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Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits
a remarkable propensity to self-organization and collective motion. The local input of energy and simple
particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic
vortices and coherent structures with long-range order. A realization of an active system has been conceived
by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and
validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model
describing intricate properties of such a living nematic. In faithful agreement with the experiment, the
model reproduces the onset of periodic undulation of the director and consequent proliferation of
topological defects with the increase in bacterial concentration. It yields a testable prediction on the
accumulation of bacteria in the cores of þ1=2 topological defects and depletion of bacteria in the cores of
−1=2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline
film fully confirms this prediction. Our findings suggest novel approaches for trapping and transport of
bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and
manipulate microscopic objects in active matter.
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I. INTRODUCTION

Assemblages of interacting self-propelled particles trans-
ducing energy stored in the environment into mechanical
motion are termed active matter [1]. Active matter reaches
to both living and synthetic nonequilibrium systems, from
macroscopic bird flocks and fish schools [2,3] to micro-
scopic suspensions of microorganisms [4,5], cytoskeletal
extracts [6–8], and self-phoretic colloids [9,10].
Suspensions of self-propelled particles such as swim-

ming bacteria are among the simplest realizations of active
matter. Experimental and theoretical studies revealed the
onset of collective behavior and “bacterial turbulence”

[4,5,11–14], reduction of the effective viscosity [15,16],
and many other phenomena not present in equilibrium
colloidal suspensions. Another important class of active
matter is formed by nonmotile particles with apolar
(or nematic) interaction, or “active nematics.” The most
known example of active nematic is a suspension of
molecular motors and microtubules in the presence of
“fuel” (adenosine-triphosphate) [17]. While individual
particles (microtubules) are nonmotile, their pairwise inter-
actions mediated by molecular motors result in the onset of
“active stress” and relative microtubules sliding. Active
nematics exhibit a complex spatiotemporal behavior [18]
and even a long-range ordering of topological defects [19].
A theoretical understanding of active nematics was
achieved by particle simulations [20], phenomenological
hydrodynamic models [21,22], or by asymptotic reduction
of the probabilistic Boltzmann equation for interacting
particles to the Ginzburg-Landau-type model [23,24]. An
equilibrium nematic liquid crystal (LC) model [25,26]
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supplemented by a phenomenological active stress was
used in a number of works [27–31]. These studies provided
important insights into the annihilation dynamics of
defects, velocity correlations, and the onset of “active
turbulence.” However, it is not clear to what extent the
continuum models are connected to the experiment [17],
and how model parameters are related to experimental
conditions.
A biosynthetic active material represented by a suspen-

sion of motile bacteria in a nontoxic lyotropic nematic
liquid crystal was conceived in Refs. [32–36]. The material
exhibits unique optical and mechanical properties, includ-
ing guidance of bacteria along the nematic director,
visualization of nanometer-thick bacterial flagella [32],
transport of cargo along bacterial trajectories [33], and
dynamic self-assembly of bacterial clusters [35]. For higher
concentrations of bacteria, a spontaneous onset of spatio-
temporal director undulations, a proliferation of topological
defects, and turbulentlike states were observed [32]. While
this “living nematic” turbulence is reminiscent of that in the
motor-microtubules system [17], the physical mechanisms
governing the self-organization in these two active systems
are very different. In contrast with the sliding microtubules
system [17], there is no direct mechanical coupling
between bacteria and liquid crystal molecules: swimming
bacteria interact with a liquid crystal by hydrodynamic and
elastic forces. Additionally, in the living nematic, the
energy input is provided by swimming bacteria, whereas
in the motor-microtubules system, it is due to relative
sliding of nonmotile microtubules. Moreover, it is not clear
to what extent the generic models of an active nematic
[27–31] are applied to suspensions of self-propelled par-
ticles in a nematic fluid [32].
Here, we develop a predictive computational model

describing a living nematic represented by bacteria swim-
ming in a liquid crystal [32]. We take advantage of the fact
that mathematical models for both constituents, suspending
a lyotropic liquid crystal and the suspended bacteria in

isotropic liquids, are well established and validated by
experiments and simulations. Our model faithfully repro-
duces key experimental observations in [32] the undulation
instability of the aligned nematic state with the increase in
bacterial concentration leading to a proliferation of �1=2
defects (disclinations) and the consequent onset of spatio-
temporal chaos. The model also leads to a testable
prediction on accumulation of bacteria in the cores of
þ1=2 defects and corresponding expulsion of bacteria from
−1=2 defects. To verify this prediction, we conduct a
dedicated experiment with a fluorescent strain of motile
bacteria Bacillus subtilis suspended in a freestanding film
of lyotropic liquid crystal disodium cromoglycate (DSCG).
The experiment faithfully confirms our theoretical predic-
tion. In addition to relevance to the physics of nonequili-
brium systems, our findings suggest novel approaches for
trapping and transport of bacteria and synthetic swimmers
in anisotropic liquids.

