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The melting transition of two-dimensional systems is a fundamental problem in condensed matter and
statistical physics that has advanced significantly through the application of computational resources and
algorithms. Two-dimensional systems present the opportunity for novel phases and phase transition
scenarios not observed in 3D systems, but these phases depend sensitively on the system and, thus,
predicting how any given 2D system will behave remains a challenge. Here, we report a comprehensive
simulation study of the phase behavior near the melting transition of all hard regular polygons with
3 ≤ n ≤ 14 vertices using massively parallel Monte Carlo simulations of up to 1 × 106 particles. By
investigating this family of shapes, we show that the melting transition depends upon both particle shape
and symmetry considerations, which together can predict which of three different melting scenarios will
occur for a given n. We show that systems of polygons with as few as seven edges behave like hard disks;
they melt continuously from a solid to a hexatic fluid and then undergo a first-order transition from the
hexatic phase to the isotropic fluid phase. We show that this behavior, which holds for all 7 ≤ n ≤ 14, arises
from weak entropic forces among the particles. Strong directional entropic forces align polygons with
fewer than seven edges and impose local order in the fluid. These forces can enhance or suppress the
discontinuous character of the transition depending on whether the local order in the fluid is compatible
with the local order in the solid. As a result, systems of triangles, squares, and hexagons exhibit a
Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) predicted continuous transition between isotropic
fluid and triatic, tetratic, and hexatic phases, respectively, and a continuous transition from the appropriate
x-atic to the solid. In particular, we find that systems of hexagons display continuous two-step KTHNY
melting. In contrast, due to symmetry incompatibility between the ordered fluid and solid, systems of
pentagons and plane-filling fourfold pentilles display a one-step first-order melting of the solid to the
isotropic fluid with no intermediate phase.
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I. INTRODUCTION

The phase behavior of two-dimensional solids is a
fundamental, long-standing problem in statistical mechan-
ics. Whereas three-dimensional solids characteristically
exhibit first-order (or discontinuous) melting transitions,
2D solids can melt by either continuous or first-order
melting transitions and may exhibit an intermediate, so-
called “x-atic” ordered phase that is somewhere between an

isotropic fluid and a solid. Previous studies [1–18] that
examine two-dimensional melting find three scenarios
[19,20]. One, the system can exhibit a continuous fluid-
to-x-atic-to-solid transition. The x-atic phase has quasi-
long-range (power-law decay) correlations in the bond
order but only short-range (exponential decay) correlations
in positional order. The hexatic phase, with sixfold
bond order, is the most well-known example. The existence
of continuous isotropic fluid-to-solid transitions was pre-
dicted by the Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) theory [21–23] and has been confirmed in
experiments with electrons [1] and spherical colloids
[2,4,8,9]. The KTHNY theory of two-step melting is based
on the behavior of topological defects in the form of
dislocations and disclinations. The theory envisions that
pairs of dislocations unbind to drive a continuous transition
from solid to hexatic. Then, pairs of disclinations unbind to
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drive a continuous transition from hexatic to fluid, if the
density of disclinations is sufficiently dilute (equivalently,
that the disclination core energy is high). We refer to this
transition scenario as the continuous KTHNY melting
scenario. Two, the system can exhibit a first-order isotropic
fluid-to-solid (or solid-to-fluid) transition, with no inter-
vening phase. Both this and the first scenario were realized
in a system of charged polystyrene microspheres, depend-
ing on the particle diameter, which was postulated to have
an effect on defect core energies [7]. Nelson pointed out
[24] that this one-step melting scenario can occur in
systems with sufficiently low dislocation core energies.
Three, the system can exhibit a first-order fluid-to-x-atic
and a subsequent continuous x-atic-to-solid transition. This
combination of transitions is intermediate to the one-step
isotropic fluid-to-solid first-order transition and the two-
step continuous KTHNY behavior. This scenario can result
when the disclination density in the hexatic is high (core
energy is low). It was first experimentally observed in
neutral micron-scale colloidal spheres [5], and has been
observed recently in simulations of hard disks in two
dimensions [12,25] and under quasi-2D confinement of
hard spheres where out-of-plane fluctuations are limited
[14]. Because of its appearance in hard-disk systems, we
refer to this third melting scenario as disklike behavior.
All three melting scenarios have been observed in

experimental studies of different systems, with a variety
of long- and short-range interactions. Recent simulation
work [18] finds two of the three scenarios: point particles
with hard core repulsion interactions follow the third
scenario and softer potentials lead to continuous melting.
In this paper, we report the occurrence of all three distinct
melting scenarios in a single family of hard, regular
polygons. Hard polygons have a rotational degree of
freedom, which creates the possibility for more complex
entropic forces and more diverse solid phases than
observed for hard disks. By varying the number of polygon
edges, we show that the melting transition scenario for a
system of any given polygon is determined by the
anisotropy of emergent entropic interactions along with
the symmetry of the particles relative to that of the solid
phase. In particular, we show that systems of hexagons are
a perfect realization of the continuous KTHNY prediction,
exhibiting melting from the solid to the hexatic phase with
an increase in the dislocation density, then from the hexatic
to the fluid with an increase in the disclination density. We
find that systems of triangles and squares also show a
continuous KTHNY-type melting transition, while systems
of pentagons and fourfold pentilles have a first-order
melting transition that occurs in a single step. Finally,
we show that systems of regular polygons with n ≥ 7
behave like disks with a first-order fluid-to-hexatic and
continuous KTHNY-type hexatic-to-solid transition.
We focus our study on hard, convex, regular polygons

