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The transition from a many-body localized phase to a thermalizing one is a dynamical quantum phase
transition that lies outside the framework of equilibrium statistical mechanics. We provide a detailed study
of the critical properties of this transition at finite sizes in one dimension. We find that the entanglement
entropy of small subsystems looks strongly subthermal in the quantum critical regime, which indicates that
it varies discontinuously across the transition as the system size is taken to infinity, even though many other
aspects of the transition look continuous. We also study the variance of the half-chain entanglement
entropy, which shows a peak near the transition, and find substantial variation in the entropy across
eigenstates of the same sample. Furthermore, the sample-to-sample variations in this quantity are strongly
growing and are larger than the intrasample variations. We posit that these results are consistent with a
picture in which the transition to the thermal phase is driven by an eigenstate-dependent sparse resonant
“backbone” of long-range entanglement, which just barely gains enough strength to thermalize the system
on the thermal side of the transition as the system size is taken to infinity. This discontinuity in a global
quantity—the presence of a fully functional bath—in turn implies a discontinuity even for local properties.
We discuss how this picture compares with existing renormalization group treatments of the transition.
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I. INTRODUCTION

Understanding the nature of quantum phases and phase
transitions is part of the bedrock of condensed matter
physics. The traditional understanding in this field uses the
framework of equilibrium statistical mechanics to classify
phases according to local patterns of symmetry breaking
à la Landau or, more recently, according to various classes
of topological order. The transitions between phases—
signaled by singularities in thermodynamic functions or
observables—are either first order or continuous, where the
latter generally involve a diverging length scale and
universal critical scaling behavior.
Progress on the phenomenon of many-body localization

(MBL) has revealed the incompleteness of the above
framework. MBL generalizes the phenomenon of
Anderson localization in noninteracting disordered systems
to the interacting setting [1–6]. The transition between
many-body localized and thermalizing phases is not a
thermodynamic phase transition, so it need not conform
to the usual classifications of phase transitions. Instead, it is
a dynamical phase transition between a thermalizing phase
that obeys equilibrium thermodynamics in its long-time

behavior and the MBL phase, where the system’s dynamics
does not bring it to thermal equilibrium. It is also an
eigenstate phase transition [7–14] across which the nature
of the system’s (highly excited) many-body eigenstates
changes in a singular way from thermal and “volume-law”
entangled eigenstates that obey the eigenstate thermal-
ization hypothesis (ETH) [15–17] to nonthermal and area-
law entangled eigenstates in the MBL phase.
Since the MBL-to-ETH transition lies outside the pur-

view of equilibrium statistical mechanics, very little is
definitively known about its properties. A recent paper
(CLO [18]) derived a generalized Harris-Chayes bound
[19–21], νFS ≥ 2=d, for an appropriately defined finite-
size correlation length exponent νFS associated with the
disorder-driven MBL transition in d dimensions. Recent
phenomenological renormalization group (RG) studies in
one-dimensional systems find a continuous transition
with a localization length exponent ν > 2 satisfying this
CLO inequality [22–24]. On the other hand, all exact
diagonalization (ED) numerical studies to date [3,11,25]
(which are limited to small system sizes, L ∼ 22) have
found apparent scaling exponents ν that violate this CLO
bound. Interestingly, all these ED studies have observed
a finite-size crossover only on the thermal side of the
transition (cf. Fig. 1) with no observed crossover between
the MBL and quantum critical (QC) regimes.
In a separate development, Grover formulated an impor-

tant constraint on the scaling of the entanglement entropy
(EE) at the MBL-to-ETH transition [26]. Grover considered
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the entanglement entropy SA of a small subsystem of length
LA in a much larger system near the phase transition so that
LA ≪ L, ξ, where L is the system size and ξ is a diverging
correlation length. He made two crucial assumptions: (i) SA
is a scaling function only of LA=ξ with no significant L
dependence, and (ii) SA varies continuously across the
phase transition even after the limit L → ∞ is taken. For a
conventional continuous transition, these assumptions
seem reasonable. Since SA seems like a local property of
a small subsystem of size LA ≪ L, we might not expect
it to strongly depend on L. Nor might we expect such a
local quantity to be discontinuous across a continuous
phase transition. From these assumptions and the strong
subadditivity of entanglement, it follows [26] that SA must
show thermal volume-law entanglement at the MBL phase
transition.
On the other hand, numerical studies of the MBL

transition hint at subthermal entanglement entropy near
the transition [11,25,27,28], although these studies have not
focused on this question or the relevant limit LA ≪ L.
In the present work, we provide a detailed study of the

MBL-to-thermal phase transition in one dimension, both in
the finite-size QC regime and in the critical-to-thermal
crossover regime shown in Fig. 1. We show that, contrary to
Grover’s results, the EE for small subsystems SA (we use a
very small subsystem: one spin) is strongly subthermal in
the QC regime—thereby indicating that SA varies discon-
tinuously across the MBL transition in the limit L → ∞,
a striking result given that many other features of this
transition look continuous.
We also add to the understanding of finite-size scaling at

the transition by numerically studying the variance of the
half-chain entanglement entropy (EE) which peaks at the
MBL-to-thermal transition as the nature of the eigenstates
changes from area-law to volume-law entangled [11].

