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We investigate the possibility of a bistable phase in an open many-body system. To this end, we discuss the
microscopic dynamics of a continuously off-resonantly driven Rydberg lattice gas in the regime of strong
decoherence. Our experimental results reveal a prolongation of the temporal correlations exceeding the
lifetime of a single Rydberg excitation and show strong evidence for the formation of finite-sized Rydberg
excitation clusters in the steady state. We simulate the dynamics of the system using a simplified and a full
many-body rate-equation model. The results are compatiblewith the formation of metastable states associated
with a bimodal counting distribution as well as dynamic hysteresis. However, a scaling analysis reveals that
the correlation times remain finite for all relevant system parameters, which suggests the formation of many
small Rydberg clusters and finite correlation lengths of Rydberg excitations. These results constitute strong
evidence against the presence of a global bistable phase previously suggested to exist in this system.
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I. INTRODUCTION

Recent progress in experimental control offers unique
possibilities to study the interplay between pure quantum
mechanical systems and their coupling to reservoirs. In
particular, the competition between external drive and
dissipation can result in interesting phases in the steady
state [1–4]. One fascinating avenue is to study the proper-
ties of these phases and the possibility of phase transitions
in the context of an open quantum system [1,5–8]. In
addition, including strong and nonlocal interactions may
allow us to prepare and study strongly correlated many-
body systems [9–11].
Rydberg atoms are particularly interesting as they

provide strong and quasi-long-range interactions in an
inherently dissipative environment. By means of an optical
drive, ground-state atoms can be excited to states with high-
principal quantum numbers. These Rydberg states have
a large polarizability, resulting in a strongly interacting
quantum gas. Therefore, these systems are an ideal plat-
form to study nonequilibrium many-body physics with
strong dissipation [2,12–17].
Depending on the driving scheme to the excited Rydberg

state and the geometryof the atomic ensemble,Rydberg gases
can exhibit very different phases. In the case of the so-called

blockade regime, i.e., for resonant driving, the strong inter-
action shift of Rydberg states induced by an already-present
Rydberg excitation suppresses further excitations in a meso-
scopic ensemble of surrounding atoms. This leads to the
concept of a Rydberg superatom [18–22] and was initially
proposed to realize quantum gates [23]. Here, interesting
phases with antiferromagnetic, crystalline long-range order
have been predicted [2], and phases with finite-length spatial
correlations have been observed [24]. In the case of the
so-called antiblockade regime, i.e., for off-resonant driving,
the interaction shift may be compensated by detuning the
frequency of the excitation laser from resonance. Now,
instead of suppressing excitations within a certain volume,
further Rydberg excitations are facilitated at a specific
distance from an already-excited atom. This leads to the
formation of Rydberg excitation clusters [15,25,26].
One interesting aspect observed in recent antiblockade

experiments using a full counting analysis is a bimodal
excitation number distribution [27,28] and a hysteresis in
the excitation dynamics [13,17]. It has been under debate
whether this indicates a transition to a bistable steady state
of the open many-body system [8,9,13,16,29,30]. We will
show that both hysteresis and bimodal counting statistics
are features of metastable states.
A metastable state manifests itself in a separation of time

scales, where the relaxation time T is much larger than all
other time scales in the system [6,31]. This may lead to a
hysteresis behavior upon temporal changes of system
parameters on a time scale τ (sweep time) that is small
compared to T. When the sweep time becomes much larger
than T, the hysteresis disappears. Associated with a finite
value of T is an upper limit for all spatial correlation
lengths, ξ ∼ T. We argue that metastable systems with
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correlation length similar to the system size allow for a
bimodal distribution. If T increases with the system size L
and eventually diverges in the thermodynamic limit, the
metastable states become degenerate, truly stationary states
of the system. In this case, the steady state is called bistable
(multistable). As will be shown later, bistability in an
infinite, translationally invariant system implies long-range
spatial order. Thus, different from metastability, the emer-
gence of bistability can be associated with a phase
transition to an ordered state.
In this paper, we experimentally investigate and theo-

retically model the excitation dynamics of a Rydberg lattice

gas with off-resonant continuous driving and strong dis-
sipation [see Fig. 1(a)]. We continuously monitor the laser-
induced excitation and subsequent ionization of Rydberg
atoms and analyze its temporal correlations [Fig. 1(b)]
in the antiblockade regime, scanning the frequency and
intensity of the excitation laser. Although there is a constant
loss of atoms, our measurement technique allows us to
access steady-state properties. The results indicate the
formation of small clusters with a long but finite lifetime,
which originate from a correlated excitation cascade. We
compare the experimental results to numerical simulations
based on a simplified single-cluster model [Fig. 1(c)] and a
more advanced rate-equation model of extended systems.
To check for the existence of bistability, we perform a
finite-size extrapolation in the numerical simulations. Our
results indicate that the correlation time and length remain
finite in the experimentally relevant regime amenable to a
rate-equation description. The bimodal character of the full
counting distribution [28] disappears when the observed
system size exceeds the correlation length, while a dynamic
hysteresis can still be observed, provided the sweep time
is sufficiently small [32]. This suggests that the Rydberg
aggregate in the antiblockade regime consists of many
small independent clusters and is incompatible with a
global bistable regime.

II. BISTABLE AND METASTABLE
STEADY STATES

Before discussing Rydberg lattice gases, let us start with
a general introduction to bistability and metastability in
open quantum systems. Quantum optical systems coupled
to external reservoirs and subject to external drives can
often be described in terms of a Lindblad master equation
for the many-body density matrix ρ [33–35],

d
dt
ρ ¼ Lρ: ð1Þ

The Lindbladian superoperator L is the generator of the
dynamics, determined by the Hamiltonian H describing
the unitary evolution and the jump operators Lμ describing
the Markovian reservoir couplings,

LðρÞ ¼ −
i
ℏ
½H; ρ�

þ
X
μ

Γμ

2
ð2LμρL

†
μ − L†

μLμρ − ρL†
μLμÞ: ð2Þ

Note thatLhas complex eigenvalues λk andcorresponding
right eigenvectors ρk, i.e., Lρk ¼ −λkρk. The non-negative
real parts of the eigenvalues, Re½λk� ≥ 0, determine the
characteristic relaxation rates towards a stationary state

ρ0 or a manifold of stationary states fρðnÞ0 g with λ0 ¼ 0.
It should be noted that all “excited” eigenvectors ρk with
λk ≠ 0 are not density matrices since Trfρkg ¼ 0. If the

FIG. 1. (a) Schematic sketch of the experimental measurement.
Atoms confined in a 3D optical lattice (only one plane is shown)
are continuously excited to the Rydberg state with Rabi
frequency Ω and detuning Δ > 0. The Rydberg atoms are
ionized at the rate Γion, which is much smaller than the natural
decay rate. Therefore, the ions serve as a probe of the excitation
dynamics. The color scheme of the atoms is chosen according to
the rates in (c): Rydberg excitations are red, ground-state atoms
are gray, and atoms that can be facilitated are blue. (b) Pair-
correlation function gð2ÞðτÞ deduced from the ion signal
(Ω ¼ 2π × 77 kHz, Δ ¼ 2π × 13 MHz). The correlation func-
tion shows super-Poissonian fluctuations with large bunching
amplitude gð2Þð0Þ≫1 and relaxation time τð2Þ ≫ τsp, where
τsp ¼ 20 μs is the natural lifetime of the excited Rydberg
state 25P1=2. Inset: Measured ion signal for single (blue) and
averaged-over-40 (gray) experimental realizations. The shaded
area around the gray line denotes Poissonian fluctuations.
(c) Effective cluster model: A single seed excitation with rate
NatΓseed initializes the growth of a cluster. While a facilitation
rate Γ↑ ≫ Γseed leads to an increase of cluster size m, the
spontaneous decay rate Γsp limits the size of a cluster.
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steady state is unique, it is called stable; if two orthogonal

stationary solutions, ρð1Þ0 and ρð2Þ0 , exist, the steady state is
called bistable. In the first case, any initial state will
eventually evolve into the unique steady state; in the second
case, the asymptotic state for large times is a mixture of the
two solutions with coefficients determined by the initial state
ρðt ¼ 0Þ:

ρss ¼ pρð1Þ0 þ ð1 − pÞρð2Þ0 ; p ¼ Trfρ̌ð1Þ0 ρðt ¼ 0Þg: ð3Þ

Here, ρ̌ðnÞ0 is the left eigenvector of L corresponding to ρðnÞ0

and Trfρ̌ðnÞ0 ρðmÞ
0 g ¼ δnm.