because we aim to discover general unifying principles of
2D melting by filling in gaps in existing literature: regular

triangles [13,16,26], squares [11,17,27], pentagons [3,10],
and heptagons [10] have been previously studied by both
experiment and simulation. These studies were instrumen-
tal in identifying and characterizing possible intermediate
phases (triatic, tetratic, and hexatic). We present new results
for regular hexagons, octagons, etc. up to 14-gons and
clarify the results of previous simulations of hard polygons
using very large simulations to conclusively determine the
orders of the various melting transitions, where previous
studies were too small to be conclusive. Section III includes
detailed comparisons between our results and previous
simulation and experimental results.
We demonstrate that changing only the number of edges

on convex regular polygons is sufficient to generate a rich
array of different melting behavior, including all three
known 2D melting scenarios. We leave for future studies
investigation of, e.g., rounding of polygons, where experi-
ment [13] and simulation [28] have revealed additional
phases.

II. METHODS

We investigate large systems of N identical polygons
with n edges that interact solely through excluded volume
interactions in a box of area Abox. Particle a has position ~ra
and orientation angle θa. The circumcircle diameter of the
polygons is denoted as σ. The majority of our work focuses
on regular polygons (n-gons) with the area of a single
particle A ¼ σ2n=2 sinð2π=nÞ. We also include in our
study, the fourfold pentille [29], which is the Voronoi cell
of the Cairo pentagon pattern and thus tiles space (see
Fig. S16 in the Supplemental Material for the tiling
configuration [30]). Figure 1 shows all 13 polygons and
summarizes their melting behavior.

A. Computational strategy

We execute Monte Carlo (MC) simulations as large as
10242 particles to obtain high-precision equations of state
and sample long-range correlation functions to conclu-
sively identify hexatic and solid phases, which recent
hard-disk simulations [12,25] found necessary. The MC
simulations are performed in the isochoric (constant area)
ensemble using the hard particle Monte Carlo (HPMC) [31]
module of HOOMD-blue [32–34]. HPMC is a parallel
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FIG. 1. The polygons studied in this work are the regular n-
gons with 3 ≤ n ≤ 14 and the 4-fold pentille labelled 5�.
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simulation implementation on many CPUs or GPUs using
MPI domain decomposition.
Each simulation begins with the particles placed in a

square, periodic simulation box. We perform simula-
tions for a long enough time to reach and statistically
sample thermodynamic equilibrium; see Sec. II of the
Supplemental Material for a complete simulation protocol
description, and Fig. S14 for an example [30]. Typical
simulation runs initially form many domains in the system,
which coalesce together over a long equilibration period of
several hundred million trial moves per particle.
Occasionally, two infinite, twinned domains form in the

system. Such configurations are metastable; they are at a
higher pressure than a corresponding single domain and the
larger domain grows very slowly into the smaller one as the
simulation progresses. We remove stuck simulations and
rerun them with different random number seeds until we
obtain a cleanly equilibrated single domain sample, except
in a few cases where multiple attempts to do so failed (e.g.,
ϕ ¼ 0.714 in Fig. S10 of the Supplemental Material [30]).
This work utilizes significant computational resources

on XSEDE [35] Stampede (222 000 service units), OLCF
Eos, OLCF Titan (115 × 106 Titan core hours), and the
University of Michigan Flux cluster (100 000 GPU hours).

B. Equation of state

We compute the equation of state P�ðϕÞ using volume
perturbation techniques [36,37] to measure pressure in
isochoric simulations. We report pressure in reduced
units P� ¼ Pσ2=kBT. In addition to the system density
ϕ ¼ NA=Abox, we determine the averaged local density
field on a grid,

Φð~riÞ ¼
A
P

N
a¼1Hðrc − j~ra − ~rijÞ

πr2c
; ð1Þ

where we choose the cutoff rc ¼ 20σ and H is the
Heaviside step function.
With the isotropic fluid density ϕf and the density of the

solid (or hexatic) phase ϕs, the latent heat L ¼ PΔAbox of a
first-order phase transition is

L
NkBT

¼ P�
c
A
σ2

�
1

ϕf
−

1

ϕs

�
; ð2Þ

where P�
c is the coexistence pressure estimated by Maxwell

construction.

C. Order parameters

We use three order parameters that were previously
effective at identifying the hexatic phase in the hard-disk
system [12,25]. Each order parameter is a complex number
on the unit circle. We visualize order parameter fields
directly in the x-y plane of the system by mapping the

complex values of an order parameter to a color wheel
(see Fig. 2). Colors rapidly cycling through the color wheel
indicate short-range order, continuous and slowly varying
patches of color indicate quasi-long-range order, and a
single solid color across indicates long-range order; mix-
tures of these patterns indicate coexistence of multiple
phases. Independent simulation runs result in different
system orientations in the box. We rotate the order
parameters so that the average in a given frame is colored
green so that images may be compared by eye.
The positional order parameter

χa ¼ ei~ra·~q0 ð3Þ

identifies how well the position ~ra of particle a fits on a
perfect lattice with reciprocal lattice vector ~q0, as depicted
in Fig. 2. When all particles have the same phases in χ, they
are in a perfect solid. Defects cause χ to rotate. We choose
~q0 as the brightest peak in the structure factor [12]
computed with the following procedure: (i) initialize a
density grid with roughly 8 × 8 pixels per particle, (ii) at
the center of each particle, place a Gaussian on this grid
with standard deviation 1

