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We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a
fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and
open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz
in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-
Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of
pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The
optimality of the bang-bang protocols and the characteristic time scale of the pulses provide an efficient
parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes
for tackling combinatorial optimization problems. Furthermore, we find that the success rates of our
optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a
thermal bath.
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I. INTRODUCTION

Quantum annealing (QA) aims to solve computational
problems by using a guided quantum drive. The dynamics
is generated by a time-dependent Hamiltonian along a
trajectory that ends at a final target Hamiltonian whose
ground state contains the solution of the problem [1–3]. QA
is based on the adiabatic theorem, which guarantees that if
the Hamiltonian is changed sufficiently slowly, transitions
to excited states are suppressed during the adiabatic
evolution, thus preparing states that are close to the target
ground state. Unfortunately, the adiabatic condition that
ensures that the system remains in the instantaneous ground
state leads to long time scales for the solution of the hard
computational problem. Within the framework of adiabatic
computation, there have been several theoretical proposals
on the optimizations of the quantum adiabatic algorithm
(QAA), such as heuristic guesses for the initial state [4],
increasing the minimum gap [5,6], and the quantum
adiabatic brachistochrone formulation [7].
The adiabatic trajectory is not the only path for reaching

the ground state of a final Hamiltonian that encodes the
solution of the computational problem. More generally, one
could imagine many other paths, including those where the

Hamiltonian is varied rapidly, that land at the desired state
or, of practical interest, reach low energy states. In fact, it
has already been found that for certain hard instances of
problems, fast nonadiabatic paths can sometimes prevent
the system from getting stuck at local minima, thus
improving the search results [8–10]. The variational quan-
tum algorithm (VQA) is an example where one searches
for such possible paths, using optimization of the outcome
via the variation of a fixed number of parameters in the
protocol. A hybrid machine, combining classical optimi-
zation and quantum evolution, optimizes the variational
parameters. Such hybrid variational approaches have
proved useful in the context of quantum state preparation
[11–14]. Recently, Ref. [15] introduced a variational
quantum eigensolver (VQE) for applications in quantum
chemistry. This idea was further explored in Refs. [16–20]
and experimentally tested in Refs. [21–23]. In a related
approach [24–27], Farhi et al. introduced a quantum
approximate optimization algorithm (QAOA) for combi-
natorial optimization problems based on a parametrized
square-pulse ansatz for dynamical evolution of the
solver.
In this paper, we make a connection between VQA

and optimal control theory [28–31]. VQA is essentially an
adaptive feedback control [32,33] of a quantum system
with the objective function encoding the solution of a
computational problem; see Fig. 1(a). It utilizes a hybrid
system composed of a classical computer that searches for
the optimal variational protocol using measurements
done on a quantum machine that generates the final states
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corresponding to different variational protocols, via a
closed-loop learning method [34].
Using Pontryagin’s minimum principle of optimal con-

trol, we show that the optimal protocol for VQA has a
“bang-bang” form. Our results put the bang-bang ansatz of
QAOA on a rigorous ground in contrast to VQA with a
continuous-time evolution. A comparison of the perfor-
mance of the optimal nonadiabatic bang-bang protocol
with conventional (linear ramp) QAA demonstrates that
the former significantly reduces error in the final state in the
absence of noise or decoherence. The advantage over the
linear ramp QAA survives weak dephasing white noise as
well as weak coupling to a thermal bath. Furthermore, we
perform a quantitative analysis of the characteristics of
these optimal protocols. We numerically find a system-size
independent distribution function for the duration of
individual pulses, which may facilitate the development
of effective algorithms for the classical optimizer through
an efficient representation of the protocol with few
variational parameters. Interestingly, each of the pulses
in our bang-bang protocols contains commuting (either
one-qubit or two-qubit) terms. Thus, our protocol can be
implemented by applying a sequence of one-qubit
gates [generated by the initial Hamiltonian, g ¼ 0 in
Eq. (9)] and two-qubit gates generated by the problem
Hamiltonian (g ¼ 1).

