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One of the key applications for quantum computers will be the simulation of other quantum systems that
arise in chemistry, materials science, etc., in order to accelerate the process of discovery. It is important to
ask the following question: Can this simulation be achieved using near-future quantum processors, of
modest size and under imperfect control, or must it await the more distant era of large-scale fault-tolerant
quantum computing? Here, we propose a variational method involving closely integrated classical and
quantum coprocessors. We presume that all operations in the quantum coprocessor are prone to error. The
impact of such errors is minimized by boosting them artificially and then extrapolating to the zero-error
case. In comparison to a more conventional optimized Trotterization technique, we find that our protocol is
efficient and appears to be fundamentally more robust against error accumulation.
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I. INTRODUCTION

Many quantum algorithms have been developed under
the presumption that the hardware upon which they will run
is effectively error free: The error rate is so low that the
entire algorithm can be executed successfully without a
single error. It is now known that such hardware can, in
principle, be created using components that have far higher
error rates. Fault-tolerant quantum computing can be
achieved by encoding qubits in non-Abelian anyons in
topological materials [1] or using the quantum error
correction codes [2]. While the former is still in the early
stages of its development, for the latter approach, sub-
threshold quantum operations have been demonstrated in
ion-trap and superconducting systems [3–6]. However,
quantum error correction involves a substantial multipli-
cation of resources; the number of physical qubits required
may be orders of magnitude greater than the number of
error-free logical qubits seen by the algorithm. A recent
study audited the cost of implementing Shor’s algorithm to
solve a classically infeasible task and found that, even with
state-of-the-art techniques for magic-state distillation, the
machine would need over six million of today’s highest-
quality qubits [7].
The need for millions of qubits contrasts starkly with the

fact that only 50 qubits are needed to achieve so-called
“quantum supremacy,” i.e., to create a quantum processor
that is so complex that conventional supercomputers [8]
cannot predict its behavior. Machines involving this many
qubits, under good but imperfect control, are expected to

emerge in the next few years. The challenge for researchers
is to identify useful functions for such devices, in order to
motivate further investment and continue the evolution
toward the longer-term goal of fully fault-tolerant systems.
Recently, some hybrid quantum/classical algorithms

have been developed which are promising for near future
quantum applications [9–17]. A common feature of these
algorithms is that the quantum computer is only in charge
of carrying out a subroutine, acting as a “coprocessor”
while the larger-scale algorithm is governed by a classical
computer. The task of the quantum computer is thus
simplified and may be accomplished with relatively few
quantum operations. A higher error rate per operation is
therefore tolerable; in a fault-tolerant machine, this would
imply a more modest resource overhead for the code, but
it may even be possible to implement such quantum
algorithms without quantum error correction.
Hybrid approaches are very relevant to quantum simu-

lation, i.e., Feynman’s vision [18,19] of using a controlled
quantum processor to model another quantum system. Such
a technology would be highly advantageous for the inves-
tigation of various large quantum systems, e.g., simulating
quantum chemistry systems [20–23], or novel materials and
other condensed-matter systems [24–26]. A powerful tool
that has been exploited in several hybrid protocols is the
variational method [9–12]. Typically, the state of the target
system can be found by writing a trial quantum state with a
large but tractable number of parameters, and then discov-
ering the optimal value of these parameters. Implicitly, this
requires the scientists to use their understanding of the
target system (the novel molecule, or material) to select a
set of parameters that, while large, is far smaller than the
total number of parameters needed to specify an arbitrary
quantum state. The latter is of course exponential in the
number of particles composing the target system.
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Our focus here is on finding the dynamics of interesting
quantum systems, and we briefly remark on the consid-
erable significance of such a capability. Dynamics must be
studied when properties cannot be determined from static
features. This has motivated dynamical versions of many
well-known techniques, e.g., nonequilibrium dynamical
mean-field theory [27], the time-dependent variational
quantum Monte Carlo method [28], time-dependent tensor
network methods [29,30], and, of course, time-dependent
density functional theory [31]. However, there are still
many problems that cannot be solved using these powerful
classical methods, so it is hoped that quantum computers
can extend their reach [18,19,32].
We therefore propose a hybrid quantum algorithm for

simulating the dynamics of a quantum system. The conven-
tional approach for simulating quantum dynamics employs
Trotterization [19,33–36], which usually requires many
quantum operations; therefore, it seems likely to necessitate
the full machinery of fault-tolerant quantum computing
[20–22]. Our approach is based on the variational method,
and our hope is that it could be implemented using small-
size quantum circuits, i.e., quantum circuits with a small
number of quantum operations that suffer significant noise
compared with fault-tolerant quantum computers. A novel
feature of our algorithm is that it compensates for errors
through classical inference without encoding: If the noise in
the quantum computer mainly results in stochastic errors
and the rate of errors can be amplified in a controllable way,
then we find that errors can be approximately corrected.
The condition that noise is stochastic can be met by
engineering for many systems: If, for example, single qubit
gates have relatively high fidelity [3–6,37] and their noise is
stochastic, then arbitrary two-qubit gate errors can be made
stochastic through a technique akin to twirling [38–40],
which we presently discuss. Moreover, the severity of such
errors can be deliberately increased artificially, allowing
one to create curves that the classical algorithm can
extrapolate to estimate the zero-error limit. We performed
numerical emulations of the process on small systems,
finding that this technique does indeed lead to robustness:
The impact of physical errors on the simulator’s perfor-
mance is far lower than in an (optimized) Trotterization
protocol, and moreover, this impact does not worsen with
the duration of the simulation.
The remainder of this paper is organized as follows.

In Sec. II, we review the Trotterization algorithm and
variational methods. In Sec. III, our hybrid algorithm is
introduced. In Sec. IV, the variational theory is discussed.
In Sec. V, the task for the quantum computer and the overall
program are described in detail. Errors in our algorithm are
analyzed in Sec. VI. The method for reducing errors is
given in Sec. VII, in which we also discuss how to convert
nonstochastic errors into stochastic errors and how to tune
the rate of errors. Numerical results are presented in
Sec. VIII. A summary is given in Sec. IX.

II. TROTTERIZATION AND
VARIATIONAL METHOD

The Trotterization approach to simulation, which we
use as a basis for comparison with our protocol, exploits
the fact that time evolution under a general Hamiltonian
H ¼ P

j Hj can be approximated according to the Trotter-
Suzuki decomposition [33]

e−iHT ≃ R ¼
YNt

n¼1

�Y
j

e−iHjτn;j

�
: ð1Þ

Here, each term e−iHjτn;j corresponds to the evolution
driven by the term Hj for a short time τn;j, which can
be realized by a quantum gate or a combination of quantum
gates. Usually, the short time is taken uniformly as
τn;j ¼ T=Nt, where T is the time of the simulated evolution.
When Nt is larger, the approximation is better, and errors in
the approximation scale with the simulated time and the
number of quantum gates as T2=Nt [35].
Our approach is based on a variational technique.

Variational methods have numerous applications in the
numerical study of many-body quantum systems: for
example, density functional theory [41], the matrix product
state method [42], and simulating molecular dynamics
using the variational principle [43]. In these methods,
typically a trial state is used to approximate the true state
of the system. The trial state must, of course, be specified
by some tractable number of parameters. But since existing
realizations are entirely classical, there is a stronger
condition on the trial function: It must be possible to
efficiently evaluate its fit to the true quantum state using
only a classical algorithm. This requirement limits the
application of variational methods. Sometimes, it may be
impossible to evaluate a trial state that provides a good
approximation to the true state in a classical computer. In
such a case, a quantum computer could be helpful because
we may be able to complete tasks that are difficult for a
classical computer using a quantum computer. An example
is the unitary coupled cluster method [10,44], in which the
energy of the trial state can be evaluated using a quantum
computer when it is hard for a classical computer to do so.
The protocol we describe here is another example.

