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The quantitative characterization of bacterial growth has attracted substantial attention since Monod’s
pioneering study. Theoretical and experimental works have uncovered several laws for describing the
exponential growth phase, in which the number of cells grows exponentially. However, microorganism
growth also exhibits lag, stationary, and death phases under starvation conditions, in which cell growth is
highly suppressed, for which quantitative laws or theories are markedly underdeveloped. In fact, the models
commonly adopted for the exponential phase that consist of autocatalytic chemical components, including
ribosomes, can only show exponential growth or decay in a population; thus, phases that halt growth are not
realized. Here, we propose a simple, coarse-grained cell model that includes an extra class of
macromolecular components in addition to the autocatalytic active components that facilitate cellular
growth. These extra components form a complex with the active components to inhibit the catalytic
process. Depending on the nutrient condition, the model exhibits typical transitions among the lag,
exponential, stationary, and death phases. Furthermore, the lag time needed for growth recovery after
starvation follows the square root of the starvation time and is inversely related to the maximal growth rate.
This is in agreement with experimental observations, in which the length of time of cell starvation is
memorized in the slow accumulation of molecules. Moreover, the lag time distributed among cells is
skewed with a long time tail. If the starvation time is longer, an exponential tail appears, which is also
consistent with experimental data. Our theory further predicts a strong dependence of lag time on the speed
of substrate depletion, which can be tested experimentally. The present model and theoretical analysis
provide universal growth laws beyond the exponential phase, offering insight into how cells halt growth
without entering the death phase.
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I. INTRODUCTION

Quantitative characterization of a cellular state, in terms of
the cellular growth rate, concentration of external resources,
and abundances of specific components, has long been one
of the major topics in cell biology, ever since the pioneering
study by Monod [1]. Such studies have been developed
mainly by focusing on the microbial, exponentially growing
phase, in which the number of cells grows exponentially
(this phase is often termed the log phase in cell biology,
but considering the focus on exponential growth, here adopt
the term “exponential phase” throughout). This work has
uncovered somewhat universal growth laws, including Pirt’s
equation for yield and growth [2] and the relationship
between the fraction of ribosomal abundance and growth
rate (experimentally demonstrated by Schaechter et al. [3],
and theoretically rationalized by Scott et al. [4]), among

others [5–8], in which the constraint to maintain steady
growth leads to general relationships [9–11].
In spite of the importance of the discovery of these

universal laws, cells under poor conditions exhibit differ-
ent growth phases in which such relationships are violated.
Indeed, in addition to the death phase, cells undergo a
stationary phase under conditions of resource limitation, in
which growth is drastically suppressed. Once cells enter
the stationary phase, a certain time span is generally
required to recover growth after resources are supplied,
which is known as the lag time. There have been extensive
studies conducted to characterize the stationary phase,
including the length of lag time for resurrection and the
tolerance time for starvation or antibiotics [12–14], and
specific possible mechanisms for phase transitions have
been proposed [15–17]. Furthermore, recent experiments
have uncovered the quantitative relationships of lag time
and its cell-to-cell variances [18,19]. For example, the lag
time was shown to depend on the length of time the cells
are starved. This implies that the stationary phase is not
actually completely stationary but that some slow changes
still progress during the starvation time, in which cells
“memorize” the starvation time. Hence, a theory to explain
such slow dynamics is needed that can also characterize
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the phase changes and help to establish corresponding
quantitative laws.
The existence of these phases and lag time is ubiquitous

in bacteria (as well as most microorganisms). Hence, we
aim to develop a general model that is as simple as possible,
without resorting to specific detailed mechanisms, but we
can nonetheless capture the changes among the lag,
exponential, stationary, and death phases. We first describe
a simple model for a growing cell, which consists of an
autocatalytic process driven by active chemical compo-
nents such as ribosomes. However, this type of model with
autocatalytic growth from substrates and their derivatives,
which is adopted for the exponential phase, is not sufficient
to represent all phases, as the autocatalytic process either
grows exponentially or decays toward death, and thus does
not account for a halting state with suppressed growth
corresponding to the stationary phase. Therefore, to go one
step further beyond the simplest model, we then consider
the addition of an extra class of components that do not
contribute to catalytic growth. Still, even the inclusion of
this extra class of components cannot fully account for the
transition to the stationary phase. Therefore, we further
considered the interaction between the two classes of
components. Here, we propose a model that includes the
formation of a complex between these two types of
components, which inhibits the autocatalytic process by
the active components. We show that the model exhibits the
transition to the stationary phase with growth suppression.
By analyzing the dynamics of the model, we then uncover
the quantitative characteristics of each of these phases in
line with experimental observations, including the bacterial
growth curve, quantitative relationships of lag time with
starvation time and the maximal growth rate, and the
exponentially tailed distribution of lag time. The proposed
model also allows us to derive several experimentally
testable predictions, including the dependence of lag time
on the speed of the starvation process.

A. Model

Since molecules that contribute to autocatalytic proc-
esses are necessary for the replication of cells, models for
growing cells generally consist of at least substrates (S) and
active components (denoted as “component A” hereafter)
that catalyze their own synthesis as well as that of other
components. For example, in the models developed by
Scott et al. [4] and Maitra et al. [20], component A
corresponds to ribosomes, whereas several models involv-
ing catalytic proteins have also been proposed [10,21–24].
This class of models provides a good description of the
exponential growth of a cell under the condition of
sufficient substrate availability; however, once the degra-
dation rate of component A exceeds its rate of synthesis
under a limited substrate supply, the cell’s volume will
shrink, leading to cell death. Hence, a cell population either
grows exponentially or dies out, and in this cellular state, it

is not possible to maintain the population without growth.
However, cells often exhibit suppressed growth under
substrate-poor conditions, even at a single-cell level
[12,13,18], as observed in the stationary phase. Such cells,
which neither grow exponentially nor move toward death,
cannot be modeled with cell models that only consider
autocatalytic processes [4,10,20–24].
Therefore, to model a state with such suppressed growth,

it is important to consider additional chemical species, i.e.,
macromolecules that do not contribute to autocatalytic
growth, in addition to the substrates (S) and component
A (A) that are commonly adopted in models of cell growth.
Component A represents molecules that catalyze their own
growth, such as ribosomes, and can include metabolic
enzymes, transporters, and growth-facilitating factors.
Component B represents waste products or can other
molecules that are produced with the aid of component
A but do not facilitate growth. Thus, the next simplest
model is given by

