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Emission of high-order harmonics from solids provides a new avenue in attosecond science. On the one
hand, it allows us to investigate fundamental processes of the nonlinear response of electrons driven by a
strong laser pulse in a periodic crystal lattice. On the other hand, it opens new paths toward efficient
attosecond pulse generation, novel imaging of electronic wave functions, and enhancement of high-order
harmonic-generation (HHG) intensity. A key feature of HHG in a solid (as compared to the well-
understood phenomenon of HHG in an atomic gas) is the delocalization of the process, whereby an electron
ionized from one site in the periodic lattice may recombine in any other. Here, we develop an analytic
model, based on the localized Wannier wave functions in the valence band and delocalized Bloch functions
in the conduction band. This Wannier-Bloch approach assesses the contributions of individual lattice
sites to the HHG process and hence precisely addresses the question of localization of harmonic emission
in solids. We apply this model to investigate HHG in a ZnO crystal for two different orientations,
corresponding to wider and narrower valence and conduction bands, respectively. Interestingly, for
narrower bands, the HHG process shows significant localization, similar to harmonic generation in atoms.
For all cases, the delocalized contributions to HHG emission are highest near the band-gap energy.
Our results pave the way to controlling localized contributions to HHG in a solid crystal.

DOI: 10.1103/PhysRevX.7.021017 Subject Areas: Condensed Matter Physics, Optics,
Quantum Physics

I. INTRODUCTION

Recently, the techniques of attosecond science, tradi-
tionally applied to atoms and molecules in the gas phase
[1], have been extended to the solid state [2–12]. A crucial
difference between solid and gas targets is the localization
of the initial-state electron wave function, which is spatially
confined in isolated atoms and molecules but can be
delocalized in a solid. The effect of wave-function locali-
zation on key aspects of light-solid interaction remains
intensely debated. Some attosecond experiments [11,12]
on photoemission from metal surfaces suggest that the

localization of the core-band electrons results in relatively
large ionization delays, attributed to transport [13], com-
pared to photoemission from delocalized conduction-band
states. Other experiments probing photoemission from the
same initial state at different photon energies found that
larger ionization delays came from resonant excitation into
bulk excited states, rather than from the initial localization
of the wave function [14,15].
In this work, we investigate electron localization and the

underlying microscopic nonlinear response by focusing on
the process of high-harmonic generation (HHG) in a crystal
solid. HHG, a cornerstone of attosecond science, has
traditionally relied on gas-phase atomic targets and has
only recently been demonstrated experimentally in the
condensed phase [5–9,16]. A key feature of HHG in atoms
is the recombination of the ionized electron with its parent
ion, making it a highly localized process. This localization
both dramatically limits HHG efficiency and leads to an
exponential decline of HHG yield with increasing elliptic-
ity of laser light since ellipticity induces a drift, which
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exponentially suppresses the return of the ionized electron
to the parent ion [17].
In contrast, the HHG process in a solid can be delocal-

ized since an electron ionized from one site of the crystal
lattice may recombine with any other. However, little is
understood about the specifics of this process. For instance,
Ghimire et al. [5] found a much weaker dependence of
high-harmonic yield on ellipticity in solid ZnO than would
be expected for a gaseous medium, suggesting a highly
delocalized process. A significantly stronger ellipticity
dependence (although still weaker than in atoms) in the
same target was subsequently found in a theoretical work
[18], which shows a 2–3 orders of magnitude drop in HHG
yield for ellipticity of 0.5 (compared to only a factor of 5
drop measured in Ghimire et al. [5]). At the same time, a
recent experiment on solid argon found the same depend-
ence on ellipticity as in gas-phase Ar, suggesting the
electron recombines with the same lattice site that it was
emitted from [9]. The extent of spatial localization, mea-
sured experimentally by ellipticity dependence, is believed
to be important for attosecond pulse generation and
imaging of the electronic wave functions in the solid
state [9,19].
Here, we investigate the spatial dependence of the HHG

process in ZnO by introducing an analytic model, which
uses localized Wannier wave functions in the valence band
and delocalized Bloch functions in the conduction band.
Prior seminal work [18,20,21] used delocalized Bloch
functions both in the valence and the conduction bands,
thus without prospects to study the spatial resolution of the
HHG process. In addition to adequately calculating the
total HHG yield, the present Wannier-Bloch approach
allows us to separate the contributions of individual lattice
sites to each harmonic and hence determine the degree of
localization of the HHG process as a function of exper-
imental parameters. We find that this localization varies
significantly both with the harmonic order and with the
orientation of a crystal. Our results point to the possibility
of controlling the spatial localization of the HHG process,
with implications for HHG efficiency, imaging of atto-
second electron dynamics in condensed matter, and for the
emerging area of atto-nanoscience as a whole [22].

II. WANNIER-BLOCH DESCRIPTION OF
HIGH-ORDER HARMONIC GENERATION

IN SOLIDS

Analogous to the three-step model for atoms [23], the
HHG in a crystal solid via interband transitions can be
described as a sequence of three stages [18]: (i) electron
tunneling excitation from the valence band to the conduction
one, (ii) electron (hole) acceleration in the conduction
(valence) band, and (iii) electron-hole recombination, result-
ing in an emission of a high harmonic that is a multiple of the
frequency of the driving laser.

In most recent experiments, the laser-field strength E0

across the lattice constant a is comparable to the band-gap
energy Eg of a typical semiconductor (E0a≃ Eg ≃
few eV). As a consequence, the field cannot be considered
as a small perturbation [24]. In our model, we therefore
assume that this condition is satisfied, but the laser-field
amplitude is below the damage threshold. In addition, the
photon energy of the laser field should be much smaller
than the typical band-gap energy. This means that we
restrict our studies to the photon energies in the MIR
domain (ℏω0 ≤ 0.5 eV), which implies that the central-
laser wavelength λ0 is much larger than the typical lattice
constant, a. Therefore, the dipole approximation is valid for
our description of laser-solid interaction. We assume that
the laser field is linearly polarized in the x direction, which
allows us to adopt a one-dimensional description. The
Hamiltonian of a single electron in a crystal under the
action of a laser field is given by