10
σ, (iii) take the fast Fourier

transform of the density grid to get the discretized Sð~qÞ,
(iv) smoothwith aGuassian filter, standarddeviation2pixels
Sð~qÞ → Ssmoothð~qÞ, and (v) choose ~q0 from the location of
the brightest pixel in Ssmoothð~qÞ.
The bond orientation order parameter for k-fold rota-

tional symmetry,

(a)

(b)
Bond order:

Positional order:

Body order:

Re

Im

FIG. 2. (a) Pictorial definitions of ~ra, ~rb, θa, αab, and ~q0. (b) We
map order parameters to a color wheel for visualization. Each
order parameter is rotated by its average in a given frame so that
the average order parameter is colored green. The color wheel is
the color part of the cubehelix [38] color map at constant apparent
luminance (v ¼ 0.5, γ ¼ 1, s ¼ 4.0, r ¼ 1, h ¼ 1).
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ψa
k;p ¼ 1

p

X
b∈NNpðaÞ

eikαab ; ð4Þ

identifies the orientation of the p nearest neighbors around
particle a. Here, αab is the angle the separation vector ~rb −
~ra makes with respect to the positive x axis, and NNpðaÞ is
the set of p nearest neighbors of a; see Fig. 2 for a graphical
definition. We omit p in the subscript when it is equal to k
and write ψa

k ¼ ψa
k;k. Some authors suggest using a

morphometric approach [39] to compute the bond orienta-
tion order parameter, which requires computing a Voronoi
diagram of the system of particles. We do not adopt this
scheme because we find the use of p fixed neighbors
sufficient as it generates order parameter fields fully
consistent with the defects present in the system.
The body orientation order parameter,

ξas ¼ eisθa ; ð5Þ
identifies the orientation of a particle accounting for s-fold
symmetry. θa is the angle that rotates particle a from a
reference frame into a global coordinate system (see Fig. 2).
It allows us to analyze the presence of rotator phases in
which ξas decays to zero rapidly as a function of the
separation distance.

D. Correlation functions

Correlation functions measure the behavior of the order
parameters as the separation rba ¼ j~rb − ~raj between a pair
of particles increases. The correlation functions for bond
orientation order and body orientation order are imple-
mented in our analysis code as

CvðrÞ ¼
P

b∈Sðm;NÞ
P

N
a¼1 v

aðvbÞ�δðr − rbaÞP
b∈Sðm;NÞ

P
N
a¼1 δðr − rbaÞ

; ð6Þ

where v ¼ ψk;p or ξn and v� is the complex conjugate.
The sampling Sðm;NÞ randomly selects m particles out of
N without replacement.
One can compute a correlation function from the

positional order parameter χ, but it is extremely sensitive
to the choice of ~q0. We observe that peaks misidentified by
only a single pixel result in an apparent lack of quasi-long-
range positional order. Instead, we follow Ref. [12] and
compute positional correlation functions from

CgðrÞ ¼
hgψ(ðr; 0Þ; α)i − 1

max½hgψ(ðr; 0Þ; α)i − 1� ; ð7Þ

which oscillates, so we show only identified peaks. The
signal then decays to about 10−3 at large r. The function
gψ ð~r; αÞ is the discretized 2D pair correlation function
obtained by correlated averaging over individual measure-
ments with index i,

gψ ð~ri; αÞ ¼
P

b∈Sðm;NÞ
P

N
a¼1 dκ½Rð−αÞ~rba − ~ri�
m=A

; ð8Þ

where RðβÞ is the rotation matrix that rotates a vector by the
angle β,Δr is the bin size, and dκ is the coarse-grained delta
function:

dκð~rÞ ¼
� ðΔrÞ−2 if 0 ≤ rx; ry < Δr

0 otherwise:
ð9Þ

Since the system rotates from frame to frame, it must be
aligned to the bond orientation order parameter before
averaging. To do this, we compute gψð~ri; αÞ over many
frames with large m. We align each frame using the bond
orientation order parameter averaged over all particles in
the frame, α ¼ argðhψk;piÞ. Averaging the separately
aligned gψð~ri; αÞ and then computing CgðrÞ significantly
reduces noise [25].

E. Sub-block scaling analysis

The sub-block scaling of χ is a sensitive measure of the
density of the hexatic-to-solid transition [6,15]. The first
density that sits on or under a line of slope −1=3 is at the
hexatic-to-solid transition. Similarly, sub-block scaling in
ψ determines the density at which the hexatic melts into the
isotropic fluid, with a line of slope −1=4.
We perform a sub-block scaling analysis on the posi-

tional order parameter χ and the bond orientational order
parameter ψa

k;p. For this analysis the simulation box of
length L is divided into squares of side length Lb. Within
each box, we calculate

vðLbÞ ¼
����� 1N

XNLb

a¼1

va
����
�
; ð10Þ

where v ¼ ψk;p or χ, NLb
is the number of particles in a

sub-block, and hi denotes averaging over sub-blocks in the
same snapshot. Standard errors are calculated by averaging
the values of vðLbÞ over independent frames.