II. VARIATIONAL QUANTUM ALGORITHM

Consider a computational optimization problem such as
finding a sequence of N bits that minimizes a certain
function of all of the bits. To solve this problem with VQA,

we consider a system of N qubits with a parametrized
Hamiltonian

HgðtÞ ¼
X
α

gαðtÞHα: ð1Þ

Generically, we can cast the problem into generating a
state jψi that minimizes a certain cost function, such as
the expectation value of an operator O with respect to jψi.
A common example is finding the ground state of a
disorderd classical Ising Hamiltonian [35], where the
operator O is a Hamiltonian diagonal in the computational
basis. In the context of quantum chemistry, VQE considers
the operator O to be the Hamiltonian of a molecule [16].
The essence of VQA, as depicted in Fig. 1, is finding

the time-dependent parameters gαðtÞ over a time period T
such that

jψðTÞi ¼ T e−i
R

T

0
HgðtÞdtjψð0Þi ð2Þ

minimizes a cost function hψðTÞjOjψðTÞi. Generically, the
controls gαðtÞ belong to a permissible set determined by the
experimental setup. A common such set is given by simple
bounds, as shown in Eq. (3). The ideal solution could be a
unique state jψ targeti [as depicted in Fig. 1(b)] that is the
ground state of the target Hamiltonian or, more generally, a
set of states in the Hilbert space with an optimal figure of
merit. One can either fix the initial state jψð0Þi or add it to
the list of the variational parameters (here, we fix it,
motivated by experimental constraints). Generally, the
longer the total time T, the closer we can get to an ideal
solution.
One way to view this is to consider the reachable set, i.e.,

the set of all the final states one can reach by using one of
the infinite number of permissible controls. The reachable
set, naturally, grows with T (in fact, if gα ¼ 0 is allowed,
the reachable set for T ¼ T1 is strictly a subset of the
reachable set for T ¼ T2 > T1). As shown in Fig. 1(b),
there could be a critical time beyond which the reachable
set includes the target state and an exact solution is
possible. There is no advantage in increasing T beyond
this critical time. Generically, for smaller T, where the
reachable set does not include the target state, the optimal
protocols are highly constrained as they should prepare the
closest point(s) of the reachable set to the target. For times
longer than the critical time mentioned above, we expect an
infinite number of protocols to produce the target as the
evolution has extra time to meander in the Hilbert space.
Our strategy is to fix T and find the best variational protocol
gαðtÞ. If the solution is not acceptable, we can increase T.
Next, we discuss how Pontryagin’s minimum principle
from optimal control theory determines the form of optimal
gαðtÞ functions.

FIG. 1. (a) Variational quantum algorithm as a closed-loop
learning control problem. (b) Increasing the total time expands
the set of final states that one can reach with the variational
protocols. The optimal protocol for a given time generates the
closest state to a low energy target state within this reachable set.
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III. PONTRYAGIN’S MINIMUM PRINCIPLE
APPLIED TO VQA

A. Bang-bang optimal protocols

The parameters in Hamiltonian Eq. (1) are generically
constrained by their range

gmin
α ≤ gαðtÞ ≤ gmax

α ð3Þ

during the evolution 0 < t < T. Equation (3) implies that,
by assumption, each gα can be tuned in the above range
independently of the values of the other control parameters.
For fixed initial state jψð0Þi, the coupling constants gαðtÞ
uniquely determine the final wave function. Consequently,
the cost function, which we take as an arbitrary function of
the final state, is a functional of gαðtÞ:

F½fgαðtÞg� ¼ F(jψðTÞi): ð4Þ

Pontryagin’s minimum principle [29] is directly appli-
cable here. Briefly, this theorem states that, for a set of
dynamical variables x evolving from given initial values
xð0Þ with the equations of motions _x ¼ f ðx; gÞ, where g
are a set of control functions, the control functions g� that
minimize an arbitrary function F ½xðTÞ� of the final values
of the dynamical variable satisfy

Hðx�; p�; g�Þ ¼ min
g
Hðx�; p�; gÞ ð5Þ

at any point in time and for each of the control functions.
The optimal-control Hamiltonian is defined asHðx; p; gÞ≡
f ðx; gÞ · p for conjugate variables p that evolve as _p ¼
−∂xH with boundary conditions pðTÞ ¼ ∂xF ½xðTÞ�. Here,
the “*” superscript indicates the optimal solution corre-
sponding to g�.
An important consequence of Eq. (5) is that if the

equations of motion for x, and consequently the optimal-
control Hamiltonian H, are linear in g, generically, the
optimal protocol is bang-bang; i.e., at any time during the
evolution, we have g�αðtÞ ¼ gmin

α or g�αðtÞ ¼ gmax
α . This

follows from the fact that at any point in time we need
to choose gα to minimize Hðx�; p�; gÞ. If the sign of the
coefficient of gα in the optimal-control Hamiltonian is
positive (negative), we should then choose the smallest
(largest) gα from the permissible range Eq. (3). In other
words, the optimal protocol for each control function
involves a sequence of sudden jumps between its minimum
and maximum permissible values. The only caveat for the
above argument is the possibility that the coefficient of a
particular gα in Hðx�; p�; gÞ vanishes over a finite interval
(since the sign of this coefficient determines whether
we should choose the minimum or maximum value). We
expect this special scenario to be nongeneric particularly
for the disordered systems considered in the present paper.