II. MODEL

Our continuum model, linking the dynamics of a LC
with the motility of bacteria, describes a large-scale
collective behavior emerging in this active system. The
model is motivated by experiments on suspensions of
bacteria in liquid crystals in Ref. [32]. Since the experi-
ments are performed in a thin-film geometry with the scale
of the emergent patterns much larger than the cell thickness
h [see Fig. 1(a)], we employ the depth-averaged quasi-two-
dimensional description.
Our main assumptions are the following. (i) The volume

fraction of bacteria is relatively low and does not perturb
properties of the suspending liquid crystal. This assumption
is justified by exceedingly small bacterial volume fractions
(of the order of 0.2% or about 5 × 108 cells=cm3) needed
for the onset of instability [32]. The continuum description
is justified as long as the emergent pattern wavelength
(about 500 μm near the threshold) is large compared to the

θ ϕ

(b)(a)
F
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FIG. 1. Schematics of experimental cell. (a) A liquid crystal suspension of motile bacteria is sandwiched between two glass plates with
the separation h [32]. A specific treatment of the glass plate inner surface anchors the LC director n along the x axis. Bacteria exhibit
apolar interaction: bacteria swimming in the opposite direction can pass without collision. (b) Illustration of bacterial alignment along
the LC director n. Swimming bacteria impose a pair of forces �F (force dipole) on the LC.
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interbacteria distance, ∼10 μm. (ii) The suspended bacteria
tend to align with the local nematic director n ¼
½cosðθÞ; sinðθÞ�, where −π=2 ≤ θ < π=2 is the nematic
angle; see Fig. 1(b). This assumption is justified by the
fact that a rod-shaped object with a planar surface anchor-
ing, such as a bacterium, tends to align with the local
director n. A misaligned configuration would cost higher
elastic energy [37]. Our analysis indicates that the align-
ment of bacteria with the LC director happens on a time
scale of 1 sec, which is smaller than any characteristic time
of collective behavior. (iii) Interactions between bacteria
are apolar; see Fig 1(a). This assumption is justified by
our quasi-two-dimensional approximation: In a two-
dimensional view, bacteria traveling in opposite directions
can pass without collision at slightly different heights.
Thus, we assume that at each point x, y we may have two
concentrations of bacteria cþ and c−, swimming in oppo-
site directions, n and −n (compare with Ref. [38]).
We employ the well-established Edwards-Beris model

for LC in terms of a tensorial order parameter Q [26]:

ð∂t þ v ·∇ÞQ − S − ΓHþ Fexter ¼ 0: ð1Þ
Here, Q ¼ qðnn − I=2Þ is a traceless symmetric tensor,
n ¼ ½cosðθÞ; sinðθÞ� is a nematic director, I is the identity
tensor, q > 0 is the magnitude of the order parameter, Γ is a
director relaxation rate, H is a molecular field, v is a flow
velocity, and S is a tensor containing the velocity gradients
andQ. Expressions forH and S are given in the Appendix.
The last term in Eq. (1) describes the aligning effect of the
external field Fexter, which arises in our case due to surface
anchoring.
The linear momentum balance equation is of the form

∇ · ðσa þ σs þ σact þ σvisc − pIÞ − ζv ¼ 0: ð2Þ
Here, σa, σs, σvisc are, correspondingly, symmetric, anti-
symmetric, and viscous contributions to the stress tensor (see
the Appendix and the Supplemental Material [39]). Fluid is
assumed to be incompressible, and the hydrodynamic
pressure p can be eliminated by the incompressibility
condition∇ · v ¼ 0. Theviscous friction term−ζv originates
from depth averaging of the flow profile, ζ ¼ 12η=h2, where
η is the isotropic viscosity (compare Refs. [14,29]).
A self-propelled particle, such as a motile bacterium,

exerts a pair of forces on the suspending fluid (force dipole
or stresslet); see Fig. 1(b) [40]. In the continuum descrip-
tion, the distribution of force dipoles results in an active
stress σact. In a dilute limit, the active stress σact can be
written as [13,41]

σact ¼ −Λc
�
pp −

I
2

�
; ð3Þ

where Λ > 0 is the magnitude of the force dipole imposed
by a swimmer [the minus sign in front of Eq. (3)

corresponds to pusher swimmers such as bacteria], c is
the concentration of bacteria, and p ¼ ½cosðϕÞ; sinðϕÞ� is
the unit vector in the propulsion direction. We assume
that the local orientation angle of bacteria ϕ is governed by
the following relaxation equation:

∂tϕ ¼ 1

τ0
sinð2θ − 2ϕÞ þDr∇2ϕ: ð4Þ

The first term describes the relaxation of the bacterial
orientation angle towards the nematic angle θ with the
relaxation rate τ0 (compare Ref. [37]). The last term
describes the diffusion of orientation with the rotational
diffusion Dr. We assume that elastic effects in the LC
dominate flow alignment and neglect the advection and
shear aligment terms, such as in Ref. [13].
The relaxation time τ0 is determined by the balance of

the orientation-stabilizing elastic torque and the viscous
torque, Γel þ Γvisc ¼ 0. A bacterium can be approximated
by a long rod of length l and radius r. Assuming that the rod
aligns the surrounding director parallel to its axis, the
stabilizing elastic torque acting on the rod misaligned by
an angle α ¼ ϕ − θ is Γel ¼ 4πKlα= lnð2l=rÞ, where K is
the average value of the Frank elastic constant [42]. The
viscous torque is approximated as Γvisc ¼ κη∂tα, where
κ ¼ πl3=3½lnðl=2rÞ − 1=2� is the geometrical friction factor
for a prolate ellipsoid [43] of an aspect ratio close to that of
a bacterium, l=2r ≈ 7, and η is the effective drag viscosity
that depends on the director orientation. Thus, the relax-
ation time is

τ0 ≈
ηl2

12K
lnð2l=rÞ

lnðl=2rÞ − 1=2
: ð5Þ

Neglecting the angular dependence of the viscosity η, for
typical experimental values for lyotropic chromonic liquid
crystals [44], η ¼ 4–5 kgm−1 sec−1, K ¼ 15 pN, and for
l ¼ 5 μm, r ¼ 0.4 μm, one estimates τ0 ≈ 1–1.5 sec.
Since the relaxation time τ0 is small (of the order of