HðtÞ ¼ H0 þ Uintðx; tÞ; ð1Þ

where

H0 ¼ −
1

2

∂2

∂x2 þUðxÞ ð2Þ

is the laser-free Hamiltonian, with UðxÞ the lattice
periodic potential. In Eq. (1), Uintðx; tÞ ¼ −qexEðtÞ is
the oscillating potential due to the laser, written in the
length gauge. Here, we use atomic units ℏ¼jqej¼me¼1,
where qe and me are the electron charge and electron
mass, respectively. The laser pulse has the form EðtÞ ¼
E0sin2ðω0t=2NÞ sinðω0tþ φCEPÞ, where E0 is the electric-
field peak amplitude, ω0 the carrier frequency, and φCEP the
carrier-envelope phase (CEP) of the laser field, while N is
the number of laser-period cycles.
Unlike the prior work [18,20], we describe the system

within a mixed representation: Wannier states in the valence
band and Bloch states in the conduction band. In contrast to
the Bloch functions, the Wannier functions are spatially
localized “elements” of an L2 space. In terms of localized
wave functions, they thereby provide an analogous insight
into the HHG mechanism as the usual approach used in
atomic and molecular systems. Furthermore, the Wannier
functions form a complete orthogonal set in the valence band
but are not eigenfunctions of the Hamiltonian H0. In our
problem, the initial state corresponds to a completely filled
valence band, i.e., a completely filled Fermi sea. This means
that initially all the Bloch states are occupied or, equiv-
alently, that all Wannier states are occupied. Thus, we have
to solve the time-dependent Schrödinger equation, starting
with each Wannier state, and sum up the results at the end.
We introduce an ansatz for the complete time-dependent
states of a single electron in a lattice as a superposition of
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Wannier states jwv;ji from the valence band and Bloch states
jϕc;ki from the conduction band,

jΨðtÞi ¼
X
j

jwv;jiajðtÞ þ
Z
BZ

acðk; tÞjϕc;kidk; ð3Þ

with the initial condition ajð0Þ ¼ δj;j0 ; i.e., the electron
starts the dynamics at the site j0. Here, j runs over all atomic
sites in the crystal. The Bloch functions of an mth band
(m ¼ v for the valence band and m ¼ c for the conduction
band) have the form

ϕm;kðxÞ ¼ um;kðxÞeikx; ð4Þ

where um;k is a periodic function with the same periodicity as
the crystal. The wave functions in Eq. (4) can be equivalently
represented by a set of Wannier functions,

wm;jðxÞ ¼
Z
BZ

ϕm;kðx − xjÞ ~wmðkÞdk; ð5Þ

where ~wmðkÞ is a product of a normalization constant and a
phase depending on electron momentum k. It has been
shown in Ref. [25] that, for a 1D lattice, the ~wm are
independent of k, provided the Wannier functions are real
and symmetric under appropriate reflection, and that they
fall off exponentially with distance. To calculate the emitted
harmonics, first we compute the time-dependent dipole
moment

dðtÞ ¼−hΨðtÞjxjΨðtÞi

≈−
Z

dx
Z
BZ

dk
X
j

xw�
v;jðxÞa�jðtÞϕc;kðxÞacðk; tÞþ c:c:

¼
Z
BZ

dk
X
j

a�jðtÞdjcðkÞacðk; tÞþ c:c:; ð6Þ

where djcðkÞ is a dipole transition matrix between Wannier
wv;jðkÞ and Bloch ϕc;kðxÞ states. The physical meaning of
this equation can be summarized as follows: At the observed
time t, the electron previously promoted to the conduction
band recombines with the valence band via djcðkÞ and emits
a photon with an amplitude that depends on the amplitudes
ajðtÞ and acðk; tÞ. The harmonic emission is then obtained
by modulus squared of the Fourier transform of Eq. (6),

IHHGðωÞ ¼ ω2j ~dðωÞj2

~dðωÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dteiωtdðtÞ: ð7Þ

According to Vampa et al. [18], at long-laser wavelengths,
i.e., between 1.0 and 5.0 μm, the main contribution to
the harmonic spectrum is from interband transitions.
Nevertheless, the present model could include the intraband

contribution to the dipole moment dðtÞ by considering the
terms hwj;kjxjwj;k0 i and hϕc;kjxjϕc;k0 i in Eq. (6). We do
include the full intraband dynamics in the evolution of
acðk; tÞ and ajðtÞ but only to the extent that it influences the
interband matrix elements contributing to dðtÞ.
The next step is to compute the dipole transition djcðkÞ

and the transition amplitudes acðk; tÞ and ajðtÞ. The dipole
moment djc can be further expressed as a product of two
terms: one dependent and one independent of j. First,
following Ref. [18], we approximate the matrix elements as
follows:

hϕc;kjxjϕc;k0 i ¼ i∇kδðk − k0Þ; ð8Þ

hϕc;kjxjϕv;k0 i ¼ −dcvðkÞδðk − k0Þ; ð9Þ

with dcvðkÞ ¼ −hϕc;kjxjϕv;ki. The transition dipole
moment from the conduction to the valence band is then

djcðkÞ ¼ −
Z

dxw�
v;jðxÞxϕc;kðxÞ

¼ −
Z

dx
Z
BZ

dk0ϕ�
v;k0 ðx − xjÞ ~w�

vðx − xjÞ

× ϕc;kðx − xjÞeikxj
¼ dvcðkÞ ~w�

veikxj : ð10Þ

The replacement of x by ðx − xjÞ in the above formula
is justified by the fact that hwv;jjðx − xjÞjϕc;ki ¼
hwv;jjxjϕc;ki. In addition, to obtain the coefficients ajðtÞ
and acðk; tÞ, we employ the time-dependent Schrödinger
equation, Eq. (1), with the wave functions defined in
Eq. (3),

i
∂
∂t jΨðtÞi ¼ HðtÞjΨðtÞi: ð11Þ

For the description of the band structure, we use the tight-
binding approximation and assume the dispersion relations
for the valence and conduction bands,

EvðkÞ ¼ −2Iv cosðkaÞ;
EcðkÞ ¼ E0

c − 2Ic cosðkaÞ; ð12Þ

where Iv < 0 and Ic > 0 are hopping parameters in the
valence and the conduction bands, respectively, a is a
lattice constant, E0

c ¼ Eg þ 2Ic − 2Iv, and Eg > 0 is the
band-gap energy. The matrix elements for the unperturbed
Hamiltonian in both the valence and the conduction bands
read

hwvjjH0jwvj0 i ¼ −Ivδjj−j0j;1;

hϕc;kjH0jϕc;k0 i ¼ EcðkÞδðk − k0Þ; ð13Þ
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respectively. Therefore, with the previous definitions and
after introducing the wave functions Eq. (3) into Eq. (11),
we end up with a system of coupled differential equations
for ajðtÞ and acðk; tÞ,