In the quantum mechanical context, if the physical
Hamiltonian is linear in the controls, the equations of
motion and consequently the optimal-control Hamiltonian
will also be linear, giving rise to bang-bang protocols, as
verified in several recent studies on optimal topological
quantum computing [36,37]. To find the protocol g that
minimizes the cost function in our case, we expand the
wave function in a complete orthonormal basis, e.g., the
computational basis jzi as jψðtÞi ¼ P

zAzðtÞjzi, and treat
the real and imaginary parts of the amplitudes AzðtÞ as
dynamical variables, which evolve according to the
Schrödinger equation

_AR
z ¼ 1

2

X
α;z0

gα½ðHzz0
α þHz0z

α ÞAI
z0 − iðHzz0

α −Hz0z
α ÞAR

z0 �; ð6Þ

_AI
z ¼

1

2

X
α;z0

gα½−ðHzz0
α þHz0z

α ÞAR
z0 − iðHzz0

α −Hz0z
α ÞAI

z0 �; ð7Þ

where Hzz0
α ≡ hzjHαjz0i and AR;I

z ≡ Re, ImðAzÞ. Clearly,
these equations of motion are linear in the control functions
gα, and the cost function Eq. (4) is a function of only the
final values of the dynamical variables. Thus, the argument
above holds and the optimal protocol is generically bang-
bang regardless of the number of variational parameters.
We remark that our optimal bang-bang protocol is non-
adiabatic by construction, and we put no constraint on
maximizing the degree of adiabaticity. The value of this
result hinges upon the time scale over which a coupling
constant is held fixed. The longer this time scale, the fewer
parameters (switching times) are needed to represent the
protocol. In fact, in the limit where this time scale goes to
zero, any protocol can be approximated by a sequence of
square pulses through Trotterization. In this paper, we find
that the time scale above is indeed finite and is set by the
energy scale of the Hamiltonian for the Sherrington-
Kirkpatrick (SK) Ising spin-glass model [see Eq. (9)].

B. Presence of decoherence

From a practical point of view, it is important to assess
the validity of the closed system findings in the presence
of decoherence. Again, a straightforward application of
the Pontryagin principle extends the above results for a
closed system evolution to an open quantum system with
Markovian dynamics described by a Lindblad equation,

dρ
dt

¼−i
�X

α

gαðtÞHα;ρ

�
þ
X
β

fβðtÞð2FβρF
†
β−fF†

βFβ;ρgÞ;

ð8Þ

where the optimal protocol fgαðtÞ; fβðtÞg, if controllable,
is of type bang-bang. This is due to the linearity of the
dynamical equation (8). A decoherence operator Fβ can
represent either noise in the Hamiltonian parameters (in
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which case, Fβ is Hermitian [38,39]) or an engineered bath
[40]. In the former case, fβ’s are constant rates of noise
processes, and in the latter, fβðtÞ’s are control knobs that
Pontryagin’s minimum principle says should vary in bang-
bang form for an optimal protocol. In the rest of the paper,
we focus only on closed system Schrödinger dynamics
when finding the optimal protocol. We do, however,
discuss the effects of noise and open-system dynamics
on our optimal protocols.

IV. VQA FOR THE SK SPIN-GLASS MODEL

We now focus on a canonical problem in combinatorial
optimization, namely, the SK Ising spin glass [41] with the
energy function

C ¼ 1ffiffiffi
n

p
Xn
i;j¼1

Jijσ
z
iσ

z
j þ

Xn
i¼1

hiσ
z
i : ð9Þ

where Jij and hi are independent Gaussian random vari-
ables with zero mean and variance J2 ¼ h2 ¼ 1, and each
σz spin can take the values �1. The goal is to minimize C
over all the 2n spin configurations. A multitude of practical
combinatorial optimization problems map to this model.
The computational cost of finding the minimum with
classical algorithms is exponential in n.
In analogy with the simple instances of quantum

annealing, we focus on the case with only one control
function gðtÞ and use the following parametrized
Hamiltonian:

HgðtÞ ¼ gðtÞCþ ½1 − gðtÞ�B; ð10Þ

with the operator B≡ −
P

n
i¼1 σ

x
i representing a transverse

field, which generates quantum fluctuations.
For the initial state, we choose the ground states of B.