F. Topological defect analysis via cell-edge counting

We generate statistics on topological defects using a
Voronoi tessellation of the set of particle centers to count
edges of Voronoi cells. Each particle a is assigned the
number of adjacent Voronoi cells na and the disclination
charge qa ¼ na − 6. In the presence of well-separated
topological defects, disclinations can be found by identify-
ing particles with nonzero disclination charge, and dis-
locations correspond to bound pairs of a five-coordinated
particle (q ¼ −1) and a seven-coordinated particle
(q ¼ þ1). However, while disclination charges with
jqj > 1 are very rare in our hard particle systems, particles
with nonzero disclination charge are often not clearly
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separated or bound into pairs but instead agglomerate into
larger clusters. This makes it ambiguous to identify the
locations of individual disclinations and dislocations.
To overcome this ambiguity, we cluster defects if they

are in adjacent Voronoi cells and calculate the total
disclination charge q ¼ P

qa of the cluster [40]. For
disclination-neutral clusters (q ¼ 0), the total Burgers

vector ~b of the cluster can be determined from the
disclination charges and their positions,

~b ¼ ẑ ×
X
a

qa~ra; ð11Þ

where ẑ is the unit vector along the out-of-plane axis and
the cross product is performed in 3D space. Because
Burgers vectors are topologically restricted to be lattice
vectors, the vector we obtain from this computation is then
snapped to its closest lattice point in a hexagonal lattice
whose lattice spacing is that of the ideal lattice at the
density of the simulation frame. We count the number of
particles in three types of defect clusters, overall neutral

(q ¼ 0, ~b ¼ 0), Burgers charged (q ¼ 0, ~b ≠ 0), and
disclination charged (q ≠ 0) as a function of density.

G. Phase determination

We identify first-order transitions using the following
criteria: (i) a two-phase region is evident in isochoric
simulations at large N, (ii) the two phases have different
densities, and (iii) the equation of state has a Mayer-Wood
loop [12,25], which decreases in height as N increases. In
contrast, continuous transitions have a monotonic equation
of state and only a single phase at a single density is present
in each frame across the entire transition. The signature of
two phase regions includes a bimodal local density histo-
gram along with two different correlation length behaviors
seen in the ψ and χ order parameter fields coincident with
the low and high local densities. In all cases where we find a
Mayer-Wood loop, we observe two-phase regions, and in
all cases where we find a continuous equation of state, we
observe only single phases across the transition.
Correlation lengths vary significantly in the simulations.

In the isotropic fluid phase, positional order χ decorrelates
instantly with correlation lengths of only 1σ. Bond orienta-
tional order ψk;p persists a bit further with correlation
lengths of tens of σ but still exhibits clear short-range order.
In the hexatic phase, χ oscillates visibly through the
full color wheel along a given direction forming stripes
[Fig. 3(b)], a behavior indicative of short-range order.
Unbound dislocations exist at the end of each stripe. For
continuous phase transitions, the oscillation period gets
larger as density increases. Solid phases lead to patchy
motifs in χ (quasi-long-range order). Two-phase regions
show a combination of two of thesemotifs in a single system.
We use a combination of positional correlation functions,

bond order correlation functions, order parameter images,

and sub-block scaling methods to determine all phase
boundaries. An additional quantity that discriminates the
solid from fluid phases is the dynamic Lindemann criterion,
which previous authors have used to locate melting
transition points [8,41]. The positional correlation function
we use in this work requires extremely large simulation
sizes but only about 50 static frames, whereas the dynamic
Lindemann parameter is calculated over long time traces on
smaller system sizes. Future work can incorporate one or
both of these discriminators to determine solid-fluid tran-
sition points.
Our observations confirm in all cases that we have run

simulations sufficiently large to allow the fluctuations in
the order parameter fields of the fluids and x-atics to occur
several times across the box. Only in the solid phase
regions are the order parameter fields essentially constant
and vary by less than one period.

III. RESULTS AND DISCUSSION

We perform identical analyses for each of the 13
polygons we investigate in this work. Within the main
text, we include representative plots and snapshots to
illustrate examples and explanations of the three melting
scenarios. The Supplemental Material contains detailed
plots for all of the shapes in Figs. S1–S13, including the
equation of state, local density histogram, sub-block scal-
ing analysis, correlation functions, snapshots colored by all
of the order parameters, and structure factors [30].

A. Continuous KTHNY behavior

Our data show that systems of triangles, squares, and
hexagons have continuous fluid-to-x-atic and continuous
x-atic-to-solid transitions. We refer to the monotonic
equations of state in Figs. S1, S2, and S5 of the
Supplemental Material [30] for the triangle, square, and
hexagon data, respectively. Triangles line up edge to edge
with alternating orientations so that each triangle has three
nearest neighbors in threefold symmetric positions, to form
a triatic phase as previously reported [13,16]. Combining
the two local environments leads to a global signal with
hexagonal order in ψ3

6. Hexagons have six nearest neigh-
bors and hexatic order with a signal in ψ6, and squares have
four nearest neighbors and tetratic order with a signal in ψ4.
Our data for triangles and squares agree with prior literature
[13,16,17,26,27], so we focus our discussion on new results
for systems of hexagons. Figures 3(a)–3(c) demonstrate the
continuous transitions for hexagons, with a single density at
each state point and gradually developing order in the order
parameter fields.