In the cases we are interested in here, both the
Hamiltonian H and the jump operators Lμ are local; i.e.,
they can be written as a sum of terms that act only locally.
In such a case, the steady state is generically unique if
the system is finite, unless the reservoir interactions are
fine-tuned. General conditions for the uniqueness of steady
states can be found, e.g., in Refs. [36–38].
Since experiments can be performed only in finite time,

it is interesting to ask if states exist that, while not being
true stationary states, appear to be stable over long but finite
time scales. These states are called metastable, and they
occur in systems with a separation of time scales, i.e.,
where there is initial relaxation into long-lived states with
the subsequent decay into the true stationary state on a
much longer time scale [6,31]. Metastability is reflected in
the spectrum of decay rates, Re½λk�, as eigenvalues with a
small real part, clearly separated from all other eigenvalues
[see Fig. 2(a)].
Bistability typically emerges only in the thermodynamic

limit of infinite system size L → ∞ [see Fig. 2(b)].
An example in the context of driven Rydberg lattice gases
is the formation of antiferromagnetically ordered steady
states under the conditions of the Rydberg blockade [2].
Here, a phase transition from an unordered steady state into
one with two different checkerboard-like distributions of
Rydberg excitations occurs above a certain critical value of
the optical driving associated with a spontaneous breaking
of translational lattice symmetry. For any finite system with
linear dimension L < ∞, there is a unique steady state that
is an equally weighted mixture of the two checkerboard

configurations. However, each of these two configurations
corresponds to a metastable state, which, as shown in
Ref. [6], is an admixture of the true steady state ρ0 and the
first excited eigenvector ρ1. The metastable states even-
tually relax to the true steady state on a time scale

T ∼ Lα>0: ð4Þ

Approaching the thermodynamic limit, there is a critical
slow down, and the system becomes truly bistable.
The transition from a unique to a bistable steady state is a

true phase transition, which can be characterized by an
order parameter. Bistability and metastability cannot be
distinguished, however, in finite systems, and one has to
investigate the scaling behavior of the characteristic time
scales for L → ∞. We now show that bistability is always
associated with long-range order. To this end, we consider
a translationally invariant system and assume that two

orthogonal steady states, ρð1Þ0 and ρð2Þ0 , exist. Then, the
asymptotic state at large times is given by Eq. (3). In order
to detect bistability, there must be a local observable x̂j
that distinguishes the two states. Here, the index j labels
positions (or some compact part of space) that are acted on
by x̂j. Without loss of generality, we assume

hx̂ji1 ¼ Trfρð1Þ0 x̂jg ¼ þ1;

hx̂ji2 ¼ Trfρð2Þ0 x̂jg ¼ −1:

Making use of translational invariance, we find, in the
asymptotic state ρss, Eq. (3): hx̂jiss ¼ 2p − 1. Let us now
consider Ŷ¼P

L
j¼1 ðx̂j− hx̂jiÞ

P
L
k¼1 ðx̂k− hx̂kiÞ. Obviously,

hŶi ≥ 0 in any state. In both steady states, ρðμÞ0 , one findsP
j;khx̂jx̂kiμ ≥

P
jhx̂jiμ

P
khx̂kiμ ¼ L2. For the general

asymptotic state ρss, this yields

X
j;k

hx̂jx̂kiss ¼ p
X
j;k

hx̂jx̂ki1 þ ð1 − pÞ
X
j;k

hx̂jx̂ki2 ≥ L2:

ð5Þ

Now, considering correlations of the local observable
⟪x̂jx̂k⟫ ¼ hx̂jx̂ki − hx̂jihx̂ki, which, because of transla-
tional invariance, only depend on d ¼ j − k, one finds

X
d

⟪x̂0x̂d⟫ss ≥ L(1 − ð2p − 1Þ2):

Unless p ¼ 0 or 1, this inequality can only be fulfilled in
the thermodynamic limit L → ∞ if

⟪x̂0x̂d⟫ss⟶
d→∞

c ≠ 0: ð6Þ

Thus, bistability is only possible if there is long-range
order. This result is very intuitive. If only two (or some

(a) (b)

FIG. 2. Generic spectrum of relaxation (damping) rates as a
function of system size L for (a) a metastable system and (b) a
truly bistable system.
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finite number of) stationary states exist, which differ in the
expectation value of some local observable, there must be
long-range correlations in the system since one end of
the system has to “know” in which state the other end is.
For any system that is bistable in the thermodynamic limit,
we thus expect a scaling of the correlation length

ξ ∼ Lβ>0: ð7Þ

Since the speed at which correlations can spread in the
system is finite, the transition into a bistable state is
associated with a critical slow down, i.e., with characteristic
time scales that diverge with the system size. If the
correlation length ξ is finite, the number of stationary
configurations is 2N , with N ∼ ξ=L. For L ≫ ξ, the central
limit theorem holds, and global probability distributions
become single-peaked Gaussians. In the following, we
argue that under realistic experimental conditions, corre-
lation length and characteristic time scales in off-resonantly
driven Rydberg lattice gases remain finite, and there is no
bistability in this system.

III. EXPERIMENT

Experimentally, we continuously probe the Rydberg
excitation dynamics in the antiblockade regime. To this
end, we prepare Nat ¼ 20 000 87Rb atoms in a 3D optical
lattice in the Mott insulating phase at unit filling. The lattice
constants in the x and y directions are ax;y ¼ 374 nm, and
in the z direction, az ¼ 529 nm. We couple ground-state
atoms in the 5S1=2 state continuously via a one-photon
transition at a wavelength of λ ¼ 297 nm to the excited
Rydberg state 25P1=2 with Rabi frequency Ω and blue
detuning Δ > 0. See Fig. 1(a) for a sketch of the experi-
ment. The spontaneous decay rate from the Rydberg state is
given by Γsp ¼ τ−1sp ¼ 50 kHz, and we estimate a bare
decoherence rate of γ0 ≃ 300 kHz, which primarily orig-
inates from the laser line width.
The dipole trap lasers provide a weak photoionization

rate Γion ≃ 2 kHz, which we use to observe the excitation
dynamics in the system. The ions are guided towards a
detector by a small electric field of 90 mVcm−1. The
detector efficiency is 40%. The retrieved ion signal with
rate RionðtÞ ¼ ΓionNRyðtÞ, corrected by the detector effi-
ciency, serves as a weak probe for the full excitation
number NRyðtÞ. We experimentally determine the Rabi
frequency by analyzing the temporal statistics of the first
detected ion. A more detailed discussion of the experi-
mental setup and preparation can be found in Ref. [39] and
in Appendix A.
In the inset of Fig. 1(b), the measured ion rate RionðtÞ for

a Rabi frequency of Ω ¼ 2π × 77 kHz and a detuning of
Δ ¼ 2π × 13 MHz is shown. The recorded signal extends
over several tens of ms, which is 3 orders of magnitude
larger than the effective natural lifetime τsp ¼ 20 μs