dS
dt

¼ −FAðSÞA − FBðSÞAþ AðSext − SÞ − μS;

dA
dt

¼ FAðSÞA − dAA − μA;

dB
dt

¼ FBðSÞA − dBB − μB: ð1Þ

Here, Sext and S indicate the concentrations of the extrac-
ellular and intracellular substrates, respectively. The con-
centration of the intracellular substrate determines the
synthesis rate of the active and nonautocatalytic proteins
FA and FB, respectively. All chemical components are
diluted because of the volume growth of a cell.
In addition to dilution, macromolecules (A and B) are

spontaneously degraded with slow rates (dA and dB). In this
model, the cell takes up substrates from the external
environment from which component A and the non-
growth-facilitating component B are synthesized. These
syntheses, Sext ↔ S, S → A, and S → B, as well as the
uptake of substrates take place with the aid of catalysis by
component A. Then, by assuming that the synthesized
components are used for growth in a sufficiently rapid
period, the growth rate is set to be proportional to the
synthesis rate of component A. Hence, the dilution rate μ of
each component due to cell volume growth is set as
μ ¼ FAA.
Now, if the ratio FA=FB does not depend on the substrate

concentration S, the fraction A=B does not depend on S
either, and the model is reduced to the original autocatalytic
model; thus, the phase change to suppressed growth is
not expected. Then, by introducing the S dependence of
FA=FB to reduce the rate of component Awith the decrease
in the substrate condition, we first tested whether the
transition to a suppressed growth state, as in the stationary
phase, occurs under a substrate-poor condition, by setting
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FA=FB to decrease in proportion to the change in S (i.e.,
½d=ðdSÞ�FA=FB > 0). However, in this case, it is straight-
forwardly confirmed that there is no transition to a sup-
pressed growth state. In other words, the cells always grow
exponentially without any slowing-down process, as the
decrease in S simply influences the growth rate μ, while the
presence of B does not influence the dynamics of A (see
also Appendix A).
Thus, we need to introduce an interaction between

component A and the non-growth-facilitating component
B. Although complicated interactions that may involve
other components could be considered, the simplest and
most basic interaction that can also provide a basis for
considering more complex processes would be the for-
mation of a complex between A and B given by the reaction
Aþ B ↔ C. This results in the inhibition of the autocat-
alytic reaction for cell growth, as complex C does not
contribute to the activity for the autocatalytic process. A
schematic representation of the present model is shown in
Fig. 1(a). Thus, our model is given by

dS
dt

¼ −FAðSÞA − FBðSÞAþ AðSext − SÞ − μS;

dA
dt

¼ FAðSÞA −GðA;B;CÞ − dAA − μA;

dB
dt

¼ FBðSÞA − GðA;B;CÞ − dBB − μB;

dC
dt

¼ GðA; B;CÞ − dCC − μC; ð2Þ

where GðA;B;CÞ denotes the reaction of complex for-
mation, given by kpAB − kmC. The catalytic activity of
component A is inactivated because of the formation of
complex C. Here, the complex has higher stability than that
of other proteins (dC is smaller than dA and dB) [25].
From Eq. (2), by summing up _A and _C, we obtain

_Aþ _C ¼ FAðSÞAð1 − ðAþ CÞÞ if dA and dC are zero (or
negligible). This means that once the cell reaches any
steady state, the relationship Aþ C ¼ 1 is satisfied as long
as A and FAðSÞ are not zero. We use this relationship and
eliminate C by substituting C ¼ 1 − A for the following
analysis.
One plausible and straightforward interpretation of B is

as misfolded or mistranslated proteins that are produced
erroneously during the replication of component A. Such
waste molecules often aggregate with other molecules
[26–28]. Alternatively, B components can be specific
molecules such as HPF and YfiA [29–31], which inhibit
catalytic activity by reacting with component A.
With regards to the formation of error or “waste”

proteins, there are generally intracellular processes for
reducing their fraction. These include kinetic proofread-
ing, molecular chaperones, and protease systems. These
error-correction or maintenance systems are energy
demanding and require the nonequilibrium flow of

substrates [32,33]. Therefore, the performance of
these mechanisms is inevitably reduced in a substrate
(energy source)-poor environment. Thus, it naturally
follows that the ratio of the synthesis of active proteins
to wastes is an increasing function of the substrate
concentration, i.e., ½d=ðdSÞ�f½FAðSÞ�=FBðSÞg > 0. In
the present model, we assume that this ratio increases
with the concentration and becomes saturated at higher
concentrations, as in Michaelis-Menenten’s form, and we
choose FAðSÞ ¼ ½vS=ðK þ SÞ�½S=ðKt þ SÞ� and FBðSÞ ¼
½vS=ðK þ SÞ�½Kt=ðKt þ SÞ�, for example.
Note that almost all the results presented in this article

are obtained as long as FA ≫ FB holds for the nutrient-rich
condition and FA ≪ FB for the nutrient-poor condition (see
Sec. II G and Ref. [34]). Under this condition, a specific
choice of the form of FA and FB is not important.

Death Inactive Active

: µ
: A

Sext

µ

A

1

10-3

10-6

10-4 10-2 1 104

0 0

Substrate( S )

Component A (A)

External

Substrate 

( Sext )

FA(S) A

FB(S) A
A-B Complex ( C )

kp A B km C
Growth ( µ )

Component B (B)

Time

Lo
g 10

(B
io

m
as

s)

Lag Stationary Stationary

(a)

(b)

(c)

0.1

10-5

10-9

102

-2

0

2

4

 0  2  4
(×102)

 0
(×108)

 0.5  1  1.5  2

(d)

DeathExp.

FIG. 1. (a) Schematic representation of the components and
reactions in the present model. The concentration of each
chemical changes according to the listed reactions. In addition,
chemicals are spontaneously degraded at a low rate, and they
become diluted because of the volume expansion of the cell.
(b) Steady growth rate and the concentration of component A are
plotted as functions of the external concentration of the substrate.
(c,d) Growth curve of the model. Parameters are set as follows:
v¼0.1, kp¼1.0, km¼10−6, K¼1.0, Kt¼10.0, dR¼dB¼10−5,
dC ¼ 10−12. The detailed numerical method for panels (c) and
(d) is given in Appendix C.
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This S dependence of FA=FB would be biologically
plausible for the interpretations of component B as specific
inhibitory proteins or “waste” (mistranslation) proteins. For
the first interpretation, such proteins related with the
stationary phase (HPF, YfiA, and others) are induced under
stress conditions such as starvation [29,30,35,36]; thus, it is
suggested that FA ≫ FB (FA ≪ FB) for a large (small)
amount of S, respectively. On the other hand, by adopting
the latter (waste) interpretation, we derive FAðSÞ and FBðSÞ
close to the above Michaelis-Menten’s form, by consider-
ing a proofreading mechanism to reduce the mistranslation
(see also Appendix B).
Here, we also note that, although the S dependence of

FA=FB is relevant to derive quantitative laws on the lag
time in agreement with experimental observation, it is not
required just to show a transition to a suppressed growth
state, as briefly discussed later (see Sec. III).