It is easy to prepare the product state jψð0Þi ¼Q
i½ðj↑ii þ j↓iiÞ=

ffiffiffi
2

p � commonly used in other schemes,
such as the QAA. Here, σzi j↑ii ¼ j↑ii and σzi j↓ii ¼ −j↓ii.
We would like to minimize the cost function
hψðTÞjCjψðTÞi. In the adiabatic scheme, a smooth ramp,
such as gðtÞ ¼ ðt=TÞ, is applied for 0 < t < T, and we can
generate large overlap with the ground state ofC in the limit
of large T. Here, we allow for arbitrary time dependence of
the control function in the fixed range 0 ≤ gðtÞ ≤ 1.
According to the general argument of Sec. III A, the
optimal solution is bang-bang.
As we discusse in the Introduction, in VQA a classical

optimization algorithm commands a quantum system to
find the optimal protocol variationally from measurement
of the cost function for many protocols. This requires many
repetitions and it is to our advantage to use the shortest
possible time T for which the final state has an acceptable
overlap with the ground state of C (projective measurement
is ultimately used in generating the ground state). In the

adiabatic scheme, we need only one shot, but there are
important restrictions from the small energy gaps along the
adiabatic trajectory, which can lead to exceedingly long
time scales, over which quantum coherence cannot be
even approximately sustained. Furthermore, the presence of
noise or modulation in the control fields places important
limitations on adiabatic schemes due to the emergence
of the recently proposed noise-induced antiadiabaticity in
the long-time limit [42]. Unlike QAA, which relies on the
adiabatic theorem, VQA has no known connection to
instantaneous ground states and the minimum gap to
excitations as transitions to excited states during the time
evolution are allowed as long as the system eventually
lands at the ground state of the final Hamiltonian.
Given the limitations of the adiabatic scheme, a quantum

approximate algorithm has been introduced for solving
combinatorial optimization problems [24–27] in the spirit
of VQA. The algorithm of Ref. [24] uses an ansatz

jγ; βi ¼ UðB; βpÞUðC; γpÞ…UðB; β1ÞUðC; γ1Þjψð0Þi;
ð11Þ

where the evolution operators are given byUðC; γÞ ¼ e−iγC

and UðB; βÞ ¼ e−iβB. The integer p is a parameter char-
acterizing a variational ansatz.
For a given p, the goal of the algorithm is to find a set

of variational parameters that minimizes the expectation
value of Fpðγ; βÞ ¼ hγ; βjCjγ; βi, which ensures that the
state jγ; βi approaches the ground state of C. Physically,
the ansatz describes time evolution for a total time
T ¼ Pp

i¼1 ðγi þ βiÞ, and a sequence of sudden switching
between the Hamiltonians B and C. While this ansatz with
a finite p is an intelligent guess, the result that we derive
using Pontryagin’s minimum principle implies that, given
bounded independent control of Hamiltonian terms, the
ansatz Eq. (11) is the optimal choice for a VQA approach to
optimization. We reiterate that B and C are each a sum of
commuting one- and/or two-qubit terms. Therefore, our
protocol can be interpreted as a sequence of simple gates.
Estimating the required p requires an analysis of the
characteristic time scales of the pulses, which we carry
out in this paper.

V. NUMERICAL STUDIES

We start by verifying for small system sizes and short
annealing times that the optimal annealing protocol is
indeed bang-bang, by using a Metropolis Monte Carlo
(MC) algorithm, which makes no assumptions about the
nature of the protocol. We divide the total time T into S
slices of duration δt ¼ T=S and use a piecewise constant
protocol. The method approaches an unbiased optimiza-
tion, i.e., it explores all permissible controls and chooses
the optimal one, if the protocols obtained converge upon
increasing S. We then proceed by carrying out a MC

YANG, RAHMANI, SHABANI, NEVEN, and CHAMON PHYS. REV. X 7, 021027 (2017)

021027-4



simulation starting from random initial protocols, without
any assumption regarding the bang-bang nature of the
protocol. In each step, we slightly change the control
parameter g in a randomly chosen discretized time interval.
If the cost function gets smaller, we accept the attempt; if
the cost function gets larger, we accept the attempt with
probability e−ΔE=TMC, where TMC is a fictitious temperature
that is gradually reduced to zero.
In Fig. 2(a), we show the optimal protocol obtained from

such MC simulation for a fixed instance of Hamiltonian
Eq. (9) with n ¼ 5 spins and total time T ¼ 0.8.
Indeed, the MC simulation converge to a bang-bang

protocol for different initial protocols in agreement with
Pontryagin’s minimum principle. Despite the convergence
for short total time, the MC simulations often fail to
converge for longer times and larger systems, signaling
the difficulty of implementing VQA without any a priori
knowledge about the form of the optimal protocol.
However, based on the mathematical proof of the bang-
bang nature of the optimal protocols, we can parametrize
the protocol similar to QAOA [24] and use the durations
of the pulses as variational parameters to be optimized with
the interior-point minimization method (IPMM), increasing
p to achieve convergence.
We check that IPMM results are indeed in agreement