We parse in detail the contributions to this variance, which
come from sample-to-sample, eigenstate-to-eigenstate, and
cut-to-cut variations. Strikingly, we find a volume-law
scaling (i.e., a substantial variation) for the standard
deviation of the half-chain EE across eigenstates in the
same sample, a property that has heretofore not been
discussed by any numerical or phenomenological RG
treatments of the transition. Furthermore, while the cut-
to-cut variations are subdominant (and subvolume law), we
find that the sample-to-sample variations give the largest
contribution to the standard deviation and grow super-
linearly with L at the system sizes probed. As we will
discuss, this detailed parsing helps us identify the likely
source of the observed violations of the CLO inequality and
helps us formulate a possible picture of the universal
critical properties of the transition.
Inspired by these data, we present a picture for the finite-

size behavior near the phase transition, which is consistent
with both the discontinuity in SA and the observed trends in
the variance of the half-chain entropy: Essentially, the
transition to the thermal phase appears to be driven by a
sparse resonant “backbone” of long-range entanglement
[23], which just barely gains enough strength to become a
functional “bath” and thermalize the entire system in the
L → ∞ limit on the thermal side of the transition. This
corresponds to a discontinuity in a global quantity—the
presence of a fully functional and infinite bath—across the
transition. Such a global discontinuity has been observed
in other conventional continuous phase transitions, the
superfluid density at the Kosterlitz-Thouless transition
being an example; the surprising consequence is that, for
the MBL transition, this global discontinuity also implies a
discontinuity in seemingly local properties like SA.
Our picture of the transition helps us better understand

the nature of the many-body resonances driving the
transition and suggests that the strong-randomness RG
analyses in Refs. [22] (VHA) and [24] might have made too
strong an assumption in allowing only for locally thermal-
izing and insulating regions while not permitting something
intermediate that is entangled over large distances but is not
itself well thermalized. The RG in Ref. [23] (PVP), on the
other hand, is closer to the picture we propose: It allows for
sparse resonant clusters of spins in the QC regime that
might not fully thermalize the insulating regions spatially
interspersed between the resonant spins. However, in
comparing our data to the RG results, we need to keep
in mind that the range of sizes we explore numerically is
much smaller than the asymptotic regime treated by these
RGs. Thus, our picture may apply to an intermediate
regime before the asymptotic large-L scaling regime.
Nevertheless, it is interesting to note that a more careful
reading of the numerical results from PVP’s asymptotic RG
study actually supports our claim for subthermal SA (as we
will discuss), although PVP do not address or resolve
the apparent discrepancy between their data and Grover’s
constraint.

FIG. 1. Schematic depiction of the MBL-to-thermal phase
transition as a function of disorder strength W and system size
L, showing the quantum critical regime at finite sizes. Exact
diagonalization studies have only observed a crossover on the
thermal side of the transition, with no observed crossover
between the MBL and quantum critical regimes.
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We note that a recent work [29] studies the coefficient
of the volume law for the EE of subsystems with size
LA ∼ L=4 and has results both consistent with and com-
plementary to our work. Reference [29] finds probability
distributions of the entanglement that look increasingly
bimodal at the transition; we comment on how their results,
together with our observed discontinuities, suggest that
the MBL-to-ETH transition may be some sort of hybrid
between continuous and discontinuous phase transitions.
In the remainder of the paper, we introduce and bench-

mark the model used in our analysis (Sec. II). We then
present our numerical data for SA in Sec. III A and show
that it looks strongly subthermal in the quantum critical
region. This is followed by a finite-size scaling analysis for
SA in Sec. III B, together with a comparison to Grover’s
results. In Sec. IV, we study the variance of the half-chain
EE and parse the contributions coming from fluctuations
across samples, eigenstates, and spatial cuts. In Sec. V, we
sketch a picture of the transition consistent with our
observations, and we end with a summary and outlook
in Sec. VI.

II. THE MODEL

We study a spin-1=2 Heisenberg chain with random z
fields and nearest and next-nearest neighbor interactions:

H ¼ J
XL−1

i¼1

½ðSxi Sxiþ1 þ Syi S
y
iþ1Þ þ SziS

z
iþ1� þ

XL

i¼1

hiS
z
i

þ J0
XL−2

i¼1

ðSxi Sxiþ2 þ Syi S
y
iþ2Þ; ð1Þ

where Sfx=y=zgi are spin-1=2 degrees of freedom on site i,
J ¼ J0 ¼ 1, and the fields hi are drawn uniformly and
independently from ½−W;W�. This model is MBL for large
disorder strength W > Wc ≥ 7. We present the estimate of
Wc as a lower bound since, as usual, we do not observe a
crossover on the MBL side of the transition.
Note that this model with J0 ¼ 0 is a “canonical” model

used in manyMBL studies with a criticalWc ≥ 3.5 [25,27].
We found it prudent to add the next-nearest neighbor term
to break the integrability of the canonical model in the limit
W → 0. Since our goal is to discriminate between thermal
and subthermal scaling for the critical EE, it helps to have
the MBL phase abut a strongly thermalizing phase. In the
canonical model, the EE does not reach the thermal value
until relatively deep in the delocalized phase (for numeri-
cally accessible system sizes), thus making it problematic
to draw meaningful conclusions about an observed sub-
thermal critical EE. Because it is not integrable at W ¼ 0,
our model thermalizes more completely within the thermal
phase for the smallest system sizes in our study.
Figure 2 benchmarks the location of the transition in