II. RESULTS

A. Growth phases

The steady state of the present model exhibits three
distinct phases as a function of the external substrate
concentration Sext [Fig. 1(b)], as computed by its steady-
state solution. The three phases are distinguished by both
the steady growth rate and the concentration of component
A, which are termed as the active, inactive, and death
phases, as shown in Fig. 1, whereas the growth rate shows a
steep jump at the boundaries of the phases. The phases are
characterized as follows. (i) In the active phase, the highest
growth rate is achieved, where there is an abundance of
component A molecules, which work freely as catalysts.
(ii) In the inactive phase, the growth rate is not exactly zero
but is drastically reduced by several orders of magnitude
compared with that in the active phase. Here, almost all of
the component A molecules are arrested through complex
formation with component B, and their catalytic activity is
inhibited. (iii) At the death phase, a cell cannot grow, and
all of the components A, B, and complexes go to zero. In
this case, the cell goes beyond the so-called “point of no
return” and can never grow again, regardless of the amount
of increase in Sext, since the catalysts are absent in any
form. (As will be shown below, the active and inactive
phases correspond to the classic exponential and stationary
phases; however, to emphasize the single-cell growth
mode, we adopt these former terms for now.)
The transition from the active to the inactive phase is

caused by the interaction between components A and B. In
the substrate-poor condition, the amount of component B
exceeds the total amount of catalytic proteins (Aþ C), and
any remaining free component A vanishes. Below the
transition point from the inactive phase to the death phase,
the spontaneous degradation rate surpasses the synthesis
rate, at which point all of the components decrease. This
transition point is simply determined by the balance

condition FA ¼ dA. Hence, if dA is set to zero, the
inactive-death transition does not occur.
We now consider the time series of biomass (the total

amount of macromolecules) that is almost proportional
to the total cell number, under a condition with a given
finite resource, which allows for direct comparison with
experimental data obtained in a batch culture condition
[Figs. 1(c) and 1(d)]. To compute the time series of
biomass, we used a model including the dynamics of
Sext in addition to S, A, B, and C. Details of this model are
shown in Appendix C. In the numerical simulation, the
condition with a given finite amount of substrates corre-
sponding to the increase of cell number is implemented by
introducing the dynamics of the external substrate concen-
tration into the original model. Here, Sext is decreased as the
substrates are replaced by the biomass, resulting in cell
growth. At the beginning of the simulation, the amount of
biomass (i.e., cell number) stays almost constant and then
gradually starts to increase exponentially. After the phase of
exponential growth, the substrates are consumed, and the
biomass increase stops. Then, over a long time span, the
biomass stays at a nearly constant value until it begins to
slowly decrease. Finally, the degradation dominates, and
the biomass (cell number) falls off dramatically.
These successive transitions in the growth of biomass

[Figs. 1(c) and 1(d)] from the initially inactive phase to the
active, inactive, and death phases correspond to those
observed among the lag, exponential, stationary, and death
phases. As the initial condition was chosen as the inactive
phase under a condition of rich substrate availability, most
of the component A molecules are arrested in a complex at
this point. Therefore, at the initial stage, dissociation of the
complex into component A and component B progresses,
and biomass is barely synthesized, even though a sufficient
and plentiful amount of substrate is available. After the cell
escapes this waiting mode, catalytic reactions driven by
component A progress, leading to an exponential increase
in biomass. Subsequently, the external substrate is depleted,
and cells experience another transition from the active to
the inactive phase. At this point, the biomass only decreases
slowly, owing to the remaining substrate and the stability of
the complex. However, after the substrate is depleted and
components A and B are dissociated from the complex, the
biomass decreases at a much faster rate, ultimately entering
the death phase.
In the active phase with exponential growth, the present

model exhibits classical growth laws, namely, (i) Monod’s
growth law and (ii) the growth rate vs ribosome fraction
(see Fig. 6).

B. Lag-time dependency on starvation time
Tstv and maximum growth rate μmax

In this section, we uncover the quantitative relationships
among the basic quantities characterizing the transition
between the active and inactive phases: i.e., lag time,
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starvation time, and growth rates. We demonstrate that the
theoretical predictions agree well with experimentally
observed relationships.
First, we compute the dependence of lag time (λ) on

starvation time ðTstvÞ.Up to time t ¼ 0, themodel cell is set in
a substrate-rich condition, Sext ¼ Srichext , and it stays at a steady
state with exponential growth. Then, the external substrate is
depleted to Sext ¼ Spoorext instantaneously. The cell is exposed
to this starvation condition up to starvation time t ¼ Tstv.
Subsequently, the substrate concentration Sext instantane-
ously returns to Srichext . After the substrate level is recovered, it
takes a certain amount of time for a cell to return to its original
growth rate (Fig. S1 of Ref. [34]), which is the lag time λ
following the standard definition of lag time as the time
period before the specific growth rate reaches its maximum
value introduced by Penfold and Pirt [37,38]. Given this, the
dependence of λ on the starvation time Tstv can be computed.
Next, we compute the dependence of the lag time λ on

μmax. We choose the steady-state solution of the cell model
under Sext ¼ Spoorext as the initial condition and compute the
lag time λ under the Sext ¼ Srichext condition against different
values of μmaxð¼vÞ (following the standard method to
measure the relationship between λ and μmax [39]).