III. HYBRID QUANTUM SIMULATION
OF DYNAMICS

The purpose of our hybrid algorithm is to solve the
Schrödinger equation i½∂=ð∂tÞ�jΦðtÞi ¼ HjΦðtÞi (ℏ ¼ 1),
assuming that the state jΦðtÞi can be approximated by a
trial state jΨðtÞi≡ jΨðλ1; λ2;…Þi, where fλkðtÞg are varia-
tional parameters. As shown in Fig. 1(a), the hybrid
algorithm is implemented on both a quantum computer
and a classical computer. The task of the classical computer
is to determine variational parameters according to the
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Schrödinger equation, and this procedure requires certain
derivatives associated with the state jΨðtÞi, which the
quantum computer provides.
The hybrid algorithm works out variational parameters

iteratively, as shown in Fig. 1(b). Parameters at the time
t (fλkðtÞg) are sent to the quantum computer, with which
the quantum computer finds the values required by the
classical computer. Based on results from the quantum
computer, the classical computer can determine parameters
at the time tþ δt (fλkðtþ δtÞg), where δt is a short time.
Then, these new parameters are sent back to the quantum
computer. In this way, given parameters of the initial state
(fλkð0Þg), parameters at the time T (fλkðTÞg) are system-
atically inferred by iterating the process carried out by two
computers. The simulation is successful if the state jΨðTÞi
is a good approximation of the state jΦðTÞi.
Using the variational method, the degrees of freedom

provided by variational parameters allow us to use quantum
circuits with a size much smaller than the circuit of the
Trotterization algorithm to simulate the time evolution of a
quantum system. Note that this is an “apples to oranges”
comparison because our algorithm only simulates the time
evolution of a given initial state while the Trotterization
algorithm simulates the time evolution of arbitrary initial
states, i.e., the time evolution operator. Thus, our algorithm
aims at an easier problem than the Trotterization algorithm.
Tracking the evolution from a specific initial state is the

main goal in many simulations, and other more general

tasks can also be reexpressed this way. The approach we
describe can be relevant to the specific problem of design-
ing and calibrating quantum gates, thus allowing early
quantum computers to aid in the design of their successors.
Moreover, there are also interesting connections between
dynamical simulation and the determination of static
properties: One could find a ground state by simulating
an adiabatic time evolution [45]; thus, our algorithm is
relevant to that task. In other hybrid algorithms for
determining the ground state of a quantum system
[9–12], one may need to find the global minimum of the
energy in the parameter space to maximize the fidelity.
However, finding the global minimum in a high-
dimensional parameter space is usually a nontrivial com-
puting task. In our algorithm, parameters are worked out
iteratively; therefore, the global minimization is not
required. We remark that Trotterization is used in some
hybrid algorithms [10,12–15]. In principle, our algorithm
can be used to replace the Trotterization method in these
instances, to further simplify the task of the quantum
computer.

IV. VARIATIONAL THEORY OF QUANTUM
TIME EVOLUTION

The time-dependent variational principle corresponding
to the Schrödinger equation reads δ

R tf
ti dtL ¼ 0, where the

Lagrangian is [46,47]

L ¼ hΨðtÞj
�
i
∂
∂t −H

�
jΨðtÞi: ð2Þ

Assuming that the state jΨðtÞi is determined by a set of real
parameters fλkðtÞg, i.e., jΨðtÞi≡ jΨðλ1; λ2;…Þi, the
Lagrangian can be rewritten as

L ¼ i
X
k

hΨj ∂jΨi∂λk
_λk − hΨjHjΨi; ð3Þ

which is a function of parameters fλkg and their time
derivatives f_λk ¼ ½ðdλkÞ=dt�g. According to L, the Euler-
Lagrange equation describing the evolution of parameters
(hence, the state jΨi) is

X
q

Mk;q
_λq ¼ Vk; ð4Þ

where

Mk;q ¼ iη
∂hΨj
∂λk

∂jΨi
∂λq þ H:c:; ð5Þ

Vk ¼ η
∂hΨj
∂λk HjΨi þ H:c: ð6Þ

t + δt

i ∂
∂t |Ψ〉 = H|Ψ〉

λ1, λ2, . . .

|Ψ(λ1, λ2, . . .)〉

T

X̄ = Tr(Xρ)

0

(a)

(b)

−0.5

1.5

λ1

λ2

t

X̄

FIG. 1. Hybrid solver of quantum dynamics. (a) Both a
quantum computer and a classical computer are used in solving
the time evolution of a quantum system. The quantum state is
approximated by a trial state jΨðλ1; λ2;…Þi. Variational param-
eters are determined by the classical computer according to the
Schrödinger equation. The quantum computer is used to imple-
ment a subroutine: Inputs are parameters fλkðtÞg, and outputs are
values of certain derivatives required by the main program in the
classical computer. (b) Variational parameters are determined
iteratively given their initial values. Parameters at the time t are
sent to the quantum computer, which evaluates the quantities
required by the classical computer. Then, the classical computer
can work out parameters at the time tþ δt, where δt is a short
time. Note that the curves here represent the actual evolution of
parameters in the example described in Appendix A.
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Here, η ¼ 1, both M and V are real, and M is antisym-
metric. There are other variational principles for the
quantum time evolution [48]. For example, McLachlan’s
variational principle reads δ∥fi½∂=ð∂tÞ� −HgjΨðtÞi∥ ¼ 0
[49], which leads to the same equation as Eq. (4) but
η ¼ −i. Here, the norm is ∥ψ∥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffihψ jψip

. In the follow-
ing, we focus on the time-dependent variational principle,
but the hybrid algorithm can be adapted to McLachlan’s
variational principle.
Recall that we can always express a state as

jΨi ¼ P
nðαn þ iβnÞjni, where αn and βn are real, and

jni are orthonormal basis states. Taking parameters
fλkg ¼ fαn; βng, Eq. (4) leads to the Schrödinger equation;
but, of course, we require a parametrization such that the
number of parameters remains tractable for the sizes of
target systems that we are interested in. Thus, our varia-
tional approach, like others, is relevant when the scientist
can make an educated guess as to the general form of the
quantum state—there can be a large number of free
parameters fλkg but typically far fewer than would be
needed to specify an arbitrary state.

V. VARIATIONAL ALGORITHM
ON A HYBRID COMPUTER

We consider trial states that can be directly prepared in
the quantum computer; i.e., states can be expressed as
jΨi ¼ Rj0̄i, where j0̄i is an initial state of the quantum
computer, and R is a sequence of quantum gates determined
by parameters fλkg, i.e.,

R ¼ RNv
ðλNv

ÞRNv−1ðλNv−1Þ…R2ðλ2ÞR1ðλ1Þ: ð7Þ

Here, Rk is a unitary operator describing a quantum gate,
and the total number of gates (i.e., parameters) is Nv. If Nv
is smaller than the dimension of the Hilbert space
(2 × dim−2 to be exact), trial states jΨi only span a
submanifold of the Hilbert space. In this restricted trial-
state space, Eq. (4) approximates the exact evolution if the
exact state is close to the trial-state space.
In the following analysis, we describe each Rk gate as

dependent on only one parameter λk. However, it is worth
noting that the trial state can be generalized to the case
where each gate Rk depends on multiple parameters,
including parameters that vary in a predefined way with
time, and that both the Trotter-Suzuki decomposition [33]
and the unitary coupled cluster ansatz [44] can be expressed
in this form. As a generalization to the case in which the
number of gates Nv is fixed, one can even vary Nv
depending on the simulated time, providing that we under-
stand how to reexpress the trial state using the new gates
(adding gates to the set is, of course, trivially possible).
Our point is that the set of gates with which we create our
trial state can itself evolve over the simulated time.
We are interested in the case where evaluating coef-

ficients M and V in Eq. (4) is intractable in a classical

computer; therefore, these coefficients are obtained using
the quantum computer. Each parameter is determined, in
turn, by appropriately configuring a quantum circuit
involving about Nv gates and a single measurement out-
come; this fixed circuit is run repeatedly until the expected
measurement outcome is known to a given precision. Note
that this implies the overall protocol is trivially paralleliz-
able over a large number of quantum processors with no
quantum link between them.
We express the Hamiltonian in the form