1. Decay of correlation functions

The first state point showing quasi-long-range bond
orientation order in the hexagon system is ϕ ¼ 0.686. At
this density, positional order is extremely short ranged,
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(a) (b)

(c)

(d) (e)

(f)

(g) (h)

(i)

FIG. 3. Example phase transitions from the three melting scenarios. We show data for (a)–(c) hexagons (N ¼ 5122)
following the continuous KTHNY scenario, (d)–(f) pentagons (N ¼ 10242) exhibiting a first-order isotropic fluid-to-
solid transition, and (g)–(i) octagons (N ¼ 10242) following an intermediate scenario exhibiting a first-order fluid-to-hexatic
transition. For each shape, the top left-hand panels show local density histograms [(a),(d),(g)]. The right-hand panels show bond
and positional order parameters at selected densities [(b),(e),(h)]. The bottom left-hand panels show sub-block scaling
analysis [(c),(f),(i)].
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persisting for only a few particle diameters. As density
increases, the decay length of the positional order becomes
longer, up to hundreds of particle diameters at ϕ ¼ 0.702,
and begins to diverge. At ϕ ¼ 0.708, positional order
switches to quasi-long-range and the system is in the solid
phase as determined by sub-block scaling. KTHNY theory
predicts a slope of −1=4 in ψ6 scaling at the fluid-to-hexatic
transition, a perfect match for the ϕ ¼ 0.686 line in
Fig. 3(c). The theory also predicts a slope of −1=3 for χ
scaling, which similarly matches the scaling for ϕ ¼ 0.708.
At the same density, the directly computed positional
correlation CgðrÞ length is beginning to diverge, so it is
difficult to determine the exact density of the hexatic-to-
solid transition from correlation functions alone.

2. Topological defects and local order

The KTHNY theory envisions a picture of tightly bound
defects transitioning to free dislocations at the solid-hexatic
transition, and to free disclinations at the hexatic-fluid
transition. Interestingly, this work shows that defects are
not free, but instead form large and complex clusters.
Defect clustering has been shown in hard disks, which have
a first-order fluid-hexatic transition [12], and in soft disks
interacting by a repulsive 1=r3 potential, which exhibit
continuous KTHNY melting [18,42]. Because some degree
of defect clustering is both consistent with the KTHNY
theory and exhibited in non-KTHNY scenarios, defect
clustering alone is insufficient to characterize why a solid
may deviate from the melting KTHNY scenario. However,
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FIG. 4. Defect counts as a function of density obtainedwith cell-edge counting. The particle count is the number of particles that belong to
any defect cluster classified into neutral, Burgers-charged, and disclination-charged clusters. The panels show results of the defect analysis
plots for polygons n ¼ 5 (a), 5� (b), 6 (c), 7 (d), 8 (e), 9 (f), 10 (g), 11 (h), 12 (i), 13 (j), and 14 (k), averaged over 4–8 runswith 19–49 frames
per run at the system sizeN ¼ 1282. The defect count algorithm is expensive, sowe do not run it on the largest size simulationswe perform.
We also show the phase diagram overlaid on the counts. Error bars at 1 standard deviation are smaller than the symbol size.
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in the extreme case that defects cluster into one-
dimensional strings, such a scenario would lead to grain-
boundary-induced melting [43,44].
Figure 4(c) shows the density dependence of the number

of particles comprising clusters of defects that are overall
neutral, those with a Burgers charge, and those with
disclination charge. A large number of free dislocation
clusters with nonzero Burgers vectors simultaneous with
few free disclinations is evidence for the hexatic phase. We
observe that the count of particles in Burgers-charged
clusters begins increasing just below ϕ ¼ 0.710 at the
solid-to-hexatic transition. The count of particles in discli-
nation-charged clusters remains low, and starts ramping up
slowly in the middle of the hexatic phase at ϕ ¼ 0.696.
Throughout the hexatic phase, we find many more particles
in Burgers-charged clusters than in disclination-charged
clusters. This is consistent with the two-step KTHNY
melting scenario and the two continuous phase transition
we observe for hexagons.
Figure 5(a) shows the structure of the defects in a system

of hexagons at ϕ ¼ 0.690, in the hexatic phase. The density
of free dislocations (red and green pairs) is much higher than
that of free disclinations (there is a single lone green particle
in the image), but the structure is more complicated because
the defects combine into large clusters. The left-hand panel
ofMovie 1 of the SupplementalMaterial shows how defects
migrate as the Monte Carlo simulation progresses via local
moves for a simulation of hexagons at ϕ ¼ 0.690 [30].
Dislocations are unstable and highly mobile, quickly hop-
ping between sites and popping in and out of existence. We
find that the count of nearest neighbors is very sensitive to
small changes in particle coordinates.
We also compute the isoperimetric quotient IQ ¼

4πA=P2 for each Voronoi cell, where A is the area and P
is the perimeter of the cell. Regular polygons have the value
IQ ¼ π=ðn tanðπ=nÞÞ. More elongated Voronoi cells have
low IQ and indicate locations of large crystal deformity,
which makes IQ an approximate indicator of defects.
Figure 5(b) and the right-hand panel of Movie 1 of the
Supplemental Material [30] color particles by hIQi − IQ.
Blue indicates large deviation from hIQi and yellow indi-
cates little deviation. If IQ > hIQi, the particle is darkened,
as these particles are closest to having regular crystal
environments.
The coloring scheme based on the IQ is a continuous

quantity and, as seen in the movie [30], is less sensitive to
small particle displacements. In contrast, the number of
edges of a Voronoi cell changes discontinuously across
Monte Carlo steps. This suggests hIQi − IQ might be a
more robust indicator of defect concentrations on short time
scales, while cell-edge counting is simple and reliable for
long time averages over uncorrelated frames. We also note
that in systems of triangles and squares, defects are even
more delocalized and Voronoi cell-edge counting is unable
to identify defects, while hIQi − IQ can still identify areas
where defects are present.