C. Relationship between lag time
and starvation time: λ ∝

ffiffiffiffiffiffiffiffi
Tstv

p

We found that λ increases in proportion to
ffiffiffiffiffiffiffiffi
Tstv

p
, as

shown in Fig. 2(a). For comparison, the experimentally
observed relationship between λ and Tstv is also plotted in
Fig. 2(b), using reported data [12,18,40] that also exhibited
λ ∝

ffiffiffiffiffiffiffiffi
Tstv

p
dependence. Although this empirical depend-

ence has been discussed previously [12], its theoretical
origin has not been uncovered thus far.
Indeed, the origin of λ ∝

ffiffiffiffiffiffiffiffi
Tstv

p
can be explained by

noting the anomalous relaxation of the component B
concentration, which is caused by the interaction between
components A and B. A general description of this
explanation is given below, and the analytic derivation is
given in Ref. [34].
First, consider the time series of chemical concentrations

during starvation. In this condition, cell growth is inhibited
by two factors: substrate depletion and inhibition of the
catalytic activity of component A. Following the decrease
in uptake due to depletion of Sext, the concentration of S
decreases, resulting in a change in the balance between A
and B (hereafter, we adopt the notation such that A, B, and
C also denote the concentrations of the corresponding
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FIG. 2. (a,b) Lag time as a function of (a) starvation time or (b) preincubation time. The lag time is scaled by the maximum growth rate
(inversely proportional to the shortest doubling time in the substrate-rich condition). Purple pentagons, cyan dots, and orange squares are
adopted from Figs. 3, 6(a), and 6(b) of Augustin et al. [12], respectively, and the red triangles are extracted from the data in Table 1 of Pin
et al. [40]. (c,d) Relationship between the lag time and maximum specific growth rate μmax. Data are adopted from Table 1 of Oscar [39].
Parameters were set as follows: Srichext ¼ 104, Spoorext ¼ 10−2, v ¼ 0.1, kp ¼ 1.0, km ¼ 10−6, K ¼ 1.0, Kt ¼ 10.0, and dA ¼ dB ¼ dC ¼ 0

(the same parameter values as in Fig. 1 except dis). The lag time is computed as the time needed to reach the steady state under the
Sext ¼ Srichext condition from an initial condition in the inactive phase. In panel (c), it is obtained by varying vð¼ μmaxÞ.
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chemicals). Under the Spoorext condition, the ratio of the
synthesis of B to A increases. With an increase in B, A
decreases because of the formation of a complex with B.
Over time, more A becomes arrested, and the level of
inactivation increases with the duration of starvation.
In this scenario, the increase of the concentration of B is

slow. Considering that the complex formation reaction
Aþ B ↔ C rapidly approaches its equilibrium, i.e.,
kpAB ∼ kmC, then A is roughly proportional to the inverse
of B (recall Aþ C ¼ 1) if B is sufficiently large.
Accordingly, the synthesis rate of B, given by FBðSÞA,
is inversely proportional to its amount, i.e.,

_BðtÞ ∝ FBðSÞ=B;

and thus,

dB2=dt ∼ const:

Hence, the accumulation of component B progresses with
BðtÞ ∝ ffiffi

t
p

. (Note that because of S depletion, the dilution
effect is negligible).
Next, we consider the time series for the resurrection

after recovery of the external substrate. During resurrection,
A is increased while B is reduced. Since component A is
strongly inhibited after starvation, the dilution effect from
cell growth is the only factor contributing to the reduction
of B. Noting that μ ¼ FAA and A ∝ 1=B, the dilution effect
is given by μB ¼ FAAB ∝ B=B ¼ const at the early stage
of resurrection. Thus, the resurrection time series of B is
determined by the dynamics

_BðtÞ ∝ −const;

leading to the linear decrease of B, i.e., BðtÞ∼
Bð0Þ − const × t.
Let us briefly recapitulate the argument presented so far.

The accumulated amount of component B is proportional toffiffiffiffiffiffiffiffi
Tstv

p
, whereas during resurrection, the dilution of B

progresses linearly with time, which is required for the
dissociation of the complex of A and B, leading to growth
recovery. By combining these two estimates, the lag time
satisfies λ ∝

ffiffiffiffiffiffiffiffi
Tstv

p
.

D. Relationship between the lag time
and maximal growth rate: λ ∝ 1=μmax

The relationship λ ∝ 1=μmax is obtained by numerical
simulation of our model, in line with experimental results
[39] [Figs. 2(c) and (d)].
The relationship λ ∝ 1=μmax can also be explained by the

characteristics of the resurrection time series. The dilution
rate of B over time is given by μB, as mentioned above;
thus, at the early stage, _B ∼ −μB. In the substrate-rich
condition, the substrate abundances are assumed to be
saturated, so

lim
Srichext →∞

_B∼ lim
Srichext →∞

FA · B=B ¼ μmax

holds because limS→∞FAðSÞ ¼ μmax is satisfied. Thus, it
follows that λ ∝ 1=μmax.
We also obtained an analytic estimation of the lag time as

λ ∼
1

μmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2FBkp=kmTstv

q
ð3Þ

(see Ref. [34] for conditions and calculations). In this form,
the two relationships λ ∝

ffiffiffiffiffiffiffiffi
Tstv

p
and λ ∝ 1=μmax are

integrated.

E. Dependence of lag time on the starvation process

So far, we have considered the dependence of lag time on
the starvation time. However, in addition to the starvation
period, the starvation process itself, i.e., the speed required
to reduce the external substrate, has an influence on the
lag time.
For this investigation, instead of the instantaneous

depletion of the external substrate, its concentration is
instead gradually decreased over time in a linear manner
over the span Tdec, in contrast to the previous simulation
procedure, which corresponds to Tdec ¼ 0. Then, the cell is
placed under the substrate-poor condition for the duration
Tstv before the substrate is recovered, and the lag time λ is
computed [41].
The dependence of the lag time λ on Tstv and Tdec is

shown in Fig. 3(a). While λmonotonically increases against
Tstv for a given Tdec, it shows a drastic dependence on Tdec.
If the external concentration of the substrate is reduced
quickly (i.e., a small Tdec), the lag time is rather small.
However, if the decrease in the external substrate concen-
tration is slow (i.e., a large Tdec), the lag time is much
longer. In addition, this transition from a short to long lag
time is quite steep.
The transition against the time scale of the environmental

change manifests itself in the time series of chemical
concentrations [see Fig. 3(b)]. With rapid environmental
change, S decreases first, whereas with slow environmental
change, component A decreases first. In addition, the value
of component B is different between the two cases,
indicating that the speed of environmental change affects
the degree of inhibition, i.e., the extent to which component
A is arrested by component B to form a complex.
Now, we provide an intuitive explanation for two distinct