Eq. (1) using the half-chain entanglement entropy S and the

level statistics ratio r. Figure 2(a) shows S divided by
ST ¼ 0.5ðL − log2 eÞ bits, which is the Page [30] value for
a random pure state. The data are averaged over 2000 − 105

disorder realizations depending on L. Within each sample,
the data are further averaged over the 100 eigenstates
closest to the center of the band in the Sztot ¼ 0 sector (or a
quarter of that sector’s Hilbert space for small system
sizes). Unless otherwise mentioned, these parameters apply
to all our numerical results. Note that S=ST as a function of
W approaches a step function with increasing L, going
from zero in the MBL phase with area-law entanglement to
one in the thermal phase.
Figure 2(b) shows the level statistics ratio r≡minfΔn;

Δnþ1g=maxfΔn;Δnþ1g, where Δn ¼ En − Enþ1 is the
spacing between eigenenergy levels. This ratio is a sensitive
test of the level repulsion in a system: It approaches the
Gaussian orthogonal ensemble (GOE) value r ≅ 0.53 in
the thermal phase and the Poisson value r ≅ 0.39 in the
localized phase. Figure 2(b) shows that the system looks
nicely thermal at smallW and localized at largeW, with the
location of the crossing drifting towards larger W with
increasing L, as is typical.

(a)

L = 10
L = 12
L = 14
L = 16
L = 18

(b)

FIG. 2. (a) Disorder-averaged half-chain entanglement entropy
divided by the Page value ST for a random pure state as a function
of W and L. Note that S=ST approaches a step function at the
transition going from zero in the MBL phase with area-law
entanglement to one in the thermal phase. (b) Disorder-averaged
level statistics ratio r̄, which obeys a GOE distribution in the
thermal phase and a Poisson distribution in the localized phase,
respectively.
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III. “LOCAL” ENTANGLEMENT ENTROPY

We now turn to the entanglement entropy SA of
subsystems A with length LA in the limit LA ≪ ξ, L.
Given the limited system sizes accessible to an ED study,
we choose LA ¼ 1 to make the subsystem as small as
possible when compared to the system size L. Figure 3
shows the disorder- and eigenstate-averaged entanglement
entropy S1 (in bits) computed in eigenstates of the full
system, with the subsystem consisting of one spin at the
end of the chain (the Appendix shows distributions of S1
instead of just the mean values). While the data qualita-
tively look similar for any single-site subsystem in the
chain, we use the end spin because the features we want
to emphasize in our discussion are the clearest for the
end spin.

A. Subthermal plateaus

If we assume a continuous transition with some notion of
critical finite-size scaling [18,26], each value ofW defines a
correlation length ξðWÞ that diverges as the transition atWc
is approached [31]. As we increase L, if the system follows
finite-size scaling, it looks quantum critical for system
lengths L < ξ and should look, respectively, thermal
(localized) for W < Wc (W > Wc) and L > ξ.
Figure 3 shows that deep in the thermal phase (small W,

small ξ), as L is increased, S1 quickly approaches one
bit of entanglement, as appropriate for infinite-temperature
thermal eigenstates. As W is increased towards Wc, the

correlation length increases and the finite-size effect on S1
gets stronger since we need to increase the system size to
L ≫ ξ before S1 approaches its thermal value of one bit.
For a range ofW on the thermal side of the phase transition,
the evolution of S1 vs L shows three regimes within the
sizes we can access:
(1) At the smallest L < 6, there is an increase of S1 vs L

that is due to short-range entanglement and is
present even within the MBL phase at W ¼ 10.
We assume that this very small L behavior reflects
short-range physics and is not in any scaling regime
associated with the phase transition.

W = 0.5
W = 1
W = 1.5

W = 2
W = 2.5
W = 3

W = 3.5
W = 4
W = 4.5

W = 5
W = 5.5
W = 6

W = 6.5
W = 7

W = 8
W = 10

FIG. 3. Disorder- and eigenstate-averaged entanglement en-
tropy S1 (in bits) computed in eigenstates of the full system, for a
subsystem comprising one spin at the end of the chain. The
(rounded) “plateaus” in S1 for intermediate L and W are
associated with the quantum critical regime, and they show
strongly subthermal values of S1.

(a)

W = 0.5 W = 2 W = 4 W = 6 W = 8
W = 5 W = 7 W = 10W = 3W = 1

FIG. 4. The MBL-to-thermal phase transition and finite-size
crossovers as a function of (a) L=ξ and (b) LA=ξ (schematic). For
the single-site entropy S1, the only relevant scaling variable is
L=ξ, and the curves at fixedW in Fig. 3 correspond to the vertical
lines in the crossover phase diagram (a), with the subthermal
plateaus lying in the QC regime. Grover’s analysis [26] considers
LA=ξ as the relevant scaling variable (b) and shows that if SA is
continuous across Wc then it must be thermal in the critical
regime. The inconsistency between pictures (a) and (b) can be
reconciled if there is a discontinuity in SA at Wc in the limit
L → ∞ (yellow lines).