with MC results, e.g., Fig. 2(a) (it also runs much faster). In
Fig. 2(b), we show a typical optimized protocol obtained
with IPMM for a certain instance of Hamiltonian Eq. (9)
with n ¼ 5 spins and T ¼ 2. Guided by MC results, we
choose ∼20T variational parameters, which proves to be
adequate (we converge to a smaller number of bangs than
we allow in the ansatz).
We now turn to the critical question of the time scales

of the pulses. We observe numerically and then argue
analytically that the typical time scale of each bang is
independent of the system size, and is only determined by
some characteristic energy scale of Hamiltonian Eq. (9).
Therefore, from a complexity theory perspective, this result
implies that the hardness of the optimization problem

should translate into the number of pulses and/or the
hardness of the protocol optimization. In Fig. 3, we plot
the distribution of the time scales of each bang Δt for
system sizes n ¼ 6, 7, 8, 9, and 10. For each system size,
we fix the total annealing time to be T ¼ 2, and average
over 50 instances of the Hamiltonian Eq. (9).
We find that the distributions for the bang time collapse

for different system sizes, and peak at almost the same
value. This observation suggests a universal average dis-
tribution of the bang times for the near-optimal protocols,
and a typical time scale (peak or average value) that is
independent of the system size. Although we consider only
a few system sizes, the dependence on n is extremely weak
and we expect our results to extrapolate to large n.
Finally, we comment on the performance of our proto-

cols. The cost function we minimize is the expectation
value hψðTÞjCjψðTÞi. Minimizing the energy expectation
value results in larger overlap with the ground state ofC. As
expected, the time scales for our protocols are significantly
shorter than those of the adiabatic algorithm with similar
success rate. A comparison between the optimal bang-bang
protocols and linear ramps gðtÞ ¼ t=T is shown in Fig. 4.
The errors in the final wave functions 1 − jhψGSjψðTÞij2
and final energies E − EGS ≡ hψðTÞjCjψðTÞi − EGS are
averaged over the 20 instances (out of 50 generated
realizations) with the highest success rates for the optimal
bang-bang protocol and linear QAA ramp, respectively. We
find that, in the system sizes we consider in this work, the
nonadiabatic bang-bang protocol with the same total time
performs better than the linear ramp (commonly used in
QAA) in the ideal case, where the thermal environment and
external noise are neglected. Of course, in practice, one
needs to include the overhead of searching for the optimal
solution and understand how it scales as a function of
system size. In particular, while implementing the bang-
bang protocol consisting of square pulses on a quantum
annealer is feasible [43], finding the optimal protocol with a

0 0.2 0.4 0.6
0

0.5

1

0 0.5 1 1.5

(a) (b)

FIG. 2. (a) The optimal protocol obtained from MC simu-
lations for a fixed instance of Hamiltonian Eq. (9) with n ¼ 5
spins and total annealing time T ¼ 0.8. Different colors
represent different initial protocols. The plots are for S ¼ 40,
but the optimal protocol does not change upon increasing S.
(b) A typical protocol obtained for a given instance of
Hamiltonian Eq. (9) with n ¼ 5 spins and T ¼ 2, using a
classical optimization solver. We start from a uniform initial
protocol with S slices such that δt ¼ T=S ¼ 0.1.

0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

0.3

FIG. 3. The average probability distribution of the time scales
of bangs for different system sizes: n ¼ 6, 7, 8, 9, and 10. The
total annealing time is fixed to be T ¼ 2, leading to an average
success rate around 0.33–0.47, depending on the system sizes.
Each curve is averaged over 50 instances of Hamiltonian Eq. (9).
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classical optimizer could be difficult for certain hard
instances of problems.

VI. EFFECTS OF DISSIPATION AND DEPHASING

Real-world implementations of the bang-bang and
QAA protocols are inevitably subject to noise either in
the external controls or due to coupling to the thermal
environment. Therefore, it is important to examine the
effects of these perturbations on our optimal protocols for
practical applications. Here, we consider two noise models
in order to evaluate the robustness of our bang-bang
protocol, at the same time comparing it with the perfor-
mance of QAA.