H ¼
X
i

hiσi; ð8Þ

where σi are unitary operators. In many quantum systems,
the number of terms in this expression scales with the size
of the system polynomially. Similarly, we write

dRk

dλk
¼

X
i

fk;iRkσk;i; ð9Þ

where σk;i are also unitary operators. For many frequently
used single-qubit gates and two-qubit gates (Rk), there is
only one term in this expression, and σk;i is also a one-qubit
or two-qubit gate. Because any operator can be expressed
using Pauli operators, we can choose unitary operators σi
and σk;i as (single-qubit and multiqubit) Pauli operators.
Using the expression (9), we rewrite the derivative of the

state as

∂jΨi
∂λk ¼

X
i

fk;iRk;ij0̄i; ð10Þ

where

Rk;i ¼ RNv
RNv−1…Rkþ1Rkσk;i…R2R1: ð11Þ

Then, differential equation coefficients can be expressed as

Mk;q ¼
X
i;j

ðif�k;ifq;jh0̄jR†
k;iRq;jj0̄i þ H:c:Þ ð12Þ

and

Vk ¼
X
i;j

ðf�k;ihjh0̄jR†
k;iσjRj0̄i þ H:c:Þ; ð13Þ

where we have used the expression (8).
In Eqs. (12) and (13), each term is in the form

aReðeiθh0̄jUj0̄iÞ;
where the amplitude a and phase θ are determined by
either if�k;ifq;j or f

�
k;ihj [50], and U is a unitary operator

equal to either R†
k;iRq;j or R†

k;iσjR. Such a term can be
evaluated using the quantum circuit shown in Fig. 2.
This circuit needs an ancillary qubit initialized in the state
ðj0i þ eiθj1iÞ= ffiffiffi

2
p

and a register initialized in the state j0̄i.
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The ancillary qubit is measured in the fjþi; j−ig basis after
a sequence of quantum gates on the register and two
controlled gates, in which the ancillary qubit is the control
qubit. The value of each term is given by Reðeiθh0̄jUj0̄iÞ ¼
hXi ¼ TrðXρÞ, where ρ is the final state of the quantum
computer, and X is the x-direction Pauli operator of the
ancillary qubit. In the following, we consider the case in
which the value of hXi is estimated by repeating this
relatively shallow circuit and calculating the mean value of
measurement outcomes. Note that the value of hXi could be
estimated more efficiently using quantum amplitude esti-
mation [51] if error rates could be made low enough to
allow a circuit of sufficient depth to function.

A. Main program

The overall flow of the algorithm is as follows: First, we
select initial parameters fλkð0Þg. Second, we solve the
differential equation (4) numerically using the classical
computer, in which the matrix M and the vector V in
the equation are evaluated using the quantum coprocessor.
The solution permits us to project our parameters forward
by a small time increment and repeat the second step.
Eventually, we reach the parameters fλkðTÞg, which allow
us to prepare the final state in the quantum computer.
There are many different numerical methods for solving

a differential equation, and the choice of specific numerical
method determines the details of the information exchange
loop between quantum and classical processors. In the
following, we take the Euler method as an example, but the
algorithm can be adapted to other numerical methods, e.g.,
Runge-Kutta methods [54].
Time is discretized as tn ¼ nδt, where t0 ¼ 0 is the initial

time, and tN ¼ Nδt ¼ T is the simulated evolution time.
First, M and V corresponding to parameters fλkðt0Þg are
evaluated using the quantum computer. Then, the following
process is repeated. Given M and V corresponding to the
time tn, Eq. (4) is solved numerically on the classical
computer to obtain values of f_λkðtnÞg. As parameters
fλkðtnÞg have been obtained from previous calculations,
one can approximately calculate parameters of the time tnþ1

using λkðtnþ1Þ ¼ λkðtnÞ þ _λkδt. Repeating the process until

tnþ1 ¼ T, we can work out the parameters fλkðTÞg of the
final state.

VI. ERROR ANALYSIS

There are four types of errors that can result in infidelity
in the variational quantum simulation: (i) errors due to
limited generality of the trial wave function, which may
only be able to describe the simulated system approx-
imately; (ii) errors in the numerical integration obtained by
solving Eq. (4), which is always approximate because of
the finite discretization of time; (iii) shot noise in measuring
equation coefficients M and V; and (iv) errors due to noise
in the quantum machine, e.g., decoherence and quantum
gate infidelity.
A good trial wave function allows us to not only reduce

trial wave-function errors but also minimize the difficulty
of implementing the algorithm, e.g., only use small-size
quantum circuits. Whether a good trial wave function can
be found depends on the simulated system and our under-
standing of the physics in that system. However, a trial
wave function that contains a polynomial number of
parameters and is a high-fidelity approximation to the true
wave function always exists. For example, one can set the
trial wave function in the Trotter-Suzuki form, i.e., take the
sequence of gate operations R in the form of Eq. (1), and
then take the evolution time of each term as a variational
parameter (fλkg ¼ fτn;jg) rather than a fixed value as in
the Trotterization algorithm [11]. Using the Trotter-Suzuki-
form trial wave function, we know that the severity of trial
wave-function errors decreases with the number of
Trotterization slices Nt as “Error ∝ 1=Nt” [35] in the worst
case.
Integration errors depend on the numerical method for

solving the differential equation (4). We take the Euler
method as an example. In the Euler method, the severity of
error is proportional to the size of each step δt [54].
Therefore, by choosing a small step size, integration errors
can be suppressed.
Shot noise and machine noise occur in the implementa-

tion of the algorithm, while trial wave-function errors
and integration errors are due to the imperfection of the

FIG. 2. Quantum circuit for the evaluation of certain coefficients required by the classical main program, as specified in the text. To
evaluate Reðeiθh0̄jUj0̄iÞ, where U ¼ R†

1…U†
kR

†
k…R†

Nv
RNv

…RqUq…R1, the ancillary qubit is initialized in the state ðj0i þ eiθj1iÞ= ffiffiffi
2

p

and measured in the j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
basis. Here, Uk is one of σk;i, and Uq is one of σq;j or σj (by taking q ¼ Nv þ 1, σj is put on

the left side of RNv
in the product). In the figure, we have assumed that k < q. Gates on the register after the second controlled unitary

gate can be omitted. This circuit is actually a variant of the circuit proposed in 2002 by Ekert et al. [52,53]. It involves Nv gates on the
register, two flip gates (X) on the ancillary qubit, and two controlled unitary gates on the ancillary qubit and the register.
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algorithm itself. The effect of implementation errors in the
integration process is that coefficients M and V evaluated
using the quantum computer are inaccurate; i.e., their
values are different from their true values Mð0Þ and Vð0Þ
given by Eqs. (12) and (13) (that is, the values given by a
quantum computer without shot noise and machine noise).
If coefficients M and V are inaccurate, time derivatives
f_λkg obtained fromM and V [see Eq. (4)] are different from

their true values f_λð0Þk g obtained from Mð0Þ and Vð0Þ. Using
δM¼M−Mð0Þ, δV¼V−Vð0Þ, and δ_λ ¼ _λ − _λð0Þ to denote
deviations from true values and using _λ ¼ gðM;VÞ to
denote the solution of Eq. (4), we have δ_λk ≃P

p;q½∂gk=ð∂Mp;qÞ�δMp;q þ
P

q½∂gk=ð∂VqÞ�δVq. When

the matrix is invertible in the vicinity of Mð0Þ, δ_λ≃
−ð1=Mð0ÞÞδM_λð0Þ þ ð1=Mð0ÞÞδV.

