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We develop a thermodynamic framework that describes a classical system of interest S that is strongly
coupled to its thermal environment E. Within this framework, seven key thermodynamic quantities—
internal energy, entropy, volume, enthalpy, Gibbs free energy, heat, and work—are defined microscopi-
cally. These quantities obey thermodynamic relations including both the first and second law, and they
satisfy nonequilibrium fluctuation theorems. We additionally impose a macroscopic consistency condition:
When S is large, the quantities defined within our framework scale up to their macroscopic counterparts.
By satisfying this condition, we demonstrate that a unifying framework can be developed, which
encompasses both stochastic thermodynamics at one end, and macroscopic thermodynamics at the other.
A central element in our approach is a thermodynamic definition of the volume of the system of interest,
which converges to the usual geometric definition when S is large. We also sketch an alternative framework
that satisfies the same consistency conditions. The dynamics of the system and environment are modeled
using Hamilton’s equations in the full phase space.
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I. INTRODUCTION

Thermodynamics provides a durable conceptual frame-
work for understanding the exchange of matter and energy
among macroscopic systems [1–3]. Key elements of this
framework include equilibrium states to which systems
spontaneously relax, state functions that characterize the
properties of equilibrium states, and heat and work—
distinct mechanisms for the transfer of energy. The prin-
ciples of thermodynamics are expressed through a set of
postulates or laws, which govern the changes that occur
during thermodynamic processes and make predictions
about the properties of matter in equilibrium.
Despite the dictum that thermodynamics applies only to

macroscopic systems, it is hard to deny that nanoscale
systems often exhibit thermodynamic-like behavior.
Biomolecular motors such as kinesin and myosin are tiny
engines that consume chemical energy to produce mechani-
cal work [4]. Just like rubber bands that are stretched and
contracted, single strands of RNA exhibit hysteresis and
dissipation, in agreement with the second law, when
manipulated using optical tweezers [5]. Stochastic thermo-
dynamics [6,7] aims to “scale down” the framework of
macroscopic thermodynamics to the level of individual
molecules and molecular complexes, as well as mesoscopic

systems such as optically trapped micron-size beads. The
goal is to formulate a theory that reflects the laws of
macroscopic thermodynamics but is applicable to micro-
scopic systems undergoing processes that involve the
exchange of energy.
A feature that distinguishes microscopic systems is the

prominence of fluctuations. While both small and large
systems [8] are affected by the thermal motions of their
microscopic constituents, in small systems these fluctua-
tions are often appreciable on relevant scales of observation
and give rise to statistical fluctuations in the outcomes of
experiments [9]. In recent decades, much progress has been
made toward incorporating these fluctuations—particularly
away from equilibrium—into a broadly applicable thermo-
dynamic framework [6,7,10].
Strong system-environment coupling is another distinc-

tive feature of microscopic thermodynamics. A system S
and its environment E are coupled by an interaction energy
USE. When S is a macroscopic, three-dimensional body,
the system-environment interactions generally occur at its
two-dimensional surface and involve only a tiny fraction of
its atoms. As a result, the value of USE is negligible in
comparison with the internal energy of the system of
interest, US, and we can approximate the total energy of
the composite system as a sum of subsystem energies:
USþE ≈ US þUE . This partitioning leads directly to the
notion of heat—energy lost by E is gained by S, and vice
versa—and from there to the first law of thermodynamics.
For microscopic systems of interest, the interaction

energy cannot be dismissed so easily, as the “surface” of
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S may include most or all of its degrees of freedom. We
must then write USþE ¼ US þ UE þ USE, allowing for
USE to be comparable to US. In this situation, it is not
immediately clear whether we should treatUSE as “belong-
ing” to the system of interest or to the environment, or
somehow split between the two. If we wish to write down
precise statements of the first and second laws of thermo-
dynamics for small systems, this question must be
addressed.
The aim of this paper is to construct a consistent

thermodynamic framework for a system that is strongly
coupled to its environment. The framework is built around
microscopic definitions of seven key thermodynamic
quantities: internal energy, entropy, volume, enthalpy,
Gibbs free energy, heat, and work. Temperature and
pressure also play a role (of course), but their values are
inherited from the environment. We require our framework
to satisfy three principles: thermodynamic consistency,
stochastic consistency, and macroscopic consistency.
Thermodynamic consistency means that the central

macroscopic relationships existing among the seven key
quantities [Eqs. (1) and (4)] should remain valid for their
microscopic counterparts [Eqs. (20) and (21)]. Stochastic
consistency means that three important fluctuation theo-
rems should remain valid [Eq. (22)]. Macroscopic consis-
tency means that the definitions of the key quantities should
“scale up” properly: Since all seven of these quantities are
well defined for macroscopic systems, we demand that
when our microscopic definitions are evaluated for a
system that happens to be large, the actual macroscopic
values will be recovered.
A priori, it is not obvious that these conditions can be

satisfied. On the contrary, one might naturally expect that
finite system-environment coupling would give rise to
correction terms in the relationships among thermodynamic
quantities, and these terms would become negligible only
in the macroscopic limit. However, we show that a
consistent framework can be constructed without introduc-
ing such correction terms: Eqs. (20)–(22) are exact, for the
quantities we define.
A number of authors have proposed and investigated

precise definitions of thermodynamic quantities for
strongly coupled systems [11–17], with Seifert’s approach
[15] being the closest in spirit to the present work. In these
earlier papers, the condition of macroscopic consistency
was not imposed. By demanding this additional condition,
we obtain a unifying theoretical framework that defines a
consistent stochastic thermodynamics at small length scales
and recovers macroscopic thermodynamics at large length
scales.
Volume plays a central role in this paper. A system’s

volume is usually defined geometrically, as a measure
of the region of space it occupies. This definition is
ambiguous for a microscopic system, which does not
possess a sharply defined surface. We instead introduce

a thermodynamic definition: A system’s volume will be
defined by its effect on its surroundings [18]. To satisfy
macroscopic consistency, this thermodynamic volume must
coincide with the geometric volume when the system
is large.
The plan of the paper is as follows. Section II reviews the

relevant macroscopic thermodynamics. Section III intro-
duces the microscopic setup, discusses the equilibrium
statistical mechanics of a molecule in solution, and spec-
ifies the three consistency criteria mentioned above.
Section IV defines the thermodynamic volume of a strongly
coupled system. Section V defines the remaining key
quantities and shows that they satisfy the desired consis-
tency criteria. Section VI introduces an alternative frame-
work, with different definitions of volume, internal energy,
etc. Section VII briefly discusses the tension of a stretched
molecule. Section VIII relates our results to others in the
literature. We conclude with a discussion in Sec. IX.

II. THERMODYNAMICS

The general setting considered in this paper involves a
system of interest S, a thermal environment E in which that
system is immersed, and a work parameter. The system S
can be either large (macroscopic) or small (microscopic). In
the present section, we consider an ordinary rubber band as
an illustrative example, whereas in Sec. III, we consider a
single molecule that is manipulated using optical tweezers.
The goal is to develop a framework that encompasses
both cases.
The environment E is macroscopic, vastly larger than the

system of interest, and in thermal equilibrium at temper-
ature T and pressure P. In the example considered in this
section, E is taken to be a roomful of air surrounding the
rubber band. If the system of interest undergoes an
irreversible process, then a nearby portion of the environ-
ment might temporarily be perturbed away from local
equilibrium, but the bulk of the environment is not
measurably affected. Although S and E can exchange
energy, each contains a fixed number of constituent
particles (atoms or molecules).
The work parameter is an externally controlled variable

(such as the length L of the rubber band) that is used to
manipulate the system.
An equilibrium state of a macroscopic system is speci-

fied by a few state variables. In the case of the rubber band,
we take these to be its length L, temperature T, and pressure
P. The latter two are defined operationally: The temper-
ature and pressure of the rubber band are equal to those of
the environment.
A state function is a quantity that has a well-defined

value when the system is in equilibrium. For the rubber
band, important state functions include the internal energy
U, entropy S, tension Ψ, and the volume of space it
occupies, V. Each is a function of the state variables,
e.g., U ¼ UðL;P; TÞ.
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These state functions are used to define thermody-
namic potentials, including the enthalpy H and Gibbs free
energy G:

H ¼ U þ PV; G ¼ H − ST: ð1Þ

At fixed environmental pressure and temperature, the first
and second laws of thermodynamics are

QþW − PΔV ¼ ΔU; Q ≤ TΔS; ð2Þ

where Q is the heat absorbed by the rubber band from the
surrounding air,

W ¼
Z

ΨdL ð3Þ

is the work associated with varying the length of the rubber
band, and ΔV and ΔS denote net changes in volume and
entropy. When the rubber band is stretched or contracted,
its cross-sectional area changes as well; if the net change is
not volume preserving, then the rubber band performs an
amount of work PΔV, which may be positive or negative,
on the surrounding air. The first and second laws are
conveniently expressed using enthalpy and Gibbs free
energy:

QþW ¼ ΔH; W ≥ ΔG; ð4Þ

which follow directly from Eqs. (1) and (2). For a reversible
process, the inequalities become equalities:

Q ¼ TΔS; W ¼ ΔG: ð5Þ

Throughout this paper, P and T are viewed as fixed
parameters describing a single thermal environment. This
implies a one-dimensional manifold of equilibrium states,
parametrized by L. Equation (5a) gives the entropy differ-
ence between any pair of states in this manifold, thereby
defining SðL; P; TÞ up to an additive constant S0ðP; TÞ.
Because the term PΔV is typically negligible in com-

parison withW andQ, it is generally ignored in discussions
of rubber-band thermodynamics; then, ΔH and ΔG in
Eq. (4) are replaced by ΔU and ΔF, where F ¼ U − ST is
the Helmholtz free energy. Strictly speaking, however,
PΔV is a macroscopic quantity (its value is much greater
than kBT), which should be included in a precise thermo-
dynamic accounting. More relevantly for present purposes,
the analogue of this term plays an important role when the
system of interest is microscopic, as we see in Sec. V.
The quantities S, V, H, Ψ, and G additionally satisfy [3]