3. Particle alignment

At all densities we simulate for triangles, squares, and
hexagons, the bodyorder parameter ξs closelymatches that of
thebondorder parameterψk;p.Wequantify this bycomputing
the cross-correlation between the two quantities jhψk;pξ

�
sij in

the fluid, hexatic, and solid phases (Table I). We expect high
bond-body cross-correlation at high density when particle
rotation becomes locked in, as found in previous studies [10].
However, a strong signal is present even in the isotropic fluid
for triangles, squares, and hexagons.
The cross-correlation results demonstrate alignment of

the edges of neighboring particles. This can be interpreted
as an effect of directional entropic forces [45]. We quantify
the alignment with the potential of mean force and torque
(PMFT) [46], computed from runs in the highest density

(a)

(b)

FIG. 5. Representative snapshot of the hexagon system
N ¼ 1282 at density ϕ ¼ 0.690. (a) Particles are colored by
the number of edges in the Voronoi cell. Red, blue, and green
cells have seven, six, and five sides, respectively. (b) Particles are
colored by hIQi − IQ. Blue indicates large deviation from hIQi
and yellow indicates little deviation.
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pure isotropic fluid phase for each polygon. For each
particle, we determine the relative position of its neighbors
and construct histograms using many frames to obtain
reliable averages. The free energy F of a given configu-
ration is related to the negative logarithm of the histogram.
We average an area in the PMFT 25σ from the center to set
F ¼ 0 as a baseline.

Figure 6 shows the results of this calculation. All low-
symmetry regular polygons (n < 7) have distinctly sepa-
rated wells for edge-to-edge contacts at F ¼ −1.5kBT. This
indicates preferential edge-to-edge alignment in the solid
by strong directional entropic forces. But only when the
symmetry of the particle shape is compatible with the
symmetry of the bond order, as found in hexagons,
triangles, and squares, does such edge-to-edge alignment
promote local solid motifs in the fluid. Such a preordered
fluid allows the correlation length to increase smoothly
from short range to quasi-long-range and the transition to
the solid to be continuous.
Triangles and squares have a distinct overall behavior

from hexagons due to the delocalized defects. They have
a smeared-out phase transition between ϕ ¼ 0.71 and
ϕ ≈ 0.8 (Fig. 7). Their equations of state are smooth and
slowly increasing with barely detectable kinks (Figs. S1
and S2 of the Supplemental Material [30]). In comparison,
the hexagon equation of state has sharp kinks and almost
levels off through the transition (Fig. S5 [30]). Interestingly,
the melting transition of hexagons becomes more evidently
continuous as the system size increases and could, in fact,
be mistaken for a first-order transition in small systems of
only a few thousand particles.

TABLE I. Cross-correlation between bond and body orienta-
tion in the isotropic fluid, x-atic, and solid phases. We select the
highest density pure isotropic fluid phase, the highest density
pure x-atic phase, and the lowest density pure solid phase. Errors
of 2 standard deviations of the mean are approximately 0.001 for
all values.

Phase
Polygon Cross-correlation Fluid x-atic Solid

Triangle jhψ6;3ξ
�
6ij 0.117 0.221 0.236

Square jhψ4ξ
�
4ij 0.449 0.790 0.810

Pentagon jhψ6ξ
�
10ij 0.001 � � � 0.001

Hexagon jhψ6ξ
�
6ij 0.244 0.294 0.299

Heptagon jhψ6ξ
�
14ij 0.001 0.001 0.001

Octagon jhψ6ξ
�
8ij 0.001 0.001 0.001

Dodecagon jhψ6ξ
�
12ij 0.001 0.039 0.039

FIG. 6. Potential of mean force and torque plots for polygons n ¼ 3–13 computed at the highest density isotropic fluid for each
polygon. We choose the zero energy reference as the average over a large region 25σ from the center (not shown). The data are shown as
a contour plot with selected free energy or entropy well contours. Computed from N ¼ 2562 simulations.
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4. Comparison to prior literature

Previous studies have looked at systems of triangles and
squares. We are not aware of any studies on systems of hard
hexagons to which we can compare our results.
Simulations of 1800 equilateral triangles using an

approximate event-driven molecular dynamics method
showed a continuous isotropic fluid-to-liquid crystal-like
phase transition [26] at ϕ ¼ 0.57 that remained up to the
highest density simulated of ϕ ¼ 0.90. Experiments on
rounded triangular colloidal platelets in Ref. [13] found an
isotropic fluid-to-triatic transition at ϕ ¼ 0.55 that transi-
tioned to a chiral phase at ϕ ¼ 0.61. Monte Carlo simu-
lations of 3200–12 800 equilateral triangles showed a
continuous isotropic fluid-to-triatic transition at ϕ ¼ 0.70
and a triatic-to-solid transition at ϕ ¼ 0.87, which transi-
tioned to a chiral phase at ϕ ≥ 0.89 [16].
Our simulations of 1 042 944 equilateral triangles show a

continuous isotropic fluid-to-triatic transition at ϕ ¼ 0.720
and a continuous triatic-to-solid transition at ϕ ¼ 0.792,
quantitatively consistent with Ref. [16] within errors due to
differing system sizes and estimation of the critical point by
correlation functions alone. We focus only on the melting
transition, so we do not execute simulations of equilateral
triangles above ϕ ¼ 0.84 and, thus, do not attempt to
reproduce the chiral phase in our data. The qualitative order
of phases is the same as found in experiment [13], but our
phase boundaries do not match quantitatively because the
shapes in the experiment are rounded.
Monte Carlo simulations of 196–3136 squares showed a

continuous fluid-to-tetratic transition at ϕ ¼ 0.7 [27].
Experiments on vibrated granular squares (LEGOs) found
tetratic orientational order in the range ϕ ¼ 0.72–0.77 and

a solid above 0.77 [17]. Our simulations of 10242 hard
squares show a continuous fluid-to-tetratic transition
at ϕ ¼ 0.720 and a continuous tetratic-to-solid transition
at ϕ ¼ 0.84.