(reduced by blackbody transitions into neighboring states)
of the 25P1=2 state. Therefore, in contrast to previous
studies [27,28], our measurements allow us to study the
steady-state of the system [40].
The experimentally accessible quantities, which we use

to characterize the formation and the dynamics of Rydberg
clusters, are the average ion rate and the time-dependent
two-particle correlation function

hRionðtÞi and gð2ÞðτÞ ¼ hRionðtþ τÞRionðtÞi
hRionðtþ τÞihRionðtÞi

; ð8Þ

respectively. In a single experimental realization [see inset
of Fig. 1(b)], strongly bunched excitations are already
visible, indicating strong excitation number fluctuations.
To quantify them, we extract gð2ÞðτÞ of the measured ion
signals [see Fig. 1(b)]. For typical parameters, we find a
value of gð2Þð0Þ ≫ 1. Moreover, we find an exponential
decay of the correlation signal with time scale τð2Þ much
larger than the lifetime of the 25P1=2 Rydberg state.
Crucially, the strong excitation bunching reflects two
different time scales arising in the antiblockade regime:
While a first seed excitation is strongly suppressed [indi-
cations thereof can be seen in the inset of Fig. 1(b) as large
intervals of zero signal in a single experimental run], the
excitation rate for a second atom can be enhanced in the
presence of the first [25,26,41]. In addition, further facili-
tated excitations lead to the correlated growth of Rydberg
excitations which form a cluster. This leads to a large
bunching amplitude gð2Þð0Þ and a long correlation time τð2Þ,
which measures the lifetime of a single cluster τcl, i.e.,
τcl ¼ τð2Þ. The ion rate Rion and the cluster lifetime τcl form
the basis of our further analysis.

IV. SINGLE-CLUSTER DYNAMICS

To gain insight into the cluster dynamics, we introduce a
simplified cluster model and compare it to our experimental
results. The model is capable of describing the growth of
the excitation number in a single cluster, and it qualitatively
captures all relevant features observed in the experiment.
It characterizes the excitation cascade of independent,
noninteracting excitation clusters, each of them being
described by an effective-rate-equation model.
In the case of strong decoherence, it has been shown that

rate-equation models are a good approximation [42–45]
and were already successfully used to describe current
experiments [15,20,27]. The effective cluster model is
illustrated in Fig. 1(c). It only considers the total number
of excitations m and does not give insight into the internal
microscopic structure of a cluster. The time evolution of the
probability pm to be in a cluster of sizem is governed by the
equations

∂tp0 ¼ −NatΓseedp0 þ Γspp1; ð9Þ
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∂tp1 ¼ þNatΓseedp0 − ðΓsp þ Γ↑Þp1

þ ðΓ↑ þ 2ΓspÞp2; ð10Þ

∂tpm ¼ −ð2Γ↑ þmΓspÞpm þ Γ↑pm−1

þ ðΓ↑ þ ðmþ 1ÞΓspÞpmþ1 ðm ≥ 2Þ: ð11Þ

Within the single-cluster model, we can identify three
main contributions to the dynamics:

(i) a slow seed with rate Γseed for generating new
clusters,

(ii) a fast rate Γ↑ for increasing and decreasing the size
of a cluster m, and

(iii) the spontaneous decay rate Γsp ¼ τ−1sp limiting the
size of a cluster.

The seed excitation with rate

Γseed ¼
2Ω2γ0
γ20 þ Δ2

ð12Þ

is strongly suppressed because of the large detuning Δ in
the antiblockade regime. For a system with Nat atoms, we
expect independent seed events to occur on a time scale
ðNatΓseedÞ−1. However, the presence of already-excited
Rydberg atoms strongly alters the summed excitation rate
of all neighboring atoms,

Γ↑ ¼ zeff2Ω2γ0
γ20 þ ðΔ − ΔintÞ2

; ð13Þ

where Δint is the interaction shift due to surrounding
excited atoms. The competition between the detuning Δ
and interaction shift Δint may lead to facilitated excitations
[26]. The ratio between seed rate Γseed and the rate for
cluster growth Γ↑ already allows us to identify different
regimes of correlated excitation dynamics. For Γ↑ ≫ Γseed,
we expect a strong excitation cascade, creating a cluster. In
this regime, each excitation triggers further excitations, and
we expect a substantial bunching amplitude gð2Þð0Þ. For
Γ↑ ≪ Γseed, we expect primarily uncorrelated excitations,
leading to a bunching amplitude gð2Þð0Þ≃ 1 and clusters of
size one. Finally, we include spontaneous decay with a rate
mΓsp increasing linearly with the cluster size m. Now,
starting from an initial seed excitation, the cluster grows
and shrinks with rate Γ↑, similar to a randomwalk along the
cluster size m ≥ 0. Although the single-atom spontaneous
decay rate Γsp can be small, this is the limiting factor for
large Rydberg excitation clusters. Microscopically, a decay
event creates a defect in a consecutive chain of excited atoms
and splits the cluster into smaller parts. The strong inter-
actions prevent these parts from merging again. Besides
the geometry, we account for the splittings introducing an
effective coordination number zeff. In Appendix B, we
discuss the microscopic model in more detail.

The effective model allows us to quantitatively compute
the typical size m̄ of a cluster. Moreover, it gives us an
intuitive understanding of gð2Þð0Þ and permits us to estimate
the number of independent clusters Ncl. Note that our
further experimental analysis does not rely on the explicit
evaluation of Eq. (13) and is thus independent of the exact
interaction potential between two Rydberg atoms.

A. Cluster size

To begin with, we discuss the typical size of a cluster m̄.
It is given by the ratio of the overall lifetime of a single
cluster τcl and the spontaneous lifetime of a single Rydberg
excitation τsp,

τcl ¼ m̄τsp: ð14Þ

The above expression can be understood in the following
way: When a cluster contains m̄ excitations, it requires m̄
consecutive decay events of time scale τsp before the
whole cluster vanishes. The facilitation mechanism leads
to a correlated excitation growth. This is in contrast to a
noninteracting system, where all excitations are indepen-
dent and decay on the same single-atom time scale τsp. We
verified this intuitive picture by comparing full simulations
to the simple cluster model and an analytic approach to
the corresponding cluster size (see Appendix B). We use
Eq. (14) to extract the cluster size from the experimental
data. Within the single-cluster model, the cluster lifetime τcl
and thus the typical cluster size m̄ only depend on the
ratio Γ↑=Γsp.
In Fig. 3, the measured cluster size m̄ (corresponding to a

certain cluster lifetime τcl) is shown for the full spectrum in
the antiblockade regime (Δ > 0) and different driving
strength Ω. The data reveal a strong increase in the cluster
size by increasing the driving strength Ω as one would
naively expect. In the limit of large detuning Δ ≫ Δint, all
excitation rates are strongly suppressed, and we obtain a
cluster size of one, corresponding to uncorrelated Rydberg
excitations. In this case, the lifetime τsp is the only relevant
time scale. Close to the resonance, cascaded excitations
lead to the formation of finite clusters of size m̄≲ 10. Note
that for strong driving and/or small detuning, the lifetime of
the entire sample approaches the cluster lifetime, and no
reliable values for τcl can be extracted. The preferred
generation of clusters with m̄ > 1 in this regime is
associated with an excitation bunching. In the inset of
Fig. 3, we plot gð2Þð0Þ − 1. Experimentally, we find sub-
stantial bunching amplitudes up to gð2Þð0Þ ∼ 13. The
measurements show a peak in gð2Þð0Þ, which coincides
with a cluster size of m̄≃ 2. The peak shifts towards larger
detuning with increasing Rabi frequency Ω. The presence
of a peak and its shift can be understood in the following
way: For larger detuning, where the typical cluster size is
smaller than m̄ ¼ 2, the influence of an uncorrelated
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background noise signal becomes important and dimin-
ishes the amplitude. For smaller detunings, the cluster size,
as well as the rate of creating new independent clusters,
increases drastically. Both reduce the value of gð2Þð0Þ
because of an increase of uncorrelated ionization events.