A. Trace distance

To analyze errors in the hybrid algorithm, we use the
trace distanceDðρ; ρ0Þ ¼ 1

2
Trjρ − ρ0j [55] as the measure of

error severity. The degree of error in the overall process is
given byD(jΦðtNÞi; ρN). Here, jΦni≡ jΦðtnÞi denotes the
true wave function, jΨni≡ jΨðtnÞi denotes the trial wave
function, and ρN is the state prepared in the quantum
computer according to the state jΨNi. The two states ρN
and jΨNi are different because of the machine noise.
The triangle inequality holds for the trace distance,
i.e., Dðρ; ρ0Þ ≤ Dðρ; ρ00Þ þDðρ00; ρ0Þ. Therefore, an upper
bound of DðjΦNi; ρNÞ is given by (see Fig. 3)

DðjΦNi; ρNÞ ≤ DðjΦ0i; jΨ0iÞ þDðjΨNi; ρNÞ

þ
XN
n¼1

DðUnjΨn−1i; jΨniÞ: ð14Þ

Here, Un is the exact evolution during the time from tn−1 to
tn (Un ¼ e−iHδt if the Hamiltonian is time independent);
therefore, jΦni ¼ UnjΦn−1i. To obtain the upper bound, we
have used DðjΦn−1i;jΨn−1iÞ¼DðUnjΦn−1i;UnjΨn−1iÞ¼
DðjΦni;UnjΨn−1iÞ.
To distinguish algorithm errors and implement-

ation errors, we use the inequality DðUnjΨn−1i; jΨniÞ ≤
DðUnjΨn−1i; jΨð0Þ

n iÞ þDðjΨð0Þ
n i; jΨniÞ. Here, the state

jΨð0Þ
n i is a trial state corresponding to parameters fλð0Þk ¼

λkðtn−1Þ þ _λð0Þk δtg, i.e., assuming that the quantum com-
puter reports accurate values of M and V at the time tn−1.
Then, the upper bound can be rewritten as

DðjΦNi; ρNÞ ≤ DA þDI; ð15Þ
where

DA ¼ DðjΦ0i; jΨ0iÞ þ
XN
n¼1

DðUnjΨn−1i; jΨð0Þ
n iÞ; ð16Þ

DI ¼
XN
n¼1

DðjΨð0Þ
n i; jΨniÞ þDðjΨNi; ρNÞ: ð17Þ

Here, DA corresponds to algorithm errors, and DI corre-
sponds to implementation errors.
Algorithm errors in each time step can be expressed as

DðUnjΨn−1i; jΨð0Þ
n iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δð2Þδt2 þ E

p
; ð18Þ

where

Δð2Þ ¼ hδΨnjδΨni − jhδΨnjΨn−1ij2; ð19Þ

jδΨni ¼ −iHjΨn−1i −
X
k

_λð0Þk
∂jΨn−1i
∂λk ; ð20Þ

and

jEj ≤
�X∞

m¼0

∥Hm∥δtm

m!

�
2
�X∞

m¼0

∥ dmR
dtm ∥δtm

m!

�2

−
�
1þ ∥H∥δtþ ∥

dR
dt

∥δt
�

2

−
�
∥H2∥þ 2∥H∥∥

dR
dt

∥þ ∥
d2R
dt2

∥
�
δt2

¼ Δð3Þδt3 þOðδt4Þ: ð21Þ

Here, we have used Taylor expansions of UnjΨn−1i and

jΨð0Þ
n i, i.e., UnjΨn−1i ¼

P∞
m¼0ðδtm=m!Þð−iHÞmjΨn−1i and

FIG. 3. The distance between the true wave function and the
wave function obtained from the hybrid algorithm. Black circles
denote true wave functions given by the exact time evolution at
the time t0; t1;…; tN , respectively. Un denotes the exact time
evolution during the time from tn−1 to tn. Gray circles denote trial
wave functions, and each empty circle with a dashed edge is the
wave function at the time tn given by the exact time evolution Un
and taking the trial wave function at the time tn−1 as the initial
state. Distances are marked by red double lines. Note that Da ¼
DðjΦn−1i; jΨn−1iÞ and Db ¼ DðjΦni; UnjΨn−1iÞ. The distance
between jΦNi and ρN is not larger than the sum of all of the red
double lines in the main figure.
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jΨð0Þ
n i ¼ P∞

m¼0ðδtm=m!ÞðdmR=dtmÞj0̄i, where ½d=ðdtÞ� ¼P
k
_λð0Þk ½∂=ð∂λkÞ�. See Appendix B for details. The matrix

norm is induced by the vector norm; therefore,
jhΨn−1jHm0 ½dmR=ðdtmÞ�j0̄ij ≤ ∥Hm0∥∥½dmR=ðdtmÞ�∥.
Implementation errors in each time step are due to the

difference between time derivatives obtained from the real

quantum computer and their true values, i.e., δ_λk¼ _λk− _λð0Þk ,
which can be expressed as

DðjΨð0Þ
n i; jΨniÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ_λTAδ_λδt2 þOðδt3Þ

q
; ð22Þ

where A is a positive semidefinite matrix and

Ak;q ¼
∂hΨn−1j
∂λq

∂jΨn−1i
∂λk

−
∂hΨn−1j
∂λq jΨn−1ihΨn−1j

∂jΨn−1i
∂λk : ð23Þ

Here, we have used the Taylor expansion of jΨni, which is

the same as jΨð0Þ
n i but with f_λð0Þk g replaced by f_λkg.

B. Cost of the hybrid algorithm

UsingQmax to denote the maximum value of the quantity
Q for all tn, we have

DA ≲DðjΦ0i; jΨ0iÞ þ
ffiffiffiffiffiffiffiffiffiffi
Δð2Þ

max

q
T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δð3Þ

maxδt
q

T; ð24Þ

DI ≲
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥A∥max

p
∥δ_λ∥maxT þDðjΨNi; ρNÞ: ð25Þ

The first term of DA and the second term of DI are due to
imperfections in approximating the initial state using the
trial wave function and preparing the final state in the
quantum computer with machine noise, respectively. Note
that these two terms are not T dependent; for simulations
over a substantial time T, we may expect them to make
relatively small contributions. In the following, we analyze
the other three terms one by one.
The second term of DA is the accumulation of trial

wave-function imperfections in each time step. Using the
circuit in Fig. 2, every term in Δð2Þ can be measured by a
method analogous to that used for obtaining M and V.
The accuracy is again limited by the shot noise and
machine noise. Therefore, algorithm errors due to the trial
wave function can be continually estimated during the
execution of the hybrid quantum computation.
The third term of DA is caused by the finite integration

step size, which can be reduced by decreasing δt. In order
to limit this term to ε, we need to choose a step size δt∼
ε2=ðΔð3ÞT2Þ, i.e., the number of time steps N ∼ Δð3ÞT3=ε2.
When the trial wave function is a good approximation to
the exact state, we can expect that ½ðdmRÞ=dtm�jΨi≃
HmjΨi, which implies ∥½ðdmRÞ=dtm�∥ ∼ ∥Hm∥ in the
subspace of the problem, and in this case, Δð3Þ ∼ ∥H∥3.