KHEMANI, LIM, SHENG, and HUSE PHYS. REV. X 7, 021013 (2017)

021013-4



(2) There is an intermediate range of L where an
approximate plateau in S1 vs L starts to develop
for 4 < W < 7. Note that even though there is no
strict plateau in S1 for the smaller Ws, the evolution
of the curves clearly shows the development of an
extended range where S1 grows very slowly with L,
and the length of this approximate plateau grows as
the transition is approached.

(3) At larger L for the same disorder range, 4 < W < 7,
we observe a stronger increase in S1 vs L. This is
likely due to the system approaching full thermal-
ization at even larger (inaccessible) system sizes.

In this interpretation, the plateau in S1ðLÞ, best illustrated at
W ¼ 6.5, is the quantum critical (QC) regime where we are
in the thermal phase, but L < ξðWÞ. We can see that the
value of S1 on this plateau is substantially less than one bit
and is hence strongly subthermal. Thus, in the QC regime
LA ≪ L < ξ, the eigenstate entanglement entropy is well
below its thermal value, in contrast to the conclusion
following from Grover’s assumptions [26]. We suggest
below a scenario where the transition is, in some sense,
discontinuous and thus violates one of those assumptions.
Finally, we associate the stronger increase in S1 at larger L
with the crossover from the QC regime to thermal phase.

B. Finite-size scaling for SA
We now develop a possible scaling theory of SA in the

vicinity of the MBL transition. A general finite-size scaling
form for SA takes the usual form

SA ¼ LAfðL1=νδ; L1=ν
A δÞ; ð2Þ

where δ ¼ ðW −WcÞ, and the lengths are scaled as usual
with the correlation length exponent ν; thus, for example,
L1=νδ ∼ jL=ξj1=ν. The prefactor of LA outside of the scaling
function is required to match the volume-law entanglement
in the thermal phase. We now consider two limits: (a) When
LA ≪ L, the relevant scaling variable on the thermal side of
the transition is L=ξ, and (b) when L → ∞, the remaining
scaling variable is LA=ξ. Figure 4 shows the finite-size
critical crossover regime as a function of the relevant
scaling variables in these two limits.
For the data in Fig. 3, LA ¼ 1, and thus L=ξ is the

relevant scaling variable, as in Fig. 4(a). The plateaus of
S1ðLÞ correspond to the critical and MBL regimes, with the
crossover between these two regimes undetected, as usual
[grey dotted line in Fig. 4(a)]. The gradual crossover
between the critical and thermal regimes is the stronger
increase of S1ðLÞ with increasing L from the plateau value
towards the thermal value of one bit; we indicate its
approximate location with the dashed line in Fig. 4(a).
Tuning L at fixed W corresponds to taking vertical cuts in
the crossover phase diagram.
On the other hand, in Grover’s analysis [26], the system

size L ≫ LA, ξ and LA=ξ is the relevant scaling variable. In
the limit L → ∞, the phase transition occurs atWc even for

finite LA. It is clear that SA must obey thermal volume-law
scaling on the thermal side of the transition, W < Wc, for
LA ≪ L. Grover’s analysis tunes through theMBL transition
starting from the localized side, as shown in the horizontal cut
in Fig. 4(b). If we assume that SA remains continuous
throughout this scan in the limit L → ∞, then his analysis
shows that the SA must be thermal in the QC regime ξ ≫ LA,
even on the MBL side of the transition. For a typical
continuous thermodynamic phase transition, a local quantity
like SA is indeed continuous through the transition. The
numerical evidence for subthermal SA in the QC regime, in
contradiction with Grover’s conclusion, thus suggests that
the assumption of continuity may be incorrect; i.e., the
transition looks discontinuous if one examines the behavior
of SA through the transition in an infinite system.
In Fig. 4(b), this discontinuity in SA will be present for all

LA in the scaling regime along the vertical line at W ¼ Wc
(shaded yellow) when L → ∞. In Fig. 4(a), the disconti-
nuity is only present on the horizontal axis (again shaded
yellow), where the system size L is infinite. Stated differ-
ently, the two limits [black arrows in Fig. 4(a)]

lim
W→Wc

lim
L→∞

S1 ≠ lim
L→∞

lim
W→Wc

S1

may not commute on the thermal side of the transition.
We should inject a note of caution before concluding

this section. As we argue below, there is evidence that the
system sizes accessible to ED studies are not in the
asymptotic finite-size scaling regime. Thus, there remains
the possibility that our observation of subthermal SA for
LA ≪ L might be a preasymptotic feature that could
change if larger L could be accessed. Thus, it is useful
to compare our results with the RG approaches to the
transition, which study much larger system sizes. VHA [22]
explicitly look at this question but find that their results
are too near the boundary between having and not having a
discontinuity in SA to be sure. PVP [23], on the other hand,
invoke Grover’s thermal scaling at several points in their
paper. However, a more careful reading of their data
actually suggests such a discontinuity because they find
that only a small fraction of the spins are in entangled
resonant clusters at the transition. Thus, a typical subsystem
will not lie on the sparse network of thermally entangled
clusters and, on average, SA will look subthermal at the
transition. However, the authors do not address or resolve
the apparent discrepancy between their data and Grover’s
results. It is interesting to note that our data in Sec. IV lend
support to PVP’s picture of the transition over VHA’s and
thus indirectly further bolster our claim for subthermal SA.