S ¼ −
∂G
∂T ; V ¼ ∂G

∂P ; Ψ ¼ ∂G
∂L : ð6Þ

Equations (1b) and (6a) imply the Van ’t Hoff equation [19]

H ¼ −T2
∂
∂T

�
G
T

�
: ð7Þ

III. STATISTICAL MECHANICS

Now consider the setup shown in Fig. 1. A single
molecule of RNA, immersed in a macroscopic quantity
of water, is tethered between two micron-size polystyrene
beads, which in turn are grabbed by a micropipette and a
laser trap (optical tweezers). By varying the distance λ, the
RNA molecule can be stretched or contracted like a tiny
rubber band. We view the molecule and beads as our
system of interest S and the surrounding water as a thermal
environment E. The water might also include dissolved
molecules or ions, so the environment is really an aqueous
solution rather than pure water.
In Sec. II, the equilibrium state of the rubber band was

specified at a thermodynamic level of description. In this
section, we take the approach of classical statistical
mechanics. The RNA and the two beads are described
using n microscopic degrees of freedom, q ¼ ðq1;…qnÞ,
together with their momenta, p ¼ ðp1;…pnÞ. The variable
x ¼ ðq;pÞ denotes a point in 2n-dimensional phase space.
Similarly, y ¼ ðQ;PÞ denotes a point in the phase space
of the aqueous environment, containing the proverbial
N ∼ 1023 degrees of freedom. The composite system is
governed by a classical Hamiltonian

USþEðx; y; λÞ ¼ uSðx; λÞ þUEðyÞ þ uSEðx; yÞ: ð8Þ

Here, uS indicates the bare energy of the system of interest,
which depends parametrically on λ,UE is the bare energy of
the environment, and uSE is an interaction term. Capital
letters will generally denote quantities whose values are
macroscopic in magnitude, and lowercase letters will be
used for quantities whose values are microscopic. Note that
U and u are used here to specify Hamiltonians; the lettersH
and h are reserved to denote enthalpy.
As in Refs. [11,15], we assume that neither UE nor uSE

depends on the parameter λ. Thus, variations in λ are
coupled directly only to the degrees of freedom of the

FIG. 1. Schematic depiction of single-molecule setup (not to
scale). A molecule of RNA attached to two micron-size beads is
immersed in aqueous solution and manipulated using optical
tweezers. The work parameter λ denotes the distance from the
fixed micropipette to the center of the laser trap.
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system of interest and not to those of the environment. For a
model system in which uSE depends on parameters that
may be varied with time, see Ref. [20].
In statistical mechanics, we distinguish between “micro-

scopic” and “statistical” states. A microscopic state, or
microstate, denotes a single point in phase space, x, and can
be viewed as a microscopic snapshot of the system. A
statistical state refers to an ensemble of microstates,
specified by a probability distribution on phase space,
pðxÞ. An equilibrium state is a particular statistical state,
represented by a distribution peq

α that remains constant in
time when the system in question remains undisturbed. An
equilibrium state is specified by the values of several fixed
parameters, or state variables, α, such as particle number,
volume or pressure, and temperature.
An observable, or fluctuating observable, is a quantity

whose value is determined by the microstate, whereas a
state function is a quantity whose value is associated with
an equilibrium state. For example, a Hamiltonian uSðxÞ is a
(fluctuating) observable, whereas the equilibrium average
uðαÞ≡ huSieqα ¼ R

peq
α ðxÞuSðxÞ is a state function. The

value uSðxÞ is the system’s bare internal energy in a
particular microstate x, and uðαÞ is its bare internal energy
in the equilibrium state α. This example illustrates a
convention we follow: A lowercase letter with the subscript
S denotes a fluctuating observable; one without the sub-
script denotes a state function.
Although the classification of quantities as fluctuating

observables or state functions is sufficient for present
purposes, it is not exhaustive [21]. One can construct
hybrid quantities that are both functions of the microstate x
and functionals of the probability distribution pðxÞ. An
example is the self-information [22] − lnpðxÞ, whose
average is the Shannon entropy −

R
p lnp.

A. Statistical mechanics of macroscopic systems

Statistical mechanics was originally developed to explain
how macroscopic thermodynamics emerges from micro-
scopic motions [23–25]. The theoretical framework for
describing macroscopic systems in equilibrium is now well
established. We recall a few important elements of this
framework.
Several standard distributions are available to represent

macroscopic systems in equilibrium [26]. These include the
canonical and isothermal-isobaric distributions

peq
NVTðXÞ ¼

1

Z
e−βUðXÞ; ð9aÞ

peq
NPTðXÞ ¼

1

Z
e−β½UðXÞþPVðXÞ�; ð9bÞ

as well as the microcanonical, grand canonical, and other
distributions. Here, X and UðXÞ denote the microstate and

the Hamiltonian of a generic macroscopic system, Z and Z
are partition functions, and β ¼ 1=kBT.
The canonical ensemble, Eq. (9a), is defined at fixed

system volume, V. In the isothermal-isobaric ensemble,
Eq. (9b), the volume is a fluctuating observable, and the
factor e−βPV “tunes” the ensemble to a range of volumes
determined by the fixed pressure P. Away from phase
transitions, this range is macroscopically narrow; hence, the
system can be viewed as having a well-defined volume. The
Helmholtz and Gibbs free energies corresponding to Eq. (9)
are given by

FðN;V; TÞ ¼ −β−1 lnZ;

GðN;P; TÞ ¼ −β−1 lnZ: ð10Þ

The equivalence of ensembles asserts that averages
computed in the various macroscopic equilibrium ensem-
bles yield the same values. Formally, this equivalence is
achieved in the thermodynamic limit of infinitely large
systems, and its validity is rooted in the mathematical
theory of large deviations [27].
In this paper, we take the thermodynamic limit for the

environment (N → ∞), while holding the size of the
system of interest (n) fixed, and we define thermodynamic
potentials such as enthalpy, entropy, and Gibbs free energy
for the system of interest. Thus, we develop a thermody-
namic framework for a single small system immersed in a
large environment, without invoking the limit n → ∞.

B. Solvated ensemble

Returning now to the situation depicted in Fig. 1, the
equilibrium state of the system of interest S is obtained
from that of the composite system S þ E:

peqðxÞ ¼
Z

dyπeqðx; yÞ: ð11Þ

Here and in the rest of the paper, the letter p denotes a
probability distribution in the phase space of the system of
interest, and π denotes a probability distribution in the full
phase space of the system and environment.
By assumption, the aqueous environment is macro-

scopic, and we will soon take the thermodynamic limit
for E while keeping the size of S fixed. It is then reasonable
to use one of the standard ensembles discussed in Sec. III A
to model the equilibrium state of S þ E. For example, we
could model the composite system either at fixed volume
[Eq. (9a)] or at fixed pressure [Eq. (9b)]. The equivalence of
ensembles suggests that peqðxÞ does not depend on our
choice of ensemble for πeqðx; yÞ. In other words, we expect
that the microcanonical, canonical, isothermal-isobaric,
grand, etc. distributions for the macroscopic composite
system S þ E, will all lead to the same distribution peqðxÞ
for the microscopic subsystem S, after integrating over the
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environmental degrees of freedom. We are thus free to
choose whichever ensemble we find most handy.
We use the isothermal-isobaric ensemble to represent the

composite system in equilibrium:

πeqλNPTðx; yÞ ¼
1

Yλ
expð−β½USþEðx; y; λÞ þ PVEðyÞ�Þ: ð12Þ

As before, N ∼ 1023 is the total number of particles
constituting the thermal environment. To model the PV
term [28–31], we add one more degree of freedom to the
environment: the fluctuating vertical height h of a piston of
massm that closes off the aqueous solution; see Fig. 2. The
volume of the solution is VEðyÞ ¼ Ah, where A is the cross-
sectional area of the container. The pressure imposed by the
piston is P ¼ mg=A, where g is the gravitational accel-
eration constant. In this approach, the composite system
S þ E is described by a Hamiltonian

Utotðx; y; λÞ≡USþE þ PVE ¼ USþE þmgh; ð13Þ

and Eq. (12) can equally well be interpreted as a canonical
distribution, πeq ∝ e−βUtot .
From Eqs. (11) and (12), we obtain

peq
λNPTðxÞ ¼

1

Zλ
expð−β½uSðx; λÞ þ ϕðxÞ�Þ; ð14Þ

where the function

ϕðxÞ ¼ ϕðx;N;P; TÞ

¼ −β−1 ln
R
dy exp ½−βðUE þ uSE þ PVEÞ�R

dy exp ½−βðUE þ PVEÞ�
ð15Þ

is the “solvation Hamiltonian of mean force,” or “solvation
Hamiltonian” for short. Note that ϕðxÞ does not depend on
the work parameter λ.