B. First-order isotropic fluid-to-solid transition

Our data clearly show that systems of regular pentagons
have a first-order transition directly from the isotropic fluid
to the solid. This is seen in Figs. 3(d)–3(f) at ϕ ¼ 0.688.
There is a stripe of low density (local density Φ ¼ 0.676)
next to a stripe of solid (Φ ¼ 0.694) with quasi-long-range
positional order. The two-phase region starts at ϕ ¼ 0.680
and the pure solid phase starts at ϕ ¼ 0.694. The two-phase
region is coincident with a Mayer-Wood loop in the
equation of state (Fig. S3 of the Supplemental Material
[30]). The symmetry of the pentagon is not compatible with
hexagonal ordering in the solid, so even though it has
strong entropic edge-edge bonds, the body-bond cross-
correlation (Table I) is zero and the phase transition
becomes first order.
The one-step melting process of pentagons also shows

up in the defect counts, Figs. 4(a) and 4(b). We observe
sharp kinks just below the pure solid phase at ϕ ¼ 0.692 for
counts in clusters with Burgers and disclination charges.
One-step melting is supported by this coincident increase in
the number of free dislocations and free disclinations.
Our results are consistent with previous studies of

pentagons. Monte Carlo simulations on small systems of
pentagons showed a transition from an isotropic fluid to a
hexagonal rotator crystal at ϕ ¼ 0.68 [10]. The same fluid
to rotator crystal transition was also reported with rounded
colloidal pentagons at ϕ ¼ 0.66 [47]. The data in that work
suggests a possible hexatic phase, but is inconclusive due to
small system sizes within the field of view of the camera.
Our simulations indicate there should be no hexatic phase
with zero rounding. Pentagon phase behavior has also been
studied in systems of fivefold symmetric molecules [48]
and with vibrating shaking tables [3,49]. None of these
previous studies, however, conclusively demonstrated the
first-order, one-step nature of the melting transition in
pentagons.
Of all the regular shapes we study, only triangles,

squares, and hexagons fill space. These are also the only
three shapes that follow the continuous KTHNY prediction.
To test if another space-filling polygon behaves similarly,
we conduct simulations of the fourfold pentille [29], an
irregular pentagon with two different edge lengths that tiles
space with fourfold symmetry. We find that the fourfold
pentille behaves like the regular pentagon, with a first-order
isotropic fluid-to-solid transition and no intermediate hex-
atic, though the transition occurs at a higher pressure
(Fig. S4 [30]). At high fluid densities, directional entropic
forces (Fig. 6) are blurred by the edge lengths and the
resulting tenfold particle body order is not compatible with
either the tiling or the hexagonal solid motifs, so the

FIG. 7. Phase diagram of hard polygon melting behavior. Disk
results (n → ∞) are from Refs. [12,25]. The label 5� refers to the
fourfold pentille. The n ¼ 3 solid is a honeycomb lattice with
alternating triangle orientations, the n ¼ 4 solid is a square
lattice, and the n ≥ 5 solids are all hexagonal.
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transition is first order. This suggests that the space-filling
property itself is not the factor triggering KTHNY melting
but instead the similarity between the local order in the
dense fluid and the local order in the solid.

C. Disklike behavior

Figure 7 summarizes the phases found for all regular
polygons studied in this work and includes the hard-disk
phase diagram (n → ∞) for comparison. Disks have a first-
order fluid-to-hexatic transition, a narrow region of stability
for the hexatic phase, and a continuous hexatic-to-solid
transition. A similar smooth behavior with n is found in
the latent heat of the first-order transitions (Fig. 8). The
coexistence pressure decreases monotonically as n
increases, approaching that of disks. The fourfold pentille
is an outlier compared to the regular polygons with almost a
factor of 2 higher coexistence pressure.
We execute simulations up to n ¼ 14 in this work and

find that all regular polygons with n ≥ 7 have first-order
fluid-to-hexatic and continuous hexatic-to-solid phase tran-
sitions. Figures 3(g)–3(i) illustrate this for a system of
octagons. In the two-phase region we see a mixture of
isotropic fluid and hexatic phases. This is the same
behavior as seen for disks. The only difference is that
the transition shifts to lower packing fraction as n
decreases. This shift is expected from the increasing
anisotropy and relative strength of directional entropic
forces with decreasing n. At n ¼ 7 the start of the phase
transition is at ϕ ¼ 0.680, increases to ϕ ¼ 0.692 by
n ¼ 12, 14, then again increases to ϕ ¼ 0.702 for disks.
We observe a small jump in critical density from n ¼ 14 to
disks, despite the very close coexistence pressures. We
surmise that all regular polygons with n ≥ 7 have a first-
order fluid-to-hexatic transition followed by a continuous
hexatic-to-solid transition, with the transition range shifting
higher in density with larger n.