inhibition processes. When Sext starts to decrease, a cell is
in the active phase in which A is abundant. If the
environment changes sufficiently quickly, there is not
enough time to synthesize chemicals A or B because of
the lack of S, and the concentrations of chemical species are
frozen near the initial state with abundant A. However, if
the rate of environmental change is slower than that of the
chemical reaction, the concentration of B (A) increases
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(decreases). Hence, A remains rich in the case of fast
environmental change, whereas B is rich for a slow
environmental change. In the former case, when the
substrate is increased again, component A molecules are
ready to work, so the lag time is short, which can be
interpreted as a kind of “freeze-dry” process. Note that the
difference in chemical concentration caused by different
Tdec values is maintained for a long time because, in the
case of slow (fast) environmental change, chemical reac-
tions are almost completely halted because of the decrease
of A (S). Thus, the difference of lag time remains even for
large Tstv, as shown in Fig. 3(a).
This lag time difference can also be explained from the

perspective of dynamical systems [42]. For a given S,
the temporal evolution of A and B is given by the flow in
the state space of ðA;BÞ. Examples of the flow are given in
Fig. 4. The flow depicts ðdA=dt; dB=dtÞ, which determines
the temporal evolution. The flow is characterized by A- and
B-nullclines, which are given by the curves satisfying
dA=dt ¼ 0 and dB=dt ¼ 0, as plotted in Fig. 4.
Note that at a nullcline, the temporal change of one state

variable (either A or B) vanishes. Thus, if two nullclines
approach each other, then the time evolution of both concen-
trationsA andB slowdown, and the pointwhere twonullclines
intersect corresponds to the steady state. As shown in Fig. 4,
nullclines come close together under the substrate-depleting
condition, which provides a dynamical system account of the
slow process in the inactive phase discussed so far.
For a fast change [i.e., small Tdec, Fig. 4(a)], S is quickly

reduced at the point where the two nullclines come close
together. First, B reaches the B nullcline quickly. Then, the
state changes along the almost-coalesced nullclines where
the dynamics slow down. Thus, it takes a long time to
decrease the A concentration, so at the resumption of the
substrate, a sufficient A can be utilized.

In contrast, for a slow change (i.e., large Tdec), the flow
in ðA;BÞ gradually changes as shown in Figs. 4(b)–4(d).
Initially, the state ðA;BÞ stays at the substrate-rich steady
state. Because of the change in substrate concentration,
two nullclines moderately move and interchange their
vertical locations. Since the movement of nullclines is
slow, the decrease in A progresses before the two null-
clines come close together (i.e., before the process is
slowed down). The temporal evolution of A and B is
slowed down only after this decrease in A [Figs. 4(c) and
4(d)]. Hence, the difference between cases with small and
large Tdec is determined according to whether the null-
clines almost coalesce before or after the A decrease,
respectively.
These analyses allow us to estimate the critical time

for a substrate decrease T�
dec beyond the point at which λ

increases dramatically. The value of a fixed point ðAst; BstÞ
depends on the substrate concentration, which drastically
changes at the active-inactive transition point. If the
relaxation to the fixed point is faster than the substrate
decrease Tdec, the system changes “adiabatically” to follow
the fixed point at each substrate time during the course of a
“slow decrease.” The relaxation time is estimated by the
smallest eigenvalue around the fixed point at the transition
point. In the km → 0 limit, this eigenvalue is equal to the
growth rate at the active-inactive transition point. Since
it is inversely proportional to v, the critical time T�

dec for
the substrate decrease is estimated as T�

dec ∝ 1=v. This
dependence was also confirmed numerically (see Fig. S4
in Ref. [34]).

F. Distribution of lag time

So far, we have considered the average change of
chemical concentrations using the rate equation of chemical
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reactions. However, a biochemical reaction is inherently
stochastic; thus, the lag time is accordingly distributed.
This distribution was computed by carrying out a stochastic
simulation of chemical kinetics using the Gillespie algo-
rithm [43].
By increasing the starvation time, two types of lag-time

distributions are obtained: (1) a skewed type and (2) a
skewed type with an exponential long-time-tail type. Each
distribution type changes as follows: First, when the
starvation time is sufficiently long, the system enters the
phase with the slow accumulation of B. Here, the relaxation
is anomalous, leading to a skewed-type distribution. This
skewed distribution is understood as follows. The number
of component A molecules among cells takes on a
Gaussian-like distribution just before the recovery of the
external substrate concentration [44], whereas the lag time
λ is proportional to B and thus to 1=A, as discussed in the
last section. Then, the lag-time distribution λ is obtained as
the transformation of 1=A → λ from the Gaussian distri-
bution of component A. This results in a skewed distribu-
tion with a long time tail as shown in Fig. 5(a). Second,
when the starvation time is too long, the decrease in A
comes to the stage where its molecular number reaches 0 or
1. This results in a long time tail in the distribution. This
effect occurs when the number of component A molecules

becomes zero because it is inhibited by component B.
When the number of component A molecules becomes
zero, the only reaction that can take place is a dissociation
reaction (C → Aþ B). Since we assume that the time
evolution of molecule numbers follows a Poisson process,
the queueing time of dissociation obeys an exponential
distribution Probðqueueing time¼ tÞ∼NCkmexpð−NCkmtÞ,
where NC is the number of complexes formed. This
exponential distribution is added to the skewed distribution,
resulting in a long tail.
The distributions of the two cases are plotted in Fig. 5,

together with experimental data adopted from Ref. [18].
The skewed distribution fits the experimental observations
for the 0-day starvation data, whereas the distribution
including the exponential tail is a good fit to the 1-day,
2-day, and 3-day distributions.
Here, each kinetic parameter alters the critical starvation

time around which the shape of the distribution starts to
change; for example, a small km makes it easier to obtain
the type-three distribution. However, kinetic parameters do
not change the shape of the distribution directly, as
confirmed computationally.
The distribution of lag time was traditionally thought to

follow the normal distribution [8,47] until single-cell
measurements were carried out for a long time span
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[18]. The preset model also generates the normal distribu-
tion of lag time if the starvation time is too short, whereas
the normal distribution of lag time in earlier experiments
would originate from the limitation of experimental

procedures. For example, a cell that regains growth in a
colony ends up dominating the colony; thus, the fluctuation
of the shortest lag time governs the behavior. However,
identification of a small fraction of bacteria with a long lag
time is difficult, owing to the limited capacity of cell
tracking (as indicated in Ref. [18]).

