̄2iDaþB2−B1
ψ2 þ

1

4π
adaþ 1

2π
adB2

þ 1

4π
B2dB2 þ 2CSg; ðA1Þ

where CSg is a gravitational Chern-Simons term, normal-
ized such that in the absence of any other matter field it
leads to a thermal-Hall conductance κxy ¼ 1

2
½ðπ2k2BTÞ=3h�.

APPENDIX B: SOME OTHER DUALITIES

Here, we describe an alternate set of dualities between
theories with global SU(2), U(1), and T symmetries. We
begin with a duality between N ¼ 2 species of a free
massless Dirac fermion [162] and a bosonic theory.
To be concrete, we define the partition function of the

massless Dirac fermion in terms of the η invariant. To
maintain SU(2) symmetry between the two species, we
must choose the same regularization for both species.
Therefore, we write the partition function of the N ¼ 2
free massless Dirac fermion as

Zψ ¼ jZψ je−iπη½A;g�: ðB1Þ

Here, A, g are the background gauge field (strictly speaking
a spinc connection) and metric, respectively. We know that

e−iπη½A;g� ¼ e−i
R
ð1=4πÞAdAþ2CS½g�. Therefore, the theory can

be made time-reversal invariant [while keeping SU(2) and
U(1)] by adding

R ½1=ð4πÞ�AdAþ 2CS½g�. Thus, we con-
sider [163]

L0f ¼ iψ̄αDAψα þ
1

4π
AdAþ 2CS½g�: ðB2Þ

We claim this has a dual bosonic description:

L0b ¼ L½Zα; b� þ
1

2π
bdA −

1

4π
bdb; ðB3Þ

where b is an ordinary U(1) gauge field and Zα is a spin-
1=2 [under the global internal SU(2)] boson. As a check on
this proposal, consider giving the fermions a mass that
preserves SUð2Þ × Uð1Þ. If m < 0 (with our definition of
the fermion determinant), we get

R ½1=ð4πÞ�AdAþ 2CS½g�
(which corresponds to a gapped phase with σxy ¼ 1;
κxy ¼ 1). If m > 0, then we get the same but with opposite
sign (σxy ¼ −1, κxy=κ0 ¼ −1). The massless Dirac fermion
sits right at the transition between these two phases.
To match these from the boson side, if Zα is in a trivial

insulator, we integrate it out first, and then integrate out b.
This gives

R ½1=ð4πÞ�AdAþ 2CS½g�, which exactly matches
the fermion side with m < 0. The other phase is obtained
by putting Zα in a boson integer quantum Hall state. Then
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integrating out zα gives a term ½2=ð4πÞ�bdb. Combining
with the other terms already in the boson action, and
integrating out b, we get −fR ½1=ð4πÞ�AdAþ 2CS½g�g,
which also exactly matches the answer from the fermion
side with m > 0.
Therefore, what in the boson theory is the transition

between a trivial insulator and the BIQH state is dual to the
free massless Dirac fermion. This should not be surprising
to us. In fact, we already know two different forms of
actions that describe BIQH transitions: QED3 with Nf ¼ 2

and the easy-plane NCCP1. If we use the QED3 Lagrangian
in Eq. (B3), we simply get back the free Dirac fermion
theory. If we use the easy-plane NCCP1 theory instead, we
obtain a “composite boson” dual of two free Dirac fermions
discussed in Ref. [164]. However, in this representation the
spin SU(2) symmetry is nonmanifest. Thus, in the absence
of a manifestly SU(2)-invariant bosonic representation of
the BIQH transition, we just keep the form of the
Lagrangian in Eq. (B3) implicit.
We can also check monopole operators. A 2π monopole

Mb of b carries UAð1Þ charge 1, and Ubð1Þ charge −1.
Thus, ZαMb has no Ubð1Þ charge, has charge 1 under
UAð1Þ, is an SU(2) doublet, and is a fermion. We should
identify it with ψα.
Now, we follow the usual logic to generate other

dualities. First, we let A → a and treat a as a dynamical
gauge field (spinc connection), and couple ½1=ð2πÞ�adBþ
½1=ð4πÞ�BdB, where B is an ordinary U(1) gauge field. The
fermion side becomes

L1f ¼ iψ̄αDaψα þ
1

2π
adBþ 1

4π
BdBþ 2CS½g�: ðB4Þ

In the boson side the a dependence arises solely through the
term ½1=ð2πÞ�ðbþ BÞda. Integrating out a we set b ¼ −B
to get