IV. VARIANCE OF THE HALF-CHAIN
ENTANGLEMENT ENTROPY

We now switch directions and look at a complementary
quantity that we use, in particular, to examine the crossover
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between the thermal and quantum critical regimes. The
standard deviation of the half-chain entanglement entropy,
ΔS, has been used as a diagnostic for locating the MBL-to-
ETH transition [11,25]. This quantity shows a peak at the
crossover as the eigenstate entanglement changes from
thermal to strongly subthermal, while it tends to zero deep
in the MBL and ETH phases where the EE for almost all
states is either area law or thermal volume law respectively.
We parse in detail the contributions to ΔS coming from

sample-to-sample, eigenstate-to-eigenstate, and cut-to-cut
variations. Let us denote by Sncs the half-chain EE in a
specified eigenstate “s” in sample “n” and for a particular
bipartite entanglement cut “c” [which defines the subsys-
tem as extending from some site i to iþ ðL=2Þ − 1]. We
define hOic, ⟦O⟧s, and Ō as the average of O with respect
to spatial cuts c, eigenstates s, and disorder samples n,
respectively. Finally, σfc=s=ngðOÞ represents the standard
deviation of O on varying the c=s=n index. We use all cuts
that fit in the sample length L, while we use only the 100
eigenstates closest to zero energy. In Fig. 5, we plot ΔS
parsed three different ways:
(1) Δsamples

S ¼ σnðh⟦Sncs⟧sicÞ (dotted lines) is obtained
by first averaging the half-chain EE over all spatial
cuts and eigenstates in a given sample and then
taking the standard deviation of the averaged en-
tropy across samples. This quantity denotes the
sample-to-sample variation in Sncs.

(2) Δstates
S ¼ σsðhSncsicÞ (solid lines) is obtained by

taking the standard deviation of the cut-averaged
EE across eigenstates in a given sample and then

averaging over samples. This quantity denotes the
eigenstate-to-eigenstate variation in Sncs.

(3) Δcuts
S ¼ ⟦σcðSncsÞ⟧s (dashed lines) is obtained by

taking the standard deviation across spatial cuts c
in a given eigenstate of a given sample and then
averaging over eigenstates and samples. This quan-
tity denotes the cut-to-cut variation in Sncs.

We clearly see that, at these sizes, the sample-to-sample
variations are larger than the intrasample variations over
eigenstates or cuts. All three measures of ΔS are divided by
the thermal entropy ST ¼ 0.5½L lnð2Þ − 1� bits. Since S=ST
lies between 0 and 1, ΔS=ST can be at most 0.5, the value
corresponding to a binary distribution of S.
First, we note the striking result that the peak value of

Δstates
S =ST is independent of L, indicating a volume-law

scaling, Δstates
S ∼ L, and thus a substantial variance in the

half-chain EE across eigenstates in the same sample. This
property has not been noted previously, nor has it been
included by any of the phenomenological RG approaches
to the transition. It indicates that the network of resonances
driving the transition varies substantially across eigenstates
of a given sample, a potentially important feature that
deserves further exploration.
Furthermore, the peak value ofΔsamples

S =ST grows strongly
with L, which would naively indicate that Δsamples

S ∼ Lα

with α > 1. However, since the maximum possible value of
ΔS is 0.5ST ∼ L, this superlinear growth is clearly not
sustainable in the asymptotic large L limit. This indicates
that the observed finite-size violations of Harris-Chayes-
CLO bounds (which are derived from sample-to-sample
variations) might result from a scenario in which the effect
of quenched randomness across samples is not yet fully
manifest, but growing strongly, at the sizes studied. Our
analysis hints at the possibility of two asymptotic fixed
points governing transitions between MBL and thermal
phases: one dominated by “intrinsic” eigenstate randomness
within a given sample and the second dominated by external
randomness that varies across samples. In this framework,
the critical scaling collapses in the finite-size systems studied
thus far [11,25] appear to be in a preasymptotic regime
described by the first fixed point (for which Harris-Chayes–
type bounds do not apply) en route to flowing towards the
second.
Finally, note that the peak value of Δcuts

S =ST decreases
with increasing L, and a scaling analysis (not shown) in fact
showsΔcuts

S ∼ L1=2. This scaling sheds light on the potential
nature of the many-body resonances driving the transition
and discriminates between the VHA and PVP RG
approaches. The VHA [22] RG treatment produces a
subthermal half-chain EE at the crossover from 1–2 large
thermal blocks whose length scales extensively with L [see
Fig. 6(a) for an illustration]. This picture predicts a cut-to-
cut standard deviation, which scales as ∼L at the crossover
and is inconsistent with our Δcuts

S data at these sizes. On the
other hand, a picture of a sparse network of resonances that is