_ajðtÞ ¼ iIvaj−1ðtÞ þ iIvajþ1ðtÞ − ixjEðtÞajðtÞ

þ iEðtÞ
Z
BZ

dkdjcðkÞacðk; tÞ; ð14Þ

_acðk; tÞ ¼ −iEcðkÞacðk; tÞ − EðtÞ∇kacðk; tÞ
þ iEðtÞ

X
j

d�jcðkÞajðtÞ: ð15Þ

Here, we assume only nearest-neighbor hopping in the
tight-binding approximation for the valence band (only
aj−1 and ajþ1 appear in the formula for _aj). In solving
Eq. (14), we take into consideration dynamics only due to
the hopping in the lattice [the first two terms in Eq. (14)]
and the laser electric field (the third term). For weak laser
fields, E0 ∼ 10−3 a:u:, one can neglect the last term of
Eq. (14), which scales as E2

0. This is because the transition
amplitude acðk; tÞ is proportional to the oscillating field
strength E0.
We note from Eq. (15) that the coefficients acðk; tÞ are

directly related to ajðtÞ, which, in turn, denotes the origin
from which the electron will be excited from the valence to
the conduction band. This provides a localized viewpoint
that is quite distinct from the one of the Bloch-Bloch
approach [18]. By neglecting the last term in Eq. (14) and
solving it explicitly [26], we obtain

ajðtÞ ¼
X
q

aqð0ÞeiqaAðtÞð−~λÞj−q

× Jq−j(−2Iv½v2ðtÞ þ u2ðtÞ�1=2); ð16Þ

where q runs over all atomic sites, a is a lattice constant, Jq
are Bessel functions of qth order, and

AðtÞ ¼ −
Z

t

0

dt0Eðt0Þ; ð17Þ

uðtÞ ¼
Z

t

0

dt0 cos½a(AðtÞ − Aðt0Þ)�; ð18Þ

vðtÞ ¼
Z

t

0

dt0 sin½a(AðtÞ − Aðt0Þ)�; ð19Þ

~λ ¼ f½vðtÞ − iuðtÞ�=½vðtÞ þ iuðtÞ�g1=2: ð20Þ

Here,AðtÞ is the laser vector potentialEðtÞ¼−f½∂AðtÞ�=∂tg.
We assume that the electron is initially localized at one
atomic site j0, i.e., aqð0Þ ¼ δqj0 . Later, because of the
interatomic hopping and the acceleration driven by the
laser electric field, the electron’s wave function spreads in

the lattice following Eq. (16). The width of the electron’s
wave-function spread in the lattice at the end of the laser
pulse depends on the hopping amplitude Iv, the lattice
constant a, the laser-electric-field strength E0, and pulse
duration.We allow all coefficients ajðtÞ to acquire nonzero
values during the laser pulse. Equation (15) is solved by
following Refs. [18,27], using a change from the quasi-
kinetic momentum reference frame k to the canonical
momentum p ¼ k − AðtÞ defined in the Brillouin zone
shifted by AðtÞ, i.e., ~BZ ¼ BZ − AðtÞ,

acðp; tÞ ¼ i
X
j0

Z
t

0

dt0Eðt0Þaj0 ðt0Þd�jcðpþ Aðt0ÞÞ

× e−i
R

t

t0 EcðpþAðt00ÞÞdt00 : ð21Þ

Note that this canonical momentum p is an invariant of
motion for each electron trajectory within t0 and t. Finally,
the time-dependent dipole moment dðtÞ takes the form

dðtÞ ¼ ij ~wvj2
X
j

X
j0

Z
t

0

dt0

×
Z

~BZ
dpa�jðtÞdvcðpþ AðtÞÞeiðpþAðtÞÞxj

× e−iφðp;t;t0Þaj0 ðt0Þd�vcðpþ Aðt0ÞÞe−iðpþAðt0ÞÞxj0Eðt0Þ
þ c:c:; ð22Þ

where φðp; t; t0Þ ¼ R
t
t0 Ecðpþ Aðt00ÞÞdt00 is the accumu-

lated phase of the electron in the conduction band.
Equation (22) describes the harmonic emission originat-
ing from a single electron in a lattice. The whole set of
localized Wannier functions remains orthogonal during
the unitary time evolution. Then, one can expect that the
interpretation of the dipole radiation dðtÞ will be similar
to the atomic case. The interpretation of Eq. (22) reads as
follows:
(1) The electron located at the j0th atomic site is excited

from the valence to the conduction band at time t0
(see Fig. 1).

(2) During the interval of time ½t0; t�, this excited
electron is propagated via e−iφðp;t;t0Þ and accelerated
in the conduction band Ecðpþ AðtÞÞ by means of
the laser field. The electron gains energy depending
on both the shape of the conduction band dispersion
relation and the laser electric field. Note that, for
this time interval, the electron wave function spreads
along the periodic lattice structure.

(3) Finally, at time t, the electron recombines at the jth
site (see the arrow pointing down in Fig. 1). As a
result, the excess electron energy is emitted in the
form of a high-harmonic photon of the fundamental
laser frequency.