L1b ¼ L½Zα;−B�: ðB5Þ

The two theories Eqs. (B4) and (B5) are dual to each other
in the following sense. The phase transition in Eq. (B5)
between the trivial gapped phase and the BIQH state is
described by Eq. (B4) when the Dirac fermions are
massless. Indeed, we used this identification in various
parts of the paper.
Now we make B dynamical B → b, and couple

½1=ð2πÞ�bdC where C is an ordinary U(1) gauge field.
In the fermion side the b dependence occurs through the
term ½1=ð2πÞ�ðaþ CÞdbþ ½1=ð4πÞ�bdb. Integrating out b
leads to

Lf ¼ iψ̄αDaψα −
1

4π
adaþ 1

2π
adC −

1

4π
CdC: ðB6Þ

The boson side becomes

Lb ¼ L½Zα;−b� þ
1

2π
Cdb: ðB7Þ

This almost looks like the NCCP1 model, but we should
remember the precise sense in which Eqs. (B6) and (B7) are
dual. As in all the previous examples, the trivial to BIQH
transition of zα is dual to the massless Dirac theory. Let us
interpret this phase transition in the boson side more
clearly. When zα is in a trivial gapped phase, C is
Higgsed, and we have broken UCð1Þ symmetry (a “super-
fluid”). When zα is in a BIQH state, we have a Uð1Þ2
theory, and this is really an SU(2)-symmetric chiral spin
liquid where the semion is a spin-1=2 spinon.
Thus, the transition between a superfluid [that breaks

U(1) but preserves SU(2)] and this chiral spin liquid with
SU(2) symmetry is described by Eq. (B6). It is easy to
check that this is reproduced by thinking directly about the
fermions.
The duality between the theories in Eq. (B7) (interpreted

as above) and Eq. (B6) should be contrasted with the
duality of the SU(2)-invariant NCCP1 model to the
QED3- GN model. The two sets of dualities describe two
distinct phase transitions of the same underlying spin
system. Further, though Eq. (B7) has the same
SOð3Þ × Uð1Þ symmetry as NCCP1, it—unlike NCCP1—
is not time-reversal invariant.

APPENDIX C: A DIFFERENT VIEW OF THE
DUALITIES AND EMERGENT SYMMETRIES

Here, we discuss the dualities and emergent symmetries
from a point of view familiar in the high-energy literature.
However, caution is needed, as we describe below.
For any ð2þ 1ÞD CFT with a global U(1) symmetry,

there is a formal operation on the path integral, denoted S,
which is defined as follows:

ZS½B� ¼
Z

DAZCFT1
½A�eði=2πÞ

R
d3xAdB: ðC1Þ

Here, ZCFT1
½A� is the partition function of the ð2þ 1ÞD

CFT in the presence of a background U(1) gauge field A.
The operation S converts this background gauge field into a
dynamical one, without including a kinetic term for the
field A. A new background U(1) gauge field B, coupling
to dA=2π (which is conserved), is also introduced. This
operation was defined and used by Kapustin and Strassler
[49], and by Witten [50]. A different operation, T, was also
introduced by Witten: this simply shifts the level of the
Chern-Simons term for the background gauge field by 1.
If the path integral on the right-hand side of Eq. (C1) is

well defined, then ZS½B� is the partition function of a new
theory with a new global U(1) symmetry (B couples to the
current of this symmetry). Further, the theory ZS½B� is
conformally invariant, at least at the formal level—it is to
ensure that no kinetic term for A is introduced in the
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definition of S—and defines a new conformal field theory
which we denote CFT2.
Schematically we write the S operation as S½CFT1� ¼

CFT2, where both CFTs have a global U(1) symmetry. The
combination of S and T then leads to a remarkable SLð2; ZÞ
action on the set of ð2þ 1ÞD CFTs with a global U(1)
symmetry [50]. (See Refs. [165–168] for other appearances
of this mathematical structure in related contexts.) That is,
S and T can be shown formally to satisfy the defining
relations [169] S2 ¼ −1 and ðSTÞ3 ¼ 1 of SLð2; ZÞ.
Let us think a bit more about S. A priori it is not evident

that the path integral in Eq. (C1) is well defined. To obtain
some intuition, consider a modified operation that is
certainly well defined:

~ZS½B;e2�

¼
Z

DAZCFT1
½A�exp

�
−
Z

d3x

�
1

2e2
ðdAÞ2− i

2π
AdB

��
:

ðC2Þ

We introduce a Maxwell term for the gauge field A with
coupling constant e2. Formally, the original S operation
may be written as

ZS½B� ¼ lim
e2→∞

~ZS½B; e2�: ðC3Þ

However, Eq. (C3) has a more intuitive interpretation.
Consider the theory at a fixed value of e2. The gauge
coupling introduces a length scale le ∼ 1=e2. At distances
much smaller than le the physics is that of CFT1 plus a
decoupled free photon, so this is a “weakly” gauged version
of CFT1. But the coupling between CFT1 and the photon is
relevant, so the physics on distances much larger than le
will be different. The limit e2 → ∞ is equivalent to
describing the deep IR limit of the ~ZS theory, i.e., distances
much greater than le.
At the formal level this deep IR limit is a new

conformally invariant theory, CFT2, described by ZS.
Formally, the relationship S2 ¼ −1 (see below) also
requires CFT2 to be nontrivial if CFT1 is. But it is not
obvious that the conclusions of these formal arguments will
always hold in reality, at least for the nonsupersymmetric,
finite “N” theories of interest in this paper. For instance, if
we take CFT1 to be the theory of Nf massless two-
component Dirac fermions (Nf even), then we obtain
QED3 for ~ZS. Whether or not this flows to a CFT for
general Nf, not necessarily large, is a long-standing issue
that has not yet been settled. For another example relevant
to this paper, take CFT1 to describe a pair of boson fields,
each separately at the U(1) Wilson-Fisher fixed point, and
take S to act on the diagonal U(1) symmetry. ~ZS then
describes the easy-plane NCCP1 model in a particular limit
[170]. As discussed in the main text, it is hardly clear that

this flows to a CFT in the IR. Similarly, if we start with the
O(4) Wilson-Fisher theory and use S to gauge an appro-
priate U(1) subgroup, we obtain the SU(2)-symmetric
NCCP1 model (in a similar limit). Whether or not this
flows to a CFT is again a nontrivial question [171]. (Even
when there is a flow to a CFT, we might expect to have to
tune the coupling of any relevant symmetry-allowed
operators of CFT1 in order to be on this flow line, contrary
to the expectation from the formal limit.)
What about the crucial relationship S2 ¼ −1? We apply

the limiting procedure twice to give the partition function

ZS2 ½C� ¼ lim
e02→∞

lim
e2→∞

~ZS2 ½C; e2; e02�; ðC4Þ

with

~ZS2 ½C; e2; e02�

¼
Z

DB
Z

DAZCFT1
½A�

× exp

�
−
Z

d3x

�ðdAÞ2
2e2

þ ðdBÞ2
2e02

−
i
2π

BdðCþ AÞ
��

:

ðC5Þ

The proof in Ref. [50] of S2 ¼ −1 evaluates the path
integral above in the absence of the Maxwell terms [as
appropriate to the formal definition of S in Eq. (C1)]. The B
integral then acts as a delta function enforcingC ¼ −A, and
the right-hand side becomes ZCFT1

½−C�.
Even in the case where le ≫ le0 ,

lim
e2→∞

lim
e02→∞

~ZS2 ½C; e2; e02�; ðC6Þ

we may worry that this procedure will fail to give back the
original CFT, due to relevant terms generated by integrating
out B and then A. For Eq. (C4), where the order of limits is
the opposite, it is even less clear that we will obtain
S2 ¼ −1. In general, this is a nontrivial question about the
structure of the RG flows.
If the gauged CFT1 does indeed flow to a nontrivial

CFT2, then the characteristic length scale for this crossover
is le ∼ 1=e2. Gauging CFT2 then introduces a new length
scale le0 ∼ 1=e02, and the regime of interest is le0 ≫ le. In
order for S2 ¼ −1 to hold, the ultimate flow on scales≫ le0
must be to a copy of the CFT1 fixed point.
If the gauged CFT1 instead flows to a trivial theory,

representing, for example, a massive or symmetry-broken
fixed point, then it is hard to see how S2 ¼ −1 can ever be
satisfied. Here, we are assuming that CFT1 is nontrivial; it
is certainly possible to have an example where CFT1 and
CFT2 are both trivial, and S2 ¼ −1 [172].
This discussion is intended to provide intuition for

dangers that may arise in the formal use of the S operation.
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It is of course conceivable that in practice they do not arise.
We should also emphasize that the limiting procedure
discussed above is not the only way to interpret the formal
definition of ZS: it is possible that when the above limits fail
to give a nontrivial CFT, the S operation can be rescued by
an alternative implementation of the definition.
If we ignore all the caveats and assume (as is normally

done in the literature) that there is a well-defined SLð2; ZÞ
action on ð2þ 1ÞD CFTs, then we can make some power-
ful statements. First, it tells us that there is a CFT that looks
like an easy-plane NCCP1, defined by the partition function