Taking the thermodynamic limit for the environment,
N → ∞, the system of interest becomes a tiny object lost in
a vast bath, and ϕ becomes independent of N:

ϕðx;P; TÞ≡ lim
N→∞

ϕðx;N;P; TÞ: ð16Þ

In this limit, the equilibrium state of S becomes

peq
λPTðxÞ≡ lim

N→∞
peq
λNPTðxÞ

¼ 1

Zλ
expð−β½uSðx; λÞ þ ϕðx;P; TÞ�Þ; ð17Þ

which is independent of N: The RNA molecule “knows” it
is in an aqueous solution at pressure P and temperature T,
but it cannot determine whether it is immersed in a droplet
of water or in a Great Lake. Throughout the rest of this
paper, Eq. (17) will represent the equilibrium state of our
system of interest. A few comments are now in order.
The distribution peq

λPT ∝ e−βðuSþϕÞ is sometimes called
“noncanonical” or “non-Gibbsian” because of the term ϕ in
the exponent. We instead use the term “solvated ensemble,”
emphasizing that Eq. (17) describes a system immersed in
an environment of atoms and molecules.
Although Eq. (17) was obtained with Fig. 1 in mind, the

presumed smallness of S did not enter the derivation.
Equation (17) applies equally well when S is macroscopic
(e.g., a rubber band), provided the limit N → ∞ is taken for
the environment E (the surrounding air), with the size of S
held fixed. In that case, x ¼ ðq;pÞ describes a microstate of
the rubber band. As we will see in Sec. IV, when S is
macroscopic, the value of ϕ reduces to a simple expression.
We stress that the choice of the isothermal-isobaric

ensemble to represent S þ E [Eq. (12)] was made for
convenience. Alternative choices (canonical, microcanon-
ical, grand) would lead to the same solvated ensemble for
S, as discussed in greater detail in the Appendix.
Both ϕ and peq

λPT depend implicitly (through UE þ uSE)
on the chemical composition of the aqueous solution. For
instance, ϕðx;P; TÞ is different if E is pure water rather than
if it is a solution of water and urea at 8M concentration.
This difference is not surprising: The fact that adding urea
to water causes proteins to denature (unfold) [32] is
empirical evidence that the equilibrium state of a solvated
molecule depends not only on the pressure and temperature
but also on the chemical composition of its environment.
Strictly speaking, we should write ϕðx;P; T; μ1; μ2 � � �Þ to
indicate the dependence of ϕ on the chemical potentials of
the various species of dissolved solutes, but we will leave
this dependence implicit.
From Eq. (15), we obtain

∂ϕ
∂x ðx; λÞ ¼

�∂uSE
∂x

�
eq

x
≡

Z
dyπeqðx; yÞ ∂uSE∂x ðx; λÞ: ð18Þ

FIG. 2. Isothermal-isobaric setup for the RNA molecule in
aqueous solution. The container is closed off by a frictionless
piston whose vertical height h is treated as one of the many
(∼1023) degrees of freedom of the environment E.
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Similarly, the quantity hS ≡ uS þ ϕ, which is often called
the Hamiltonian of mean force [14–17,33–36], obeys

∂hS
∂x ¼

�∂Utot

∂x
�

eq

x
: ð19Þ

Thus, −∂ϕ=∂x and −∂hS=∂x are mean values of the
fluctuating “forces” −∂uSE=∂x and −∂Utot=∂x, with the
average taken over the variables y, at fixed x.
Finally, the interaction term uSE often depends only on

the coordinates, and not the momenta, of the microscopic
degrees of freedom: uSE ¼ uSEðq;QÞ. In this situation,
ϕðxÞ becomes a potential of mean force [37], ϕðqÞ, a
concept originally introduced by Kirkwood [38] and widely
used in solvation thermodynamics [39].

C. The task at hand

Having determined the equilibrium state peq
λPTðxÞ, we

wish to define the following state functions for the system
of interest: internal energy u, entropy s, volume v, enthalpy
h, and Gibbs free energy g. We also wish to define the work
w performed on S, and the heat q absorbed by S, during a
thermodynamic process in which the system evolves in
time. These quantities will be constructed to satisfy three
consistency criteria, described below.
(1) Thermodynamic consistency requires that these

quantities satisfy the analogues of Eqs. (1) and (4):

h ¼ uþ Pv; g ¼ h − sT; ð20Þ

hqi þ hwi ¼ Δh; hwi ≥ Δg: ð21Þ

Equation (21) applies to a process in which the
system evolves from one equilibrium state to an-
other,Δh andΔg denote the enthalpy and Gibbs free
energy differences between these equilibrium states,
and angular brackets indicate an average over an
ensemble of realizations (repetitions) of this process.

(2) Stochastic consistency demands that three central
nonequilibrium work relations [10] be satisfied:

he−βwi ¼ e−βΔg; ð22aÞ

ρFðþwÞ
ρRð−wÞ ¼ eβðw−ΔgÞ; ð22bÞ

hδðx − xtÞe−βwti ¼ e−βΔgtpeq
λt
ðxÞ: ð22cÞ

These will be described in detail in Sec. V D. These
relations were originally derived using the canonical
ensemble for the system’s equilibrium state [40–42]. As
a result, they are typically expressed in terms of the
Helmholtz free-energy difference ΔF, rather than Δg.
(3) Macroscopic consistency requires that the state

functions u, s, v, h, and g scale up properly. Since

a rubber band surrounded by air can be described
using Eqs. (8) and (17), the definitions of u, s, v,
etc., which we aim to construct, can, in principle, be
evaluated for the rubber band. We want these values
to be equal to the macroscopic internal energy,
entropy, volume, etc. of the rubber band. Further-
more, w and q can be evaluated for a process
involving the stretching or contraction of the rubber
band. We want our microscopic expressions for w
and q to reproduce the macroscopic work and heat.

IV. MICROSCOPIC VOLUME

We now introduce a thermodynamic definition of the
volume of our microscopic system of interest, both as a
fluctuating observable vSðxÞ and as a state function vðλÞ
[Eq. (28)]. Many quantities discussed in this section,
including vS and v, depend parametrically on the pressure
P and temperature T of the environment. To avoid clutter,
we will mostly leave the dependence on P and T implicit.
In Eq. (15), the quantity inside the logarithm can be

viewed as a ratio of partition functions. The numerator

ZE
x ≡

Z
dy exp ½−βðUE þ uSE þ PVEÞ� ð23Þ

corresponds to an equilibrium state of E in which the
RNA and beads have been inserted into the water, in a
“frozen” microstate x; i.e., the system coordinates and
momenta x ¼ ðq;pÞ are treated as fixed parameters, rather
than degrees of freedom. The denominator,

ZE
0 ≡

Z
dy exp ½−βðUE þ PVEÞ�; ð24Þ

is the partition function for an equilibrium state of the bare
environment. The solvation Hamiltonian

ϕðxÞ ¼ −β−1 ln ðZE
x=ZE

0Þ ¼ GE
x −GE

0 ð25Þ

is the Gibbs free-energy difference between these
states. This difference is the reversible work associated
with “turning on” the interaction between the system of
interest—frozen in the microstate x—and the surrounding
aqueous solution, at fixed pressure and temperature. In
other words, ϕðxÞ is the reversible work required to insert
the frozen system of interest into the solution.
Suppose for a moment that the system of interest is

macroscopic, though much smaller than the environment.
For instance, imagine a pebble (S) in a bucket of water (E).
Let x denote the positions and momenta of all of the atoms
that compose the pebble, and let VpebðxÞ denote the
macroscopic volume of space occupied by the pebble.
Note that once the microstate x is given, the macroscopic
volume VpebðxÞ is fully specified. (This is equally true for a
squishier system such as a rubber band.)
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Consider the two equilibrium states of the environment
depicted in Fig. 3. The state on the left contains only the
water, and the state on the right contains the pebble, frozen
in the microstate x. The Gibbs free-energy difference
between these two states is the reversible work required
to grow a cavity of just the right size to accommodate the
pebble. Since the pebble is macroscopic, the creation of this
cavity requires work PVpeb against the fixed pressure P. We
therefore have

ϕðx;P; TÞ ¼ PVpebðxÞ: ð26Þ

Equation (26) trivially implies

VpebðxÞ ¼
ϕðx;P; TÞ

P
: ð27Þ

This can be viewed as a thermodynamic definition of
volume. The frozen pebble’s volume is given in terms of the
work required to insert it into a bath of water. The same
argument could have been made for a generic macroscopic
system, such as a rubber band (S) in a roomful of air (E),
yielding the same result.
Since a microscopic system such as our solvated RNA

molecule does not possess a sharply defined surface, it is
difficult to specify with precision its geometric volume. By
contrast, the solvation Hamiltonian ϕðx;P; TÞ is well
defined. Motivated by Eq. (27), we define the volume of
a microscopic system in terms of its thermodynamic effect
on the surrounding environment.
Let the fluctuating observable vSðx;P; TÞ denote the

volume of the system of interest in a microstate x; let the
state function vðλ; P; TÞ be the volume associated with
the equilibrium state ðλ; P; TÞ. We define these as follows
(suppressing their dependence on P and T):

vSðxÞ≡ ϕðxÞ
P

; ð28aÞ

vðλÞ≡
Z

dxpeq
λ ðxÞvSðxÞ: ð28bÞ

Equation (17) can now be written as

peq
λPTðxÞ ¼

1

Zλ
e−β½uSðx;λÞþPvSðxÞ�; ð29Þ

ZλðP; TÞ ¼
Z

dxe−βðuSþPvSÞ: ð30Þ

Equation (29) resembles the isothermal-isobaric distribu-
tion, Eq. (9b), which is intuitively appealing: If the system
of interest is immersed in an environment at fixed pressure
and temperature, and its volume vS can fluctuate, then it is
natural for the isothermal-isobaric ensemble to describe the
equilibrium state of the system.

V. BARE REPRESENTATION

Equation (28) defines the volume of a small, solvated
system of interest. Here, we define the six remaining
quantities (internal energy, entropy, etc.), and we show
that they satisfy thermodynamic, stochastic, and macro-
scopic consistency. The framework developed in this
section will be called the bare representation because the
internal energy of S will be identified with its bare
Hamiltonian, uS [Eq. (31a)]. In Sec. VI, we develop an
alternative framework, the partial molar representation.
Table I lists the quantities defined in the two frameworks.