EDYTA N. OSIKA et al. PHYS. REV. X 7, 021017 (2017)

021017-4



This picture is based on the stationary phase approxi-
mation applied to rapidly oscillating integrands. We apply
this method to the Fourier transform of the dipole moment
dðtÞ and discuss it in Appendix A for the integral with
respect to the excitation time t0 and emission time t. The
excitation mechanism at time t0 can be viewed as tunneling
because t0 is complex [18,27,28]. In addition, the saddle-
point conditions at the recombination time t show that the
photon energy emitted by solids is determined by the
conduction-band energy-relation dispersion, the relative
excitation-recombination position, and the phase of the
coefficient ajðtÞ.
Via the semiclassical saddle-point analysis of the

momentum integral in Eq. (22) (see Appendix A), one
can identify the relative electron trajectory contributions or,
more precisely, relative excitation-recombination site con-
tributions to the HHG spectrum. This suggests that there is
a set of electron trajectories (long and short) that are born at

site j0 and recombine at site j. In particular, the complex
double sum over j0 and j of the dipole radiation dðtÞ
contains all the relative excitation-recombination site con-
tributions to the HHG process. Therefore, the harmonic
emission is coherent as long as dephasing is neglected.
The dephasing effect, while noticeable, does not change

the general form of the harmonic spectrum of ZnO, as
previously found in Ref. [18]. Therefore, as the main focus
is on the basic mechanism behind HHG emission, we
neglect the dephasing in the present analysis. The electron
accumulates two different “intrinsic” phases during the
evolution: (i) the arbitrary phase of the electron wave
function, which is constant in time, and (ii) the phase
related to the initial position of an electron, which is
encoded in the coefficients a0jðtÞ and ajðtÞ in exp½iqaAðtÞ�.
Concerning (i), because the Hamiltonian evolution is

unitary, this phase cancels out at the recombination-
emission time t when the electron recombines with the
same wave function that it was excited from.
Phase (ii) plays a role in generalizing this approach from

the single-electron picture to the full valence band (all
Wannier functions occupied). To account for contributions
of all electrons in a lattice, we multiply the dipole moment
given by Eq. (22) by the total number of electrons, Ne.
This is justified by cancellation of the two phases arising
from shifting the initial Wannier function to another atomic
site. One of these phases is related to ajðtÞ [see Eq. (16)],
and the other one comes from the dipole transition
dvcðpþ AðtÞÞeiðpþAðtÞÞxj . In particular, let us consider
another electron localized at a site jp ¼ j0 þ n at time
t ¼ 0. In the dipole, Eq. (22), for any given t, t0 two
additional phases will appear in comparison to the calcu-
lations where an electron starting at the j0 site is used:
(i) exp½−iðAðt0Þ − AðtÞÞna� from the shift of xj, xj0
in Eq. (22), and (ii) exp½−iAðtÞna� exp½iAðt0Þna� ¼
exp½−iðAðtÞ − Aðt0ÞÞna� from the shift j → jþ n, q →
qþ n in a�jðtÞa0jðt0Þ. Since these two phases cancel each
other, the contributions from electrons born at all crystal
sites to the harmonic emission will be the same.

III. RESULTS AND DISCUSSION

Here, we use the model developed in Sec. II to inves-
tigate harmonic emission of ZnO. The approach presented
in this paper treats the HHG process within an atomistic-
like approximation, assuming initial localization of an
electron at one atomic site and gradual spread of its wave
function in the lattice due to interatomic hopping and the
influence of a laser electric field. We consider two different
directions for the laser-field polarization, Γ − A and Γ −M
[29]. In the case of a narrow valence band (small values of
Iv), the dynamics of the valence electrons is slow, and the
electron wave function does not spread much when the
laser pulse is turned on. This means that only a few of the aj
coefficients in the sum of Eq. (22) will have nonzero values.

FIG. 1. Scheme of the electron excitation-recombination proc-
ess for the HHG from the periodic lattice crystal. The periodic
lattice is represented by gray disks along the black dashed line.
The Wannier wave function is depicted by the green area. At time
t0, a single-electron wave packet is excited from the j0th atomic
site in the valence band to the conduction band. This wave packet
is denoted by blue area. Then, during ðt0; tÞ, it is accelerated
within the conduction band by the driving laser field. Finally, at
time t, the electron recombination takes place on different j
atomic sites with the subsequent high-harmonic emissions, which
are denoted by violet pulse oscillations. Note that the red arrows
show excitation at j0 ¼ j0 and recombination at j ¼ j0 and j0 − 1
atomic sites.
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For calculations in Sec. III. B, where we assume laser
polarization in the Γ − A direction, we consider 15 atomic
sites (ions) on both sides of j0 (with this number, we
already obtain good convergence). In the case of a wide
valence band (Sec. III A), where the laser polarization is in
the Γ −M direction, the dynamics are much faster, and
we need to consider up to 1000 atomic sites to obtain
convergence.

A. Comparison of Bloch-Bloch
and Wannier-Bloch models

We begin by comparing the emitted HHG spectrum from
the Wannier-Bloch approach, Eq. (22), with the spectrum
obtained from the delocalized Bloch-Bloch approach. The
Bloch-Bloch model was implemented following Ref. [18],
with the cosine band structure approximated by a
Taylor expansion up to the fourth order and integration
in momentum space replaced by a saddle-point approxi-
mation. Integration over the ionization time was done
numerically using a Gaussian quadrature routine, and the
Fourier integral was performed as a fast Fourier
Transform (FFT).
Figure 2(a) depicts the HHG spectrum computed using

the same laser parameters as in Ref. [20], i.e., laser peak
intensity I0 ¼ 3.15 × 1011 W=cm2, carrier wavelength
λ0 ¼ 3.25 μm, and pulse length of 10 laser periods
(FWHM ∼ 53 fs). For computational convenience, we
use a sine-squared envelope laser pulse (defined in
Sec. II) instead of the Gaussian one used in Ref. [20]. A
simplified cosinelike band structure in the Γ −M direction,
with the approximate parameters of Ref. [20], is used, i.e.,
Eg ¼ 0.1213 a:u:, Ic ¼ 0.0449 a:u:, Iv ¼ −0.0464 a:u:,
and lattice constant a ¼ 5.32 a:u: Following Ref. [18],
the dipole moment is assumed to be constant: dvcðkÞ ¼
3.46 a:u: For details about the 1D-Bloch-Bloch calculation
of Vampa et al., we refer to the Supplemental Material of
Ref. [18] and the subsequent article Ref. [20].
Our approach exhibits good agreement with the Bloch-

Bloch model, reproducing the plateau, the cutoff, and the
standard odd harmonic structure around the cutoff. The two
spectra differ mainly in the low-order harmonics region,
suggesting that localization (or recombination with the
parent atom) may play greater importance in the production
of low-order harmonics, as is confirmed in Fig. 2(b).
Overall, this comparison confirms that the Wannier-
Bloch picture reproduces the essential features of the
Bloch-Bloch model for the emitted harmonics.
Figure 2(b) shows the contributions to the harmonic

spectra obtained from different components of the j, j0
sums in Eq. (22). The thick black line indicates the
whole harmonic spectrum, and the colored lines show
individual contributions corresponding to different distan-
ces, Δj ¼ jj − j0j, between the electron excitation (at j0)
and recombination (at j) atomic sites. To calculate the
contribution of a given Δj, we apply FFT on the part of the

dipole dðtÞ composed only of terms in Eq. (22) for which
jj − j0j is equal to Δj. The relative length of displacement
between the excitation and recombination sites is given by
Ds ¼ Δja, which quantifies the concept of relative exci-
tation-recombination places.
As Fig. 2(b) shows, in certain parts of the spectrum, even

Δj ¼ 10 paths contribute considerably to the total har-
monic emission. This is in clear contrast to HHG in atomic
gas, where the electron has to recombine with its parent
atom, corresponding to Δj ¼ 0 contributions only. In the
next section, we attempt to understand why even relatively
distant atomic sites can contribute significantly to the total
emission spectrum in solids.