B. Number of clusters

Next, we experimentally determine the seed rate Γseed
by an analysis of the first ionization event in each single
measurement (details can be found in Appendix A).
Comparing the time scale with which new clusters are
produced ðNatΓseedÞ−1 to the lifetime of a single cluster τcl,
we can approximately deduce the number of clusters Ncl,

Ncl ≃ NatΓseedτcl: ð15Þ

The results are shown in Fig. 4. Similar to the cluster size
m̄, the number of clusters Ncl increases with increasing
driving strength Ω and decreasing detuning Δ. This shows
that for stronger driving and/or smaller detuning, the
Rydberg aggregate evolves into a steady state, which is
characterized by the presence of a large fluctuating number
of independent clusters with rather small size. This already
suggests that in the experimentally observed parameter
regime, there is no global bistable phase with a large
correlation length. For such a phase, we expect the system

to be in a single-cluster state with extent over the full
system.

C. Validity of single-cluster model

The extraction of the cluster size and number from the
experimental data performed in the previous section par-
tially relies on the validity of the cluster model. In the
following, we make a consistency check to test the cluster
model. To this end, we compare the fraction of Rydberg
excitations retrieved from the cluster model, ρcl ¼ Nclm̄=
Nat ¼ τ2clΓspΓseed, to the excitation fraction ρe directly
extracted from the measured ionization rate RionðtÞ:
ρe ¼ Rmax

ion =ðNatΓionÞ. While the first expression incorpo-
rates Eqs. (12) and (13) derived from the cluster model, the
second solely relies on experimental data. Both quantities
should be identical, independent of the Rabi frequency
of the driving field and the detuning. The comparison is
shown in Fig. 5. The dashed line indicates the ideal
agreement ρcl ¼ ρe. We see that all experimental curves
obtained for different driving strengths fall on top of each
other. For small excitation fractions, we furthermore find
good agreement between the results from the effective
cluster model and the experimental ionization signal. In the
strong driving regime, the experimentally retrieved ion
signal results in a smaller excitation fraction than predicted
by the cluster model. There may be two reasons for this
result: First, we monitor the ionization signal in a single
experimental run with an exponential atom loss and take
the maximal ionization signal to reflect the steady-state
excitation fraction without atom loss. Especially in the
strong driving regime, atom loss may lead to smaller
maximum ionization rates, reducing the extracted excita-
tion fraction ρe < ρcl. Second, our simple single-cluster
model relies on the assumption that clusters are

FIG. 4. Number of clusters Ncl calculated from the experi-
mental data using Eq. (15) for the different detunings and Rabi
frequencies. For decreasing detuning, the number of clusters
increases steadily, exceeding the size of a cluster by roughly 1
order of magnitude. The color code corresponds to the same
Rabi frequencies as in Fig. 3. The error bars correspond to the
statistical uncertainties from fitting the cluster lifetime τcl as well
as the multiparticle seed rate NatΓseed.

FIG. 3. Experimentally measured correlation time τð2Þ ¼ τcl
(left scale), corresponding to the lifetime of a cluster in the full
antiblockade regime Δ > 0 for different Rabi frequencies Ω. The
cluster lifetime increases with decreasing detuning for fixed Rabi
frequency. Using the cluster model, we extract a typical cluster
size m̄ (right bar). The gray dashed line indicates the spontaneous
decay time of a single atom τsp ¼ 20 μs. Inset: The bunching
amplitude gð2Þð0Þ − 1 shows peaks at detunings, which corre-
spond to a cluster size of approximately two. Error bars
correspond to the statistical uncertainty from fitting an exponen-
tial decay to the experimental retrieved correlation function. For
simplicity, they are not shown in the inset.
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independent. However, in Appendix B, we show, by using a
full rate-equation simulation, that cluster collisions become
important for strong driving. Cluster collisions limit, in
particular, the independent growth of clusters. This would
also lead to a reduced excitation fraction ρe < ρcl. In
summary, we conclude that the cluster model is an
appropriate description for the cluster dynamics, especially
for small excitation fractions.

V. BEYOND THE SINGLE-CLUSTER MODEL

The experimental protocol and the single-cluster model
introduced above only allow us to measure and describe
volume-integrated quantities. To also study finite-size
effects, in this section, we perform numerical simulations
using a many-body rate-equation approach, which goes
beyond the simple cluster model and can be extended to
large system sizes. In particular, we numerically perform a
finite-size extrapolation of the correlation time. In contrast
to the cluster model, which describes “pointlike”multilevel
systems, here we take into account the spatial distribution
of the atoms in the experiment and calculate the level shift
for each atom individually. In this way, we have access to
the full spatial distribution of excitations and are able to
track the growth and decay of every single cluster. The
microscopic description and numerical details of the system
are discussed in Sec. VI, while we here present the main
results.

A. Finite-size scaling of the correlation time

We use the rate-equation model to study the finite-size
scaling of the cluster lifetime. The results are shown in
Fig. 6. We increase the linear system size L of a 3D
Rydberg lattice gas and extract the cluster lifetime from the
gð2ÞðτÞ correlation function for three different detunings and
fixed Rabi frequency Ω ¼ 2π × 160 kHz, using the same

evaluation as for the experimental data. The data points
strongly suggest a saturation in the limit L → ∞. The
dashed lines in Fig. 6 correspond to an exponential
saturation fit with a characteristic length scale matching
the cluster size m̄. This is a first evidence that clusters, in
general, do not extend over the whole system.

B. Full counting distribution and hysteresis

In a system where all time scales are finite, all correlation
lengths must be finite unless the interactions are infinitely
long ranged. As a consequence, the bimodality of the full
counting distribution resulting from the presence of two
distinguishable metastable states should only persist if the
system size L is smaller than the correlation length ξ.
When L exceeds ξ, averages are taken over independent
regions, and the bimodal distribution starts towash out. In the
limitL ≫ ξ, the system behaves asN ¼ ðL=ξÞ3 independent
subsystems, and the central limit theorem applies, eventually
leading to an overall single-peaked Gaussian distribution.
Figure 7(a) shows the distribution function of the excitation
number for different values of L after 1-ms excitation time.
In a small system (L ¼ 3), seed events are rare, and the
cluster size is limited by L. Therefore, the excitation number
distribution is peaked at zero excitations. When the system
size is comparable to the cluster extent (L ¼ 6), a bimodal
excitation number distribution occurs. Here, a dynamical
switching between low and high total excitation number is
observable. However, in the limit of large systems (L ¼ 10),
the bimodal structure disappears. Instead, a Gaussian dis-
tribution emerges with a peak at a large excitation number.
Therefore, the bimodality seen in Ref. [28] may be a finite-
size effect. Our experimental results and theoretical inves-
tigations suggest that the correlation lengths remain short, on
the order of the cluster extent, and there is no phase transition
to a global bistable regime.
Now, let us discuss dynamic hysteresis features present

in metastable systems [32]. While finite-size effects vanish

FIG. 6. Finite-size extrapolation of the cluster lifetime τcl for
Rabi frequency Ω ¼ 2π × 160 kHz and different detuning Δ.
The dashed lines indicate an exponential saturation fit of about
½1−cexpð−L=L0Þ�with a constant c.Here, the characteristic length
scale L0 ¼ 6.2; 3.2, and 2.1 is comparable to the cluster size m̄.