A. Fluctuating observables and state functions

In the bare representation, we define the fluctuating
internal energy, volume, and enthalpy of S as follows:

internal energy ¼ uSðx; λÞ; ð31aÞ

volume ¼ vSðxÞ ¼
ϕ

P
; ð31bÞ

enthalpy ¼ hSðx; λÞ ¼ uS þ PvS: ð31cÞ

Note that the fluctuating volume vSðxÞ, like the solvation
Hamiltonian ϕðxÞ, does not depend on λ.
Using the distribution peq

λ ðxÞ [Eq. (17)], we construct the
state functions

uðλ; P; TÞ ¼
Z

dxpeq
λ ðxÞuSðx; λÞ; ð32aÞ

vðλ; P; TÞ ¼
Z

dxpeq
λ ðxÞvSðxÞ; ð32bÞ

hðλ; P; TÞ ¼
Z

dxpeq
λ ðxÞhSðx; λÞ; ð32cÞ

sðλ; P; TÞ ¼ −
Z

dxpeq
λ ðxÞ lnpeq

λ ðxÞ; ð32dÞ

gðλ; P; TÞ ¼ −β−1 lnZλ: ð32eÞFIG. 3. The reversible work required to insert a pebble into a
bucket of water, at constant pressure, is PVpeb.
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Equation (28b) has been repeated, and Zλ is given by
Eq. (30). The internal energy, volume, and enthalpy state
functions are defined as equilibrium averages of the
respective fluctuating observables [Eqs. (32a)–(32c)], the
entropy is given by the Shannon formula [Eq. (32d)], and
the Gibbs free energy is defined in terms of a partition
function [Eq. (32e)], as in Eq. (10). For every equilibrium
state ðλ; P; TÞ of the system of interest, Eq. (32) assigns a
unique value to each of these five observables.

B. Heat and work

Now consider a process in which the composite system
S þ E evolves over a time interval ti ≤ t ≤ tf. The work
parameter is varied according to a schedule, or protocol,
λðtÞ, and the evolution of S is described by a trajectory xðtÞ.
Let xi, xf, λi, and λf denote the initial and final microstates
and parameter values, e.g., xi ¼ xðtiÞ.
For a macroscopic system undergoing an isobaric

process, the first law is conveniently written as [see Eq. (4)]

ΔH ¼ QþW: ð33Þ

The total work performed on the system consists of the
workW due to the manipulation of external parameters and
the work −PΔV associated with the change of the system’s
volume during the process. The latter is sometimes called
the “PdV work” and the former the “non-PdV work.” In
Eq. (33), the PdV work is bundled into the enthalpy change,
ΔH ¼ ΔU þ PΔV (see Sec. II).
Motivated by Eq. (33), we write

ΔhS ≡ hSðxf; λfÞ − hSðxi; λiÞ ¼ qþ w; ð34Þ

where

q½xðtÞ�≡
Z

tf

ti

dt_x
∂hS
∂x ; ð35aÞ

w½xðtÞ�≡
Z

tf

ti

dt_λ
∂hS
∂λ : ð35bÞ

The integrands are evaluated along the trajectory xðtÞ and
the protocol λðtÞ (the dependence on the latter is implicit),
with _x ¼ dx=dt and _λ ¼ dλ=dt.
To interpret these definitions, consider first a process

with λ held fixed. For example, imagine a protein molecule
undergoing a spontaneous conformational change from an
unfolded state at t ¼ ti to a compact, folded state at t ¼ tf.
From Eqs. (34) and (35), we have

q ¼ ΔhS ¼ ΔuS þ PΔvS; when _λ ¼ 0: ð36Þ

When a macroscopic system undergoes a spontaneous
process at constant pressure, the heat that it absorbs is
equal to the change in its enthalpy [19]; Eq. (36) is the
microscopic analogue of this statement. The term PΔvS
represents the PdV work performed by the molecule as it
folds spontaneously.
From Eq. (31), we have ∂λhS ¼ ∂λuS (since ∂λvS ¼ 0);

hence, Eq. (35b) coincides with the accepted definition of
work in stochastic thermodynamics [6,7]. This quantity
represents non-PdV work: It is associated with variations of
the work parameter λ (see also Sec. VII).
Thus, Eq. (34) can be rewritten as

ΔuS ¼ qþ w − PΔvS ¼ qþ wnon-PdV þ wPdV: ð37Þ

When a molecule is stretched using optical tweezers, from a
folded to an unfolded state, wnon-PdV ¼ w is the work due to
the displacement of the optical trap, and wPdV ¼ −PΔvS is
the work associated with the change in volume vS that
accompanies this process.
We interpret Eqs. (34) and (37) as statements of the

first law of thermodynamics, for a single realization of a
process involving a small system S immersed in a large
environment E.

TABLE I. Thermodynamic quantities defined in the bare and partial molar representations are listed, together with references to their
defining equations. Although w ¼ w̄ and g ¼ ḡ, other quantities generally differ in the two representations (uS ≠ ūS , q ≠ q̄, etc.) All of
the listed quantities depend implicitly on P and T.

Bare representation Partial molar representation

Fluctuating observables Internal energy uSðx; λÞ Eq. (31a) ūSðx; λÞ Eq. (78a)
Volume vSðxÞ Eq. (31b) v̄SðxÞ Eq. (75)
Enthalpy hSðx; λÞ Eq. (31c) h̄Sðx; λÞ Eq. (78b)

State functions Internal energy uðλÞ Eq. (32a) ūðλÞ Eq. (80a)
Volume vðλÞ Eq. (32b) v̄ðλÞ Eq. (80b)
Enthalpy hðλÞ Eq. (32c) h̄ðλÞ Eq. (80c)
Entropy sðλÞ Eq. (32d) s̄ðλÞ Eq. (83)
Gibbs free energy gðλÞ Eq. (32e) ḡðλÞ Eq. (83)
Heat q½xðtÞ; λðtÞ� Eq. (35a) q̄½xðtÞ; λðtÞ� Eq. (85a)
Work w½xðtÞ; λðtÞ� Eq. (35b) w̄½xðtÞ; λðtÞ� Eq. (85b)
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C. Thermodynamic consistency

With the help of Eqs. (31c) and (32e), Eq. (29) becomes

peq
λ ¼ exp½−βðhS − gÞ�: ð38Þ

This expression combines with Eqs. (32c) and (32d) to give
s ¼ βðh − gÞ, or

g ¼ h − sT: ð39aÞ

Moreover, Eqs. (31c) and (32a)–(32c) imply

h ¼ uþ Pv: ð39bÞ

Thus, the first two conditions of thermodynamic consis-
tency identified in Sec. III C [Eq. (20)] are satisfied.
Now consider a process in which S begins in equilibrium

at λ ¼ A, then the parameter is varied with time (perhaps
slowly, perhaps not) until it reaches a final value λ ¼ B, and
the system is then allowed to relax to the corresponding
equilibrium state [43]. Equation (34) gives us

qþ w ¼ hSðxf;BÞ − hSðxi;AÞ: ð40Þ

Averaging both sides over an ensemble of realizations of
this process and using Eq. (32c), we get

hqi þ hwi ¼ hðBÞ − hðAÞ ¼ Δh ð41Þ

using the assumption that the system begins and ends in
equilibrium. Thus, the third condition of thermodynamic
consistency [Eq. (21a)] is satisfied.
In Sec. V D, we show that the equality he−βwi ¼ e−βΔg is

satisfied for the process described in the previous paragraph
[Eq. (52)]. By Jensen’s inequality (see Ref. [37], Sec. V. 5),
this result immediately implies that

hwi ≥ Δg; ð42Þ

thereby satisfying the fourth and final condition of thermo-
dynamic consistency [Eq. (21b)]. Using Eqs. (39a) and
(41), Eq. (42) can be rewritten as

hqi ≤ TΔs; ð43Þ

which is the Clausius inequality for isothermal processes.
It is useful to analyze a scenario in which the system is

driven quasistatically from λi ¼ A to λf ¼ B, remaining in
equilibrium at all times. In other words, the statistical state
of S at time t is given by peq

λðtÞðxÞ [Eq. (29)]. In this limit, we

use adiabatic averaging to replace the integrand in
Eq. (35b) with its equilibrium average:

w½xðtÞ� →
Z

tf

ti

dt_λ

�∂hS
∂λ

�
eq

¼
Z

B

A
dλ

Z
dxpeq

λ ðxÞ
∂hS
∂λ ðx; λÞ

¼
Z

B

A
dλ

∂g
∂λ ¼ gðBÞ − gðAÞ≡ Δg; ð44Þ

using the definitions of hS and g. Equations (34) and (44)
give us

q½xðtÞ� ¼ hSðxf;BÞ − hSðxi;AÞ − Δg: ð45Þ

Averaging both sides over an ensemble of realizations of
this quasistatic process, the right side becomes Δh − Δg,
which combines with Eq. (39a) to give

hqi ¼ TΔs: ð46Þ

This is the Clausius equality for reversible, isothermal
processes.

D. Stochastic consistency

Stochastic thermodynamics provides an appealing
framework for deriving and interpreting fluctuation theo-
rems [7]. In this approach, the system of interest evolves
under stochastic, Markovian dynamics. The source of
stochasticity is a thermal environment whose degrees of
freedom are not treated explicitly.
An alternative approach is to use Hamilton’s equations

to describe the evolution of either the system of interest
itself (if it is thermally isolated) or the system and its
environment. Simple derivations of counterparts of
Eqs. (22a)–(22c) above were presented in Ref. [10] for a
toy model of an isolated classical system obeying
Hamiltonian dynamics. These derivations were meant to
be pedagogical, but they are easily extended to the case of a
system that is strongly coupled to its thermal environment.
The key is to combine Hamiltonian dynamics in the full
phase space (S þ E) with a useful factorization of partition
functions [Eq. (50) below]. This approach was previously
used in Refs. [11,15], and it is the approach we will
follow below.
The Hamiltonian for the combined system of interest and

thermal environment is given by

Utotðζ; λÞ ¼ uSðx; λÞ þ UEðyÞ þ uSEðx; yÞ þ PVEðyÞ;
ð47Þ

where ζ ¼ ðx; yÞ and PVEðyÞ ¼ mgh [see Eq. (13)]. We
assume time-reversal invariance,

Utotðζ; λÞ ¼ Utotðζ�; λÞ; ð48Þ
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where ζ� is obtained from ζ by reversing all the momenta.
This assumption will be used in the derivation of Eq. (22a).
At fixed λ, the equilibrium state of S þ E is described by

the distribution [see Eq. (12)]