A. Random dephasing noise

Here, we consider pure dephasing noise, where we
introduce random fields in the x and z directions. This
type of noise can capture noise induced by hardware
electronics. Our error model can be viewed as the con-
tinuous time analog of the depolarizing channel commonly
used for simulating noise in quantum circuits [44]. Since in
a bang-bang protocol we have either gðtÞ ¼ 1 or gðtÞ ¼ 0 at
any given time, we can write the stochastic Hamiltonian as

HðtÞ¼Cþ
Xn
i¼1

δhiðtÞσzi þ
Xn
i¼1

δbiðtÞσxi ; g¼1; ð12Þ

HðtÞ¼Bþ
Xn
i¼1

δhiðtÞσzi þ
Xn
i¼1

δbiðtÞσxi ; g¼0; ð13Þ

where δhiðtÞ and δbiðtÞ are noise in the z and x directions,
respectively, with strengths independent of the value of the

coupling constants (additive noise). Assuming independent
white noise for different terms with zero mean and second
moments,

δhiðtÞδhi0 ðt0Þ ¼ W2
hδii0δðt − t0Þ; ð14Þ

δbiðtÞδbi0 ðt0Þ ¼ W2
bδii0δðt − t0Þ; ð15Þ

the noise-averaged density matrix evolves with the follow-
ing master equation [39]:

dρðtÞ
dt

¼ −i½H; ρðtÞ� − 1

2
W2

h

Xn
i¼1

½½ρðtÞ; σzi �; σzi �

−
1

2
W2

b

Xn
i¼1

½½ρðtÞ; σxi �; σxi �; ð16Þ

where we take Wb ¼ Wh ¼ W for simplicity. In the
bang-bang case, the Hamiltonian H takes two different
values, H ¼ C (H ¼ B) for g ¼ 1 (g ¼ 0), while in the
QAA case, H has the explicit time dependence of Eq. (10)
with gðtÞ ¼ t=T.
In Fig. 4, we show the errors in the fidelity

1 − hψGSjρðTÞjψGSi and final energy Tr½ρðTÞC� − EGS
for different strengths of noise. We find that in the small
W regime, the noise only slightly decreases the fidelity,
acting like a perturbation without inducing any instability.
The effects of the noise on the linear QAA ramp are similar
both qualitatively and quantitatively, changing the W ¼ 0
error by an amount of the same order of magnitude. For the
strongest strength of noise that we study (W ¼ 0.01), the
fidelity of the optimal bang-bang protocol remains higher
than that of the linear ramp protocol.
A comment is in order regarding the dimension of W

and the range used. As δðt − t0Þ has a dimension of time
(inverse energy), W2 has a dimension of energy. Strictly
speaking, the δ function introduces infinitely large (albeit
completely uncorrelated) random fields. This is unrealistic.
In real experiments there is a characteristic high frequency,
introducing a characteristic short time scale Δτ, over which
noise is correlated. This frequency scale is typically several
orders of magnitude larger than the characteristic energy of
the Hamiltonian (it diverges for the δ function). Therefore,
Eqs. (14) and (15) imply that δh; δb ∼W=

ffiffiffiffiffiffi
Δτ

p
, which

means that for moderate noise in the random fields δh and
δb, the corresponding values of W are suppressed by

ffiffiffiffiffiffi
Δτ

p
.

B. Weak thermal bath

Here, we consider coupling the system to a weak thermal
bath at temperature 1=β. In this regime, the dynamics of
the open system can be approximately described by the
Redfield master equation, which is commonly used to
model noisy QAA for an actual annealing hardware
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FIG. 4. Errors in the fidelity (upper panel) and final energies
(lower panel) evolved with the bang-bang and QAA protocols in
the presence of noise with different strengths for n ¼ 5.
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[45–47]. Here, we use the formulation in Ref. [45] and
apply it to both QAA and bang-bang protocols.
The system of many qubits is coupled to the thermal bath

via the Hamiltonian
P

n
i σ

z
iQ

z
i , whereQ

z
i are bath operators.

We assume an Ohmic bosonic bath in thermal equilibrium,
with the spectral density function given by

Szi ðωÞ ¼
Z

∞

−∞
dteiωthQz

i ðtÞQz
i ð0Þi ¼ ηω

1

1 − e−βω
; ð17Þ

where η is a dimensionless coefficient describing the
strength of the coupling to the environment. We take the
cutoff frequency of the bath to be infinite, so as to guarantee
the Markovian assumption of dynamics. We employ
Eqs. (4)–(9) in Ref. [45] to simulate the dynamics of open
systems based on the Redfield master equation.
Figure 5 shows the errors in the fidelity for different

strengths of coupling to the bath, for both QAA and bang-
bang protocols. Similar to the case of the closed system in
the presence of white noise, we find that the errors
corresponding to both protocols change in an analogous
manner due to weak coupling to the environment in both
the short- and long-time regimes. There is an intermediate
time regime 8.5≲ T ≲ 11.5, where QAA exhibits remark-
able robustness and a much smaller change in η ¼ 0 error.
However, the errors of the VQA and QAA get closer as we
increase T. Once again, the fidelity of the optimal bang-
bang protocol remains higher than the QAA even for open
system dynamics.