FIG. 5. Comparison between the mean excitation fraction ρe
extracted from the maximal detected ion rate RionðtÞ and the
excitation fraction ρcl ¼ Nclm̄=Nat calculated using the effective
cluster model. The color code corresponds to the same Rabi
frequencies as in Fig. 3. The gray dashed line is a linear curve
with a slope of 1.
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whenever the system size exceeds the correlation length
L ≫ ξ [see Fig. 7(a)], a hysteresis behavior can still be
seen, depending on the ratio between relaxation time T and
sweep time τ. Here, the sweep time τ is the duration of a
continuous parameter change in the detuning Δ from an
initial to a final value. In our system, the relaxation towards
the stationary state is determined by the growth of finite
clusters. Therefore, we expect and numerically verified that
T is on the order of the cluster lifetime τcl. For example,
we show in Fig. 7(b), for two different sweep times τ, the
dynamic hysteresis. In the case of a small sweep time
τ ¼ 0.88 ms, a large dynamic hysteresis area can be
identified, while for τ ¼ 88 ms, the hysteresis area van-
ishes. The hysteresis behavior persists on a rather large time
scale compared to the relaxation time, which is consistent
with a simple model that describes the sweep as a sequence
of successive small parameter quenches. Since the steady-
state excitation number N̄RyðΔÞ is different for different
values of Δ, the coarse-grained relaxation of the excitation
number is no longer exponential but attains algebraic
corrections. In the limit of many small-parameter quenches
with approximately constant relaxation time T starting
from an initial detuning Δ0 to Δ1 in time τ, the Rydberg
excitation number is given by

NRyðτÞ ¼ NRyð0Þe−τ=T þ τ=T
Z

1

0

dxN̄RyðxÞe−τ=Tx; ð16Þ

with x ¼ ðΔ1 − ΔÞ=ðΔ1 − Δ0Þ. For N̄Ry ¼ const, we obtain
the known exponential relaxation with time scale T.
However, as seen in Fig. 7(b), the mean Rydberg excitation
number is typically not constant. Linearization of N̄Ry

directly results in algebraic correction scaling with
ðτ=TÞ−1. This may have a tremendous effect on the
hysteresis relaxation. To give an example, in our system,
the relaxation time is on the order of T ∼ 100 μs, compa-
rable to the cluster lifetime. However, the hysteresis area
vanishes only on a time scale of about 100 ms, which is 3
orders of magnitude larger. The algebraic relaxation of the
hysteresis area is consistent with other simulations [16,32]
and agrees well with the findings in our system. For more
details on the hysteresis relaxation, see Appendix E.

VI. MICROSCOPIC DESCRIPTION
AND SIMULATION

Before we conclude, we give some more details about
the microscopic description of our experiment. For the
relevant length scales, we use an approximate interaction
potential VðrÞ≃ C9=r9 with C9 ¼ 2π × 2.1 kHz μm9,
which is motivated by exact diagonalization of a subspace
of the two-body-interaction Hamiltonian, including dipole-
dipole, dipole-quadrupole, and quadrupole-quadrupole
interactions [46]. For details regarding the calculation,
see Appendix C. We do not take into account possible
blackbody induced transitions into neighboring Rydberg
states, which have recently been suggested to explain
anomalous line broadening in dense samples [47] and
which would introduce different types of interactions.
While this effect is probably present on the time scales
on which our experiments are performed, we believe that
because we continuously pump atoms into the 25P state,
the above given potential still dominates the cluster growth
dynamics. We also checked that the qualitative behavior of
the system discussed here stays the same for a different type
of interaction (e.g., for van der Waals–type potentials).
Besides the decoherence stemming mainly from laser

noise γ0, we also include an inhomogeneous broadening
γinh motivated by the coupling to motional states in a lattice
of finite width [48,49]. Specifically, we use an additional
approximate decoherence rate

γinh ¼
X
hji

j∂rVðrjÞjσ=
ffiffiffi
π

p
; ð17Þ

where σ ≃ 60 nm is the width of the localized wave packet
in the optical lattice and the sum runs over all excited atoms
hji with distance rj. Therefore, the total decoherence rate
is γ ¼ γ0 þ γinh. For our interaction potential, this is a
good approximation for Δ≳ 2π × 18 MHz. (For a detailed
discussion, see Appendix D.) Additionally, we take into
account the ionization process by a rate Γion, which
corresponds to a loss of atoms. Each ionization event alters
the geometry of the sample of Rydberg atoms. To properly

FIG. 7. (a) Excitation number probability pNRy
for Ω ¼ 2π ×

185 kHz and Δ ¼ 2π × 15 MHz for three different linear system
sizes L after 1-ms propagation. For intermediate system size
(L ¼ 6), the distribution shows a bimodal behavior. (b) Hysteresis
scan in the detuning parameter Δ for Ω ¼ 2π × 160 kHz with
linear system size L ¼ 10. The sweep times in the forward and
backward directions are τ ¼ 0.88 ms and τ ¼ 88 ms. In the case
of a large sweep time τ ¼ 88 ms, the dynamic hysteresis
disappears. The mean Rydberg excitation number in the back-
ward and forward scans are averaged over 500 trajectories. The
standard deviation is indicated by the shaded area.
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account for the detection background, we superimpose the
extracted Rydberg excitation dynamics with an uncorre-
lated noise signal with rate Γn. It originates from atoms that
are trapped on the outer region of the optical lattice. Since
the atomic density drops exponentially, these atoms do not
contribute to the cascaded excitation dynamics. Although
the background noise rate Γn may depend on the detuning
Δ and driving strength Ω, it is sufficient to approximate it
with a constant value Γn ≃ 1 kHz here. Note that all
parameters used in our simulations are estimated from or
determined by our experimental measurements. For a
typical simulation using Nat ¼ 1000 atoms, we already
see strongly reduced finite-size effects.
The numerical results obtained for the temporal corre-

lation function gð2ÞðτÞ are shown in Fig. 8. Although the
simulations do not reproduce the experimental results on a
quantitative level, we find good qualitative agreement.
First, the typical cluster sizes are consistent with the values
obtained in the experiment and have approximately the
same behavior when varying Δ and Ω. Second, the
structure of the numerically evaluated bunching amplitude
gð2Þð0Þ is similar to the one extracted from experiment.
In particular, the gð2Þð0Þ peak coincides with a cluster size
of m̄ ¼ 2 as seen experimentally. However, the actual size
of gð2Þð0Þ depends on the system size and therefore strongly
deviates from the experiment. We believe this originates
from, e.g., the motion of the excited atoms due to the
interaction or the decay to other Rydberg states due to
blackbody radiation. While we are aware that these effects
could play a role, it is numerically very challenging to
incorporate all of them in a full many-body simulation.
From the results obtained, we infer that the rate-equation