Of the studied polygons with n ≥ 7, only the dodecagon
with n ¼ 12 has a particle symmetry compatible with the
bond order in the solid. Although for this polygon strong
directional entropic forces have the potential to drive a
continuous transition from the fluid to the hexatic and solid
phase, the simulations show a clear first-order transition for
dodecagons. There is no body-bond cross-correlation in the
isotropic dodecagon fluid (Table I), but it does appear
weakly in the hexatic phase. The relatively short edge
lengths in the dodecagon lower the strength of edge-edge
alignment to the point where it is not strong enough to
encourage local hexagonal motifs in the isotropic fluid, and
as a result, the transition from bond orientation disorder to
order becomes sharp. All regular polygons with n ≥ 7 have
smeared out F ¼ −1kBT contact wells (Fig. 6) that encircle
the polygon, indicating weaker edge-edge alignment than
triangles, squares, and hexagons, allowing a much more
isotropic behavior. This is why all regular polygons n ≥ 7
share the same fluid-solid transition properties as disks.
Regular polygons with n ≥ 7 exhibit an intermediate

hexatic phase with a very narrow region of stability and a
first-order transition to the isotropic fluid. As a result, the
defect counts [Figs. 4(d)–4(k)] for these polygons is not as
clear. The Burgers-charged and disclination-charged counts
for these polygons have sharper kinks than the hexagons,
but they do not parallel each other as closely as in the
pentagons. Despite this, the hexatic-to-solid transition
follows KTHNY predictions. In particular, the sub-block
scaling analysis for χ predicts the hexatic-to-solid transition
density with high accuracy, as shown in Fig. 3(i), where the
scaling line for ϕ ¼ 0.704 falls almost exactly on the dotted
line predicted by theory.

IV. CONCLUSION

In 1988, Strandburg wrote [19] the following: “For a
decade now the nature of the two-dimensional melting
transition has remained controversial.” At that time the
three fluid-to-solid transition scenarios we discuss here
were considered, but in many cases the available evidence
was inconclusive as to which system shows which scenario
and whether all scenarios indeed occur. Two-dimensional
simulations have come a long way since 1988. With the
advancement of high-performance computing we can now
obtain correlation functions with high enough precision and
rely on additional analysis techniques like order parameter
fields, sub-block scaling, and cell-edge counting. Together,
these tools reliably identify x-atic phases and resolve the
nature of the 2D melting transition. Today, we can con-
fidently state that the three scenarios discussed already
30 years ago indeed occur and, in fact, can be observed in a
single system, namely, the hard polygon family studied in
the present work.
As we demonstrate, the polygon’s shape symmetry

with respect to the lattice of the solid phase determines
the melting scenario. Systems of triangles, squares, and

FIG. 8. Latent heat (green diamonds) of the first-order phase
transition and the two component factors plotted separately. P�

c
(red circles) is the coexistence pressure, and the area difference
per particle δA is shown below (blue squares). Filled symbols are
regular polygons, and the open symbols are the fourfold pentille.
Error bars are estimated at 0.001 error in the transition densities.
Data for disks (n → ∞) are from Ref. [12].
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hexagons follow the KTHNY scenario well. They promote
strong directional entropic forces that preorder the fluid
into symmetries that are compatible with the solid.
Pentagons and plane-filling fourfold pentilles have similar
strong anistropic aligning forces in the fluid, but their
symmetry is incompatible with the hexagonal order of their
solid phase. As a result, they display a clear one-step first-
order melting of the solid to the isotropic fluid with no
intermediate phase. Regular polygons with sufficiently
many (n ≥ 7) edges have no preferential alignment.
They show a close resemblance to hard-disk behavior
and exhibit a first-order fluid-to-hexatic phase transition
and a continuous hexatic-to-solid transition, which is the
intermediate scenario between KTHNY and one-step first-
order melting.
Our results show that some 2D particles exhibit a

continuous KTHNY melting scenario when local coupling
is strong and a hard-disk melting scenario when local
coupling is weak. A crossover from continuous to first-
order isotropic fluid-to-hexatic transition was recently
reported for a system of disks interacting via soft r−m

potentials [18]; for m > 6, disks are hard enough to exhibit
hard-disk melting, whereas for m ≤ 6, they exhibit con-
tinuous KTHNY melting. We can compare these two very
different classes of systems (hard polygons and repulsive
disks) in general terms. In our system, we correlate “soft-
ness” achieved with n ≤ 6 with strong anisotropy in the
entropic force field. For polygons with n ≤ 6, the anisom-
etry is sufficient to allow other particles to approach at
distances well inside the corresponding circumcircle of the
polygon. This “overlap” creates the equivalent of a soft
effective interaction. Rounding polygon edges limits how
close neighboring particles may approach, and, e.g.,
systems of sufficiently rounded hexagons should demon-
strate disklike behavior—we leave such a study for future
work. More generally, the melting transition depends
strongly on the symmetry of local interactions, not just
the strength, when one has anisotropic interactions. In the
present study, this anisotropic coupling is provided by
emergent entropic forces, but we predict that anisotropic
coupling of any origin is sufficient to produce the variety of
melting scenarios we observe in polygons.
We published a subset of the data produced for

this work [50], including the final four frames from
trajectories at the largest system sizes simulated for each
polygon.
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