Z
DbðZWF½b�Þ2ei

R
ð1=2πÞbdB; ðC7Þ

where ZWF½b� is the partition function for the Wilson-Fisher
fixed point of a single complex boson, with background
gauge field b. A priori we do not know whether the
standard easy-plane NCCP1 action (defined with, e.g., an
additional Maxwell term) flows to this CFT.
Second, if we assume that the formal S operation gives a

well-defined action on CFTs, then it is natural to expect that
basic boson-fermion duality, relating a single massless
Dirac fermion to a Wilson-Fisher boson coupled to a
Uð1Þ1 gauge field, can be taken as an exact statement
about path integrals:

ZD½A� ¼
Z

DbZWF½b�ei
R

d3xð1=4πÞbdbþð1=2πÞbdA; ðC8Þ

where ZD is the partition function of a free massless Dirac
fermion. We write this as (recall that T shifts the level of the
Chern-Simons term)

D ¼ ST½WF�: ðC9Þ

The other boson-fermion duality then is

D ¼ T−1S−1T−1½WF�: ðC10Þ

Multiplying the partition functions on both sides, shifting
an AdA=4π to the left, and finally making A dynamical, we
get the duality of QED3 to the easy-plane CFT defined
in Eq. (C7).
The fermion side is manifestly ½SUð2Þ × Uð1Þ�=Z2

invariant. Further, it is easy to see that it is exactly self-
dual and the dual side has the other ½SUð2Þ × Uð1Þ�=Z2 as a
manifest symmetry. Altogether this implies the O(4)
symmetry.
Within the framework of the present assumptions, these

are all exact statements, regardless of the relevance or
irrelevance of operators that break O(4) to SUð2Þ × Uð1Þ or
Uð1Þ × Uð1Þ. As mentioned above, it is possible that the
fixed point we are describing is highly fine-tuned. But if we
now make the natural further assumption that the weak

coupling limits of all these gauge theories flow to the IR
CFTs defined formally but exactly by the path integrals
above, and that there is no fine-tuning hidden in this flow,
we indeed conclude that the various symmetry-allowed
perturbations are irrelevant. However, we emphasize again
that this view on the dualities and emergent symmetries is
predicated on the reliability of the formal SLð2; ZÞ action
on ð2þ 1ÞD CFTs, which as far as we are aware still
remains conjectural.

APPENDIX D: SOME USEFUL
MATHEMATICAL CONCEPTS

It is convenient to consider a “triangulation” of the
spacetime manifold M (we are mostly interested in mani-
folds of dimension D ¼ 4): we represent points in space-
time by a discrete lattice where each elementary unit is a D
simplex. Pick a local ordering of the vertices of the lattice.
A k-cochain lives on k-simplices, i.e., it is a function that
depends on (kþ 1) vertices and takes values in some
Abelian groupG. We only need to consider the cases Z, Z2,
and Z4. The corresponding cochain is then said to be an
element of CkðM;GÞ. For instance, a 2-cochain in
C2ðM;Z2Þ is a function aijk ¼ 0, 1, while for a 2-cochain
in C2ðM;ZÞ, the function aijk ∈ Z. Here, ðijkÞ are the
vertices of a triangular plaquette of the simplex.
We can define a discrete derivative (known as a

“coboundary”) operation d that maps k-cochains to
(kþ 1)-cochains:

ðdaÞði0;i1;i2;…;ikþ1Þ ¼
Xkþ1

p¼0

ð−1Þpai0;i1;…;îp;…;ikþ1
; ðD1Þ

where the variable îp is omitted. It is understood that the
addition on the right-hand side is performed in G (e.g.,
mod 2 addition for G ¼ Z2). It is readily checked that
d2a ¼ 0. The set of all k-cochains a that satisfy da ¼ 0
form a group under addition known as the cocycle group
ZkðM;GÞ. The set of all a ∈ CkðM;GÞ that may be written
a ¼ db for some b ∈ Cðk−1ÞðM;GÞ form a different group
known as the coboundary group BkðM;GÞ. Clearly,
BkðM;GÞ⊂ZkðM;GÞ. The cohomology groupHkðM;GÞ ¼
f½ZkðM;GÞ�=BkðM;GÞg.
For two 2-cochains a ∈ CkðM;GÞ and b ∈ ClðM;GÞ,

we define the cup product

ða ∪ bÞi0;…;ikþl
¼ ai0i1i2…ikÞbikikþ1…ikþl

; ðD2Þ
where i0;…; ikþl are assumed to be ordered. The cup
product satisfies

dða ∪ bÞ ¼ da ∪ bþ ð−1Þka ∪ db: ðD3Þ
Clearly, if da ¼ 0 ¼ db, then dða ∪ bÞ ¼ 0. Thus, the cup
product defines a product of cohomology classes. The cup
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product is a generalization of the familiar wedge product of
differential forms.
The Poyntryagin square of w ∈ H2ðM;Z2Þ plays an

important role in our discussion (see Ref. [173] for more
discussion and references). We now specialize to four-
manifolds M ¼ Y4. It is easiest to define if w can be lifted
to an element ŵ ∈ H2ðY4; ZÞ; i.e., w ¼ ŵð mod 2Þ and
dŵ ¼ 0. In this case, PðwÞ ¼ ŵ ∪ ŵ mod 4. If w does not
admit a lift to an integral cohomology class, then P is still a
mod 4 quantity. It is defined to be

PðwÞ ¼ w ∪ wþ w ∪1 dw ðmod 4Þ: ðD4Þ

The new product ∪1 is defined (for a 2-cochain a and a
3-cochain b) as

ða ∪1 bÞ01234 ¼ a034b0123 þ a014b1234: ðD5Þ

It is readily seen that PðwÞ transforms by a coboundary
under w → wþ 2n, w → wþ dm, so it is well defined on
H2ðY4; Z2Þ. Note that as w ∈ H2ðY4; Z2Þ, dw ¼ 0 mod 2.
Thus, we have PðwÞ ¼ w ∪ w mod 2. It can be shown that

Pðwþ w0Þ ¼ PðwÞ þ Pðw0Þ þ 2w ∪ w0 ðmod 4Þ: ðD6Þ

We use this repeatedly.

APPENDIX E: TOPOLOGICAL
SUPERCONDUCTORS AND THE

APS THEOREM

In this Appendix, we review the field-theoretic descrip-
tion of topological superconductors in ð2þ 1ÞD and
ð3þ 1ÞD. We follow Ref. [60] here and adapt it to the
SOðnÞ-symmetric systems of interest in this paper.
Let us begin with ð2þ 1ÞD. A px þ ipy superconductor

can be represented by a massive two-component Majorana
fermion χ:

L ¼ χ̄ðDþmÞχ; ðE1Þ

with χ̄ ¼ χTC�,D ¼ γμð∂μ þ iωμÞ, and C ¼ σy the charge-
conjugation matrix. m > 0 corresponds to the trivial super-
conductor and m < 0 to the px þ ipy superconductor. The
point m ¼ 0 corresponds to the transition between these
two phases. Now, the formal partition function of Eq. (E1)
on a closed manifold M is

ZðmÞ ¼ Pf(C†ðDþmÞ) ¼ � detðDþmÞ1=2
¼ �

Y
hλi

ð−iλþmÞNðλÞ=2; ðE2Þ

where the product is over eigenvalues λ of the Dirac
operator iD (without repetitions) and NðλÞ is the
multiplicity of the eigenvalue. Since ½CK; iD� ¼ 0 and

ðCKÞ2 ¼ −1, all eigenvalues of iD are doubly degenerate.
The above expression clearly requires regularization. We
note that the partition function of the trivial superconductor
at long wavelength (or equivalently in the m → ∞ limit) is
expected to be analytic in the curvature of the manifold and
to have no topological terms, so it can be effectively set
to 1. It is then convenient to normalize other partition
functions by it. This can be understood as the physical
justification of Pauli-Villars regularization. Then,