1 sec), bacteria rapidly align with the director n. Thus, we
set the vector p to be either parallel (ϕ ¼ θ) or antiparallel
(ϕ ¼ θ þ π) to the nematic orientation n replace pp → nn
in Eq. (3). By solving Eq. (4), we verify that the main
results are unchanged as long as τ0 is small enough.
The transport of bacteria in LC is governed by two

coupled advection-diffusion equations for the concentra-
tions c� of bacteria swimming parallel (cþ) or antiparallel
(c−) to the director n (compare also with the approach in
Refs. [38,45]):

∂tcþ þ∇ · ðV0ncþ þ vcþÞ ¼ −
cþ − c−

τ
þDc∇2cþ;

∂tc− þ∇ · ð−V0nc− þ vc−Þ ¼ −
c− − cþ

τ
þDc∇2c−:

ð6Þ
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Here, V0 is the bacterium swimming speed, Dc is the
diffusion coefficient, and τ is the direction reversal time
(if a bacterium reverses a direction, it leaves the population
cþ and becomes c−, or vise versa). Our experiments show
that the reversal time is typically quite large, of the order of
30 sec. The reversals are related to bacterial run-and-tumble
behavior. Since in liquid crystals the bacteria can move
only along the director, tumbling is suppressed, and only
back and forth movements are permitted. Since a low-
tumbling strain of B. subtilis is used in our experiments, the
reversal time τ is very large compared to the bacterial
reorientation time τ0.

We rewrite Eq. (6) for the total concentration c¼ cþþc−

and the concentration difference (or polarization) w ¼
cþ − c−:

∂tcþ∇ · ðV0nwþ vcÞ ¼ Dc∇2c;

∂twþ∇ · ðV0ncþ vwÞ ¼ −
2w
τ

þDc∇2w: ð7Þ

In the limit of very small reversal time, τ → 0, the
polarization w becomes enslaved and one derives
w ≈ V0τ∇nc=2. Plugging it into the equation for c, we
obtain the concentration evolution similar to that of active

FIG. 2. Results of computational modeling. Nematic orientations and magnitudes of the order parameter (a)–(c), concentration fields
(d)–(f), and flow velocity magnitudes with streamlines (g)–(i). Panels (a), (d), and (g) depict a state with defects for zero anchoring and
average concentration c0 ¼ 0.2. Some�1=2 topological defects are shown. Panels (b), (e), and (h) display stable periodic configuration
with surface anchoring (ξan ¼ 0.05) and c0 ¼ 0.54, i.e., near the instability threshold. The thick black arrow indicates the prescribed
director orientation set by the surface anchoring. Panels (c), (f), and (i) illustrate hysteretic behavior: the configuration with defects exists
for the same parameter values (ξan ¼ 0.05, c0 ¼ 0.54) as in (b), (e), and (h). Other model parameters are τ ¼ 66.6, Dc ¼ 4, Er ¼ 3.75,
Λ ¼ 1, ζ ¼ 0.2, Γ ¼ 0.5. See also Videos 1–4 in Supplemental Material [39].
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nematics [27–31,46]. However, for the conditions of our
experiment [32], this reduction is nonphysical.

III. RESULTS

A. Simulations results

Select results for different model parameters are presented
in Fig. 2 and Videos 1–4 in Supplemental Material [39].
A complete description of the computational model and the
implementation details are included in Supplemental
Material [39]. For zero surface anchoring (ξan ¼ 0), the
system remains in a stable uniform state below the critical
concentration ccr [see also Fig. 3(a)]. Gradually increasing
the concentration c above ccr we observe first the onset of
stable periodically undulated states followed by a spatio-
temporal chaos characterized by motion, spontaneous
nucleation or annihilation of topological defects, and flow
generation in nematic; see Figs. 2(a), 2(d), and2(g), similar to
that observed in experiment [32]. This chaotic behavior
is reminiscent of that observed in active nematics [27–31].
However, in contrast to the previous studies, we note a

significant accumulation of bacteria in the cores of 1=2
defects and expulsion of bacteria from the cores of −1=2
defects; see Fig. 2(d). We also observe that the transition to
the spatiotemporal chaos is associated with a substantial
hysteresis: uniformly alignedand stationarymodulated states
coexist with defects for the same value of the concentration
near the threshold. The main reason for the hysteresis is the
bacteria accumulation in the cores of positive defects, which,
in turn, locally increases the activity of the system [active
stress, Eq. (3), is proportional to the concentration].
Figures 2(b), 2(e), and 2(h) displays stable configurations