Inter sample

Intra sample across states

Intra state across cuts

L = 12
L = 14
L = 16
L = 18

FIG. 5. Standard deviation of the half-chain entanglement
entropy ΔS divided by the random pure state value ST , parsed
by its contributions from cut-to-cut (dashed lines), eigenstate-to-
eigenstate (solid lines), and sample-to-sample (dotted lines)
variations.
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strongly inhomogeneous only on the microscale [Fig. 6(b)]
is more similar in spirit to the presentation of PVP’s RG [23]
and is consistent with the observed scaling, as we discuss
in the next section.
To summarize, we have seen a substantial volume-law

scaling for ΔS across eigenstates of the same sample.
Moreover, the intrasample variations at these sizes are
smaller than the sample-to-sample variations, which show
strong finite-size effects and unsustainable trends with L.
We note that Ref. [[29]] also studied the standard deviation
across eigenstates, albeit of a different physical quantity in
a different model, and they found a small increase in this
quantity with L. However, even for their data, the sample-
to-sample variations increase with L much more strongly
than state-to-state variations.
The clear indication from the sample-to-sample data that

we are not in the asymptotic large-L scaling regime is
perhaps connected to a feature of the critical RG fixed points
in VHA and PVP. At these fixed points, the fraction of the
sample that is in the entangled clusters is very small: about
1% or less [22,23]. If this is an accurate picture of the
asymptoticQC regime, then this can not just apply to samples
with well under 100 spins since then the entangled clusters
would be smaller than one spin. But the physics on length
scales over 100 spins is on time scales over 2100, so it might
remain inaccessible to both experimental and numerical
work. Thus, the preasymptotic QC regime explored by the
numerically accessible smaller L samples might be closer to
what is physically relevant. We also note that recent papers
have applied the density matrix renormalization group
technique for studying both theMBL [28,34,35] and thermal
[36] phases in disordered spin systems at much larger system
sizes than those accessible to ED, although such techniques
cannot yet access the MBL-thermal transition.
One last point is in order. Many disordered statistical

physics models look “self-averaging” in that the spatial

variations between subregions within a large sample are
similar to the sample-to-sample variations of smaller
samples of the size of those subregions. This is a type
of locality, where the properties of a subregion are not
very sensitive to the size of the full sample or to the
properties of nonadjacent subregions of the same sample.
But the physics of the MBL transition seems likely not to
have this “locality”: If some parts of a large sample are such
that they locally thermalize and form a good bath, then they
may be able to thermalize the entire sample and thus make
all subregions strongly entangled. So the local entangle-
ment properties of a given subregion can be strongly
affected by nonadjacent subregions of the sample.

V. HEURISTIC MODEL FOR THE QUANTUM
CRITICAL AND CROSSOVER REGIONS

We now present a picture of the quantum critical and
crossover regimes that is consistentwith the observed scaling
for S1 and ΔS. We also comment on how this picture
compares to the VHA and PVP RG frameworks [22,23].
As alluded to already, the transition from the MBL to the

thermal phase appears to be driven by a sparse cluster that
looks like a resonant backbone of entangled spins, which is
just able to act as a functional bath for the rest of the systemon
the thermal side of the transition asL → ∞. We use theword
“cluster” to mean a network of fully or partially entangled
spins that need not be spatially contiguous. It is useful to
distinguish two quantities for a given cluster: lE denotes the
spatial extent of the cluster, i.e., the maximum physical
distance between any two spins on the cluster, while SE
denotes the total entanglement in the cluster defined, say,
as the entanglement entropy (in bits) for a cut in themiddle of
the cluster. Since the cluster could be spatially sparse and its
constituents only partially entangled, it is possible for
SE ≪ lE=2, where lE=2 is the infinite-temperature thermal
entropy for a cluster of size lE. Henceforth, we refer to lE
and SE as the longest cluster in a typical sample, and we
assume that we are close enough to the transition that
lE ≫ 1. Then, we posit that (cf. Fig. 7):
(1) For large enough L on the MBL side, the system

looks strongly localized such that lE ≪ L, and the
typical longest cluster does not span the system.
Moreover, the cluster is sparse and weakly resonat-
ing so SE ≪ lE.

(2) In the quantum critical regime, lE ∼ L, so the typical
largest cluster spatially spans the entire system.
However, it is still the case that SE ≪ lE, so the
cluster looks like a sparse network of resonances.
Entangled spins that lie on the cluster are ineffectual
in thermalizing the rest of the system.

(3) If we start in the QC regime with lE ∼ L and
increase L on the MBL side of the transition (red
line in Fig. 7), lE initially grows with L. As the
(subtle) QC-MBL crossover is approached, the
growth of the cluster slows such that it no longer

(a)

(b)

FIG. 6. Schematic depiction of two possible models of the
crossover from the MBL phase to the thermal phase. (a) The
picture from VHA’s RG [22] predicts contiguous thermal or
localized blocks. At the crossover, a few long thermal blocks
occupy a finite fraction of the system, giving a subthermal but
volume-law half-chain EE. (b) An alternate picture for the
transition with a sparse entangled backbone of small thermal
blocks of spins with varying degrees of entanglement. The
backbone is not contiguous but spans the entire system, and
the thin blue lines denote entanglement between the blocks. In
both pictures, the thermal clusters acquire just enough strength to
thermalize the entire system on the thermal side of the transition
in the limit L → ∞.
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spans the system as we pass through the crossover.
Throughout the scan, the network of entanglement
remains sparse such that SE ≪ lE. It is possible that
the sparse critical cluster evolves and matches onto
rareGriffiths regions [24,37] deep in theMBL regime.