B. Wannier-Bloch picture

In order to further investigate the contribution of differ-
ent relative excitation-recombination placesDs to the HHG
spectrum, we calculate harmonic emission for a set of
different laser parameters. This also allows us to establish

(a)

(b)

FIG. 2. Harmonic spectra comparison of the Wannier-Bloch
approach (black line) with the Bloch-Bloch approach (red line) is
shown in panel (a). Decomposition of the harmonic contribution
into different lengths of electron-recombination atomic sites Δj
using the Wannier-Bloch method is depicted in panel (b). The
calculations are carried out for laser polarization in the
Γ −M direction of ZnO crystal. The laser parameters are as
follows: carrier wavelength of λ0 ¼ 3.25 μm, laser intensity
I0 ¼ 3.15 × 1011 W=cm2, total number of laser cycles N ¼ 10
periods, and φCEP ¼ 0.
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under what conditions the Wannier-Bloch approach may be
a more adequate description relative to the Bloch-Bloch
one [18]. Because of computational constraints in the HHG
spectra calculations using the band structure of Sec. III A,
here we focus on the narrower valence band case. For
the latter, we are able to scan a wider range of parameters
and analyze the band-structure influence on the different
relative excitation-recombination contribution sites to
the HHG.
In order to compute the HHG spectra, we fix the

optical axis of ZnO (with polarization of the laser in
the Γ − A direction) [18] and use a ¼ 9.83 a:u:,
Ic ¼ 0.02175 a:u:, Iv ¼ −0.00295 a:u:, and Eg ¼
0.1213 a:u: Also, following the formulation in Ref. [18],

dvcðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fEp=½2ðEcðkÞ − EvðkÞÞ2�g

q
, with the Kane

parameter Ep set to 0.479. Figures 3(a) and 3(b) show
the results of the emitted harmonic spectra for two different

laser-pulse durations, namely, Δtb ¼ NT0, where N ¼ 4
and N ¼ 10 are the number of cycles, respectively, and T0

the period of the laser field. We observe that the highest
contribution to the HHG spectrum comes from Δj ¼ 0,
i.e., for the case when the electron recombines to the
same atomic-parent site from where it was previously
excited to the conduction band. The longer the electron-
recombination displacement Ds is, the lower its contribu-
tion to the HHG spectra. Both panels of Fig. 3 show that,
while, in general, the obtained harmonic yield decays very
fast with Δj, there is a relatively large signal between the
8th and 15th harmonic which is also preserved for larger
values of Δj. This signal corresponds to the energy gap
between valence and conduction bands, which spreads
from about 8ω0 (band gap for k ¼ 0) to 14.5ω0 (maximum
energy gap for k ¼ ðπ=aÞ). The greater contribution from
large Δj processes near the maximum and minimum
energy gaps can be understood as resulting from the high
density of possible interband transitions involving opposite
band edges. Those transitions occur between states with
narrowly defined momenta (near the band extrema), which
require broad spatial coherence as reflected in large
recombination lengths.
Figure 3 shows the typical features of HHG spectra:

Namely, odd harmonics are present, the signal is strongest
for the low-order harmonics (1st and 3rd), and a plateau
region and a cutoff can be easily distinguished. As
would be expected for interband emission, the cutoff is
located near the harmonic equivalent of the maximum
energy difference between the conduction and valence
bands. The region of the plateau exhibits pronounced
interference structures—there is no clear recognition of
even-odd harmonic symmetry. This behavior is also typical
of the harmonic spectra in atoms in the limit of short
pulses [30,31].
The spectra in Fig. 3 can be compared with the

experimental results shown in Fig. 3 of Ref. [5], specifically
for the crystal angle 0°. In this experimental data, up to the
13th harmonic is distinguishable, which is close to the
cutoff value obtained in our calculations. As predicted by
our model, a signal near the band-gap energy is observed in
Ref. [5] (where, however, it is attributed to fluorescence
effects). In contrast to our results, in the experiment, both
odd and even harmonics appear in the spectrum. This is
likely an effect of a symmetry breaking in the 3D-ZnO
lattice, which we do not take into account here.
Note that the saddle-point method was not used to solve

the momentum integral in Eq. (22). We perform that
momentum integral numerically. The argument is based
on the fact that the dipole-radiation phase takes into
account electron propagation in the conduction band.
The latter means that, for narrow bands, the electron cannot
accumulate large energy. Therefore, the stationary phase
method might be inaccurate in solving that type of
momentum integral. Nevertheless, the saddle-point method

(a)

(b)

FIG. 3. Panels (a) and (b) depict the full harmonic spectra for
two different laser time durations, N ¼ 4 and 10, respectively
(thick black lines), calculated within the Wannier-Bloch ap-
proach. Furthermore, color regions show the harmonic contribu-
tions of the different relative electron-recombination atomic sites
in the spatially periodic lattice structure Δj ¼ 0; 1;…; 4. The
black vertical lines (read from left to right) point out the band-gap
harmonic and the expected cutoff harmonic orders, respectively.
The laser-pulse peak intensity is I0 ¼ 5 × 1011 W=cm2, the
carrier wavelength λ0 ¼ 3.0 μm, and its CEP is φCEP ¼ 0 rad.
The calculations are carried out for laser polarization in the Γ − A
direction.
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is still suitable for calculating the momentum integral in
Eq. (22) for larger-energy band structure.
To investigate how harmonic emission scales as a