G. Remarks on the choice of parameters
to fit the experimental data

Although there are several parameters in the model and
the results depend on these values, the basic results on the
active-inactive transition, suppression of growth, and
quantitative relationships with lag time are obtained for
a large parameter region. Conditions of the parameter
values to obtain these main results are given in Ref. [34]
and are summarized in Table I. Here, an important
parameter is km, which we assumed to be the smallest
among all other parameter values. This choice was made to
facilitate analytic calculations, and the condition for km can
be relaxed. For example, we plotted the growth rate at
the steady state in Fig. S5 of Ref. [34], indicating that
the active-inactive transition occurs as long as km < kp
holds.
Next, we estimate realistic parameter values such as the

value of v from the literature. However, several parameter
values could not be estimated directly from experimentally
reported data because this would require quantitative
studies at the stationary phase, which are not currently
available. Thus, we estimated other parameter values by
fitting Monod’s growth law [1], as well as by using the
reported relationship between the ribosome fraction and
growth rate [4,48,49] (Fig. 6) [50]. Since the number of
parameters is greater than the minimum number required to
fit the two laws in Fig. 6, the choice of parameter values is
not unique. A possible set of parameter values is listed in
Table II in Appendix D.
In fitting the two growth laws in Fig. 6, we have also

found that v is proportional to the maximum growth rate
and that it negatively correlates with the slope of the linear
relationship between ribosome fraction and growth rate,
while r (the fraction of actively translating ribosome)
decreases and kp increases the y offset of the linear relation,
respectively [51].
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TABLE I. Predictions and assumptions.

Result Assumption Condition (Prediction)

Active-inactive transition point km ∼ 0
1þ 2FA(SstðSact−inactext Þ)=kp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4FB(SstðSact−inactext Þ)=kp

q
.

Inactive-death transition point − FA(SstðSinact−deathext Þ) ¼ dA
Analytic estimation of lag time km ∼ 0, dynamics

of S is faster than ðA; BÞ λ ∼ f1=½FAðSstðSrichext ÞÞ�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2FBðSstðSpoorext ÞÞkp=kmTstv

q
Contiguity of nullclines
(slow relaxation)

− AA-nullclineðBÞ ∼ fGð0; BÞ=½FAðSÞ − G0ð0; BÞ�g
AB-nullclineðBÞ ∼ fGð0; BÞ=½FBðSÞ − FAðSÞB − G0ð0; BÞ�g
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III. DISCUSSION

Here, we developed a coarse-grained model consisting of
a substrate, autocatalytic active protein (component A), a
non-growth-facilitating component (component B), and an
A-Bcomplex,C. In the steady state, themodel showsdistinct
phases, i.e., the active, inactive, and death phases. In
addition, the temporal evolution of the total biomass is
consistent with the bacterial growth curve. The present
model not only satisfies the already-known growth laws
in the active phase but also demonstrates two relationships,
λ ∝

ffiffiffiffiffiffiffiffi
Tstv

p
and λ ∝ 1=μmax, concerning thedurationof the lag

time λ. Although these two relationships have also been
observed experimentally, their origins and underlyingmech-
anisms had not yet been elucidated. The present model can
explain these relationships based on the formation of a
complex between components A and B, whose increase in
the starvation condition hinders the catalytic reaction.
The above two laws are also generally derived for the

inactive phase, which corresponds to the stationary phase,
as long as the ratio of the synthesis of component B to that
of component A is increased along with a decrease in the
external substrate concentration. This condition can also be
interpreted as a natural consequence of the waste-reducing
(or error-correcting) process that is ubiquitous in a cell,
which demands energy when assuming that component B
consists of waste molecules. These laws are also derived if
the waste is interpreted as a product of erroneous protein
synthesis, where a proofreading mechanism to correct the
error, which also requires energy, works inefficiently in a
substrate-poor condition. The inhibition of growth by waste
proteins is experimentally discussed by Nucifora and others
[26–28]. Aggregation of such waste proteins can inhibit the
catalytic activity of proteins, although its role in the
transition to the inactive phase remains to be elucidated.
Alternatively, instead of waste proteins, we can also

interpret such nonautocatalytic proteins as specific inhibi-
tory molecules binding ribosomes such as YfiA and HPF
[29–31].
For a simpler model, one could eliminate the substrate

dependence of FBðSÞ=FAðSÞ. Indeed, even in this simpler
form, the active-inactive transition itself is observed if we
finely tune the parameter values, as the decrease in substrate
flow decreases the dilution, which in turn increases the
fraction of complexes formed. Nevertheless, the accumu-
lation of nonautocatalytic proteins is not facilitated with a
substrate decrease, and the increase in the lag time as
λ ∝

ffiffiffiffiffiffiffiffi
Tstv

p
does not follow. Hence, this simpler model will

not be appropriate to explain the behavior of the present
cells, although it might provide relevant insight as a general
mechanism for the “inactive” or “dormancy” phase in the
context of protocells.
Although the cell state with exponential growth has been

extensively analyzed in previous theoretical models, the
transition to the phase with suppressed growth has thus far
not been theoretically explained. Our model, albeit simple,
provides an essential and general mechanism for this
transition with consideration of the complex formation
between components A and B, which can be experimen-
tally tested.
The model here may also be relevant to study growth

arrest such as stringent response [54,55]. In this case,
ppGpp, the effector molecule of the stringent response, is
known to destabilize the open complex of all promoters,
causing the global reduction of macromolecular synthesis,
playing a similar role as component B in the present paper
[56–59]. Additionally, rpoS, the sigma factor of stationary-
phase genes, lies downstream of ppGpp [60], and it is
reported that the mutant lacking ppGpp (which might
correspond to inhibition of the component B in our model)
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FIG. 6. Comparison of the model results using estimated values (Table II) with experimental values. (a) The specific growth rate is
plotted as a function of the external substrate (glucose) concentration. Experimental data are adopted from Monod [1]. (b) Ratio of
ribosomal proteins (component A) to total proteins as a function of the specific growth rate: Orange triangles are from Scott et al. [4], red
circles are from Bremer and Dennis [48], and green squares are from Forchhammer et al. [49]. In panel (b), the theoretical curve from
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the maximum growth rate of μmax ∼ 1.0.
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shows a physiological state reminiscent of exponentially
growing bacteria even under starvation [61].
Moreover, the model predicts that the lag time differs

depending on the rate of external depletion of the substrate,
which can also be examined experimentally. Recently, the
bimodal distribution of growth resumption time from the
stationary phase was reported in a batch culture experiment
[19]. The heterogeneous depletion of a substrate due to the
spatial structure of a bacterial colony is thought to be a
potent cause of this bimodality, and progress toward
gaining a deeper understanding of this concept is underway.
Since the present model shows different lag times for
different rates of environmental change, it can provide a
possible scenario to help explain this bimodality.
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APPENDIX A: MODEL WITHOUT
INTERACTION BETWEEN THE