ZðmÞPV;þ ¼ lim
M→∞

Zm

ZM
¼

Y
hλi

ð−iλþmÞNðλÞ=2

ð−iλþ jMjÞNðλÞ=2 : ðE3Þ

Note that there is no sign ambiguity in Eq. (E3). Indeed, we
can reach any value ofm starting with the trivial insulator at
m ¼ ∞. The requirement that the partition function during
this process be analytic in m removes the sign ambiguity.
Now, when m ¼ 0, we can write the partition function
Eq. (E3) as Z ¼ jZjeiφ, where the phase

φ¼−
1

2

X
hλ≠0i

NðλÞsgnðλÞ tan−1 jMj
jλj →−

π

4

X
λ≠0

sgnðλÞ: ðE4Þ

The sum in the last term is over all eigenvalues of iD
(repeated eigenvalues included), and we take the M → ∞
limit naively. While the resulting final sum is formal, it can
be equivalently regulated with the ζ function method,
giving

Zðm ¼ 0ÞPV;þ ¼ jZðm ¼ 0Þj exp½−πiηðiDÞ=4�; ðE5Þ

with η defined via Eq. (116) [174]. Deep in the px þ ipy

phase, we may setm ¼ −jMj → −∞ in Eq. (E3) and obtain
a pure phase,

Zpxþipy
¼ exp½−πiηðiDÞ=2�: ðE6Þ

The APS theorem Eq. (120) allows us to rewrite
the partition function of a px þ ipy superconductor,
Eq. (E6), as

Zpxþipy
¼ expð−iCSg½Y4�Þ; ðE7Þ

where, as we explain in Sec. VII, the gravitational
Chern-Simons term CSg [Eq. (119)] is defined via a
continuation of M to an auxiliary four-manifold Y4.
The APS theorem guarantees that the result is independent
of the continuation. The gravitational Chern-Simons term
encodes precisely the thermal-Hall response of a px þ ipy

superconductor: ½ðκxyÞ=T� ¼ 1
2
. Note that our Majorana

fermions χ require a spin structure, and the continuation
ofM to Y4 must preserve this spin structure. Thus, CSg½Y4�
is secretly spin-structure dependent (as, less surprisingly, is
the η invariant).
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We can easily generalize the above discussion to n
identical Majorana fermions. Now we may couple the
system to an SOðnÞ gauge field A, so that the Dirac operator
reads DA ¼ γμð∂μ þ iωμ − iAμÞ [175]. The partition func-
tion form → −∞ (i.e., deep in the topological phase) again
is Eq. (E6) with ηðiDÞ now referring to the full Dirac
operator DA. This can be rewritten using the APS theorem
Eq. (120) as

ZðpxþipyÞn ¼ expf−iðCSSOðnÞ½A; Y4� þ nCSg½Y4�Þg; ðE8Þ

with the SOðnÞ Chern-Simons term, given by Eq. (119),
again defined via the continuation to Y4. Thus, n copies of a
px þ ipy superconductor have SOðnÞ response character-
ized by a Chern-Simons term at level 1. For n ¼ 2, this
simply corresponds to σxy ¼ 1. There is also the expected
thermal-Hall response ½ðκxyÞ=T� ¼ n × 1

2
encoded in the

gravitational Chern-Simons term. As we emphasize in
Sec. VII, for even n the Majorana fermions really see an
½SOðnÞ × Spinð3ÞTM�=Z2 bundle; i.e., we do not need to
separately specify the spin structure, but only the combi-
nation of SOðnÞ and Spinð3ÞTM transition functions.
Likewise, on Y4 we again need to continue just the
½SOðnÞ × Spinð3ÞTM�=Z2 bundle. Finally, the partition
function for m ¼ 0 (the transition point between a trivial
phase and n copies of a px þ ipy superconductor) is again
given by Eq. (E5).
Now, let us proceed to ð3þ 1ÞD. A topological super-

conductor in class DIII can be represented by a massive
(four-component) Majorana fermion. For generality, we
work from the start with n identical copies of a topological
superconductor and couple the system to an SOðnÞ gauge
field A, so the continuum bulk action is

L ¼ χ̄ðDA þmÞχ; ðE9Þ

where again DA ¼ γμð∂μ þ iω − iAμÞ, χ̄ ¼ χTC�, and C is
the charge-conjugation matrix. The phase with m > 0 may
be taken (by convention) to represent the trivial super-
conductor and m < 0 is the topological superconductor.
As before, we may set the partition function of the trivial
phase, m → ∞, to 1, so the bulk partition function of
the topological phase,m → −∞, on a closed four-manifold
X4 is