function of wavelength, we calculate the harmonic spec-
trum for different values of the laser wavelength, λ0. The
results are shown in Fig. 4. Figure 4(a) shows HHG spectra
for wavelengths in a range of 800–3500 nm. The frequency
axis for each wavelength is scaled in ω0 ¼ 2πc=λ0 units. It
is observed that the cutoff moves to lower harmonics while
the wavelength decreases. However, one may expect that
the cutoff stays constant in terms of photon energy because
of a well-defined maximum energy difference between the
conduction and valence bands of about 6 eV. This effect is
shown in Fig. 4(b), where the spectra of Fig. 4(a) are
replotted as a function of photon energy. Hence, the cutoff

of the harmonic spectrum is in good agreement with the
value calculated from the band structure. From the so-
called action phase in Eq. (22), i.e., φðp; t; t0Þ, we can infer
that the maximum harmonic energy produced in a solid
lattice should be limited by the band dispersion relation
(this result is consistent with prior findings [18]).
Previously, it was found that HHG in solids scales

linearly with the electric-field strength [5]. Here, we
calculate HHG spectra for different values of the laser
electric field. Figure 5 shows the HHG spectrum for
electric-field amplitudes, in the range 0.4–1.0E0, where
E0 ¼ 3.779 × 10−3 a:u: corresponds to laser intensity
I0 ¼ 5 × 1011 W=cm2. These calculations were performed
for the case of a narrow valence band, corresponding to
laser polarization along the Γ − A direction. As expected,
decreasing the laser intensity shifts the cutoff to lower-order
harmonics. In Fig. 5, we trace an estimated straight line
over the harmonic-electric field map.
For cases shown in Figs. 4 and 5, the relative contribu-

tion of longer displacements, Ds, to harmonic emission is
similar to what was observed in Fig. 3. In particular, long
relative displacements contribute significantly only to the
harmonics close to the band-gap energy. Neither change of
wavelength nor of laser intensity had a significant effect on
the observed tendency. The situation is different for wider
band solids, as discussed in Sec. III A.
The linear harmonic cutoff as a function of the electric-

field strength was demonstrated experimentally in Ref. [5].
In an attempt to reproduce this experimental finding with
the Wannier-Bloch model, we also calculate the cutoff

(a)

(b)

FIG. 4. (a) Harmonic spectra for different values of the carrier-
laser wavelength λ0. (b) Same as (a) but with energy units
instead of harmonic order on the frequency axis. The grey line
shows maximum emitted photon energy, which corresponds
exactly to the maximum energy difference between the con-
duction and valence bands, ΔEvc ¼ 6 eV. Laser intensity was set
to I0 ¼ 5 × 1011 W=cm2, laser-pulse length to 10 laser periods,
and φCEP ¼ 0 rad.

FIG. 5. Harmonic spectra as a function of electric-field
strength. The electric-field axis is in units of E0 ¼ 0.0038 a:u:,
corresponding to the laser intensity I0 ¼ 5 × 1011 W=cm2. The
dashed magenta straight line denotes the estimated cutoff of the
harmonic spectrum as a function of the electric-field strength.
The carrier-laser wavelength was set to λ0 ¼ 3.0 μm, laser-pulse
length to N ¼ 10 laser periods T0, and φCEP ¼ 0 rad. The
calculations are carried out for laser polarization in the Γ − A
direction of ZnO crystal.
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dependence on the electric-field strength for laser polari-
zation in the Γ −M direction of ZnO crystal (wide bands).
The comparison of the experimental and theoretical results
is presented in Fig. 6. Our results reproduce the linear
scaling observed in Ref. [5] quite well. However, our model
is rather simplified for analytic tractability: (i) We treat the
1D case; i.e., this underestimates the effects of wave-packet
spreading (because there are fewer nearest-neighbor sites),
making HHG emission effectively more efficient at lower
intensities. (ii) We consider only the single conduction
band in the dispersion relation, and we do not include
correlation effects or the full 3D band structure of the
crystal lattice (iii) We do not include possible (many-body)
screening effects that decrease the effective field in the
solid and thus make the field necessary for efficient HHG
emission larger. (iv) Our Wannier-Bloch theory should,
strictly speaking, work best for narrow valence bands—
here, it is applied to the case of a moderately broad band,
where Wannier wave-function spreading is more significant
and more difficult to handle. Nevertheless, close agreement
of the cutoff with the Bloch-Bloch approach published in
Ref. [18] suggests that our approach can handle these wider
bands as well.
Finally, only interband contributions are considered here,

complementing the theory discussed by Ghimire et al. [5],
which focuses on intraband Bloch oscillations, calculating
the resulting oscillating current. Their approach allows one
to immediately conclude that the cutoff law is linear in the
electric field. However, direct comparison with experimen-
tal data is also difficult here, because of, for instance, large
sensitivity of the spectrum to the details of the dispersion
relation in the conduction band.

We expect that the full treatment of both contributions,
and inclusion of the effects discussed above, is necessary
to recover close agreement with experimental data. This
treatment goes beyond the study of the present paper,
which, in the first place, presents a systematic method and,
in the second place, discusses results obtained under given
approximations, which qualitatively hold in many situa-
tions of interest.
Our results agree in many aspects with prior experimental

and theoretical observations [5,8,18,20]. In particular, (i) the
HHG cutoff shows a dependence on the maximum energy
difference between the valence and conduction bands, as
well as on the laser wavelength and peak intensity; (ii) for
long laser pulses and few-cycle laser fields, the model
depicts the full odd spectrum and a continuum spectrum,
respectively; and (iii) we find a direct link between the
emitted harmonic spectrum shape and the band structure.
The excellent agreement between our approach and the
Bloch-Bloch approach, shown in Fig. 2(a), over harmonics
8–20 suggests that the Wannier-Bloch model could be
applied to the reconstruction of the band structure following
the approach in Ref. [32].
The delocalization of the process in the Γ −M direction,

where even Δj ¼ 10 sites contribute significantly to the
HHG yield [see Fig. 2(b)], is confirmed by the experimental
results in Ref. [5]. In particular, Ghimire et al. [5] measure
a relatively small decline in the HHG yield for ellipticity
of 0.5 (see Fig. 4 in Ref. [5]). A much more extreme drop
would be found in atomic HHG, which is already sup-
pressed at an ellipticity of 0.2 [17,33–35].
Furthermore, we have performed a classical estimation

of the electron trajectories as a function of ellipticity, as

FIG. 6. Experimental and theoretical comparison: Linear scaling of the cutoff harmonic order with the laser electric-field strength as
obtained in (a) the experiment [courtesy of Louis DiMauro from Fig. 1(b) of Ref. [5] and (b) theoretical calculations by means of the
Wannier-Bloch approach.
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illustrated in Appendix C. We observe that for nonzero
ellipticities, the electron trajectories might recollide with
“transverse neighbors” in the periodic lattice structure.
Since, quantum mechanically, the electron wave function
can spread in a 2D lattice, one can expect that the harmonic
emission in solids decreases less than in the gaseous phase.