model used is nevertheless a sufficiently good approxima-
tion of the Rydberg excitation dynamics seen in the
experiment.
After checking the validity of the numerical simulation,

we can employ it to theoretically study the spatial cluster
dynamics. In the case of a van der Waals interaction
VðrÞ ¼ C6=r6, we observe directional excitation dynamics
as indicated in Fig. 1(a) along a certain lattice direction.
The directionality stems from the competition between the
quasi-long-range interaction and the finite line width γ. To
understand this, let us discuss the case of two neighboring
Rydberg excitations on a lattice where a single excitation
facilitates its nearest neighbors, i.e., Δ ¼ VðaÞ. Now, for a
third particle along the direction of the two excitations, the
residual interaction shift in the antiblockade configuration
is VðaÞ=64, while in the orthogonal direction it is VðaÞ=8.
Comparing to the line width γ, this may suppress the
growth of the cluster in orthogonal directions while
promoting the growth along the lattice direction.
Crucially, the directionality depends on the range of the
interaction. In the case of short-range interaction, e.g., the
interaction potential VðrÞ ¼ C9=r9 relevant for our experi-
ment, the impact on the next-nearest neighbors is typically
negligible. Therefore, no directional Rydberg excitation
dynamics is seen in the full numerical simulations using
this potential. However, we believe that directional growth
should be experimentally observable in different systems.

VII. CONCLUSION AND OUTLOOK

To conclude, we discussed the excitation dynamics of a
large dissipative Rydberg lattice gas probing the full anti-
blockade regime. We showed that the increase in the
relaxation time corresponds to the formation of small clusters
within the Rydberg aggregate. Using a simplified cluster
model, we could estimate the size of individual clusters,
m̄≲ 10, as well as the number of independent clusters,
Ncl ≲ 500. Furthermore, we experimentally tested the val-
idity of the effective cluster model. Using a many-body rate-
equation model, we find qualitative agreement between our
theoretical model and the experimental results. We per-
formed an extrapolation of the cluster size with the linear
system size, indicating that the clusters remain small. The
absence of long-range correlations indicates the absence of a
true phase transition to a bistable regime. Nevertheless, a
bimodal excitation number distribution can be observed for
small system sizes, as well as a dynamic hysteresis for small
sweep times.
Our results show that the experimental and theoretical

identification of phase transitions in open quantum systems
require a careful analysis of the system-size scaling and of
the resulting correlation functions. To fully understand the
thermodynamic limit of such systems, numerical simula-
tions should be benchmarked with experimental data.
Given the huge numerical effort to calculate and the
experimental challenge to measure higher-order correlation

FIG. 8. Numerical results of the cluster lifetime τcl and the
bunching amplitude gð2Þð0Þ − 1 (inset) using a full many-body
rate-equation model with parameters estimated from the experi-
ment. The color code corresponds to the same Rabi frequencies
as in Fig. 3. The system contains Nat ¼ 1000 atoms. We use
an interaction potential VðrÞ ¼ C9=r9 with C9 ¼ 2π ×
2.1 kHz μm9. Other parameters are Γion ¼ 1 kHz, γ0 ¼ 300 kHz,
Γn ¼ 1 kHz, and σ ¼ 0.06 μm. The gray shaded area corre-
sponds to the area where the decoherence rate γinh is not a good
approximation anymore (see Appendix D).
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functions with good spatial and temporal resolution, this is,
in general, a nontrivial task. We believe that temporal
correlations are very helpful in this respect, as they directly
reflect the intrinsic dynamics and fluctuations of the steady
state. Spatial correlations are instead typically limited to
single destructive snapshots of the system and are insensi-
tive to the dynamics.
In our system, a transition to a truly bistable stationary

phase is expected to be of first order [9]. An experimental
realization would allow us to study these types of phase
transitions in stationary states of open systems. We have
shown that antiblockaded Rydberg gases with van der
Waals–type interactions do not lead to diverging correlation
times and long-range order in the experimentally relevant
regime of large decoherence. Thus, there is no phase
transition to a bistable phase. Whether or not long-range
order can occur in a coherent regime, taking into account
atomic motion, remains an open question. Numerical
simulations in this regime can be performed only for very
small system sizes, as the coherent many-body dynamics is
no longer accessible by classical Monte Carlo simulations.
Here, however, experiments are needed that require a
substantially reduced decoherence level.
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APPENDIX A: EXPERIMENTAL METHODS

An experimental cycle consists of loading a 3Dmagneto-
optical trap of 87Rb for 2.5 s from a 2D magneto-optical
trap. The precooled atoms are loaded into a crossed optical
dipole trap, generated from a Nd:YAG fiber amplifier at
1064 nm, and they undergo forced evaporation within 4 s,
resulting in a Bose-Einstein condensate of 20 000 atoms in
an isotropic trap with a trap frequency of 2π × 64 Hz. After
evaporation, we perform a 2-ms-long linear scan with a
scanning electron microscope across the cloud, yielding an

ion signal proportional to the atom number while only
marginally influencing the atomic sample. This allows us to
check for atom-number fluctuations during preparation and
to correct for long-term instabilities. Because of a finite
magnetic-field gradient present during evaporation, the
sample is spin polarized in the F ¼ 1, mF ¼ þ1 state,
from which we transfer it to the F ¼ 2,mF ¼ þ2 state by a
microwave Landau-Zener sweep. We load the prepared
condensate into a 3D optical lattice, created from a Ti:
sapphire laser at 748 nm, with lattice constants ax;y ¼
374 nm and az ¼ 529 nm in an exponential ramp with time
constant τ ¼ 20 ms to a final lattice depth of S ¼ 20Erec.
This ensures that we are in theMott insulating phase regime
and have a maximum of one atom per lattice site [50].
To measure the cluster dynamics of Rydberg aggregates,

we couple the atomic cloud with a one-photon transition at
297 nm to the Rydberg state 25P1=2 with fixed detuning Δ
and intensity I for 100 ms. The laser light is produced from
a frequency-doubled dye laser at 594 nm. During the light-
matter interaction, Rydberg excitations generated in the
cloud are photoionized by the trapping light and blackbody
radiation with a rate of Γion ≃ 2 kHz and guided by a small
electric field of 90 mVcm−1 to a discrete dynode detector.
The underlying lattice structure hereby ensures that effects
from associative ionization [51] or molecular Rydberg
states [50] are negligible. Nevertheless, we only probe
with blue detuning where molecular states are only
addressable through a spin flip in the second atom [52],
which is strongly suppressed compared to a normal
molecular excitation. We analyze the detected ion signal
by calculating the gð2Þ-correlation function binned with
1 μs. We correct for the overall decay of the sample by
normalizing with the averaged ion rate of multiple runs.
Because of detector ringing and ion repulsion during the
time of flight to the detector, we cannot analyze the first
two microseconds of the correlation function.

FIG. 9. We retrieve the seed rate Γseed by fitting an exponential
decay expð−ΓseedtÞ to the probability of detecting a first ion after
the time of flight t to our ion detector (inset). From a∼Δ2 fit to the
extracted seed rates, we can calculate the Rabi frequency Ω,
taking into account the finite detection and ionization efficiency,
as well as the bare decoherence rate.
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The seed rate Γseed and Rabi frequency Ω for each
experimental parameter are determined by an analysis of
the arrival time of the first detected ion (see Fig. 9). Note that
the first ion analysis is independent of the cluster-dynamics
analysis. By doing a statistical analysis for each laser power
and detuning overmultiple experimental runs, we can extract
the multiparticle seed rate, taking into account our finite
detection and ionization efficiency. Additionally, we extract
the underlying Rabi frequency by fitting the seed rates for
different detuning with Γseed ¼ ½ð2Ω2γÞ=Δ2� (for Δ ≫ γ).
We checked that the extracted Rabi frequencies approxi-
mately follow the expected

ffiffi
I

p
scaling.