characterized by periodic undulations of a nematic that was
initially aligned along the prescribed direction. These undu-
lations cause modulation of the bacterial concentration c.
In addition, these steady-state nematic distributions generate
a sustained periodic pattern of counterpropagating flows,
Fig. 2(h).With the further increase in the concentration c, the
periodic pattern becomes unstable and gives way to the state
with moving topological defects, Figs. 2(c), 2(f), and 2(i).
In contrast to the zero surface anchoring case, the defects
predominantly move perpendicular to the overall nematic
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FIG. 3. Characterization of defect dynamics. (a) Phase diagram. Symbols circle, times depict the simulations results. The black solid
line indicates the linear stability limit, Eq. (9). Stable director undulations exist between defect and homogeneous aligned states (yellow
band). The transition boundaries are obtained by gradually increasing the average concentration c0 from a slightly perturbed
homogeneous initial condition. Hatching shows the hysteresis band where nonvanishing defects coexist with the undulated or
homogeneous aligned states, τ ¼ 66.6 (corresponding, approximately 20–30 sec for the conditions of our experiment). (b) Mean
velocity V̄ of þ1=2 defects (circle, red) and −1=2 defects (square, blue) vs c0. Error bars are the velocity standard deviations. The
velocity distributions for −1=2 (c) and 1=2 defects (d) for ξan ¼ 0 and for c0 ¼ 1.8 (blue) and c0 ¼ 0.3 (brown). Red solid lines are
Gaussian fits and solid black lines are the stretched exponential fits.
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direction (x axis in this case). This behavior is also consistent
with the experiment on a confined suspension with surface
anchoring [see Fig. 2(e) in Ref. [32]].
The phase diagram obtained by numerical integration of

Eqs. (1), (2), and (7) in (c0, ξan) space is shown in Fig. 3(a),
where c0 is the mean bacterial concentration. Numerical
results are in excellent agreement with the theoretical
expression for the instability threshold; see Eq. (9).

B. Statistics of topological defects

Figures 3 and 4 present a characterization of defects
dynamics. The defect tracking algorithm is described in
Supplemental Material [39]. Figure 3(b) shows mean defect
velocities V vs the average concentration c0. There is a
velocity increase with the increase in concentration.
The velocity of 1=2 defects is higher than the velocity
of −1=2 defects by a factor of 5. We find, in agreement with
previous studies, Refs. [27,46], that an isolated 1=2 defect
moves persistently while the −1=2 defect is immobile.
However, due to interactions, the −1=2 defects become
entrained by the positive ones with the speed determined by
their proximity. The speed of defects is practically inde-
pendent of the anchoring strength ξan.

Velocity distributions of the defects PðVÞ are shown in
Figs. 3(c) and 3(d). We find that for high concentrations,
the distributions PðVÞ are well approximated by a Gaussian
law PðVÞ ∼ exp½−a0ðV − VÞ2�. In contrast, for lower c
values, and correspondingly, for lower defect concentra-
tions, the distributions are better approximated by a stretch
exponential PðVÞ ∼ exp½−a1ðV − VÞζ� with the exponent
ζ ≈ 1.13 for −1=2 defects and ζ ≈ 1.4 for 1=2 defects. We
hypothesize that the defect motion is effectively random-
ized at high concentrations c (i.e., for high activity) leading
to a Gaussian distribution. In contrast, for low concen-
trations, the defect dynamics is composed of long ballistic
flights and rare nonelastic collisions. These kinds of
processes often exhibit non-Gaussian statistics; see, e.g.,
Ref. [47].
Concentration distributions for moving defects are shown

in Fig. 4. A close-up view of the concentration field for�1=2
defects, Fig. 4(c), confirms accumulation behind the core of
the 1=2 defect and depletion for the−1=2 defect. The relative
concentration difference Δc=c0 decreases with the increase
of the average concentration c0, or, correspondingly, activity
of the system, Fig. 4(a). Here, Δc ¼ cmax =min − c0, where
the extrema of c are computed over the entire domain of
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0.32

0

0 0

0.36
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0.45

0.55

0.65

0.2

0.23

0.26

0.29

(c) (d)

(e)

(a) (b)

0

FIG. 4. Concentration distributions. Relative concentration difference Δc=c0 vs c0 for τ ¼ 66.6 (a) and vs τ for c0 ¼ 0.3 (b) for 1=2
(circle) and −1=2 (times) defects. Inset: Δc=c0 for 1=2 defects vs defect velocity V. Blue symbols in (b) indicate τ ¼ 66.6 used in most
of the simulations. Error bars are the standard deviations. (c) Close-up view of the concentration field c for c0 ¼ 0.3. Some defects are
shown in red circles, white arrow indicates the direction of motion. Domain size is 40 × 40 units of length. Steady-state concentration
distributions near 1=2 defect (d) and −1=2 defect (e) obtained from Eq. (11) for V ¼ 0.5. Size of the integration domain 40 × 20 units;
due to reflection symmetry, only the upper half of the field c is shown.
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integration and averaged over the duration of the run. The
inset of Fig. 4(a) shows Δc=c0 vs the average defect speed
inferred from Fig. 3(b). One sees that the accumulation
vanishes in the limit of very high defect speeds. In this case,
the dynamics is characterized by frequent creation and
annihilation of�1=2 defect pairs. Since nearby�1=2 defects
produce an opposite trend on the concentration, the overall
effect is smeared out. In addition, rapidly moving defects
accumulate fewer bacteria. Figure 4(b) confirms that the
accumulation or depletion vanishes with the decrease in the
bacteria reversal time τ.