(4) If we start in the QC regime and increase L on the
thermal side of the transition (blue line in Fig. 7), lE
grows with L such that the typical largest cluster
continues to span the entire system even as L is
increased. As the system approaches the QC-thermal
crossover, the sparse cluster starts “filling in” by
thermalizing the remaining localized regions, and SE
grows [Fig. 6(b)]. At the crossover, SE is some finite
and sizable fraction (say half) of the thermal entropy
for the cluster. In the thermal phase, the network of
resonances becomes a fully functional bath which is
able to thermalize the rest of the system such that
lE ¼ L ¼ 2SE for large L.

Let us connect this picture to the VHA [22] and PVP [23]
RG analyses. Both VHA and PVP start with a distribution
of microscopic thermal clusters interspersed between local-
ized spins. As the RG proceeds by integrating out short-
distance physics, clusters can combine and recombine and
hence grow in size. VHA’s RG allows for both thermal and
localized blocks to grow and makes the crucial assumption
that when two disjoint thermal blocks get entangled, they
thermalize all the degrees of freedom between them. Thus,
in the VHA treatment, SE ¼ lE=2 by construction and the
system always looks locally thermal or localized. On the
other hand, our picture seems closer to PVP’s analysis. In
PVP’s RG, only thermal clusters are allowed to grow by
forming resonances with other clusters. Moreover, they do
not insist on fully thermalizing the insulating regions
spatially interspersed between the resonating clusters,

thereby allowing for a sparse microscopically inhomo-
geneous backbone.
We now discuss how our picture fits with the observed

data. In our picture, the sparse network of entangled spins
in the QC regime is only subthermally entangled. Thus, the
average EE for small subregions will be subthermal in the
QC regime (and at the crossovers), consistent with Fig. 3.
As mentioned earlier, PVP’s data also show that only a
small fraction of all the spins are in thermal clusters at the
transition, and thus, their data also predict a subthermal EE
for a small subregion, in contradiction with Grover’s
scaling. Nevertheless, PVP’s discussion emphasizes agree-
ment with Grover’s thermal scaling in several places,
leaving the apparent contradiction unaddressed and unre-
solved. Of course, our picture also predicts a subthermal
half-chain EE at the QC-thermal crossover in agreement
with all the different RG treatments [22–24], but this is less
surprising since Grover’s bounds in Ref. [26] do not
constrain this quantity.
Since the network of resonances in our picture at the

QC-thermal crossover looks homogeneous on the macro-
scale with strong inhomogeneities only at the microlevel
[Fig. 6(b)], Δcuts

S is asymptotically less than the maximum
allowed value which scales as L. As an illustrative example
of such a discontiguous network, assume that, at the
crossover, every site in the chain has equal probability
of either belonging to a maximally entangled cluster or not.
Since only approximately half the sites in any subregion
will be part of the cluster, the average subregion EE will be
subthermal. Moreover, Δcuts

S in this model of random
occupations clearly gives a

ffiffiffiffi
L

p
scaling, in agreement with

the sub-volume-law-scaling for Δcuts
S in Fig. 5. On the other

hand, VHA’s RG predicts 1–2 long locally homogeneous
thermal and insulating blocks of size OðLÞ at the crossover
[Fig. 6(a)], giving an OðLÞ scaling for Δcuts

S , in contra-
diction with our observations. Again, this difference might
be due to our data being in a preasymptotic regime.
Finally, we note that we have depicted the QC-thermal

crossover regime as a wide wedge in Fig. 7. Different
samples can go through the crossover at different values of
W, thereby giving a large sample-to-sample variation in the
half-chain EE at the QC-thermal crossover. The trend with
increasing L towards stronger sample-to-sample variations
is consistent with the observed trend towards bimodality in
the distributions of the volume-law coefficient of the EE
in Ref. [29]. In fact, the trend towards bimodality near
he crossover makes a stronger statement since it indicates
that samples lying on either side of the crossover have
markedly different entanglement structures consistent with
the discontinuity we have discussed. We also note that the
Harris-CLO bounds [18] do not constrain the intrasample
variations of quantities, say, across eigenstates. This allows
the width of the finite-size scaling window in individual
samples to be much narrower than the width of the scaling
window across samples (which is constrained by the
Harris-Chayes-CLO bound). We need this narrowness in

FIG. 7. Schematic illustration of our “picture” of the MBL
phase transition showing the physical extent and entanglement
properties of the typical longest entangled cluster in the different
regimes.
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the scaling window to meaningfully discuss individual
samples being on either side of the crossover within a broad
sample-to-sample spread. This is reminiscent of the scaling
of disordered first-order thermodynamic phase transitions
in d > 2, where the width in individual samples (which
scales as 1=Ld) is much narrower than the width across
samples (which scales as 1=Ld=2) [21,38,39].
We now present one last piece of numerical data, indicat-

ing that the entangled clusters in these size ranges are not
large contiguous blocks at the crossover. To discriminate
between the two proposals in Fig. 6,we pick values ofW near
the crossover on the thermal side,W ∼ 4.0–5.0. The average
half-chain EE for a cut in the middle of the system, Smid,
is roughly 0.5ST at the W that we use for each L, although
the distribution across eigenstates and samples is fairly broad
[Fig. 8 (inset)]. To probe the local spatial structure of
entanglement, we pick all eigenstates across all samples
with 0.45 < Smid=ST < 0.55. We only consider eigenstates
in this small range of Smid to avoid the conflating effects of
local variations in entropy, which are correlated with large or
small values of Smid.
To obtain the structure of thermal clusters, we compute

the single-site S1 for each site in each eigenstate in this
restricted set and obtain the median value of S1 denoted
Smed
1 . Note that Smed

1 is chosen once and for all across all
states and sites in the ensemble. Then, in each eigenstate,
all sites with S1 ≥ Smed

1 , S1 < Smed
1 are labeled “thermal,”

“localized,” respectively. We define a thermal block B as a
contiguous set of “thermal” sites so defined and obtain the
lengths jBj of all blocks. If the picture in Fig. 6(a) holds, we
expect the typical block size to be OðLÞ, whereas the
picture in Fig. 6(b) requires the resonating cluster to be
comprised of many small blocks.