The first term ofDI is due to the difference between f_λkg
and their true values f_λð0Þk g. The difference is ∥δ_λ∥ ≤
∥1=Mð0Þ∥2∥Vð0Þ∥∥δM∥þ ∥1=Mð0Þ∥∥δV∥. Here, M and
V are evaluated as required by the algorithm. Similar to
Δð2Þ, each element of A can also be measured using the
circuit in Fig. 2. Therefore, the susceptibility to shot noise
and machine noise in the integration process can be
estimated during the execution of the hybrid quantum
computation. The algorithm is susceptible to implementa-
tion errors when Mð0Þ is singular, which should be avoided
when choosing the trial wave function. As a worst-case
scenario, implementation errors accumulate linearly with
the simulated time. However, it can be far less severe: In
Sec. VIII, we will explore an example in which the
accumulation of errors due to the machine noise is almost
negligible compared with errors in a quantum simulation
based on the conventional Trotter-Suzuki decomposition.
Shot noise can be suppressed by repeating quantum

circuits for measuring M and V many times. To measure
the quantity hXi, the deviation due to the shot noise
decreases with the number of repetitions Nr as
δhXi ∝ 1=

ffiffiffiffiffiffi
Nr

p
. Therefore, if there is only shot noise, we

have ∥δ_λ∥ ∼ Δ=
ffiffiffiffiffiffi
Nr

p
, where Δ ¼ ∥1=Mð0Þ∥2∥Vð0Þ∥ΘM þ

∥1=Mð0Þ∥ΘV , ΘM ¼ 2½Pk;qð
P

i;jjif�k;ifq;jjÞ2�1=2, and
ΘV ¼ 2½Pkð

P
i;jjf�k;ihjjÞ2�1=2. In order to limit the overall

effect of shot noise to ε0, we need to choose Nr ∼
∥A∥Δ2T2=ε02.
The number of distinct circuits Nc required for

finding the M and V parameters depends on NH,
the number of terms in the Hamiltonian H [see Eq. (8)];
Nd, the number of terms in each time derivative of Rk
[see Eq. (9)]; and Nv, the number of parameters in the trial
wave function. Note that Nc ¼ N2

vN2
d þ NvNdNH, where

the first term corresponds to M, and the second term
corresponds to V. If each Rk is realized by NR gates, and
each term σi or σk;i in the Hamiltonian or the time derivative
of Rk is a Pauli operator of less than K qubits, each circuit
includes at most Ng ¼ NvNR þ 2ðK þ 1Þ gates. Here, we
have assumed that each controlled-U gate in the circuit
(Fig. 2) is realized by K two-qubit controlled-σ gates,
where σ is a single-qubit Pauli operator. To complete the
circuit, other operations include preparing initial states of
the ancillary qubit and the register and measuring the
ancillary qubit.
The overall computation includes N times steps. In each

time step, Nc circuits are implemented. Each circuit
contains Ng gates and is repeated Nr times. Therefore,
the overall number of gates is

NNcNgNr ∼
∥A∥Δ2Δð3ÞT5

ε2ε02

× NvNdðNvNd þ NHÞ
× ½NvNR þ 2ðK þ 1Þ�: ð26Þ
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From this expression, we see that the cost is a polynomial
function with respect to the integration error ε, the shot-
noise error ε0, and the simulated time T. Factors ∥A∥, Δ,
and Δð3Þ depend on the form of the trial wave function.
However, during the actual execution of the hybrid com-
putation, it will be possible to estimate ∥A∥ and Δ.
Moreover, Δð3Þ ∼ ∥H∥3, when the trial wave function is
a good approximation to the true state.
It is important to remember that while the overall gate

count will be a large (albeit polynomially scaling) total, the
complete calculation is formed of many small quantum
calculations of depth Ng. Each small computation is
isolated from the others; i.e., there is no shared or persistent
quantum resource, and indeed, ∼NcNr such circuits
could be performed in parallel using many separate small
quantum computers.

VII. EFFECT OF MACHINE NOISE
AND ERROR REDUCTION

Of the implementation errors, machine noise is the more
problematic. Shot noise can be suppressed merely by
repeating each quantum circuit many times, and the number
of repetitions is a polynomial function with respect to the
accuracy. Machine noise is less easily dismissed, and it is
the focus of this section.
Machine noise need not necessarily result in computing

errors. The task of the quantum computer is to evaluate
coefficients M and V so that the classical computer can
solve time derivatives f_λkg according to Eq. (4). Machine
noise (as well as shot noise) can potentially cause comput-
ing errors by changing these time derivatives from their true

values f_λð0Þk g. However, sometimes machine noise does not
change values of f_λkg. For example, consider the case in
which the effect of machine noise is to depolarize the
ancillary qubit at a fixed level; i.e., the output of the
quantum computer becomes hXi ¼ ηhXið0Þ, where η is a
constant independent of the quantum circuit. In this case,
all equation coefficients are scaled as M ¼ ηMð0Þ and
V ¼ ηVð0Þ. As long as η is nonzero, the solution f_λkg of
Eq. (4) is the same for any value of η. Therefore, only an
inhomogeneous scaling of quantum outputs hXi results in
computing errors.
An example of the homogeneous scaling is the case of

balanced measurement errors. Errors in the measurement
on the ancillary qubit (see Fig. 2) can be modeled as
follows: If the state of the qubit is j0i (j1i), the measure-
ment outcome is correct, i.e., 0 (1), with the probability
1 − p0 (1 − p1), and the outcome is incorrect, i.e., 1 (0),
with the probability p0 (p1). If there are no other imple-
mentation errors, quantum outputs are changed from hXið0Þ
to hXi ¼ ðp1 − p0Þ þ ð1 − p0 − p1ÞhXið0Þ (the measure-
ment in the fjþi; j−ig basis is done by performing a
Hadamard gate before measuring the qubit in the fj0i; j1ig

basis). If measurement errors are balanced, i.e., p0 ¼ p1,
the effect of measurement errors is a fixed scaling factor
η ¼ 1 − p0 − p1, which does not result in computing
errors. Therefore, our hybrid algorithm is inherently insen-
sitive to measurement errors on the ancillary qubit if these
errors are balanced. We remark that if single-qubit gates are
reliable, one can flip the qubit before the measurement so
that measurement errors are effectively balanced.
Measurement errors can be corrected even if they are not

balanced. If p0 and p1 can be evaluated by benchmarking
measurement operations, one can easily work out the
true value hXið0Þ using the value obtained from the real
machine: hXið0Þ ¼ ½hXi − ðp1 − p0Þ�=ð1 − p0 − p1Þ. We
remark that when error probabilities are higher, the denom-
inator is smaller, which means that we need to evaluate hXi
with a higher accuracy in order to achieve the same
accuracy of hXið0Þ. Next, we show that a similar procedure
can be applied to any machine noise if errors due to the
machine noise are stochastic with tunable probabilities. We
also show how to convert errors in two-qubit entangling
gates, which are expected to be the main sources of errors,
into stochastic errors if they are not stochastic, and how to
simulate stochastic errors to tune error probabilities.