C. Experimental verification

We perform experiments with swimming bacteria B.
subtilis suspended in a freestanding film of lyotropic liquid
crystal disodium cromoglycate (DSCG) [32]. Previous

experiments with bacteria suspended in liquid crystals
were performed either in thin closed glass cells or in
pendant drops [32–36]. The freestanding geometry was
necessary to minimize the effect of in-plane surface
anchoring. The experimental setup is similar to that used
in our previous works [5,12]. A small drop (7 μL) of a
bacterial suspension in LC is placed between four thin
movable fibers and then stretched to produce a thin
freestanding liquid film.
To increase the accuracy of bacteria recognition and the

overall data fidelity, we use a fluorescent DK400 strain of
B. subtilis; see Video 5 in Supplemental Material [39]. The
local concentration of bacteria and the nematic director
orientation are extracted from the fluorescent images by a
custom MATLAB script; see the Appendix. The main
experimental results are shown in Fig. 5. The need for
fluorescent bacteria is twofold. Firstly, we determine the

(a) (b)

(c) (d)

0

1.6

3.2

4.8

FIG. 5. Experimental verification. (a) Fluorescent image of swimming bacteria suspended in a freestanding LC film in the regime of
chaotic motion. Average bacterial concentration c ≈ 2 × 109 cell=cm3. Scale bar is 50 μm. See also Videos 5 and 8 in Supplemental
Material [39]. (b) Digitally processed image of (a). Green lines show the LC nematic director orientation reconstructed from the bacterial
orientation. Several defects are present. (c) Bacterial concentration distribution in the area indicated by the blue dashed box in (b). Colors
represent the concentration of bacteria extracted from the averaged fluorescence intensity. Two topological defects (1=2 and −1=2) are
highlighted. White lines show defect orientations. Scale bar is 50 μm. (d) Bacterial concentration profiles around the defects. Blue line
represents a concentration profile in the vicinity of 1=2 defect along the white dashed line in (d). x ¼ 0 corresponds to the center of 1=2
defect. The red line represents a concentration profile in the vicinity of −1=2 defect. Concentration profiles along three white dashed
lines are averaged. Inset: Bacterial concentration profiles along the lines passing through the cores of defects extracted from the
computational model for c0 ¼ 0.3, τ ¼ 66.6 and corresponding to Fig. 4(c).
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bacterial local concentration from the fluorescence inten-
sity. Secondly, from the orientation of bacteria, we recon-
struct the local director field. A conventional bright field
microscopy does not allow direct measurement of the
concentration and orientation of bacteria around LC defects
due to birefringence-induced optical distortions of the
images. Brightness variations of the transmitted light are
caused both by the presence of bacteria and by steep
fluctuations of the LC orientation.
At a relatively high bacterial concentration c≈

6 × 109 cell=cm3 (or about 2% volume fraction), we
observe a large number of rapidly moving defects; see
Videos 6 and 7 in Supplemental Material [39]. Large defect
speeds and strong shape fluctuations do not allow bacterial
accumulation or depletion in the defect locations. However,
at lower concentration c ≈ 2 × 109 cell=cm3, the mean
defect speed is significantly smaller, in faithful agreement
with our theoretical predictions; see Videos 8 and 9 in
Supplemental Material [39]. Slowly moving and more
persistent defects lead to a substantial accumulation of
bacteria in 1=2 defects and expulsion from the cores of
−1=2 defects; see Figs. 5(a), 5(b), and 5(d). The magnitude
of bacterial concentration fluctuations at lower c values
may reach 30%–50%. The coarse-grained experimental
concentration distributions around the defects have a
similar trend with the prediction of the computational
model; compare Fig. 5(c) and Fig. 4(c). Moreover, the
concentration profiles along the lines passing through
defect cores, Fig. 5(c), show qualitatively similar behavior
with the computational model; see inset of Fig. 5(d).
While we clearly see a decrease in the trapped bacteria

number with the defect speed, it is hard to make a more
quantitative statement because the defect speed cannot be
controlled directly: it itself depends on the concentration
of bacteria. Moreover, an increase in the bacterial con-
centration makes the dynamics more turbulent and, in
turn, leads to the overall increase in the number of defects.

These issues can be possibly addressed in a new
generation of experiments where moving defects can be
created by surface patterning and their speed can be
controlled by the concentration of oxygen available to
bacteria.

IV. DISCUSSION

A. Heuristic explanation of the accumulation
and depletion phenomena

The accumulation and depletion are directly related to
the nematic director topology at the defect cores. Consider,
for simplicity, nonreversing bacteria, τ ≫ 1. Since the
nematic streamlines, and, respectively, the bacterial trajec-
tories, converge at the core of the þ1=2 defect, bacteria
swimming towards the defect accumulate in the core,
Fig. 6(a). At the same time, bacteria swimming in the
opposite direction will leave the defect. This will lead to the
overall increase in the concentration. The accumulation
domain is highlighted in Fig. 6(a). In contrast, the −1=2
defect creates a nematic configuration that expels the
bacteria independently of their orientation, Fig 6(b).
Bacteria close to the defect core (in the dark blue region)
swim away. However, bacteria swimming towards the
defect are deflected and cannot influence the bacterial
concentration near the core. Accumulation or depletion
attenuates with the reversal time τ decrease, in agreement
with our numerical analysis; see Fig. 4(b). A more
quantitative explanation of these phenomena in terms of
the concentration fluxes is presented in the following
section.

B. Stability of the aligned state

We examine linear stability of the homogeneous aligned
state cþ ¼ c− ¼ c0=2, n ¼ ð1; 0Þ; see Supplemental
Material [39]. The growth rates σðkÞ of small perturbations

(a) (b)

FIG. 6. Illustration of accumulation and depletion of bacteria in topological defects. (a) Accumulation of bacteria in þ1=2 defect.
Bacteria accumulate in the yellow region due to the convergence of bacterial trajectories. (b) Bacteria escape from the dark blue region of
−1=2 defect independently of their initial orientation.
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vs the wave number k are shown in Fig. 7(a). In qualitative
agreement with experiment [32], the instability initially
occurs for the perturbations with the wave vector parallel to
the nematic direction, i.e., for the longitudinal undulations.
For zero anchoring, the most unstable wave number kcr
is given by the following analytic expression (see
Supplemental Material [39]),

kcr ¼
1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ðξþ 1Þ½ð12ðξþ 1Þ þ h2Erc0Λ�

2Γþ ðξþ 1Þ2

s
− 12

vuut ; ð8Þ

where Er ¼ ηV0l=K is the Ericksen number (i.e., the ratio
of viscous stress to elastic stress), l is the bacterium length,
and K is the average elastic constant. For the conditions of
the experiment [32], the Ericksen number is Er ≈ 3.75.
ξ ≈ 1 is the aspect ratio parameter in the Edwards-Beris
theory. Without anchoring, the instability is long wave-
length, with zero critical wave number at the threshold.
With the increase in c, the critical wave number increases.
However, the instability becomes short wavelength with a
finite critical wave number kcr for a nonzero anchoring; see
Fig. 7(b).
The critical concentration ccr for the onset of undulation

instability is given by (see Supplemental Material [39])

ccr ¼ 4
Erξanh2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12h2Erξan½2Γþ ðξþ 1Þ2�

p
þ 6Γ

h2Erðξþ 1ÞΛ : ð9Þ

Correspondingly, the critical wave number kcr at the
threshold (c ¼ ccr) as a function of anchoring is of the form

kcr ¼ 2

�
3Erξan

h2½2Γþ ðξþ 1Þ2�
�

1=4
: ð10Þ

As one sees from Eq. (9), the critical concentration
decreases with the increase in the dipole strength Λ; see
Eq. (3). Also, ccr increases with the decrease in the cell

thickness h and increase in the anchoring strength ξan. We
find that the most unstable wavelength scales roughly as
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c − ccr

p
, again in a good agreement with Ref. [32],

Fig. 7(c). At the threshold, the critical wave number kcr
increases with the anchoring strength as kcr ∼ ξ1=4an ; see inset
of Fig. 7(c).

C. Concentration distributions for moving defects

We investigate the concentration distributions generated
by moving isolated defects. We assume that the director
orientations for �1=2 defects are close to the stationary
ones, i.e., θ ¼ �ðφþ πÞ=2, where φ is the polar angle with
respect to the x axis. We seek a steady-state solution to
Eq. (7) for the defects moving with speed V, i.e., cðx − VtÞ,
wðx − VtÞ. In the comoving frame, Eq. (7) assumes the
form

−V∂xcþ∇ · ðV0n0wÞ ¼ Dc∇2c;

−V∂xwþ∇ · ðV0n0cÞ ¼ −
2w
τ

þDc∇2w; ð11Þ

where n0 ¼ ½� sinðθÞ; cosðθÞ� for �1=2 defects, corre-
spondingly. For simplicity, we neglect the advection terms
∼v. Coupled elliptic equations (11) are solved numerically
on a rectangular domain with appropriate boundary
conditions. Because of reflection symmetry along the
x axis, the equations may be solved only for y > 0.
Correspondingly, the Neumann boundary conditions
∂ycðx; yÞ ¼ ∂yw ¼ 0 are imposed for y ¼ 0. A condition
wðx; 0Þ ¼ 0 for x > 0 is imposed along the branch cut of θ.
Far from the defect, for y ¼ L0 ≫ 1, the Dirichlet condition
cðx; L0Þ ¼ c0, wðx; L0Þ ¼ 0 is imposed. Result are shown
in Figs. 4(d) and 4(e). We see that there is an accumulation
of bacteria slightly behind the 1=2 defects and expulsion
from the −1=2 defects, similar to that obtained by the
solution of the full system, Fig. 4(c). Distributions of the
concentration difference w for both cases are shown in
Fig. 4 of the Supplemental Material (see also Supplemental

-0.6

-0.4

-0.2

0

(a) (c)(b)

an

an

an
=0.0076

0

=0.005

=0

FIG. 7. Linear stability analysis of the aligned state. (a) Density plot of the growth rate Re½σðkÞ� vs kx, ky for ξan ¼ 0. Maximum
growth rate occurs along the nematic direction (x axis). (b) Re½σðkÞ� vs kx, ky ¼ 0, for different ξan values, c0 ¼ 0.2. (c) Critical
wavelength Lcr ¼ 2π=kcr vs c, from Eq. (8). The dashed line is the fit Lcr ∼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c − ccr

p
. Inset: kcr vs ξan, from Eq. (10).
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Material for details) [39]. An exact threefold symmetry is
expected for a stationary −1=2 defect in an infinite domain.
Here, the threefold symmetry is broken due to the defect
motion (V ≠ 0) and by a finite size of the integration
domain.
The magnitude of Δc=c0 decreases with the increase of

the defect speed V. We find that the decay of Δc=c0 versus
defect speed V in the full model is faster than that in the
reduced model, Eq. (11). In the full model, the increase in
the defect speed V is due to concentration increase. That
results in an increase in the defect number. These defects
move chaotically and are created or annihilated in pairs.
This nonstationary defect dynamics, effectively reducing
the accumulation of bacteria in the cores, is not captured by
the simplified model.
We find that Δc → 0 for τ → 0. In the limit τ → 0 and

V ¼ 0, one obtains analytic solutions for the concentration
distributions:

c1=2 ≈ c0 þ
τV2

0c0
8Dc

cosφ; c−1=2 ≈ c0 −
τV2

0c0
24Dc

cos 3φ:

ð12Þ

For τ → 0, Eq. (7) is reduced to the active nematic model
[27–30]. In this limit there is no accumulation or depletion
of bacteria in the cores of topological defects; see Fig. 4(b).