πeqλ ðζÞ ¼
1

Yλ
e−βUtotðζ;λÞ ¼ 1

Yλ
e−βðUSþEþPVEÞ: ð49Þ

The dependence of πeqλ and Yλ on ðN;P; TÞ is suppressed.
Using Eqs. (23)–(25) and (30), we obtain

Yλ ¼
Z

dζe−βUtot ¼
Z

dxe−βuSðx;λÞZE
x ¼ ZλZE

0 : ð50Þ

Thus, the composite partition function (Yλ) is a product
of partition functions for the system of interest (Zλ) and
the bare environment (ZE

0 ). A similar factorization arises
in the canonical—rather than isothermal-isobaric—setting
[11,12,14–17,33,34].
Now imagine that the composite system begins in

equilibrium at t ¼ 0, with λ0 ¼ A; then it evolves in time
as the work parameter is varied from λ0 ¼ A to λτ ¼ B
according to a protocol λt ≡ λðtÞ. We assume this evolution
follows Hamilton’s equations in the full phase space. For a
given realization of this process, let ζt ≡ ζðtÞ denote the
Hamiltonian trajectory followed by the composite system,
and xt ≡ xðtÞ the trajectory of the system of interest,
obtained by projecting ζt onto x space. We then have

w ¼
Z

τ

0

dt_λ
∂hS
∂λ ðxt; λtÞ ¼

Z
τ

0

dt_λ
∂Utot

∂λ ðζt; λtÞ

¼
Z

τ

0

dt
d
dt
Utotðζt; λtÞ ¼ Utotðζτ;BÞ − Utotðζ0;AÞ ð51Þ

using the Hamiltonian identity dUtot=dt ¼ ∂Utot=∂t
(Ref. [44], Sec. 8-2). Note that w can be viewed either
as a functional of the entire trajectory xt of the system of
interest [Eq. (35b)] or as a functional of the trajectory ζt of
the composite system, in which case it is determined
directly from ζ0 and ζτ [Eq. (51)].
With these elements in place, we have

he−βwi ¼
Z

dζ0π
eq
A ðζ0Þe−βw½ζt�

¼
Z

dζ0
e−βUtotðζ0;AÞ

YA
e−β½Utotðζτ;BÞ−Utotðζ0;AÞ�

¼ 1

YA

Z
dζτ

���� ∂ζτ∂ζ0
����
−1
e−βUtotðζτ ;BÞ

¼ YB

YA
¼ ZB

ZA
¼ e−βΔg: ð52Þ

The first three lines here follow the derivation given in
Sec. III of Ref. [10], invoking Liouville’s theorem to set the
Jacobian j∂ζτ=∂ζ0j to unity. Equations (50) and (32e) have
been used on the last line.

Next, consider the setup associated with Crooks fluc-
tuation theorem [41,45]. The term “forward process”
indicates the situation discussed above, with the work
parameter varied from λF0 ¼ A to λFτ ¼ B. The term
“reverse process” indicates the time-reversed protocol:
λRt ¼ λFτ−t. Initial conditions are sampled from the appro-
priate equilibrium distribution, πeqA or πeqB , and the dynamics
are Hamiltonian in the full phase space. Since Utotðζ; λÞ
satisfies time-reversal invariance [Eq. (48)], realizations of
the two processes come in pairs, or conjugate twins,
ζFt ¼ ζR�τ−t. Here, ½ζFt � is a solution of Hamilton’s equations
for the forward process, and ½ζRt � is the solution for the
reverse process obtained by running the forward realization
backward in time, so to speak [10,46]. From Eqs. (48) and
(51), we have

w½ζFt � ¼ −w½ζRt �: ð53Þ

Because the dynamics are deterministic, the probability
of observing a given trajectory can be equated with that of
sampling its initial conditions. Writing PF½ζFt � as the
probability to observe the trajectory ½ζFt � during the forward
process, and PR½ζRt � as the probability of observing its
conjugate twin during the reverse process, we have

PF½ζFt �
PR½ζRt �

¼ πeqA ðζF0 Þ
πeqB ðζR0 Þ

¼ πeqA ðζF0 Þ
πeqB ðζF�τ Þ

¼ YB

YA
eβ½UtotðζFτ ;BÞ−UtotðζF0 ;AÞ�

¼ eβðw−ΔgÞ; ð54Þ

where w ¼ w½ζFt � is the work performed during the forward
process.
Using Eq. (54), we now obtain

ρFðwÞ ¼
Z

dζF0P
F½ζFt �δðw − w½ζFt �Þ

¼
Z

dζR0P
R½ζRt �eβðw−ΔgÞδðw − w½ζFt �Þ

¼ eβðw−ΔgÞ
Z

dζR0P
R½ζRt �δðwþ w½ζRt �Þ

¼ eβðw−ΔgÞρRð−wÞ ð55Þ
using the conjugate pairing of trajectories to replace dζF0 by
dζR0 . We thus obtain Crooks fluctuation theorem:

ρFðþwÞ
ρRð−wÞ ¼ eβðw−ΔgÞ: ð56Þ

Finally, to obtain Eq. (22c), consider

χðζ; tÞ≡ hδðζ − ζtÞe−βwti ð57Þ
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where ζt denotes the microstate of the composite system at
time t during a single realization of the forward process, wt
is the work performed up to time t during this realization,
and angular brackets denote an average over an ensemble of
realizations, with initial conditions sampled from πeqA ðζ0Þ.
The function χðζ; tÞ is a “weighted” probability distribution
in the full phase space, in which each realization carries a
time-dependent statistical weight expð−βwtÞ [47].
Following the derivation appearing in Eqs. (22)–(26) of
Ref. [10], we obtain

hδðζ − ζtÞe−βwti ¼ 1

YA
e−βUtotðζ;λtÞ: ð58Þ

Integrating both sides with respect to y then gives us

hδðx − xtÞe−βwti ¼ 1

YA
e−βuSðx;λtÞZE

x

¼ 1

ZA
e−β½uSðx;λtÞþPvSðxÞ� ð59Þ

using Eqs. (23), (25), (28a), and (50). Equivalently,

hδðx − xtÞe−βwti ¼ e−βΔgtpeq
λt
ðxÞ; ð60Þ

where Δgt ¼ gðλtÞ − gðAÞ. By the simple trick of assigning
a weight expð−βwtÞ to each trajectory, we reconstruct the
solvated ensemble peq

λt
ðxÞ (up to normalization) from an

out-of-equilibrium ensemble.
Since the right side of Eq. (54) can be determined from

the trajectory ½xt� alone, we can equally well write

PF½xFt �
PR½xRt �

¼ eβðw−ΔgÞ; w ¼ w½xFt �; ð61Þ

where ½xFt � and ½xRt � are conjugate twin trajectories of the
system of interest: xFt ¼ xR�τ−t. The numerator (and denom-
inator) in Eq. (61) can be written in the form

PF½xFt � ¼ PF½xFt jxF0Þ · peq
A ðxF0 Þ; ð62Þ

where PF½xFt jxF0Þ is the conditional probability of observing
the trajectory, given the initial conditions. Using Eqs. (29),
(32e), and (34), we then obtain

PF½xFt jxF0Þ
PR½xRt jxR0 Þ

¼ e−βq; ð63Þ

where q ¼ q½xFt � is the heat absorbed by S during the
forward process [Eq. (35a)]. The original version of this
result—for a system represented in equilibrium by
peq
λ ∝ e−βuS—was obtained by Crooks [41] using dis-

crete-state Markovian dynamics, and extended by Seifert
[48] to overdamped Langevin dynamics. Equation (63)

shows that this result holds as well for a system that is
strongly coupled to a thermal environment, with
peq
λ ∝ e−βðuSþϕÞ.

E. Macroscopic consistency

To establish macroscopic consistency, we use the rubber
band introduced in Sec. II as an illustrative system. The
equilibrium state of the rubber band (immersed in air) is
described by peq

LPTðxÞ [Eq. (17)], where x denotes its
microstate, and the externally controlled length L plays
the role of the work parameter λ.
Let the fluctuating observable VSðxÞ denote the geo-

metric volume of the rubber band. From the arguments
leading to Eq. (26), we have ϕðx;P; TÞ ¼ PVSðxÞ; hence,

vSðx;P; TÞ≡ ϕðx;P; TÞ
P

¼ VSðxÞ: ð64Þ

For a macroscopic system, the “thermodynamic” volume
vS loses its dependence on P and T and becomes equal to
the geometric volume VS.
Fluctuations in VSðxÞ among microstates sampled from

peq
LPTðxÞ are negligible at the macroscopic scale. As a result,

the equilibrium state function V can be equated with the
ensemble average of VSðxÞ:

VðL;P; TÞ≡
Z

dxpeq
LPTðxÞVSðxÞ ¼ vðL; P; TÞ ð65Þ

using Eqs. (64) and (32b).
The rubber band’s internal energy US is a sum of the

energies of its microscopic constituents, including the
interactions among these constituents. This sum is given
by the bare system Hamiltonian uS:

USðx;LÞ ¼ uSðx;LÞ: ð66Þ

Since fluctuations inUSðx;LÞwithin the ensemble peq
LPTðxÞ

are macroscopically negligible, we identify the equilibrium
energy with its ensemble average:

UðL; P; TÞ≡
Z

dxpeq
LPTðxÞUSðx;LÞ ¼ uðL;P; TÞ: ð67Þ

Similar expressions for enthalpy follow immediately:

HSðx;LÞ ¼ US þ PVS ¼ hSðx;L;P; TÞ; ð68Þ

HðL;P; TÞ ¼
Z

peq
LPTHS ¼ hðL;P; TÞ: ð69Þ

We see that the state functions u, v, and h defined in
Eq. (32) scale up to the macroscopic internal energy (U),
volume (V), and enthalpy (H). Moreover, the solvated
ensemble [Eq. (17)] scales up to the macroscopic
isothermal-isobaric ensemble [Eq. (9a)]:
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peq
LPTðxÞ ¼