ZTSc ¼
Y
hλi

ð−iλ − jMjÞNðλÞ=2

ð−iλþ jMjÞNðλÞ=2 ; ðE10Þ

with λ eigenvalues of iDA. Crucially, again ½CK; iDA� ¼ 0

and ðCKÞ2 ¼ −1, so all eigenvalues are doubly degenerate.
What is different compared to the previously discussed
px þ ipy case is that fγ5; iDAg ¼ 0, so all nonzero eigen-
values of iDA come in pairs �λ; therefore, their contribu-
tion to the partition function cancels and

ZTSc ¼ ð−1ÞN0=2; ðE11Þ

where N0 is the number of zero modes of iDA. The zero
modes can be chosen to be simultaneous eigenstates of γ5.
Suppose there are N� eigenstates with γ5 ¼ �1. We note
that Nþ and N− are separately even as ½CK; γ5� ¼ 0.
Therefore, we may rewrite ZTSc ¼ ð−1ÞðNþ−N−Þ=2. The
difference Nþ − N− ¼ 2J is known as the index of iDA
(we include a prefactor of 2 to emphasize that in the present
situation it is even), and we may write

ZTSc ¼ ð−1ÞJ : ðE12Þ

We see that the partition function is real, as it should be for
a time-reversal invariant system on an orientable manifold.
The Atiyah-Singer theorem [111,114] tells us that

2J ¼ Nþ − N− ¼ 1

π
ðCSSOðnÞ½A;X4� þ nCSg½X4�Þ

¼ p1½A; X4� −
nσ½X4�

8
; ðE13Þ

with the Pontryagin number p1 and signature σ given by
Eqs. (124) and (125), so that we may rewrite

ZTSc ¼ exp

�
i
2
ðCSSOðnÞ½A; X4� þ nCSg½X4�Þ

�
: ðE14Þ

When n ¼ 1 (or more generally for odd n), we must pick a
spin structure for our fermions χ (in particular, X4 must
admit a spin structure); we then learn from Eq. (E13) that
on a spin manifold σ is a multiple of 16. Furthermore, if we
fix a spin structure, A is a true SOðnÞ gauge field (with
transition functions satisfying the cocycle condition), from
which we learn that p1½A� on a spin manifold is even.
Now, for even n, we do not require X4 to admit a spin
structure: the fermions see transition functions in the
½SOðnÞ×Spinð4ÞTX4

�=Z2 group, so while p1 and ½ðnσÞ=8�
themselves need not be even (in fact, σ is an integer,
so ½ðnσÞ=8� is generally a fraction), the combination
p1 − ½ðnσÞ=8� is an even integer.
Finally, let us discuss the case when the topological

superconductor lives on a space X4 with a boundaryM. We
know that the boundary supports n gapless Majorana cones.
The bulkþ boundary partition function now is [60]

Sbulkþbound
TSc ¼

Z
M
½χ̄DAχ�PV;þ

−
i
2
ðCSSOðnÞ½A;X4� þ nCSg½X4�Þ: ðE15Þ

The Majorana action Eq. (E15) depends only on the
boundary data; on the other hand, the second term in
Eq. (E15) depends on the bulk, and, in fact, reduces to our
previous expression Eq. (E14) for a closed manifold. While
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each term in Eq. (E15) is separately well defined, the time-
reversal symmetry of Eq. (E15) is not obvious. However,
using Eq. (E5) and the APS theorem Eq. (120), we obtain

Zbulkþbound
TSc ¼ jZboundðm ¼ 0Þjð−1ÞJ ½A;X4�; ðE16Þ

where jZboundðm ¼ 0Þj is the absolute value of the boun-
dary Majorana fermion partition function, and 2J is the
index of the bulk Dirac operator iDA with APS boundary
conditions. The time-reversal symmetry is now manifest.
To obtain further physical intuition for the action

Eq. (E15), we may break time-reversal symmetry on the
surface with a mass term mχ̄χ. Integrating the Majorana
fermions out, by our preceding discussion we then obtain at
long wavelength

S ¼∓ isgnðmÞ
2

ðCSSOðnÞ½A;X4� þ nCSg½X4�Þ; ðE17Þ

i.e., the surface has SOðnÞ Chern-Simons response at level
1=2 and thermal-Hall response with κxy=T ¼ n × 1

4
. This is

precisely what we expect for the T-broken surface state of n
copies of a topological superconductor.
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