A. Error reduction

Errors in an operation are stochastic if the operation is
described by a superoperator NU and N has the form
N ¼ ð1 − ϵÞI þ ϵE. Here, U is the ideal operation without
errors, N is the superoperator describing the effect of the
noise, I is an identity operation, and errors E occur with the
probability ϵ. Here, E is a valid quantum operation, i.e.,
trace-preserving completely positive map.
Given an initial state j0̄i, after a sequence of operations,

the final state of the quantum computer is

ρ ¼ N LUL…N lU l…N 1U1ðj0̄ih0̄jÞ; ð27Þ

where N lU l denotes the lth operation. Taking into account
the fact that errors are stochastic, the quantum outcome can
be rewritten in the form

hXi ¼
�
1 − r

X
l

ϵl

�
hXið0Þ þ rhXið1Þ þOðr2Þ: ð28Þ

Here, hXi ¼ TrðXρÞ, hXið0Þ ¼ TrðXρð0ÞÞ is the value with-
out errors,

ρð0Þ ¼ UL � � �U l � � �U1ðj0̄ih0̄jÞ; ð29Þ

hXið1Þ ¼ TrðXρð1ÞÞ, and

ρð1Þ ¼
X
l

ϵlUL…ElU l…U1ðj0̄ih0̄jÞ: ð30Þ
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The lth term of ρð1Þ corresponds to the case in which only
the lth operation causes errors and all other operations are
ideal. Note that in these equations, we have replaced error
probabilities ϵl with rϵl, where r is a convenient scale
factor, allowing us to write hXiðrÞ as a function of r,
and hXið0Þ ¼ hXið0Þ.
If probabilities of errors are tunable, we can infer the

value of hXið0Þ by measuring values of hXiðrÞ of a set of
different factors r [see Fig. 4(a)]. Clearly, r can never be
zero for our machine, as this would imply that we have the
ability to fully switch off the machine noise, making it
perfect. If fϵlg are the minimum error probabilities allowed
by the machine, the minimum value of r achievable by the
machine is 1. To infer the value of hXið0Þ, first, we take NX
values of r as r1; r2;…; rNX

and measure hXiðr1Þ;
hXiðr2Þ;…; hXiðrNX

Þ using the quantum computer, where
we can take r1 ¼ 1. For example, in Fig. 4(a), we have
taken r1 ¼ 1, r2 ¼ 1.5, and r3 ¼ 2. Second, we fit quantum
outputs using the function hXiðrÞ ¼ hXið0Þ þ χr, where
χ ¼ −hXið0ÞPlϵl þ hXið1Þ. As a result of the fitting, we
obtain the value of hXið0Þ, represented by the gray circle in
Fig. 4(a). In this way, the first-order contribution of
machine noise can be corrected. Similarly, by considering
second-order terms in the expansion (28), one can fit data
using a function with second-order terms (i.e., r2 terms) to
correct the second-order contribution of machine noise.
Using the extrapolation, we can reduce the effect of the
machine noise. However, the final estimation of hXið0Þ may
still be different from its actual value, and the error in the
extrapolation depends on the shot noise in estimating
each hXiðrÞ.
The error-reduction protocol only works for small-size

circuits, which are used in the hybrid algorithm, while
the Trotterization algorithm usually needs large-size cir-
cuits. The true value hXið0Þ can be inferred because the
contribution of high-order terms is much smaller than
the contribution of lower-order terms, i.e., jOðr2Þj ≪
jrhXið1Þj. The total rate of errors in the quantum circuit

with Ng gates is ∼1 − ð1 − ϵÞNg ¼ Ngϵþ N2
gϵ

2=2þ � � �.
The first term in the expansion corresponds to the first-
order contribution jrhXið1Þj, and so on. Therefore, high-
order terms cannot be neglected if Ngϵ≳ 1. When there are
too many gates in the circuit or the error rate is too high, the
quantum state will be populated with errors, and one cannot
retrieve the true value hXið0Þ even if we consider high-order
terms in the interpolation. The best experiments to date
[5,6] have reduced two-qubit gate infidelity to the range
10−3 to 10−4. With hardware of that kind, our protocol
could support hundreds of gates. Thus, a simulation
of a quantum system using a trial wave function with
hundred(s) of parameters may be feasible.
Implementing the error-reduction protocol requires

knowledge of the inherent machine noise. Therefore, quan-
tumoperations need to be benchmarked, e.g., using quantum
process tomography [55,56], before the quantum copro-
cessor is used, and the nature of themachine noise should not
vary significantly during the simulation. Alternatively, one
can monitor the machine noise in the process by stopping
the protocol and benchmarking operations because, in the
hybrid algorithm, the quantum computer only performs
small-size circuits and can be stopped at any stage.

B. Error twirling and simulation

Nonstochastic errors can be converted into stochastic
Pauli errors using some redundant Pauli gates [38–40]. It is a
common feature of quantum computing systems that two-
qubit gates are themain source of errors; i.e., probabilities of
errors in two-qubit gates are much higher than probabilities
of errors in single-qubit gates [3–6,37]. In this case, arbitrary
errors in two-qubit gates can be converted into stochastic
errors through the use of redundant Pauli gates, without
introducing significant additional noise. We consider the
controlled-phase gate Λ ¼ ð1þ σzcÞ=2þ σzt ð1 − σzcÞ=2 as
an example, and it is similar for other two-qubit gates, e.g.,
the controlled-NOT gate. Here, c and t denote the control
qubit and the target qubit, respectively.
The controlled-phase gate with noise is N ΛUΛ,

where UΛρ ¼ ΛρΛ†. In general the noise may not be in
the stochastic-error form, but we can always express the
noise operation in the Kraus form, i.e., N Λρ ¼ P

hEhρE
†
h,

where
P

hE
†
hEh ¼ 1, and each two-qubit matrix can be

written as Eh ¼
P

3
a¼0

P
3
b¼0 αh;a;bσ

a
cσ

b
t [55]. Here, a,

b ¼ 0, 1, 2, 3 correspond to Pauli operators 1, σx, σy,
and σz, respectively.
In order to convert errors, Pauli gates f1; σx; σy; σzg are

randomly chosen and applied on each qubit before and
after the controlled-phase gate. If the gate before the
controlled-phase gate is U, the gate after the controlled-
phase gate is restricted to be ΛUΛ† in order to let random
Pauli gates cancel each other. Here, U and ΛUΛ† are both
two-qubit Pauli gates. The circuit is shown in Fig. 4(b),
in which we take c ¼ aþ bð3 − bÞð3 − 2aÞ=2 and

control

time
(b) Error simulation(a) Error reduction

FIG. 4. (a) A schematic diagram of the error reduction. The true
value hXið0Þ is inferred by measuring hXi for a set of error factors
r and fitting data using the function hXi ¼ hXið0Þ þ χr. (b) Error
twirling and simulation. Nonstochastic errors in a controlled-
phase gate can be converted into stochastic errors by performing
Pauli gates before and after the gate, and error probabilities can be
tuned by applying Pauli gates after the gate.
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d ¼ bþ að3 − aÞð3 − 2bÞ=2, so that σccσdt ¼ Λσacσbt Λ† up
to a phase factor. As a result, the overall operation is
N̄ ΛUΛ, where N̄ Λ is the superoperator describing the
effective noise after applying random Pauli gates. The
effective noise superoperator is in the stochastic form [57]
(see Appendix C), i.e.,

N̄ Λ ¼ FΛ½1� þ
X

ða;bÞ≠ð0;0Þ
ϵa;b½σacσbt �; ð31Þ

where the fidelity is FΛ ¼ P
hjαh;0;0j2, and error proba-

bilities are ϵa;b ¼
P

hjαh;a;bj2. Here, [U] is a superoperator,
and ½U�ρ ¼ UρU†. We have assumed that Pauli gates are
ideal. In the case where Pauli gates are not ideal but their
error probabilities are much lower than the controlled-
phase gate, noise of Pauli gates will be a perturbation to the
effective noise of the controlled-phase gate. Error severity
in the controlled-phase gate will effectively increase by
four units of the single-qubit Pauli gate error rate, and the
effective noise of the controlled-phase gate may not be fully
stochastic if Pauli-gate errors are nonstochastic.
To tune probabilities of errors, we can randomly perform

Pauli gates after the controlled-phase gate according to
desired error probabilities [see Fig. 4(b)]. Assuming that we
want to tune error probabilities from ϵe;f to rϵe;f, we can

perform the Pauli gate σecσ
f
t [ðe; fÞ ≠ ð0; 0Þ] with the

probability ðr − 1Þϵe;f. Because we are only interested in
the case where rϵe;f ≪ 1, overall error probabilities are
approximately ϵe;f þ ðr − 1Þϵe;f, where the first term is due
to the raw controlled-phase gate (with noise), and the
second term is due to simulated errors using single-qubit
Pauli gates.