1

ZL
e−β½USðx;LÞþPVSðxÞ�: ð70Þ

Now consider work and heat. Imagine that the air (E) and
rubber band (S) are located within a container, closed off
by a piston that maintains a constant pressure. The entire
setup constitutes a large, thermally isolated system gov-
erned by the Hamiltonian Utotðζ; λÞ [Eq. (47)]. The macro-
scopic work performed when stretching the rubber band,
W, is equal in value to the total change in the energy of this
isolated system. By Eq. (51), this change is equal to the
work w defined by Eq. (35b):

W ¼ Utotðζτ;BÞ − Utotðζ0;AÞ ¼ w: ð71Þ

Combining this result with Eqs. (34) and (68), we obtain

q ¼ ΔHS −W ¼ Q ð72Þ

using the first law of thermodynamics [Eq. (4a)].
Equations (71) and (72) establish the macroscopic con-
sistency of w and q.
Next, imagine that the rubber band is stretched or

contracted slowly, always remaining in equilibrium with
the air. Let Δs denote the net change in the state function s
[Eq. (32d)], and let ΔS denote the net change in the
macroscopic entropy. We then have

Δs ¼ hqi
T

¼ hQi
T

¼ ΔS ð73Þ

using Eqs. (46), (72), and (5a). Since SðLÞ is defined only
up to an additive constant S0 (see Sec. II), we conclude
from Eq. (73) that s ¼ S.
Finally, since h and s scale up to their macroscopic

counterparts H and S, and since we have already estab-
lished g ¼ h − sT [Eq. (39a)], it follows that the state
function g [Eq. (32e)] scales up to the macroscopic Gibbs
free energy, G ¼ H − ST.

VI. PARTIAL MOLAR REPRESENTATION

The definition of volume introduced in Sec. IV was
motivated by the equation Vpeb ¼ ϕ=P [Eq. (27)].
However, using Eq. (26), we could just as easily have
written

VpebðxÞ ¼
∂ϕ
∂P ðx;P; TÞ: ð74Þ

This observation suggests an alternative definition of
microscopic volume as a fluctuating observable:

v̄Sðx;P; TÞ≡ ∂ϕ
∂P ðx;P; TÞ: ð75Þ

The notation v̄S distinguishes this quantity from vS; it does
not denote an average. This section briefly develops a

framework that uses Eq. (75), in place of Eq. (28a), to
define microscopic volume.
Evaluating Eq. (75) using Eqs. (23)–(25), we get

v̄SðxÞ ¼ VE
x − VE

0 ; ð76Þ

where

VE
x ≡ 1

ZE
x

Z
dyVEðyÞe−βðUEþuSEþPVEÞ; ð77aÞ

VE
0 ≡ 1

ZE
0

Z
dyVEðyÞe−βðUEþPVEÞ: ð77bÞ

Here, VEðyÞ ¼ Ah is the fluctuating volume of the solution
(Sec. III B); VE

0 is the equilibrium average value of this
volume, in the absence of the system of interest; and VE

x is
the equilibrium volume of the solution in the presence of
the system of interest, frozen in microstate x. Thus, v̄SðxÞ
is the change in the equilibrium volume of the solution,
upon reversibly inserting the frozen system of interest into
the environment.
Let us define internal energy and enthalpy analogously:

ūSðx; λ; P; TÞ≡ UE
x −UE

0 ; ð78aÞ

h̄Sðx; λ; P; TÞ≡HE
x −HE

0 ¼ ūS þ Pv̄S; ð78bÞ

where

UE
x ≡ 1

ZE
x

Z
dyUSþEe−βðUEþuSEþPVEÞ; ð79aÞ

UE
0 ≡ 1

ZE
0

Z
dyUEe−βðUEþPVEÞ; ð79bÞ

HE
x ≡ UE

x þ PVE
x ; HE

0 ≡ UE
0 þ PVE

0 : ð79cÞ

We now use the equilibrium averages of ūS, v̄S, and h̄S to
define the corresponding state functions:

ūðλ; P; TÞ≡
Z

dxpeq
λ ðxÞūSðx; λ; P; TÞ; ð80aÞ

v̄ðλ; P; TÞ≡
Z

dxpeq
λ ðxÞv̄Sðx;P; TÞ; ð80bÞ

h̄ðλ; P; TÞ≡
Z

dxpeq
λ ðxÞh̄Sðx; λ; P; TÞ: ð80cÞ

To interpret these definitions, let

U ¼
Z

dζπeqλ USþEðζÞ; V ¼
Z

dζπeqλ VEðyÞ; ð81Þ
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and H ¼ U þ PV denote the equilibrium internal energy,
volume, and enthalpy of the entire solution. It then follows
that

ū ¼ U − UE
0 ; v̄ ¼ V − VE

0 ; h̄ ¼ H −HE
0 : ð82Þ

Let us define entropy and Gibbs free energy similarly:

s̄ ¼ S − SE0 ; ḡ ¼ G −GE
0 : ð83Þ

Here, G ¼ −β−1 lnYλ and GE
0 ¼ −β−1 lnZE

0 are the
Gibbs free energies of the composite system and the
bare environment, respectively; S ¼ −

R
dζπeqλ ln πeqλ and

SE0 ¼ −
R
dyπeq0 ln πeq0 are the corresponding equilibrium

entropies, with πeq0 ¼ ð1=ZE
0Þe−βðUEþPVEÞ. From these def-

initions, we obtain the identities

s̄ ¼ −
∂ḡ
∂T ; v̄ ¼ ∂ḡ

∂P : ð84Þ

Equations (82) and (83) are reminiscent of partial molar
quantities in physical chemistry [19]. The partial molar
volume of species a in a mixture is the increase in the total
volume of the mixture upon the addition of one mole of a,
at fixed pressure and temperature [49]. Aside from a factor
of Avogadro’s number to convert between molecules and
moles, our quantity v̄ ¼ V − VE

0 is the partial molar volume
of the system of interest. Similar comments apply to ū, s̄,
etc. For this reason, we refer to the framework developed in
this section as the partial molar representation.
Let us finally define, as in Eq. (35),

q̄½xðtÞ�≡
Z

tf

ti

dt_x
∂h̄S
∂x ; ð85aÞ

w̄½xðtÞ�≡
Z

tf

ti

dt_λ
∂h̄S
∂λ : ð85bÞ

Below, we first compare the quantities introduced above
[Eqs. (75)–(85)] with their counterparts in Sec. V. We then
verify that these quantities fulfill the criteria of thermody-
namic, stochastic, and macroscopic consistency.
To proceed, it is useful to introduce the functions

ϕTðx;P; TÞ≡ T
∂ϕ
∂T ; ϕPðx;P; TÞ≡ P

∂ϕ
∂P : ð86Þ

We then have, for the fluctuating observables,

ūSðx; λÞ ¼ uS þ ϕ − ϕT − ϕP; ð87aÞ

v̄SðxÞ ¼
ϕP

P
; ð87bÞ

h̄Sðx; λÞ ¼ hS − ϕT; ð87cÞ

and for the state functions,

ūðλÞ ¼ uþ hϕieq − hϕTieq − hϕPieq; ð88aÞ

v̄ðλÞ ¼ hϕPieq
P

; ð88bÞ

h̄ðλÞ ¼ h − hϕTieq; ð88cÞ

s̄ðλÞ ¼ s −
hϕTieq
T

; ð88dÞ

ḡðλÞ ¼ g; ð88eÞ

where h� � �ieq ¼ R
dxpeq

λ ðxÞ � � �, and we have suppressed
the P, T dependence on the left sides of Eqs. (87) and (88).
Finally, for heat and work, we have

q̄ ¼ q − ΔϕT; ð89aÞ

w̄ ¼ w; ð89bÞ

where ΔϕT ¼ ϕTðxfÞ − ϕTðxiÞ.
Equations (87)–(89) are obtained by straightforward

manipulations that will not be reproduced here, though
we note that Eq. (88e) follows directly from the definitions
of g and ḡ, using Eq. (50). These results provide a
translation table between the bare representation developed
in Sec. V and the partial molar representation introduced
here. We now use these results to establish the thermody-
namic, stochastic, and macroscopic consistency of the
partial molar representation.
From Eqs. (39) and (88), we obtain

h̄ ¼ ūþ Pv̄; ḡ ¼ h̄ − s̄T: ð90Þ

Equations (40), (87c), and (89) give q̄þ w̄ ¼ Δh̄S for a
process in which λ is varied with time. Averaging over an
ensemble of realizations, and assuming the system begins
and ends in equilibrium as in Sec. V C, we get

hq̄i þ hw̄i ¼ Δh̄: ð91Þ

Because w̄ ¼ w and ḡ ¼ g, Eq. (42) implies

hw̄i ≥ Δḡ: ð92Þ

Equations (90)–(92) establish thermodynamic consistency.
Moreover, Eqs. (22a)–(22c) are satisfied for w̄ and ḡ; i.e.,
the stochastic consistency of the bare representation trans-
fers immediately to the partial molar representation. For
reversible processes, we obtain

STOCHASTIC AND MACROSCOPIC THERMODYNAMICS OF … PHYS. REV. X 7, 011008 (2017)

011008-13



w̄ ¼ Δḡ; hq̄i ¼ TΔs̄; ð93Þ

the counterparts of Eqs. (44) and (46).
Finally, for a macroscopic system, ϕðx;P; TÞ ¼ PVSðxÞ;

hence, ϕT ¼ 0 and ϕP ¼ ϕ. These results imply, by
inspection of Eqs. (87)–(89), that the two frameworks
are identical for macroscopic systems: ū ¼ u, v̄ ¼ v, etc.
The partial molar representation therefore inherits the
macroscopic consistency of the bare representation.
The partial molar representation offers an alternative to

the bare representation. The relative merits of the two
frameworks will be discussed briefly in Sec. IX.