V. CONCLUSIONS

We develop a computational model describing the
biosynthetic system of motile bacteria suspended in
lyotropic liquid crystals. The most crucial difference from
the phenomenological models of active nematics [27–31]
is that we explicitly introduce two populations of bacteria,
cþ, c−, traveling in opposite directions. The interaction
between the populations is due to random reorientations
characterized by the reversal time τ. This description is
truly needed to capture the experimentally observed
behavior—in liquid crystals, bacteria swim on opposite
tracks almost without interactions. We also demonstrate
that previous models, Refs. [27–31], could be rigorously
derived from our system in the limit of τ → 0. However, for
the conditions of our experiment this limit is unphysical.
Another important difference is that we consider the effect
of surface anchoring, which to the best of our knowledge
was not studied before in the context of active matter.
Surface anchoring is of crucial importance for the living
liquid crystals. The above differences lead to a wealth of
new phenomena. Firstly, accumulation and depletion phe-
nomena are not present in Refs. [27–31]. Secondly, we
obtain finite wave number instability and a hysteretic
transition between the homogeneously aligned state and
the chaotic states with topological defects.
Our computational model is in a good agreement with

the experiment and yields testable predictions. Some of

these predictions are readily confirmed by our experiment
with a freestanding bacterial film. The model can be
extended in many directions. For example, the anisotropy
of the elastic constants and viscosities can be readily
incorporated. While we do not anticipate qualitative
changes in the behavior, this generalization may have an
effect on the interaction of defects; e.g., it can significantly
increase the defect annihilation time.
Topological defects often play a role of elementary

excitations that control the surrounding dynamics in active
systems [18,27,48]. Accumulation and depletion of bac-
teria in the cores of topological defects significantly
changes the defect dynamics (since the activity and,
correspondingly, the defect velocity are proportional to
the bacterial concentration). Thus, it provides a nontrivial
feedback between topology and activity.
Our discovery of accumulation of bacteria in the cores of

1=2 topological defects may have intriguing implications.
The related phenomenon also occurs in other active
systems, e.g., in tissue formed by cultured stem cells
[49]. Topological defects in liquid crystals form whenever
the system is confined, even in equilibrium, thanks to the
surface anchoring of the director and nontrivial Euler
characteristic of any closed surface (except a torus).
Furthermore, these defects can be guided by applied
electric or magnetic fields, surface anchoring, light, or
chemical and temperature gradients. These findings extend
our scope of tools to control and manipulate microscopic
objects in active matter [33,36,50,51]. Moreover, with the
recent progress in the lithographic design of light-sensitive
surface anchoring patterns, topological defects can be
created on demand and guided by light [52]. Thus, our
findings open a possibility to precisely manipulate a few
bacteria or imprint the desired pattern of bacterial concen-
tration. This effect can be used in a variety of applications
for express identification or recognition of bacteria and
in the development of bacteria-powered micromachines
[53–55]. We anticipate that the number of trapped bacteria
will fluctuate in a wide range in the turbulent regime.
However, in a laminar regime, the number of bacteria will
be preserved and can be tuned by the defect speed.
Recent experiments [56] on dilute suspensions of bac-

teria in patterned chromonic liquid crystals with preim-
posed director field show that B. subtilis can distinguish
between defects of different topological charge and of
different geometry. In particular, bacteria can accumulate at
the cores of radial defects of strength þ1, form unidirec-
tionally rotating vortices around defects of strength þ1
with a spiraling director of a bend-splay type, and avoid
defects of strength −1. Furthermore, the bacteria prefer to
move away from the −1=2 defects towards the 1=2 defects
[56]. One should, however, bear in mind that the exper-
imental setting of Ref. [56] with immobilized (and
engraved) topological defects and low concentrations of
bacteria is principally different from the experimental
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conditions discussed in this work, in which the defects of
strength 1=2 and −1=2 nucleate as a result of bacterial
activity in concentrated suspensions and constantly move
thanks to the shear flows produced by the bacteria. The
experimental results presented in Ref. [56] and in this work
thus complement each other and demonstrate that the
prevalence of active swimmers at the cores of 1=2 defects
and their depletion near −1=2 defects is a universal
phenomenon observed both below and above the threshold
of topological turbulence.
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APPENDIX: MATERIALS AND METHODS

1. Edwards-Beris equations for the liquid
crystal evolution

The tensor S in Eq. (1) is of the form (see Supplemental
Material [39])

S ¼ ðξAþΩÞ
�
Qþ I

2

�
þ
�
Qþ I

2

�
ðξAþΩÞ

− ξð2Qþ IÞTrðQWÞ;

where ξ ≈ 1 is the aspect ratio parameter. The rate of strain
and vorticity tensors A, Ω are correspondingly symmetric
and antisymmetric parts of the velocity gradient tensor
Wij ¼ ∂ivj. The molecular field tensor H is defined as

H ¼ −
δF
δQ

þ I
2
Tr

�
δF
δQ

�
;

where F is the elastic free energy. Since we are considering
a two-dimensional case, there are only two elastic
constants K1 (bend) and K3 (splay). We assume for
simplicity K1 ¼ K3 ¼ K. The free energy F is written in
the Landau–de Gennes form

F ¼
Z

dr

�
−
a
2
QαβQβα þ

b
4
ðQαβQβαÞ2 þ

K
2
ð∂γQαβÞ2

�
;

where a, b are the coefficients from Landau–de Gennes
expansion. The symmetric tensor σs in Eq. (2) is of the form