TWO COMPONENTS

To clarify the necessity of the interaction between the
two components to obtain the main results, we remove the
complex formation between A and B (by setting kp and km
to zero). Then, the A-B complex is eliminated, and our
model is given as

_A ¼ FAðSÞA − FAðSÞA2 − dAA; ðA1Þ

_B ¼ FBðSÞA − FAðSÞAB − dBB: ðA2Þ

(We assume that the internal concentration of the substrate
is equal to that of the external concentration of the
substrate, and ignore the substrate dynamics.) The steady
solution is

Ast ¼ 1 −
dA

FAðSÞ
; Bst ¼ FBðSÞ

1 − dA=FAðSÞ
FAðSÞ − dA þ dB

;

and the steady growth rate is given as μst ¼ FAðSÞAst ¼
FAðSÞ − dA. Therefore, the present model without an
interaction between components A and B exhibits
only the active-death transition at S�, satisfying
FAðS�Þ ¼ dA. In addition, the dynamics of the system
are calculated as

AðtÞ ¼ 1

1 − expð−FAtÞð1 − Að0Þ−1Þ ;

BðtÞ ¼ FB

FA

1 − expð−FAtÞð1 − Bð0ÞFA
Að0ÞFB

Þ
1 − expð−FAtÞð1 − Að0Þ−1Þ ;

where we neglect di, as in the main text. Therefore, if the
model cell, Eq. (A2), restarts growth in a high-S (Srich)
value environment after exposure to the starvation con-
dition (low-S value), AðtÞ and BðtÞ exponentially converge
to the substrate-rich steady state. Hence, the time for
growth recovery Trec is quite short, which is calculated as

Trec ¼
1

FAðSrichÞ
ln

��
Bp

Br
− 1

�
ð1− e−FAðSpoorÞTstvÞ

�
þ const;

as a function of starvation time Tstv. Here, Bp and Br are
the steady concentrations of component B under the
substrate-poor and substrate-rich environments, respec-
tively. Obviously, this relationship is far from the relation-
ship between lag and starvation time.

APPENDIX B: REDUCTION OF THE KINETIC
PROOFREADING MODEL

In the main text, the concrete forms of FA and FB
were predetermined by assuming the characteristic
½d=ðdSÞ�ðFA=FBÞ > 0, which is essential for the active-
inactive transition. In this section, we show that this
characteristic is derived from a simple polymer elongation
model with a kinetic proofreading scheme [33] by
assigning a correct polymer as A and an erroneous one
as B. Indeed, ½d=ðdSÞ�ðFA=FBÞ > 0 originates from an
error in the synthesis of component A that consequently
inhibits the synthetic reactions.
Polymer elongation is essential to synthesize macro-

molecules. It is well known that ribosomes elongate a
polypeptide chain following receipt of the information from
messenger RNA. However, since the transfer RNA (tRNA)
discrimination by a ribosome is not perfect, there is
always a certain probability for mistranslation (i.e., the
wrong choice of tRNA). Kinetic proofreading is one
of the possible error-correction mechanisms in such a
polymerization system, which demands energy. We find
that the synthesis ratio of mistranslated proteins to a
“correct” protein increases under the substrate-depleting
condition.
For the polymerization reaction, we introduce two

monomers, “correct” and “wrong”monomers, as simplified
from real amino acids. In reality, there are 20 amino acids
and one tRNA that specifies one amino acid, i.e., one
correct and 19 wrong monomers with a certain affinity
lower than that of the correct monomer.
In the model, a polymer is elongated up to the length L

with the aid of the catalytic activity of the “correct” protein,
i.e., the ribosome. The matured polymer with length L is
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spontaneously folded into a protein; the proteins consisting
of only correct monomers are correct proteins with catalytic
activity, whereas those with other monomer sequences turn
into mistranslated proteins. The elongation process pro-
gresses under a kinetic proofreading mechanism (Fig. 7).

As in the original model, mistranslated proteins inhibit the
correct protein’s catalytic activity by forming a complex
with it, while the growth is facilitated by the activity of
correct proteins. The dynamics of the polymer elongation
part are given by

d½AiðxÞ�
dt

¼ −k̂0
X

Y¼C;D

ð½AiðxÞ�½MY � − ρY l̂0½AiðxÞMY �Þ − k̂2
X

Y¼C;D

ð½AiðxÞ�½MY � − ρY l̂2½AiðxÞM�
Y �Þ þ v̂½Ai−1ðx−ÞM�

terðxÞ�;

ð1 ≤ i ≤ L − 1Þ;
d½AiðxÞMY �

dt
¼ k̂0ð½AiðxÞ�½MY � − ρY l̂0½AiðxÞMY �Þ − k̂1ð½AiðxÞMY �α − l̂1½AiðxÞM�

Y �βÞ; ð0 ≤ i ≤ L − 1Þ;
d½AiðxÞM�

Y �
dt

¼ k̂1ð½AiðxÞMY �α − l̂1½AiðxÞM�
Y �βÞ þ k̂2ð½AiðxÞ�½MY � − ρY l̂2½AiðxÞM�

Y �Þ − v̂½AiðxÞM�
Y � ð0 ≤ i ≤ L − 1Þ;

where ½MC� and ½MD� denote the concentrations of
correct and wrong monomers, respectively. Note that
½AiðxÞ�; ½AiðxÞMY �, and ½AiðxÞM�

Y � represent the concen-
tration of a complex of correct proteins and a polymer with
length i, a correct protein-polymer-monomer complex, and
an activated correct protein-polymer-monomer complex,
respectively, where x denotes a monomer sequence such as
CCDC…, with C and D indicating the correct and wrong
monomers, respectively. Here, terðxÞ and x− indicate the
last monomer (C or D) of a monomer sequence x and the
partial monomer sequence of x from which the last
monomer [i.e., terðxÞ] has been removed, respectively.
Note that ½A0� denotes the concentration of the correct
protein; v̂ and k̂i’s are the rate constants of the chemical
reactions; and the l̂i’s are the Boltzman factors of each
chemical reaction. We assume that dissociation of the
matured polymer from correct proteins and polymer folding
into proteins takes place instantaneously. Here, α and β are
the concentration energy currencies, for example, GTP and