VII. TENSION

The seven key quantities identified in the Introduction
(internal energy, entropy, etc.) are of general importance in
macroscopic thermodynamics, and for this reason, they
have been the focus of attention when developing the bare
and partial molar representations. In the specific context of
a stretched and contracted rubber band, the tension Ψ also
plays an important role (Sec. II). Here, we briefly develop
microscopic definitions of tension in the context of a
stretched and contracted molecule.
In both the bare and the partial molar representations, we

define tension as a fluctuating observable as follows:

tension ¼ ψSðx; λÞ ¼ ψ̄Sðx; λÞ ¼
∂uS
∂λ ðx; λÞ: ð94Þ

Hence, work [Eq. (35b)] is just the integral of tension with
respect to displacements of the work parameter:

w ¼ w̄ ¼
Z

λf

λi

ψS · dλ; ð95Þ

where ψS is evaluated along a trajectory xðtÞ as the work
parameter is varied from λi to λf.
We construct tension as a state function by taking the

equilibrium average of the fluctuating observable:

ψðλÞ ¼ ψ̄ðλÞ ¼
Z

dxpeq
λ ðxÞψSðx; λÞ; ð96Þ

suppressing the dependence on P and T. Using Eqs. (29),
(30), (32e), and (88e), we easily obtain

ψ ¼ ψ̄ ¼ ∂g
∂λ ¼

∂ḡ
∂λ : ð97Þ

Equations (95) and (97) are the single-molecule counter-
parts of Eqs. (3) and (6c).

VIII. COMPARISON WITH PREVIOUS WORK

Issues associated with strong system-reservoir coupling
have received increased attention in both classical and

quantum statistical physics. In this section, we place our
work within the context of these broader efforts. The papers
cited below are ordered roughly by “distance” from the
aims and approach of the present paper. They are not
intended as a comprehensive survey, but they do reflect the
diverse scope of activity in this field.
In Ref. [15], building on previous work [50], Seifert

develops a thermodynamic framework for a small system
coupled strongly to its environment. The internal energy E,
entropy S, and Helmholtz free energy F (using Seifert’s
notation), together with work and heat, are given precise
definitions. These quantities satisfyF ¼ E − ST, as well as
the first and second laws of thermodynamics. These results
are analogues of Eqs. (20) and (21b) of the present paper.
Within the framework of Ref. [15], one can also derive
Eqs. (22a)–(22c) of the present paper, but with Δg replaced
by ΔF. Seifert’s framework thus satisfies thermodynamic
and stochastic consistency conditions analogous to the ones
considered here.
Reference [15] does not introduce a definition of

volume. This absence is reflected in the state functions
and in how they “scale up.” In particular, the internal energy
and Helmholtz free energy, E andF , are identical to h̄ and ḡ
in our partial molar representation. As a result, for a
macroscopic system of interest evaluated within the frame-
work of Ref. [15], E and F are equal to the system’s
enthalpy H and Gibbs free energy G, respectively. This
apparent mismatch arises because in Ref. [15] the PV term
is absent—more precisely, it is absorbed into the internal
energy E—but it does not spoil the internal consistency of
Seifert’s framework. It only implies that the framework
does not satisfy the condition of macroscopic consistency,
which was imposed in the present paper but not in
Ref. [15].
A number of quantities appearing in Ref. [15] are

identical to the ones defined in the present paper (in the
infinite-environment limit), but with different names and
notation. Table II lists these quantities, as well as the ones
appearing in Refs. [12] and [17], and identifies how they
scale up for macroscopic systems. Aside from the absence
of PV terms, and a different sign convention for heat,
Seifert’s framework is equivalent to our partial molar
representation.
Talkner and Hänggi [17] have argued that while Seifert’s

framework is thermodynamically consistent, it is not
unique. They identify an infinite family of possible
definitions of the system’s fluctuating internal energy
[see Eq. (28) of Ref. [17]] that leave the thermodynamic
consistency of the framework intact. This freedom of
definition is viewed as an undesirable ambiguity in
Ref. [17], though it is noted that this ambiguity vanishes
if “structurally appeal(ing)” conditions are imposed.
Gelin and Thoss [12] have also studied internal energy,

entropy, and free energy—but not volume, heat, or
work—in the strong-coupling regime. They discuss two
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approaches: the “mean energy approach” (I) and the
“partition function approach” (II).
In approach I, the internal energy of the system of

interest is equated with its bare Hamiltonian. The free
energy, internal energy, and entropy satisfy

FI
S ¼ EI

S − hSSiIT þ hΔSi; ð98aÞ

which in our notation becomes (see Table II)

ðgþGE
0Þ ¼ u − sT þ ðPvþ GE

0Þ: ð98bÞ

Both FI
S and hΔSi include a macroscopic “offset” GE

0 ,
which is the bare free energy of the environment. Striking
this offset from both sides, Eq. (98) reduces to our
Eq. (39a), g ¼ h − sT. Thus, approach I is similar to
our bare representation, though ϕ is not interpreted as a
pressure-volume term.
In approach II of Ref. [12], internal energy, entropy, and

free energy are defined as in Seifert’s paper and therefore
are similar to our partial molar representation.
In a recent analysis of a classical or quantum harmonic

oscillator coupled to a bath of oscillators, Philbin and
Anders [16] have used definitions of internal energy,
entropy, and free energy (U⋆, S⋆, F⋆) equivalent to those
of Seifert and to approach II of Gelin and Thoss. In the
classical case, they show that U⋆ ¼ kBT for both Ohmic
and non-Ohmic damping, regardless of the strength of
system-reservoir coupling.

Esposito, Lindenberg, and Van den Broeck (ELB) [13]
have analyzed entropy production in the strong-coupling
regime. In Ref. [13], the system’s entropy SðtÞ is defined by
the Shannon formula; its internal energy UðtÞ is the
instantaneous average of the sum of the bare and interaction
energies, or huS þ uSEi in our notation; and its free energy
is given by FðtÞ≡UðtÞ − TSðtÞ, both in and out of
equilibrium. The work WðtÞ defined by ELB corresponds
to our hwi, and heat QðtÞ is defined as the decrease in the
average internal energy of the reservoir. These quantities
satisfy a first and a second law:

ΔUðtÞ ¼ WðtÞ þQðtÞ; WðtÞ ≥ ΔFðtÞ: ð99Þ

To obtain the second law, ELB assume that the system and
its environment are initially uncorrelated, which differs
from our assumption about the initial equilibrium state of
the composite system (see Sec. III B).
Pucci, Esposito, and Peliti [14] have studied a model

quantum system relaxing toward equilibrium with its
environment. They define “poised” total entropy produc-
tion as a sum of two terms: the change in the system’s von
Neumann entropy, −trSρS ln ρS, and a contribution from the
heat absorbed by the system, given by the average change
in a mean force Hamiltonian, HMF

S . For classical systems,
the von Neumann entropy is replaced by the Shannon
entropy, and HMF

S is equivalent to our fluctuating enthalpy
hS; hence, their approach resembles our bare representa-
tion. It remains to be studied how far this correspondence
extends beyond the model of quantum Brownian motion
analyzed in Ref. [14].
Although, in general, ϕ ≠ 0, Lebowitz and Pastur [51]

have recently introduced a model of a quantum system
coupled to its environment, for which they rigorously show
that the equilibrium state of the system is given by the
canonical (Boltzmann-Gibbs) density matrix regardless of
the strength of the interaction, i.e., ϕ ¼ 0 in the notation of
the present paper.
Nanothermodynamics, pioneered by Hill [52,53], con-

cerns finite size effects in small systems. In this approach, a
small system of interest is represented by a collection of ν
independent replicas of that system. When ν → ∞, this
collection of replicas can be evaluated as a single macro-
scopic system. Rubi et al. [54] have extended nanother-
modynamics to nonequilibrium settings and have applied it
to single-molecule stretching experiments. The statistical
foundations of nanothermodynamics have recently been
studied by Qian [55]. It will be interesting to clarify how
nanothermodynamics relates to the approach taken in the
present paper.
In theoretical biochemistry, an array of conceptual and

quantitative tools have been developed for understanding
how water and cosolvent molecules influence protein-
ligand binding, protein hydration and denaturation, and
biochemical reactions (see, e.g., Refs. [56–61]). These

TABLE II. Quantities introduced by Seifert [15], Talkner, and
Hänggi [17] and Gelin and Thoss [12] are listed alongside their
counterparts in the present paper. The last column shows how
these quantities scale up, for a macroscopic system of interest.
The superscripts I and II refer to the two approaches in Ref. [12].
Note that Refs. [12,15,17] use H to denote a Hamiltonian; in the
present paper, H and h denote enthalpy.

Seifert
Talkner and
Hänggi

Gelin and
Thoss

Present
work

Macroscopic
limit

Hs HS HS uS UðxÞ
H H�

S hS HðxÞ
E E h̄S HðxÞ

ΔS ϕþ GE
0 PVðxÞ þ GE

0

EI
S u U

hSSiI s S
FI
S gþ GE

0 Gþ GE
0

E US EII
S h̄ H

S SS hSSiII s̄ S
F FS FII

S ḡ G
−q q q̄ Q
w w w̄ W
−Q hq̄i Q
W hw̄i W
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tools include thermodynamic binding potentials and link-
age relations—similar to the Maxwell relations of classical
thermodynamics. As with the case of nanothermodynam-
ics, it will be useful to investigate how these results relate to
those of the present paper and how they fit more broadly
into the field of stochastic thermodynamics.
This paper has considered only classical systems, but

there has been growing interest in developing a quantum
thermodynamic framework that encompasses fluctuation
theorems [62,63] and, more broadly, the laws of thermo-
dynamics. The issue of system-reservoir coupling often
arises explicitly in this context [33,34]. In particular, its
relevance has been noted in recent proposals for exper-
imental platforms to measure heat and work in open
quantum systems [64–66].
Although consensus exists that quantum mechanics and

thermodynamics are consistent in the weak-coupling limit
[67,68], it has been suggested that quantum violations of
the Clausius inequality can arise in the strongly coupled
regime [69–72]. Others have argued that the validity of the
second law is restored by accounting for the heat associated
with coupling the system to its reservoir [35,73,74] or by
introducing an effective equilibrium temperature [75].
Additional subtleties arise in the evaluation of specific
heat for a quantum system strongly coupled to a bath of
harmonic oscillators [76–79].
In some situations involving quantum systems, one can

choose a reaction coordinate that effectively transforms a
strongly coupled system to a weakly coupled one [36].
Other cases are usefully studied using a nonequilibrium
Green’s function approach [80,81] or a path integral
approach [82].