VII. PULSE DURATION FROM PONTRYAGIN’S
MINIMUM PRINCIPLE

Here, we provide more details on how Pontryagin’s
minimum principle can not only tell about the form of
optimal solution for VQA but can also shed light on when
the pulses should be switched on and off, in the context of
the SK model.

Using the computational basis z ¼ z1;…; zn, we re-
present the wave function as jψðtÞi ¼ P

zAzðtÞjzi. The
initial state with all the spins in the x direction corresponds
to Azð0Þ ¼ 1=

ffiffiffiffiffi
2n

p
, and the Schrödinger equation reads

i∂tAzðtÞ ¼ gðtÞCzAzðtÞ þ ½1 − gðtÞ�
Xn
k¼1

Az̄ðkÞðtÞ; ð18Þ

with z̄ðkÞ ¼ z1;…; z̄k;…; zn, where z̄k represents a flipped
spin with respect to zk and Cz is the energy function we
would like to minimize. In terms of the real and imaginary
parts of AzðtÞ ¼ RzðtÞ þ iIzðtÞ, we can then write

∂tRzðtÞ ¼ gðtÞCzIzðtÞ þ ½1 − gðtÞ�
Xn
k¼1

Iz̄ðkÞðtÞ; ð19Þ

∂tIzðtÞ ¼ −gðtÞCzRzðtÞ − ½1 − gðtÞ�
Xn
k¼1

Rz̄ðkÞðtÞ: ð20Þ

Introducing conjugate momenta PzðtÞ and QzðtÞ, respec-
tively, for the real and imaginary parts of AzðtÞ, the explicit
form of the optimal-control Hamiltonian is given by

H¼
X
z

fgðtÞCz½PzðtÞIzðtÞ−QzðtÞRzðtÞ�

þ½1−gðtÞ�
Xn
k¼1

½PzðtÞIz̄ðkÞðtÞ−QzðtÞRz̄ðkÞðtÞ�g: ð21Þ

The equations of motion for the conjugate
momenta are ∂tPzðtÞ ¼ −f∂H=½∂RzðtÞ�g and ∂tQzðtÞ ¼
−f∂H=½∂IzðtÞ�g, which can be written explicitly as

∂tPzðtÞ ¼ gðtÞCzQzðtÞ þ ½1 − gðtÞ�
Xn
k¼1

Qz̄ðkÞðtÞ; ð22Þ

∂tQzðtÞ ¼ −gðtÞCzPzðtÞ − ½1 − gðtÞ�
Xn
k¼1

Pz̄ðkÞðtÞ; ð23Þ

where we use the relationships
P

z;kQzðtÞRz̄ðkÞðtÞ ¼P
z;kQz̄ðkÞðtÞRzðtÞ and

P
z;kPzðtÞIz̄ðkÞðtÞ ¼

P
z;kPz̄ðkÞðtÞ×

IzðtÞ.
The cost function

F½gðtÞ� ¼
X
z

jAzðTÞj2Cz ð24Þ

leads to the following boundary conditions at t ¼ T for the
conjugate momenta:

PzðTÞ ¼ 2RzðTÞCz; QzðTÞ ¼ 2IzðTÞCz: ð25Þ
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FIG. 5. Errors in the fidelity of final states evolved with the
bang-bang and QAA protocols in the presence of different
strengths of coupling to the environment for n ¼ 5. The inverse
temperature is chosen to be β ¼ 2=J.
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Note that gðtÞ uniquely determines AzðtÞ. From AzðTÞ
and the expression above, we can find PzðTÞ and QzðTÞ,
solve the equations of motion backward in time, and
determine the conjugate momenta as a function of time.
Therefore, gðtÞ also uniquely determines PzðtÞ and QzðtÞ.
Potryagin’s minimum principle states that the optimal
protocol g�ðtÞ satisfies

Hðg�;R�; I�;P�;Q�Þ ¼ min
g
Hðg;R�; I�;P�;Q�Þ; ð26Þ

where R�, I�, P�, Q� are the corresponding optimal
solution. As we argue in Sec. III, g�ðtÞ is bang-
bang and can take only two values: 0 and 1. Which
value will depend on the sign of ½ð∂HÞ=∂g� given by the
expression

∂H
∂g ¼

X
z

�
Cz½P�

zðtÞI�zðtÞ −Q�
zðtÞR�

zðtÞ�

−
Xn
k¼1

½P�
zðtÞI�z̄ðkÞðtÞ −Q�

zðtÞR�
z̄ðkÞðtÞ�

�
: ð27Þ

The sudden quenches at which gðtÞ switches from 0
to 1 or vice versa correspond to the zeros of
½ð∂HÞ=∂g� above.
Let us first combine Pz and Qz into one complex

momentum:

ΠzðtÞ ¼ PzðtÞ þ iQzðtÞ: ð28Þ

As we argue above, the optimal protocol is bang-bang
with gðtÞ ¼ 0, 1. In any interval with gðtÞ ¼ 1, we can
write

AzðtÞ ¼ e−iCzðt−t0ÞAðt0Þ; ð29Þ

ΠzðtÞ ¼ e−iCzðt−t0ÞΠðt0Þ; ð30Þ

where t0 is the beginning of the current bang gðt0Þ ¼ 1.
We first note that the term PzðtÞIzðtÞ −QzðtÞRzðtÞ ¼
Im½AzðtÞΠ�

zðtÞ� in Eq. (27) and does not change in
intervals with gðtÞ ¼ 1. Moreover, the terms

PzðtÞIz̄ðkÞðtÞ −QzðtÞRz̄ðkÞðtÞ
¼ Im½e−iðCz−Cz̄ðkÞÞðt−t0ÞAzðt0ÞΠ�

z̄ðkÞðt0Þ�: ð31Þ

The above equation allows for an estimation of the
typical time scale of the interval gðtÞ ¼ 1. Suppose at some
t0, gðtÞ switches from 0 to 1; i.e., a bang starts. From
the discussion above, we know that at t ¼ t0 we must
have ½∂H=ð∂gÞ�ðt0Þ ¼ 0. The time when the bang stops
corresponds to the next t > t0 when ½∂H=ð∂gÞ�ðtÞ ¼ 0.
More explicitly, in the interval gðtÞ ¼ 1, Eq. (27) can be
written as

wðtÞ ¼
X
z

Xn
k¼1

Im½ðe−iðCz−Cz̄ðkÞÞðt−t0Þ − 1ÞAzðt0ÞΠ�
z̄ðkÞðt0Þ�:

ð32Þ

We have wðt0Þ ¼ 0. The first root of the equation wðtÞ ¼ 0
with t > t0 then determines the duration of a pulse.
While we cannot derive analytically the average first

root for t > t0 from Eq. (32), one can see that the only
time dependence in Eq. (32) within the current interval is
in e−iðCz−Cz̄ðkÞÞt. Thus, the energy difference ΔCz;k ≡
Cz − Cz̄ðkÞ, which has zero mean (as both Cz and Cz̄ðkÞ
have zero mean) and variance ΔC2

z;k ¼ 4ðJ2 þ h2Þ, sets the
characteristic time scale proportional to 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ h2

p
observed in Fig. 3. Importantly, this time scale is finite
and system-size independent, distinguishing our bang-
bang-type optimal protocol from the Trotterization of
generic protocols, where the duration of individual pulses
must be taken to zero. We believe the numerically obtained
system-size independent distribution of Fig. 3 follows from
Eq. (32), whose root determines one set of the switching
times for quenching gðtÞ from 1 to 0, giving the duration of
a pulse with gðtÞ ¼ 1 [the distributions of pulse durations
with gðtÞ ¼ 0 and gðtÞ ¼ 1 are found numerically to be
almost identical]. However, an analytical derivation of the
distribution in Fig. 3 has remained elusive.

VIII. SUMMARY AND OUTLOOK

We show that the optimal VQA with bounded linear
control parameters has a protocol of the bang-bang form.
We verify this prediction by finding numerically the
optimal protocol that minimizes the energy of a SK spin
glass. The optimal nonadiabatic bang-bang protocols sig-
nificantly reduce the error when compared to QAA within
the same running time, and, at least for our system sizes, the
advantage remains in the presence of weak additive white
noise in the control parameters as well as weak coupling to
a thermal environment.
Importantly, we show that the characteristic time scale

between bangs is fixed by the energy scales in the problem
and is independent of system size, which we confirm
numerically. This finding significantly reduces the number
of variational parameters in VQA, potentially decreasing
the computational cost of the VQA outer-loop classical
optimization algorithm to a great extent.
Our results, that the bang-bang protocols are optimal

and the duration of each square pulse is size independent,
inform the search for effective hybrid classical-quantum
schemes for solving combinatorial optimization problems.
Further progress relies on the development of efficient
outer-loop algorithms as well as hardware development for
quantum enhanced optimization. Ultimately, the power of
our results lies in their application to larger systems, for
which solving the time-dependent Schrödinger equation is
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impossible on a classical computer. Rapid developments
in quantum technologies [48], together with the relative
robustness of our protocols to specific models of external
noise and thermal environment, support the promise of
such applications.
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