GDP, respectively, and ρi reflects the difference in affinity
between the wrong monomer (D) and the correct monomer
(C) (we set ρC as unity).
At the steady state, the synthesis rates of correct and

mistranslated proteins, JLA and JLB, are given by

JLA ¼ v̂½A0�½MC�HCΞL−1
C ;

JLB ¼ v̂½A0�ðHC½MC� þHD½MD�ÞðΞC þ ΞDÞL−1 − JLA;

where functions Ξi and Hi are given by

Ξi ¼
v̂Hi½Mi�

k̂0
P

jð1 − ρjl̂0Zj½Mj�Þ þ k̂2
P

jð1 − ρjl̂2Hj½Mj�Þ
;

Hi ¼
k̂2ðk̂1αþ k̂0ρil̂0Þ þ k̂0k̂1α

ðk̂1αþ k̂0ρil̂0Þðk̂1l̂1β þ k̂2ρil̂2 þ v̂Þ − k̂21l̂1αβ
;

Zi ¼
k̂0 þ k̂1l̂1βHi

k̂0ρil̂0 þ k̂1α
:
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FIG. 7. Schematic representation of a polymer elongation system with kinetic proofreading. The reactions, other than the synthesis
part [FAðSÞA and FBðSÞA], are identical to those of the original model (2).
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Here, Ξ0 and Ξ1 denote the rate of polymer elongation with
the wrong and correct monomers, respectively. Now, we set
the functional form of α and monomer concentrations ½MC�
and ½MD� to obtain the concrete values of JLc and JLB. It is
natural to assume that α and ½Mi� are increasing functions
of the internal substrate concentration [S]. Here, we adopt
a Michaelis-Menten’s type form α ¼ ½S�=ðKa þ ½S�Þ, β ¼
Ka=ðKa þ ½S�Þ, and ½MC�¼½MD�¼½M�max½S�=ðKSþ½S�Þ.
Although JLAð½S�Þ and JLBð½S�Þ do not completely agree

with the form we adopted for FAðSÞA and FBðSÞA in the
original model, the conditions discussed in Sec. II of
Ref. [34] are nevertheless satisfied, as shown in Fig. 8.

In particular, fðdÞ=d½S�gJLA=JLB > 0 holds. Indeed, using
this model, we obtained the same active, inactive, and death
phases, as well as the same growth curve and other
quantitative laws. As an example, Fig. 9 shows the steady
growth rate as a function of the external substrate concen-
tration ½S�ext. Furthermore, for any L, the same behaviors
are obtained, as JLA and JLB satisfy the condition outlined in
Sec. II of Ref. [34]. It is also confirmed that the ratio of
JLAð½S�Þ to JLBð½S�Þ increases as [S] increases for any L.

APPENDIX C: DETAILS OF MODELS AND
SIMULATION PROCEDURES

To obtain the growth curve shown in Figs. 1(c) and 1(d)
in the main text, we added the dynamics of the substrates in
the external environment, as well as cell volume growth. By
representing the dynamics according to the amounts of
chemicals rather than their concentrations, the model is
given by

dNSext

dt
¼ −NAðNSext=Vbath − NS=VÞ; ðC1Þ

dNS

dt
¼ −FAðNS=VÞNA − FBðNS=VÞNP

þ NAðNSext=Vbath − NS=VÞ; ðC2Þ

dNA

dt
¼ FAðNS=VÞNA − kpNANB=V

þ kmNC − dANA; ðC3Þ

dNB

dt
¼ FBðNS=VÞNA − kpNANB=V

þ kmNC − dBNB; ðC4Þ

dNC

dt
¼ kpNANB=V − kmNC − dCNC; ðC5Þ

dV
dt

¼ FAðNS=VÞNA; ðC6Þ

where NSext is the amount of substrate in the external
environment at volume Vbath, and NS, NA, NB, and NC are
the amounts of each chemical within the cell at volume
VðtÞ, respectively. Here, VðtÞ is the volume of a cell. The
dilution effect is introduced by dividing the amount of each
chemical by VðtÞ, and Sext is the total amount of the
external substrate contained in the culture system with
volume Vbath (set to unity). For all other parameters, the
same values as shown in Fig. 1 were adopted.
To obtain the lag-time distribution, we performed a

stochastic simulation. We computed the model equation
according to the volume change
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dNS

dt
¼ −FAðNS=VÞNA − FBðNS=VÞNA

þ NAðNSext=Vbath − NS=VÞ; ðC7Þ

dNA

dt
¼ FAðNS=VÞNA − kpNANB=V þ kmNC; ðC8Þ

dNB

dt
¼ FBðNS=VÞNA − kpNANB=V þ kmNC; ðC9Þ

dNC

dt
¼ kpNANB=V − kmNC; ðC10Þ

dV
dt

¼ FAðNS=VÞNA: ðC11Þ

Here, we introduced cell division and simulated the
dynamics of only one daughter cell (to reduce the simu-
lation time). When the cell volume V reaches the division
volume Vdiv, V halves and chemicals are distributed to two
daughter cells in equal probability. After computing these

equations for a sufficiently long time under the NSrichext

condition, NSext suddenly changes to NSpoorext
and is then

set at this value over the starvation period Tstv. Then, NSext
returns to the original value NSrichext

. The lag time λ is
computed as the time needed to double the volume from
V0, i.e., the volume at which Sext recovers. The numerical
results indicate that the absolute value of the correlation
coefficient between V0 and λ is small. Here, the difference
in V0 in cells does not affect the distribution of the lag time.
Stochastic simulation was carried out using the Gillespie
algorithm. Parameter values were set to Vdiv ¼ 2 × 103,
Vbath ¼ 1.0, NSrichext

¼ 104, NSpoorext
¼ 10−3, and the others

were the same as those described in Fig. 2. The length
of starvation time Tstv was set to 5 × 104, 106, 2 × 106, and
107 for Figs. 5(a)–5(d), respectively.
From the lag-time distribution obtained by numerical

simulation, we can compute the peak and FWHM values
directly. Since the experimental data do not include a
sufficient amount of samples, we applied a smoothing filter
to determine the FWHM, while the peak point was
determined directly.

APPENDIX D: ESTIMATED PARAMETER VALUES

Here, we list the estimated value of parameters in Table II (for the detail of estimation procedure, see Sec. II. G).
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