IX. DISCUSSION

This paper has developed two thermodynamic frame-
works—the bare and partial molar representations—for
describing a system that is strongly coupled to its envi-
ronment. In each framework, seven key quantities are
defined, and they are shown to obey macroscopic relations
including the first and second laws of thermodynamics
[Eqs. (20) and (21)], as well as microscopic fluctuation
theorems [Eq. (22)].
Additionally, the two representations satisfy macro-

scopic consistency: For large systems of interest, both
the bare quantities (u, s, v, h, g, q, w) and the partial
molar quantities (ū; � � � w̄) converge to their macroscopic
counterparts. This convergence establishes an important
link between stochastic thermodynamics and macro-
scopic thermodynamics. The former is not simply a
microscopic analogue of the latter. Rather, stochastic
and macroscopic thermodynamics can be described
within a single theoretical framework (using either the
bare or the partial molar representation), with stochastic
thermodynamics at one end of the spectrum and macro-
scopic thermodynamics at the other end.

In our approach, the volume of the system of interest is
defined thermodynamically rather than geometrically. In
both the bare and partial molar representations, this
thermodynamic definition scales up to the geometric one
for large systems, and in both frameworks, volume is the
linchpin for satisfying the macroscopic consistency of the
other state functions, allowing us to distinguish between
internal energy and enthalpy, and between Helmholtz and
Gibbs free energies.
In the rest of this section, we discuss several issues,

including the relationship between the solvated and canoni-
cal ensembles, and the relative merits of the bare and partial
molar representations.
The equilibrium state of a system S immersed in an

environment E is described by the solvated ensemble

peq
λPTðxÞ ¼

1

Zλ
e−βðuSþϕÞ: ð100Þ

How do we reconcile this expression with the fact that
the canonical distribution peq ∝ e−βuS—which ignores
ϕ—works exceedingly well in describing macroscopic
systems, such as a pebble in a bucket of water?
In textbook discussions, uSE is often taken to be

negligible when S is macroscopic. On the face of it, this
assumption seems to justify neglecting ϕ since the limit
uSE → 0 formally implies ϕ → 0 [Eq. (15)]. However,
this line of argument is misleading. The literal weak-
coupling limit uSE → 0 describes an entirely unphysical
situation in which S and E simultaneously occupy the
same space, e.g., with water molecules passing unim-
peded through a ghostlike pebble. In reality, the “weak”
interaction energy uSE (which scales as the surface area
of S) gives rise to a macroscopically large ϕðxÞ ¼ PV,
as water molecules are excluded from the region of
space inhabited by the pebble. We cannot legitimately
dismiss ϕðxÞ by invoking weak coupling.
When S is macroscopic, the solvated ensemble becomes

the isothermal-isobaric ensemble [see Eq. (70)]:

peq
λPTðxÞ ¼

1

Zλ
e−βðUSþPVSÞ ≠

1

Zλ
e−βUS : ð101Þ

Although the isothermal-isobaric and canonical distri-
butions differ, the equivalence of ensembles asserts
that the two provide equally accurate descriptions of
macroscopic systems in equilibrium. Thus, it is ulti-
mately the equivalence of ensembles, not the weak-
coupling assumption, that justifies using e−βuS in place
of e−βðuSþϕÞ to model the equilibrium state of a macro-
scopic system.
The bare (Sec. V) and partial molar (Sec. VI) represen-

tations provide competing thermodynamic frameworks for
describing a system that is strongly coupled to its surround-
ings. Let us briefly compare the two.
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The bare representation has the virtue of simple, parsi-
monious definitions: Volume is defined as a ratio ϕ=P,
internal energy is given by the bare Hamiltonian uSðx; λÞ,
and entropy is given by the Shannon formula−

R
peq
λ lnpeq

λ .
At fixed P and T, all quantities in the bare representation
can be constructed from uSðx; λÞ and ϕðxÞ. By contrast,
quantities defined in the partial molar representation con-
tain additional terms involving ϕT and ϕP [Eqs. (87)–(89)].
To determine these quantities, either the dependence of ϕ
on P and T must be known or further integrals must be
performed to calculate quantities such as UE

x and UE
0 .

The interpretation of ū, v̄, h̄, s̄, and ḡ as partial molar
quantities [Eqs. (82) and (83)] is an appealing feature of the
partial molar representation. These quantities satisfy

s̄ ¼ −
∂ḡ
∂T ; v̄ ¼ ∂ḡ

∂P ; ψ̄ ¼ ∂ḡ
∂λ ð102Þ

[Eqs. (84) and (97)], and Eqs. (90b) and (102a) give

h̄ ¼ −T2
∂
∂T

�
ḡ
T

�
: ð103Þ

Compare with Eqs. (6) and (7). Equations (102a) and (103)
are treated as conditions of thermodynamic consistency in
Ref. [17] [see Eqs. (14) and (15) therein], and Eqs. (102a) is
used to define entropy in Ref. [15]. From Eq. (102), we
easily obtain a set of Maxwell relations:

∂s̄
∂P ¼ −

∂v̄
∂T ;

∂ψ̄
∂T ¼ −

∂s̄
∂λ ;

∂ψ̄
∂P ¼ ∂v̄

∂λ : ð104Þ

The bare state functions h, g, s, v, and ψ do not obey simple
analogues of Eqs. (102)–(104).
The fact that there is more than one way to construct a

consistent thermodynamic framework might suggest an
unfortunate absence of physical guiding principles [17] to
select the “correct” construction. Alternatively, we can view
the existence of multiple frameworks as roughly analogous
to a gauge freedom. Choosing between one framework and
another may involve a balance of subjective and objective
considerations, but the lack of a unique “right answer” does
not imply the entire exercise is futile.
With respect to heat, in particular, there is no reason to

expect a unique definition when uSE is comparable to uS.
Our macroscopic understanding of heat is rooted in the idea
that energy lost by one system is gained by another. When
two systems share a non-negligible interaction energy, this
picture necessarily becomes blurred. Nevertheless, as we
have shown, heat can be defined for strongly coupled
systems in a precise manner, so the Clausius equality
[Eqs. (46) and (93b)] remains satisfied without having to
introduce correction terms.
Although we have assumed that S has a fixed number

of degrees of freedom, n, it may be useful to relax
this assumption and allow n to fluctuate with time. For

example, a protein molecule in solution is often decorated
with water molecules that are closely bound to specific sites
on the protein surface, or within cavities. These water
molecules remain associated with the protein for finite but
rather long times, instead of rapidly diffusing away. It can
then be useful to view the protein as a thermodynamically
open system that contains not just a chain of amino acids
but also the fluctuating collection of closely bound water
molecules. The protein would presumably be described
using a semigrand ensemble, but the details of this
generalization remain to be investigated. Alternatively,
we are free simply to define the protein to consist solely
of the chain of amino acids and then apply the framework
developed in this paper, treating all water molecules as
belonging to the environment.
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APPENDIX: EQUIVALENCE OF ENSEMBLES

The solvated ensemble for the system of interest,
peq
λPTðxÞ ∝ e−βðuSþϕÞ [Eq. (17)], was obtained from the

isothermal-isobaric ensemble for S þ E [Eq. (12)]. We
expect the same distribution for S to emerge if we had
chosen a different equilibrium ensemble for the composite
system, under the assumption that the environment is vastly
larger than the system of interest (N → ∞). It is instructive
to consider this point more carefully.
Suppose we had started with the canonical ensemble

πeqλNVET
ðx; yÞ ∝ e−βUSþEðx;y;λÞ ðA1Þ

in the full phase space. Here, USþE describes a system
confined within a fixed volume VE . We then get [11]

peq
λNVTðxÞ ¼

Z
dy πeqλNVT ∝ e−βðuSþφÞ; ðA2Þ

φðx;N;VE ; TÞ ¼ −β−1 ln
R
dy exp ½−βðUE þ uSEÞ�R

dy exp ½−βUE �
ðA3Þ

[compare with Eq. (15)]. Taking the limit N → ∞ at fixed
density ρ ¼ N=VE, we get

φðx;P; TÞ≡ lim
N→∞

φðx;N;N=ρ; TÞ; ðA4Þ

where P ¼ Pðρ; TÞ is the pressure of the macroscopic
environment, as a function of its temperature and density.
We then obtain the solvated ensemble
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peq
λρTðxÞ ∝ expð−β½uSðx; λÞ þ φðx;P; TÞ�Þ: ðA5Þ

The solvation Hamiltonian φðx;N;VE ; TÞ—like
ϕðx;N;P; TÞ—is the reversible work required to insert
the frozen system S into the environment E. In the case of
φ, this work is performed at fixed volume VE , rather than
pressureP. But in the limit of an “infinite” environment, the
work of insertion is the same whether or not the environ-
ment’s volume or pressure is held fixed; hence,

φðx;P; TÞ ¼ ϕðx;P; TÞ: ðA6Þ

Thus, peq
λρTðxÞ ¼ peq

λPTðxÞ, i.e., the solvated ensemble for S,
does not depend on the equilibrium ensemble chosen to
represent S þ E. This conclusion essentially reflects the
equivalence of ensembles in the full phase space.
Similar considerations apply if the composite system is

described using other equilibrium ensembles, such as the
microcanonical distribution πeqλNVE ∝ δðE −USþEÞ or the
grand ensemble πeqλμVT ∝ exp½−βðUSþE − NμÞ�.
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