VIII. NUMERICAL RESULTS—QUANTUM
ISING MODEL

To demonstrate the hybrid algorithm, we numerically
simulate a small quantum computer using classical com-
puters.We take the quantum Isingmodel [58] as an example.
The Hamiltonian of the model reads H ¼ HZ þHX, where
HZ ¼ −J

Pns
j¼1 σ

z
jσ

z
jþ1 and HX ¼ −B

Pns
j¼1 σ

x
j . Here, ns is

the number of spins, and σznsþ1 ¼ σz1. In our numerical
simulations, we take J ¼ B ¼ 1=2 and ns ¼ 3; therefore,
we need at least four qubits in the quantum computer
to implement the hybrid algorithm. The trial state is chosen
to be

jΨi ¼ eiλ2HXeiλ1HZ jΦð0Þi;

where the initial state jΦð0Þi is a one-dimensional cluster
state. In the cluster state, qubits are in the eigenstate of
stabilizers Sj ¼ σzj−1σ

x
jσ

z
jþ1 (j ¼ 1; 2;…; ns) with the same

eigenvalue þ1, which is prepared by performing the
controlled-phase gate on each pair of nearest-neighbor

qubits initialized in the state jþi [59]. The evolution of
the true state is jΦðtÞi ¼ e−iHtjΦð0Þi. In this example, the
trial state is capable of exactly matching the true state given
the correct values of the parameters.
We consider a quantum computer that can initialize

qubits in the state j0i, measure a qubit in the fj0i; j1ig
basis, and perform single-qubit and two-qubit quantum
gates. Quantum gates include the Hadamard gate, Pauli
gates, phase gates eiσ

zθ, flip gates eiσ
xθ, two-qubit gates

eiσ
z
1
σz
2
θ, the controlled-phase gate, and the controlled-NOT

gate. If we have one of the three types of two-qubit gates,
the other two can be efficiently realized; e.g., the gate
eiσ

z
1
σz
2
θ ¼ H1Λeiσ

x
1
θΛH1 can be realized using two con-

trolled-phase gates and three single-qubit gates. Here,H1 is
the Hadamard gate on qubit 1. We assume that all three
types of two-qubit gates can be directly implemented, for
simplification. The state jþi is prepared by initializing the
qubit in the state j0i and performing a Hadamard gate; the
measurement in the fjþi; j−ig basis is done by performing
a Hadamard gate before measuring the qubit in the
fj0i; j1ig basis.
We model the machine noise in the quantum computer

as depolarizing errors. A qubit may be initialized in the
incorrect state (j1i) with the probability ϵI. The measure-
ment outcome is incorrect with the probability p0 ¼
p1 ¼ ϵM. For single-qubit gates, the noise superoperator is

N ð1Þ ¼
�
1 −

4

3
ϵð1Þ

�
½1� þ ϵð1Þ

3

X3
a¼0

½σðaÞ�:

For two-qubit gates, the noise superoperator is

N ð2Þ ¼
�
1 −

16

15
ϵð2Þ

�
½1� þ ϵð2Þ

15

X3
a¼0

X3
b¼0

½σðaÞ1 σðbÞ2 �:

Here, ϵð1Þ and ϵð2Þ are rates of errors per gate. We assume
that error rates of all single-qubit gates are the same, error
rates of all two-qubit gates are the same, and error rates of
single-qubit operations are only one-tenth of the error rates
of two-qubit gates, i.e., ϵI ¼ ϵM ¼ ϵð1Þ ¼ ϵð2Þ=10. Because
the size of quantum circuits for implementing the hybrid
algorithm is small, we neglect memory errors. In this model
of the machine noise, errors in quantum operations are all
stochastic, and error rates can be tuned by simulating errors
using single-qubit Pauli gates.
Numerical simulations are performed to find the trace

distanceDðjΦi; ρÞ between the true state jΦðtÞi and the state
ρðtÞ prepared in the quantum computer according to the trial
state jΨðtÞi [see Fig. 5(a)]. Because of the machine noise,
ρðtÞ is different from jΨðtÞi. The average values of stabi-
lizers can be used to describe the quality of a cluster state.
The performance of quantum algorithms in estimating the
average values of stabilizers is shown in Fig. 5(b). In our
numerical simulations, we have taken ϵð2Þ ¼ 0.1%, which is
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the state-of-the-art error rate [5,6]. SeeAppendixD for some
details about our numerical simulations.
We observe that in this simulation, the hybrid algorithm

proves to be far more reliable than the Trotterization
algorithm. The distance in the hybrid algorithm is about
10 times lower than the distance in the Trotterization
algorithm, and moreover, the increase of the distance as a
function of time can be largely suppressed in the hybrid
algorithm by using the error-reduction scheme [Fig. 5(a)].
As a result, the hybrid algorithm can provide a much better
estimation of the average values of stabilizers [Fig. 5(b)].
Wewould like to stress that in order to make the comparison
fair, the time interval selected for the Trotterization algo-
rithm has been optimized to minimize errors (in practice,
this would be possible only if the distance from the true state
can be measured in the quantum computer, which would
probably negate the need for simulation). We have also
considered the lowest-order symmetric Trotter-Suzuki
decomposition [60,61], which can reduce errors due to
the Trotterization compared with the conventional
Trotterization scheme. However, we find that the total errors
are more significant using the symmetric decomposition
given the gate error rate ϵð2Þ ¼ 0.1%. In the hybrid algo-
rithm, we have used the fourth-order Runge-Kutta method
and taken δt ¼ 2π × 10−6 to eliminate errors due to the
numerical integration. We have neglected the effect of shot
noise; therefore, all errors are due to machine noise.

Given a finite time cost of implementing the hybrid
algorithm, we need to consider the effect of errors in the
numerical integration and shot noise. Taking into account
the effect of these two types of imperfections, we find that
the distance in the hybrid algorithm may be increased but is
still much lower than the distance in the Trotterization
algorithm [blue and red bands in Fig. 5(a)]: We take
δt ¼ 2π × 10−4 and assume that each circuit is repeated
Nr ¼ 104 (Nr ¼ 106) times to measure hXi in the hybrid
algorithm (with the error reduction). Increasing the distance
only slightly changes the estimation of average values of
stabilizers [Fig. 5(b)].