σs ¼ −ξH
�
Qþ I

2

�
− ξ

�
Qþ I

2

�
H

þ ξð2Qþ IÞTrðQHÞ −∇Q∶
δF
δ∇Q :

Here, σa ¼ QH −HQ is antisymmetric tensor and σvisc ¼
2ηA is viscous tensor. The often used form of the tensor
Fexter is [26] Fexter ¼ ξanðff − I=2Þ, where f is a unit vector
along the aligning field direction (e.g., magnetic field) and
ξan is the alignment strength. The effect of surface
anchoring can be modeled in 2D as an aligning field.
However, this representation of the external field effect also
alters the order parameter magnitude jQj. We use instead an
alternative version of the aligning term that changes only
the orientation of the nematic but does not change its
amplitude:

Fexter ¼ 4ξanQRπ=2Tr½Qðff − I=2ÞRπ=2�;

where Rπ=2 is the tensor of rotation by π=2. These two
representations yields the same aligning term in the
corresponding Ericksen-Leslie equations [25] derived from
the Edwards-Beris model [26].

2. Numerical implementation

Equations (1), (2), and (7) are integrated in a double-
periodic domain by a semi-implicit fast Fourier trans-
formation method. The algorithm is implemented on the
graphical processing units. A typical number of mesh
points is 1024 × 1024. Runs with 2048 × 2048 points
are performed for verification of finite-size effects.
Details of the numerical implementation can be found in
Supplemental Material [39]. The main model parameters
are summarized in Table I. Numerical solution of Eqs. (1),
(2), and (7) reveal a number of nontrivial artifacts related to
the mapping of a vector field for the bacterial orientation to
the nematic director. Firstly, directions �π=2 are identical
for the nematic. Since for θ ¼ �π=2 the distinctions
between the fields c� is formally lost, it results in a
nonphysical collision of bacteria in the c� fields. The
collisions are manifested by linear δ functions in equations
for c� along the lines where θ changes from −π=2 to π=2
(branch cuts); see Fig. 1 in Supplemental Material [39].
In order to eliminate this artifact, we track the branch cuts
and relabel the fields c�; see Fig. 2 in Supplemental
Material [39]. Second artifact is associated with the director
indeterminacy at the core of topological defects that
invalidates the assumption that bacteria swim along the
director. In order to remove this artifact, we decrease the
reversal time τ near defect cores. It allows the bacteria to
reverse the direction and avoid trapping in the cores. The
defect tracking algorithm is described in Supplemental
Material and Fig. 3 of the Supplemental Material [39].

3. Scaling of model parameters

The coordinates x, y are normalized by the bacterial
length l ¼ 5 μm. Velocities are normalized by the bacterial
velocity V0 ¼ 15 μm= sec. Time is normalized by l=V0.
Concentrations are normalized by l−3. Viscosities are
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normalized by η ¼ 0.5 kg=m sec. Landau–de Gennes
coefficients a and b are normalized by K=l2, where K ¼
10 pN is the average elasticity constant. Correspondingly,
the diffusion coefficient Dc is normalized by lV0, the
viscous friction coefficient ζ by η=l2, the dipole strength Λ
is scaled by ηl2V0, Γ by 1=η, and the anchoring strength ξan
is normalized by U0=l. The Ericksen number is Er ¼
ηlV0=K ¼ 3.75.

4. Experimental details

Bacteria growth.—Experiments are conducted with the
B. subtilis fluorescent strain DK400 [57]. The bacteria are
initially grown on the lysogeny broth (LB) agar plates, then
transferred to the LB liquid medium and grown in a shaking
incubator at the temperature 35 °C for 10–12 h. The
bacteria are extracted from the growth medium by cen-
trifugation at the end of their exponential growth stage and
washed. Then the bacteria are suspended in the liquid
crystal to achieve the final bacteria concentration of about
ð2–6Þ × 109 cell=cm3 and a final concentration of the
DSCG mesogenic material at 14 wt%.
Liquid crystal preparation.—Chromonic lyotropic LC

DSCG purchased from Spectrum Chemicals, 98% purity, is
dissolved in the LB (L3022 SIGMA) at 20 wt%. This
solution is added to the concentrated bacteria obtained by
the protocol described above. The experiments are started
immediately after a drop of bacteria and LC is suspended
and stretched between four fibers. The experimental cell is
enclosed in an optically transparent box with a controlled
humidity level and temperature. We maintain the humidity
level close to 100% to minimize evaporation of water and to
keep the temperature around 30 °C. Evaporation of even a
small fraction of water from the surface of the film leads to
a noticeable increase of the viscosity in a very thin surface

layer. That effectively introduces a no-slip condition for the
fluid flow at the film surface.
Microscopy data acquisition and analysis.—An inverted

microscope Olympus IX71 with a motorized stage mounted
on a piezoelectric isolation platform Herzan TS-150 and a
monochrome Prosilica GX 1660 camera (resolution of
1600 × 1200) are used to record the fluorescent images
with the frame rate of 10 fps, at 10× magnification. The
acquired images are processed in MATLAB. Local bacterial
concentration is assumed to be proportional to the average
fluorescent brightness of a considered area. The fluorescent
intensity of the areas with no bacteria and fluorescent
intensity averaged over the entire image are used for the
concentration calibration. The nematic director orientation
of LC is reconstructed from the local orientation of bacteria
with a custom MATLAB script. The local orientation of the
bacteria is estimated as a line along the bacteria edges,
detected by calculating a gradient of the fluorescent
intensity of each pixel of the image.
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