APPENDIX B: CLUSTER MODEL

Here, we study a simple 1D lattice of Rydberg atoms in
the antiblockade configuration. Specifically, we set the
lattice constant a equal to the facilitation radius rfac ¼
ðC6=ΔÞ1=6 assuming that Rydberg atoms interact via a
typical van der Waals potential VðrÞ ¼ C6=r6. We compare
a full numerical simulation based on a many-body rate-
equation model [42–45] to our simplified cluster model
introduced in Sec. IV.
As pointed out before, the first seed excitation is

produced with a rate NatΓseed. Now, this seed excitation
triggers further excitations with a rate proportional to
Γfac ≫ Γseed, where

Γfac ¼
2Ω2

γ0
: ðB1Þ

In the case of a 1D system, the first excitation enhances the
excitation rate of its two neighbors [see Fig. 10(a)]. We
introduce a geometric coordination number z counting the
number of atoms with enhanced excitation rate, Eq. (B1). In
the 1D case, we identify a geometric coordination number
z ¼ 2 for the transition between cluster size m ¼ 1 to
m ¼ 2 [see Fig. 10(b)]. First, let us neglect the effect of
long-range interactions beyond the lattice constant a.

Then, a cluster grows and shrinks with rate zΓfac. This is
in analogy to a random walk along the cluster size axis m
with spreading ∝

ffiffiffiffiffiffiffiffiffi
Γfact

p
. However, because of spontaneous

decay with rate Γsp, the size of a cluster m is limited. The
competition between drive and decay leads to a finite size.
A decay event may split the cluster into two parts [see
Fig. 10(b)], leading to a doubling of the coordination
number z. However, this requires that the individual parts of
the cluster are spatially well separated and do not influence
each other. For instance, the last configuration in Fig. 10(a)
shows that the two parts of the cluster cannot merge into a
single one. Without the effect of two atoms blocking each
other, the coordination number z≃ 2nþ 1 increases along
the axis of splittings n. In Fig. 10(b), the transition rates
between all possible configurations labeled by cluster size
m and number of splittings n are shown.
In the following, we discuss assumptions, which allow

us to estimate the size and the lifetime of a cluster. Since we
are mostly interested in the cluster size m, we first neglect
all splitting processes, fixing the dynamics to the case
n ¼ 0. This is correct in the regime of weak driving Γfac ≃
Γsp with coordination number z ¼ 2 due to the geometry.
For strong driving Γfac ≥ Γsp, we have to account for an
increase in the coordination number z. To do so, we
determine an effective coordination number zeff self-
consistently. This results in the simplified cluster model
discussed in Sec. IV with Γ↑ ¼ zeffΓfac [see Fig. 1(c)].
Now, using a detailed balance ansatz and projecting to the
case of having a cluster (m ≥ 1), we calculate the cluster
size distribution pm. This yields the iterative formula

pm ¼ zeffΓfac

zeffΓfac þmΓsp
pm−1 ðB2Þ

with normalization condition
P

m¼1pm ¼ 1. Using the
full-width half-maximum value m̄ of the cluster-size dis-
tribution pm, we can estimate the cluster lifetime τcl to be
equal to Eq. (14):

(a) (b)

FIG. 10. (a) Different configurations during the time evolution of a single cluster starting from an initial seed excitation. In the last
configuration, the two excited atoms prevent the excitation of the atom in the middle. A cluster, which is split apart, cannot merge.
(b) The configuration space of the cluster dynamics is spanned by the cluster size m and the number of splittings n.
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τcl ≃ m̄=Γsp: ðB3Þ

Note that the cluster lifetime agrees with the lifetime of a
singleRydberg excitation in the limitΓfac ≪ Γsp, i.e., m̄ ¼ 1.
Now, we compare the dynamical properties of a large

lattice system using a many-body rate-equation method to
the simplified cluster model. As discussed in Sec. III, to
obtain the lifetime of a single cluster, we calculate the
second-order temporal correlation function gð2ÞðτÞ. We
extract the relaxation time, which we identify with the
cluster lifetime, and the bunching parameter gð2Þð0Þ. The
results for different detunings Δ and fixed facilitation
radius rfac ¼ a are shown in Fig. 11. As we would expect,
with increasing driving strength Ω=Γsp, the lifetime of the
cluster increases. This allows us to determine the effective
coordination number zeff used in the simplified cluster
model. Besides the geometric coordination number z ¼ 2,
we account for the number of splittings, which occur with
increasing cluster lifetime, by setting

zeff ≃ zþ ðτcl − τspÞ=τsp; ðB4Þ

where τsp ¼ Γ−1
sp is the lifetime of a single Rydberg excita-

tion. Comparing the effective cluster model (dashed line)
with the full rate-equation simulations (bullet points), we
find excellent agreement for small driving strength Ω=Γsp.
However, the full simulations show that the cluster lifetime
decreases again with Ω=Γsp depending on the detuning Δ.
We can understand this as an effect of interacting clusters in
the high-excitation density regime, which is beyond the
simple clustermodel. Increasing the detuningΔ, we decrease
the seed rate Γseed with which new clusters are produced.
Therefore, the Rydberg excitation density ρe decreases [see
inset in Fig. 11(a)]. In our numerical simulation, we identify
the regime where cluster collisions are important near an
excitation density ρe ≃ 0.2. These collisions strongly reduce
the independent growth of a cluster.
Moreover, using the effective cluster model and includ-

ing the first seed excitation in the cluster-size distribution,
we can estimate the bunching parameter L×ðgð2Þð0Þ−1Þ¼
hmðm−1Þi=hmi2. Comparing the full simulations with
the simplified cluster model, we find good agreement.
With increasing driving strength Ω=Γsp, the bunching
parameter, which measures deviations from Poisson count-
ing statistics, decreases. Therefore, with growing Ω=Γsp,
the number of independent clusters Ncl and the lifetime τcl
increase. Both contribute to a reduction of the bunching
parameter.

APPENDIX C: RYDBERG-RYDBERG
INTERACTION POTENTIAL

To calculate the interaction potential between two
Rydberg atoms, we perform an exact diagonalization of
the interaction Hamiltonian as shown in Ref. [46]. We use a

(a)

(b)

FIG. 11. Numerical simulation of the dynamics using a many-
body rate-equation method in a large 1D lattice system with size

L ≫ 100 for different detunings Δ over the line width ω ¼
γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2=γ0Γsp þ 1

q
and fixed facilitation radius rfac ¼ a. The

decoherence rate is γ0=Ω ¼ 2.05 and decay rate is
Γsp=Ω ¼ 0.1. (a) Cluster lifetime τcl and (b) bunching parameter
gð2Þð0Þ − 1. The dashed lines are the results from the cluster
model using zeff ≃ 2þ ðΩ=ΓspÞ2=8 as the effective coordination
number.