IV. CONCLUDING REMARKS

By using localized atomic sites in the valence band and
delocalized functions in the conduction band, our model
has the closest parallels to harmonic generation from
atomic gas. As such, it allows one to access contributions
of individual lattice sites and hence assess the degree of
localization of HHG in solid—something that has previ-
ously been inaccessible. In particular, we can describe a
process in which an electron initially localized at the j0th
atom in the valence band has a certain probability to be
excited to the conduction band, where it is accelerated to a
high energy before recombining either to the parent atom,
at the j0th site, or (with different probability) to any other
jth atom in the lattice.
Different displacements of the electron-recombination

atomic sites, i.e., Δj ¼ jj − j0j, give different contributions
to the harmonic spectrum. The approach developed here
allows us to extract all of these contributions. In particular,
themain contributionwas found to be given byΔj ¼ 0 or by
electron recombining at the same atomic site it was excited
from. Especially for the case of narrow bands in the band
structure, lowerΔj contribute by far themost to theharmonic
spectrum, signifying substantial localization in the HHG
process. On the other hand, we found an enhanced con-
tribution of high Δj in the case of wider valence and
conduction bands. This enhanced delocalization can be
viewed as resulting from the small effective mass that the
electrons have in a lattice when they populate a broad band
with correspondingly high hopping rates. In all cases, distant
neighbor contributions were highest near the band-gap
energy. This suggests that the harmonic yield near the
band-gap energy should decline less (relative to other
harmonics) with increasing ellipticity of laser light since
elliptical polarization tends to suppress local contributions.
Note that our results, by means of the Wannier-Bloch

approach, employ a different framework than those pre-
sented by the Bloch-Bloch model in Ref. [18]. While
our model recreates the conventional atomic picture, the
Bloch-Bloch model is based on the electron-hole pair
recombination. Therefore, it is clear that both approaches,
while predicting similar total HHG spectra, provide differ-
ent insights into the physics of the HHG process.
The present approach is particularly suitable to model

HHG from nanostructures such as those achieved in the
recent paper by Han et al. [36] and those planned in future
experiments. We expect the effects of localization to be
crucial for such experiments, considering the plasmonic
hot spots and the spatial variation of the electric field on a

nanometer scale. Hence, a proper understanding of the
degree of HHG localization in condensed-matter experi-
ments will be particularly relevant to nanostructures whose
geometry may even be designed to suppress or enhance far-
neighbor contributions. In addition to affecting HHG
efficiency and attosecond pulse generation, suppressing
delocalized contributions will also have a big impact on
electronic wave-function imaging, as recently pointed out
in Ref. [9].
Our results suggest that it should be possible to control

the localization of the HHG process by varying exper-
imental parameters. Hence, by quantifying site-specific
contributions, our work paves the way to controlling
HHG efficiency and imaging of the electronic wave
function in a crystal lattice [9,19].
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APPENDIX A: SADDLE-POINT
APPROXIMATION

In order to extract physical information about our dipole
radiation dðtÞ by means of the Wannier-Bloch approach, in
the following, we employ the saddle-point approximation
to the Fourier transform of Eq. (22). This stationary phase
method is justified in the case when the accumulated
electron energy is large, and thus, the integrand phases
rapidly vary with respect to the integration variables.
To compute the harmonic spectrum, the Fourier trans-

form of the dipole radiation dðtÞ is required, and it reads
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~dðωÞ ¼ ij ~wvj2
X
j

X
j0

Z þ∞

−∞
dteiωt

Z
t

0

dt0
Z

~BZ
dpa�jðtÞdvcðpþ AðtÞÞeiðpþAðtÞÞxj

× e−iφðp;t;t0Þaj0 ðt0Þd�vcðpþ Aðt0ÞÞe−iðpþAðt0ÞÞxj0Eðt0Þ: ðA1Þ

Mathematically, one can rewrite the latter equation as a “product” of a global amplitude and phase:

~dðωÞ ¼
X
j

X
j0

Z þ∞

−∞
dt

Z
t

0

dt0
Z

~BZ
dpfj;j0 ðp; t; t0Þe−iΦj;j0 ðp;t;t0Þþiωt: ðA2Þ

Here, the amplitude fj;j0 and the phase Φj;j0 are defined according to

fj;j0 ðp; t; t0Þ ¼ ij ~wvj2jajðtÞjdvcðpþ AðtÞÞjaj0 ðt0Þjd�vcðpþ Aðt0ÞÞEðt0Þ;
Φj;j0 ðp; t; t0Þ ¼ φðp; t; t0Þ − φajðtÞ − ðpþ AðtÞÞxj þ φaj0 ðt0Þ þ ðpþ Aðt0ÞÞxj0 ; ðA3Þ

where φðp; t; t0Þ is the electron accumulation phase in the
conduction band. Note that φaj0 ðt0Þ [φajðtÞ] is the phase
associated with the population coefficient of the whole
wave function aj0 ðt0Þ [ajðtÞ] in the valence band at the
corresponding excitation time t0 (emission t) and site j0
(emission site j).
The high-order harmonic generation is a highly nonlinear

process. Then, one can expect the phases Φj;j0 ðp; t; t0Þ and
the “full phase” ~Φðp; t; t0Þ ¼ Φj;j0 ðp; t; t0Þ − ωt, in the
respective integrals on the excitation time t0 and the emission
time t, quickly vary. This justifies a semiclassical analysis
by means of the saddle-point approximation [18,27,28].
In order to compute the saddle points, times t0s and ts, we
employ the stationary phase condition with respect to t0