IX. SUMMARY

We have proposed a quantum algorithm for simulating
the time evolution of a quantum system. In this algorithm,
both a classical processor and a quantum coprocessor are
tightly integrated. Because of the assistance of the classical
computer, the algorithm can be implemented with quantum
circuits of much less depth (i.e., fewer quantum operations)
compared with the canonical Trotterization algorithm. We
discussed the robustness of the algorithm to noise, and we
found that the algorithm can automatically correct some
errors induced by the noise in the quantum computer.
Moreover, by deliberately amplifying stochastic noise in a
controllable way, the zero-error limit can be estimated;
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FIG. 5. Numerical estimations of the performance of quantum simulation using the Trotterization algorithm and the hybrid algorithm.
The simulated system is a quantum Ising model of three spins initialized in the cluster state. (a) Trace distanceDðjΦi; ρÞ as a function of
the simulated time t. Here, jΦðtÞi is the true state, and ρðtÞ is the state prepared in the quantum computer. The Trotterization algorithm
(black curves) and the hybrid algorithm are compared. In the Trotterization algorithm, ρðtÞ is prepared according to the Trotter-Suzuki
decomposition, and in the hybrid algorithm, ρðtÞ is prepared according to the trial state jΨðtÞi. We have taken the error rate ϵð2Þ ¼ 0.1%.
The hybrid algorithm without the error reduction (blue curves) is already much more reliable than the conventional Trotterization
algorithm. In the hybrid algorithm, one can further reduce the distance using the error-reduction protocol (red curve). The residual
distance that cannot be eliminated using the error reduction is mainly due to errors in the state preparation (i.e.,DðjΨNi; ρNÞ term). Inset:
The parameter δt in the Trotterization algorithm is optimized to minimize the average distance, and the gray curve is obtained by using
the lowest-order symmetric Trotter-Suzuki decomposition (see Appendix D). (b) The difference between the average value of a stabilizer
estimated using the quantum computer and its true value. Here, SðρÞ ¼ TrðS2ρÞ and SðjΦiÞ ¼ hΦjS2jΦi. Average values of other
stabilizers are only slightly different. The true average value of the stabilizer is plotted in the inset. In both figures (a) and (b), light blue
and red bands denote the fluctuation due to shot noise: With 68% chance (in total 100 trials), the corresponding quantity is within
the band.
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consequently, the effect of errors can be significantly
suppressed without the need for code-based quantum error
correction and its concomitant resource overheads. This
quantum algorithm can also be parallelized easily. The task
of the quantum coprocessor is to repeatedly implement a set
of small-size quantum circuits; therefore, the computing
speed can be accelerated by using a cluster of quantum
coprocessors, in which each works independently and there
are no quantum channels linking them.
In view of these various merits, we believe that our

algorithm is a promising candidate for early-stage non-
fault-tolerant quantum computers.
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Note added.—Recently, a highly relevant paper was also
posted by Ref. [63]. In that work, the authors also studied
an error mitigation strategy involving deliberate variation
of the error severity and subsequent extrapolation to the
most-likely zero-error value of their observable. While the
authors analyze this as a general technique and investigate
higher-order corrections, rather than employing the tech-
nique in the specific context of quantum dynamical
simulation as we do here, the results of our two papers
are consistent and can be compared.

APPENDIX A: SIMULATED MODEL OF FIG. 1(b)

In Fig. 1(b), the time evolution of a qubit is simulated.
The time evolution is driven by the Hamiltonian
H ¼ −ðσy þ σz cos t − σy sin tÞ=2. The trial state is in the
form jΨi ¼ eiðπ=2Þλ2σzeiðπ=2Þλ1σy j0i. The initial state is given
by λ1 ¼ 3=4 and λ2 ¼ −1=2, and T ¼ 2π. To demonstrate
this example, we need a quantum computer of two qubits.

APPENDIX B: ALGORITHM ERRORS

Algorithm errors in each time step are expressed as

per Eq. (18), where E ¼ 1 − jhΨð0Þ
n jUnjΨn−1ij2 − Δð2Þδt2.

Using Taylor expansions of jΨð0Þ
n i and UnjΨn−1i and the

expression of Δð2Þ in Eq. (19), we find that

jhΨð0Þ
n jUnjΨn−1ij2 ¼ 1 − Δð2Þδt2 þOðδt3Þ: ðB1Þ

Here, we used the observation that Reh0̄j½ðdR†Þ=
dt�jΨn−1i ¼ 0 and Reh0̄j½ðd2R†Þ=dt2�jΨn−1i þ ∥½ðdRÞ=
dt�j0̄i∥2 ¼ 0. We remark that jΨn−1i ¼ Rj0̄i. In other
words, in the expansion of E, there is no term correspond-
ing to either δt0, δt1, or δt2. Therefore, one can obtain

the inequality (21), where the second and third lines negate
the δt0, δt1, and δt2 terms from the first line. We can
sum the δt3 terms from the first line of inequality (21) as
follows:

Δð3Þ ¼ ∥H∥∥H2∥þ 1

3
∥H3∥

þ ∥
dR
dt

∥∥
d2R
dt2

∥þ 1

3
∥
d3R
dt3

∥

þ ∥H∥
�
∥
dR
dt

∥2 þ ∥
d2R
dt2

∥
�

þ ð∥H∥2 þ ∥H2∥Þ∥ dR
dt

∥: ðB2Þ

APPENDIX C: ERROR TWIRLING
OF CONTROLLED-PHASE GATES

The twirled controlled-phase gate on a state ρ reads

1

16

X3
a¼0

X3
b¼0

½σccσdt �N ΛUΛ½σacσbt �ρ ¼ N̄ ΛUΛρ: ðC1Þ

The effective noise superoperator is

N̄ Λ ¼ 1

16

X3
a¼0

X3
b¼0

½σacσbt �N Λ½σacσbt �: ðC2Þ

Using σaσbσa ¼ ½2δa;b − ð2δa;0 − 1Þð2δb;0 − 1Þ�σb, we find
that the effective noise is in the stochastic form of Eq. (31).

APPENDIX D: SOME DETAILS ABOUT
NUMERICAL SIMULATIONS

In the hybrid algorithm with error reduction, we take
r1 ¼ 1 and r2 ¼ 2 and fit the function hXi ¼ hXið0Þ þ χr to
infer the value of hXið0Þ. To simulate shot noise, we use the
normal distribution to approximate the binomial distribu-
tion; i.e., the value of hXi taking into account the shot noise
is given by x ¼ 1�2p, where p is given by a normal
distribution with the mean p0 ¼ ð1 − hXiÞ=2 and the
standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1 − p0Þ=Nr

p
.

In the Trotterization algorithm, the time evolution is
simulated using Eq. (1). For the quantum Ising model,
the Hamiltonian is decomposed into two terms: H1 ¼ HZ
and H2 ¼ HX. In our numerical simulations, we take Nt ¼
ceilingðT=δtÞ, τn;j¼δt if n<Nt, and τNt;j¼T−ðNt−1Þδt.
Such a method of determining Trotterization parameters
coincides with the optimal choice of the number Nt to
minimize errors [36]. The state ρðtÞ is given by replacing T
with t and determining Nt and τn;j using the method we just
described.
To find the optimal δt, we consider the average trace

distance ¯DðjΦi; ρÞ ¼ T−1 R T
0 dtDðjΦðtÞi; ρðtÞÞ, where jΦi
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is the true state and ρ is the state prepared in the quantum
computer according to the Trotterization algorithm. The
average trace distance is plotted in Fig. 5(a), taking T ¼ 4π.
To obtain other results in Fig. 5, we take δt ¼ 2π × 10−1.4

in the Trotterization algorithm, which minimizes the
average distance.
It is interesting to ask whether second-order techniques,

which are known to be helpful in reducing the error in the
Trotterization technique, might have a superior perfor-
mance here. For the lowest-order symmetric Trotter-
Suzuki decomposition [60,61], each time step in Eq. (1)
is replaced by

QNH
j¼1 e

−iHjδt=2
Q

1
j¼NH

e−iHjδt=2, where NH is
the number of terms in the Hamiltonian. The performance
when using this technique is plotted as the grey curve in the
inset to Fig. 5(a). We see that the performance is actually
inferior to the more basic Trotterization approach; the
explanation is that the potential gains are more than negated
because the larger number of gates employed introduces a
greater degree of error (due to the 0.1% physical gate
errors).
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