FIG. 12. Interaction potentials of the pair state j25P1=2; 25P1=2i
obtained from a diagonalization of the interaction Hamiltonian
including up to quadrupole-quadrupole interactions. The different
potentials correspond to different superpositions of the mj states.
The green dashed line is a fit to the only repulsive potential with
VðrÞ ¼ C9=r9 and C9 ¼ 2π × 2.1 kHz μm9.
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basis of pair states jn1l1j1mj1n2l2j2mj2i in the energetic
vicinity of the state of interest and include all interaction
terms up to quadrupole-quadrupole interactions as well as a
small finite magnetic field of 1 Gs. For the calculations
shown here, the basis consists of 1604 pair states with a
maximum angular-momentum quantum number of l ¼ 3
in an energetic vicinity of 50 GHz to the pair state
j25P1=2; 25P1=2i. The results of the diagonalization are
shown in Fig. 12. For the j25P1=2; 25P1=2i state, there are
four different interaction channels depending on the mj

state of the pair state. The symmetric superposition
ð1= ffiffiffi

2
p Þðjþ1=2;−1=2i þ j−1=2;þ1=2iÞ shows the strong-

est attraction, the two fully stretched states are nearly
degenerate but still attractive, while the antisymmetric
superposition gets blueshifted by a dipole-quadrupole
interaction with the j22F5=224D3=2i mj manifold. We fit
the relevant repulsive interaction potential with a C9=r9-
type potential and use it in the simulations presented
here.

APPENDIX D: INHOMOGENEOUS
BROADENING

Here, we discuss an inhomogeneous broadening mecha-
nism resulting from the finite width σ of a localized wave
packet and the steep slope of an interaction potential
VðrÞ ¼ Cα=rα. The excitation rate Γex for a ground-state
atom in the presence of an atom already excited to the
Rydberg state is strongly suppressed and broadened. As
already discussed in Refs. [48,49], this stems from the
coupling to motional states.
First, using the rate-equation approximation [42], the

bare excitation rate of an atom at distance r0 to an excited
Rydberg state is

Γ0
exðr0Þ ¼

2Ω2γ0
γ20 þ ðΔ − Vðr0ÞÞ2

: ðD1Þ

However, this is only true in the limit of vanishing width
σ → 0. Now, consider an atom localized in an optical
lattice. Using the harmonic oscillator approximation, we
can approximate the extent of the localized Wannier wave
function

ΨðrÞ ¼
�

1

πσ2

�
1=4

exp

�
−

r2

2σ2

�
; ðD2Þ

with the harmonic oscillator width σ. In a semiclassical
approximation, we interpret jΨðrÞj2 as the probability
distribution of finding an atom at position r. Then, the
total excitation rate Γex for an atom localized with width
σ is

Γex ¼
Z

∞

−∞
drjΨðrÞj2Γ0

exðr − r0Þ; ðD3Þ

where r0 is the average distance to the already-excited
Rydberg atom. Note, in general, that here we have to
evaluate a 3D integral over the positions of all excited
atoms. In this case, the effective detuning Δ −

P
jCα=jr⃗jjα

describes the interaction-shift landscape generated from all
excited Rydberg atoms.
In Fig. 13, we plot the excitation rate Γex for three

different experimental relevant distances r0. For two
neighboring atoms in a lattice (r0 ¼ ax), the excitation
rate is strongly suppressed and broadened compared to
the uncorrelated excitation rate Γex already occurring at
r0 ¼ 2ax. However, for excitation rates Γex=Γsp ≫ 1 larger
than the lifetime of a single Rydberg excitation, we can still
expect cascaded excitations. Here, we identify a large
region up to Δ=2π ≃ 40 MHz, where an excitation cascade
is possible.
The exact numerical evaluation of the excitation rate

(D3) in a large-scale 3D system using a stochastic many-
body rate-equation model is numerically challenging.
However, to include the strong impact of the inhomo-
geneous broadening, we use an approximate decoherence
rate

γ ¼ γ0 þ j∂rVðr ¼ r0Þjσ=
ffiffiffi
π

p
; ðD4Þ

which can be easily extended to many atoms (see Sec. V).
The approximate decoherence rate is motivated by the
reduced excitation rate Γex ¼ 2Ω2=γ at Δ ¼ Vðr0Þ [48]
embedded in a Lorentzian excitation profile ΓL

ex ¼
2Ω2γ=(γ2 þ ðΔ − VðrÞÞ2). This decoherence rate includes
the energy width of the linearized interaction potential over
the width σ.
In Fig. 14, we compare the full excitation rate (D3) with

the excitation rate ΓL
ex using the decoherence rate (D4) for

r0 ¼ ax. Moreover, we plot the bare excitation rate Γ0
ex

FIG. 13. Excitation rate Γex=Γsp for three different interparticle
distances r0 using the parameters from the experiment and
Ω=2π ¼ 500 kHz. The excitation rate for r0 ¼ 2ax already
agrees well with the uncorrelated excitation rate r0 → ∞.
The inset shows the same rates with linear scale.
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without additional broadening. The approximate rate ΓL
ex

nicely describes the suppression of excitation and the
broadening compared to the bare rate Γ0

ex. In particular,
the regime Δ=2π ≳ 18 MHz agrees well with the full
model (D3). However, for smaller detunings Δ=2π ≲
18 MHz, the simple approximate model is not valid
anymore. Therefore, we believe that the approximate
decoherence rate is an efficient and good approximation
at least for detunings Δ=2π ≳ 18 MHz.

APPENDIX E: HYSTERESIS RELAXATION

Here, we discuss a simple model for the relaxation of the
hysteresis area. In the case of a single quench from a
parameter Δ0 to Δ1, we typically have an exponential
relaxation of some observable n with relaxation time
scale T1:

nðtÞ ¼ n̄1 þ ðn0 − n̄1Þe−t=T1 : ðE1Þ

Here, n̄1 is the equilibrium value of the observed parameter
and n0 its initial value, which is not necessarily at
equilibrium.
In the case of a hysteresis, we perform N small quenches

Δj to Δjþ1 on a time scale τ. The total sweep time is
τsweep ¼ Nτ. We denote n̄j the equilibrium value at Δj and
nj ¼ nðjτÞ the nonequilibrium value after time jτ. The
relaxation time Tj ¼ TðΔjÞ might depend on the tuning
parameter Δj. Then, after N consecutive quenches of the
form Eq. (E1), the nonequilibrium value of the observable n
is given by

nN ¼ n0 exp

�
−
XN
j¼1

τ

Tj

�

þ
XN
j¼1

n̄jð1 − e−τ=TjÞ exp
�
−
XN−1

k¼j

τ

Tk

�
: ðE2Þ

Now, let us perform a continuum limit, where we
keep the sweep rate _Δ ¼ ½ðΔN − Δ0Þ=τsweep� constant
and increase the number of steps N → ∞. We assume
equidistant steps in the quench parameter δ ¼ Δjþ1 − Δj.
Since the sweep time τsweep and the parameter regime
ΔN − Δ0 are constant, we have δ, τ → 0. This allows us to
approximate the exponential

1 − e−τ=Tj ≃ τ=Tj ðE3Þ

and replace the sum with an integral. We obtain the
continuum counterpart of Eq. (E2):

nðτsweepÞ ¼ n0 exp

�
−
1

_Δ

Z
ΔN

Δ0

dΔ
1

TðΔÞ
�

þ 1

_Δ

Z
ΔN

Δ0

dΔ
�
n̄ðΔÞ
TðΔÞ exp

�
−
1

_Δ

Z
ΔN

Δ
d ~Δ

1

Tð ~ΔÞ

��
:

ðE4Þ

For a constant relaxation timeT ¼ TðΔÞ, we obtain Eq. (16).
In Fig. 15, we show the relaxation of the Rydberg

excitation number with increasing sweep time τsweep. The
result shows the expected power-law relaxation τ−1sweep.
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