and t, ∂t0Φj;j0 ¼ ∂t
~Φ ¼ 0, and obtain, respectively,

∂t0φaj0 ðt0Þjt0s − Ecðpþ Aðt0sÞÞ − Eðt0sÞxj0 ¼ 0; ðA4Þ

−∂tφajðtÞjts þ Ecðpþ AðtsÞÞ þ EðtsÞxj − ω ¼ 0: ðA5Þ

Here, ∂t0φaj0 ðt0Þjt0s is the time derivative of the aj0 ðt0Þ
phase evaluated at the saddle-point excitation time t0s,
Ecðpþ Aðt0sÞÞ is the conduction-band energy relation
dispersion, and the term Eðt0sÞxj0 is the dipolar coupling
due to the initial position xj0 . According to Eq. (16), the
phase φaj0 ðt0Þ is proportional to −Aðt0Þxq þ gj0 ðt0Þ. Here,
xq ¼ qa denotes the position of each “atom” in the lattice,

and gj0 ðt0Þ is the phase related to ~λ and Jq functions of
Eq. (16). Thus, after differentiating the phase φaj0 ðt0Þ with
respect to time t0, one can expect that the last term of
Eq. (A4) cancels out in the case of q ¼ j0 ¼ j0 and at t0 ¼ 0.
This conclusion is easily obtained by considering the initial
condition aqð0Þ ¼ δq;j0 of Eq. (16). However, later, at
excitation times t0 > 0, the electron should have a chance
to excite from another position j0, i.e., j0 ¼ j0 þ 1, to the
conduction band. For this scenario, the last term of Eq. (A4)

does not cancel out; therefore, it contributes to the calcu-
lation of the saddle points t0s.
The stationary excitation times t0s that will contribute

most to the integral on t0 of Eq. (A1) are generally complex.
Then, the excitation occurs via tunneling or multiphoton
processes [27,28].
The structure of Eq. (A5) is similar to that of Eq. (A4).

However, the difference arises with an extra term: the
emitted frequency or photon energy by the solid ω and the
fact that Eq. (A5) is evaluated at the recombination or
emission time ts. The energy accumulated by the electron
during its propagation between t0 and t is emitted as a form
of a photon energy ω at the recombination.
Clearly, this emitted photon energy ω is related to the

phase dependence on time φajðtÞ, the initial and final sites
x0j and xj of the electron wave function in the lattice,
and the energy dispersion relation of the conduction band
Ecðpþ AðtÞÞ. The phase φajðtÞ ∼ −AðtÞxq þ gjðtÞ is
directly linked to the initial position j0. This conclusion
is easily obtained by considering the initial condition
aqð0Þ ¼ δq;j0 of Eq. (16).
The saddle-point approximation on momentum p can

also be performed for integration of Eq. (A1). Then, to
obtain the momentum ps that contributes to that momen-
tum integral, the condition ∂pΦj;j0 ðp; t; t0Þ ¼ 0 reads

Z
t

t0
∂pEcðpþ Aðt00ÞÞjps

dt00 þ xj0 − xj ¼ 0. ðA6Þ

The equation tells us that between t0 and t the quantity ps is
the canonical momentum associated with the trajectory that
has the dominant contribution to the harmonic emission.
Note that as Δxj0;j ¼ xj0 − xj is only zero in the case of
x0j ¼ xj, different relative excitation-recombination sites
contribute to the HHG in solids. As we pointed out in the
main text around Eq. (22), this can be understood as the
electron being born at time t0 at the position xj0 and
recombining at time t0 at any site xj.
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APPENDIX B: ELECTRON
WAVE-FUNCTION SPREADING

The coefficients ajðtÞ describe how fast the wave
function ϕvðx; tÞ ¼

P
jwv;jðxÞajðtÞ spreads in the

lattice. In Fig. 7(a), we plot the evolution of the ajðtÞ
coefficients for j ¼ 0; 1;…; 5 for the same band-structure

and laser-pulse parameters as in Fig. 3(a). The electron is
initially fully localized at atom j ¼ 0 and gradually spreads
to the first neighbors (j ¼ 1, −1), the second neighbors
(j ¼ 2, −2), and so forth. We can see that for a narrow
valence band and a short laser pulse (four periods), the
electron wave function stays considerably localized
throughout the whole duration of the pulse. In Fig. 7(b),
we observe that turning off the electric field, E0 ¼ 0, results
in acceleration of the spreading of the wave function in the
lattice; i.e., the subsequent atomic sites are populated faster
than in the case of nonzero E0.
Note that the added probability over all the neighbors

½−j; j� is equal to 1 at each time. This result demonstrates
that the evolution of the coefficient ajðtÞ is unitary as
expected.

APPENDIX C: CLASSICAL ESTIMATION OF
ELECTRON TRAJECTORIES IN A 2D LATTICE

In our paper, we state that knowledge about the locali-
zation in the HHG process is crucial, especially in the
case of an elliptically polarized laser field. Therefore, to
illustrate the effect of ellipticity on the HHG process,
we compute the classical trajectories of an electron in an
elliptical electric field. In Fig. 8, we provide an illustration
of classical calculations. We consider a square lattice
with a constant a ¼ 0.52 nm (as used in Fig. 3), laser
pulse of period T0, and duration of 2T0. The laser
parameters are ω0 ¼ 0.0152 a:u of mean frequency
(laser wavelength λ0 ¼ 3.0 μm), and the peak intensity
I0 ¼ 5 × 1011 W=cm2. We depict the trajectories of elec-
trons ionized from a specific lattice site (the large red dot)
at the peak of the laser electric field, 0.25T0, and close
to it (0.15T0, 0.2T0, 0.3T0, and 0.35T0) for a few values
of the ellipticity. We observe that, for high ellipticity, the
excited electron travels far in the lattice. However, if the

(a)

(b)

FIG. 7. (a) Evolution of theaj coefficients in time for j¼0;1;…;5
for band-structure and laser-pulse parameters as in Fig. 3(a).
(b) Same as (a) but with the electric field turned off (E0 ¼ 0).

(a) (b)

(c) (d)

FIG. 8. Electron trajectories on a 2D lattice as a function of the ellipticity ε ¼ Ey=Ex calculated by solving Newton’s equation of
motion: (a) ε ¼ 0.1, (b) ε ¼ 0.2, (c) ε ¼ 0.3, and (d) ε ¼ 0.5.
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amplitude of the valence-band wave function is nonzero
at distant neighbor sites, the recombination and HHG
emission are still possible. This prevents a dramatic drop
in HHG efficiency, which is observed in the atomic gas
phase [33–35,35].
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