Figure 8 shows a distribution of normalized block sizes,
where NjBj is the number of blocks of a given size jBj, and
this quantity has been normalized by the average number of
blocks at each size, assuming a uniform distribution over
sizes. The data show an exponential decrease in NjBj with
jBj, supporting a scenario consistent with a sparse, micro-
scopically inhomogeneous, entangled cluster.

VI. CONCLUDING REMARKS

We studied the finite-size quantum critical and crossover
regimes of the MBL-to-ETH phase transition and found
evidence supporting a view of this transition as a hybrid
between continuous and discontinuous phase transitions.
We showed that SA, the entanglement entropy of subregions
A much smaller than the system size, looks strongly
subthermal in the critical regime, contrary to an established
constraint that requires SA to be thermal at the transition
if it is continuous [26]. This contradiction is resolved by
positing that SA varies discontinuously across the transition,
thereby violating a crucial assumption in the derivation of
the constraint. This is a striking result for a seemingly local
property across a transition that otherwise looks continuous
in many respects.
We also studied the variance of the half-chain entangle-

ment entropy and parsed in detail the contributions coming
from sample-to-sample, eigenstate-to-eigenstate, and cut-to-
cut variations. Notably, we observed a volume-law scaling
for the standard deviation of the half-chain EE across
eigenstates of the same sample, while the cut-to-cut varia-
tions were found to be subdominant. We also found that the
sample-to-sample variations give the largest contribution and
grow strongly (superlinearly) with increasingL at the system
sizes studied, a trend that is unsustainable in the asymptotic
large-L limit and is consistent with observed violations of
Harris-Chayes-CLO exponent inequalities. Our analysis
suggests the possibility of two asymptotic fixed points
governing the MBL transition: one dominated by “intrinsic”
intrasample randomness, and the second dominated by
external intersample quenched randomness. A deeper study
of this critical structure, say, via a comparison to quasiperi-
odic models with no quenched randomness, is an interesting
direction for future work [40].
We presented a heuristic picture in which the transition to

the thermal phase is driven by an eigenstate-dependent
sparse resonant cluster of long-range entanglement, which
just barely gains enough strength to thermalize the entire
system on the thermal side of the transition as the system
size is taken to infinity. This cluster looks strongly
inhomogeneous on the microscale, with small interspersed
blocks of entangled and localized spins, but has a more
homogeneous macrostructure with long-range entangle-
ment between separated blocks of spins. We discussed
the evolution of the size and entanglement properties of
this resonant cluster across the phase transition and situated
our picture relative to existing renormalization group

L = 14, W = 4.0
L = 16, W = 4.5
L = 18, W = 5.0

FIG. 8. Distribution of thermal block sizes for eigenstates with
0.45 < Smid < 0.55. The exponential decrease in NjBj with jBj
suggests that the local entanglement structure in these states looks
inhomogeneous with a network of small interspersed thermal and
localized blocks. Inset: Distributions for Smid near the crossover
for different L’s and W’s.
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frameworks for the transition. We explained how disconti-
nuities in local properties like SA, in fact, stem from a global
discontinuity—the ability of the “backbone” of entangle-
ment to effectively act as a bath and thermalize the rest of the
system.
Going forward, it would be extremely interesting to find a

prescriptive way of identifying the dominant entanglement
clusters in eigenstates and to compare their structurewith our
proposed scenario. It would also be interesting to see the
evolution of these clusters across the transition and whether
they connect with the rare thermal Griffiths regions that
dominate the low-frequency dynamics deep in the MBL
phase [24,37]. Additionally, a more detailed analysis of the
finite-size scaling windows, both intersample and intra-
sample, is essential for better understanding the properties
of this fascinating dynamical quantum phase transition.
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APPENDIX: DISTRIBUTIONS OF S1

In this appendix, we present data for the distributions
of the end-spin entanglement entropy S1. These carry more
information than the mean values presented in Fig. 3

and provide further evidence in support of subthermal
values for S1 in the quantum critical regime.
Figure 9 shows distributions of S1 across eigenstates and

disorder realizations for differentW’s and system sizes. We
find that deep in the thermal phase (W ¼ 2.0), the dis-
tribution of S1 is peaked near the thermal value of one bit,
and the distribution becomes significantly sharper with
increasing system size (notice the logarithmic scaling on
the y axis). As the transition is approached, the distributions
become broader and the system size dependence becomes
weaker. Near criticality (W ¼ 6.0, 7.0) and in the MBL
phase, the distributions are extremely broad, with virtually
no flow with system size. Of course, such broad distribu-
tions imply a strongly subthermal mean S1 in accordance
with our data in Fig. 3.
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