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Interfacial tension between immiscible phases is a well-known phenomenon, which manifests itself in
everyday life, from the shape of droplets and foam bubbles to the capillary rise of sap in plants or the
locomotion of insects on a water surface. More than a century ago, Korteweg generalized this notion by
arguing that stresses at the interface between twomiscible fluids act transiently as an effective, nonequilibrium
interfacial tension, before homogenization is eventually reached. In spite of its relevance in fields as diverse as
geosciences, polymer physics, multiphase flows, and fluid removal, experiments and theoretical works on the
interfacial tension of miscible systems are still scarce, and mostly restricted to molecular fluids. This leaves
crucial questions unanswered, concerning the very existence of the effective interfacial tension, its stabilizing
or destabilizing character, and its dependence on the fluid’s composition and concentration gradients. We
present an extensive set of measurements on miscible complex fluids that demonstrate the existence and the
stabilizing character of the effective interfacial tension, unveil new regimes beyond Korteweg’s predictions,
and quantify its dependence on the nature of the fluids and the composition gradient at the interface. We
introduce a simple yet generalmodel that rationalizes nonequilibrium interfacial stresses to arbitrarymixtures,
beyond Korteweg’s small gradient regime, and show that the model captures remarkably well both our new
measurements and literature data onmolecular and polymer fluids. Finally, we briefly discuss the relevance of
our model to a variety of interface-driven problems, from phase separation to fracture, which are not
adequately captured by current approaches based on the assumption of small gradients.

DOI: 10.1103/PhysRevX.6.041057 Subject Areas: Fluid Dynamics, Soft Matter

I. INTRODUCTION

The spherical shape of soap bubbles and liquid droplets,
the capillary forces responsible, e.g., for the sap rise in
trees, the locomotion of water-strider insects, and the
fractionation of a liquid jet exploited in the spray or
automotive industry are only a few among the very
numerous manifestations of the interfacial tension between
immiscible phases. Given its pervasiveness, it is not
surprising that interfacial tension has been the subject of
extensive investigations for more than three centuries [1–4],
from the nature of the interface between immiscible fluids
to recent work on the shape of soft, viscoelastic solids [5,6].
The importance of interfacial phenomena has been further
highlighted by the very rapid emergence of microfluidics
and nanofluidics, where interface dynamics strongly affects
the transport and response of fluids [7,8].
From a mechanical point of view, interfacial tension

arises from the difference between the normal and

tangential components of the stress tensor in the proximity
of the interface separating two phases [3]. More than a
century ago, Korteweg was the first to propose that similar
stresses may also exist, albeit transiently, when two
miscible fluids are brought in contact [9,10]. The idea that
interfacial stresses shape the transition region between
miscible liquids, as they do for immiscible fluids, goes
back at least to a 1871 report by Bosscha, cited in the 1901
paper by Korteweg [9]. In order to put these observations
on a firm theoretical ground, Korteweg introduced in the
Navier-Stokes equations a tangential stress term arising
from the composition gradient at the interface. This term
mimics the effect of an interfacial tension, which is referred
to as the effective interfacial tension Γe. Assuming that the
concentration gradient is small and linear and invoking
local equilibrium leads to the so-called square gradient
model [10–12], which predicts a quadratic dependence of
Γe on the compositional mismatch Δφ between the bulk
phases:

Γe ¼ κ
Δφ2

δ
: ð1Þ

Here, κ is the Korteweg or square gradient parameter, δ the
thickness of the interface, andΔφ is expressed in terms of a
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difference in volume fraction, e.g., between a solute and the
solvent for molecular fluid [13–16], or between polymer
or colloidal suspensions and their solvent for complex
fluids [17,18].
Clearly, the interfacial tension described by Eq. (1) can

only exist transiently, before diffusion or other mixing
mechanisms smear out the interface leading to a single,
homogeneous phase. Notwithstanding this transient, non-
equilibrium character, the effective interfacial tension
between miscible fluids plays a key role in a wide range
of research fields of both academic and practical interest
[19], from geosciences (e.g., in mantle convection, magma
fragmentation, and the dynamics of Earth’s core [20,21]) to
hydrology [22], oil recovery [10], filtration and flow in
porous media (e.g., in a chromatography column [23]),
fluid removal [24], aquifer and soil remediation [25,26],
and the modeling of hydrodynamic instabilities, e.g., in
Rayleigh-Taylor [27] and Hele-Shaw [28,29] flows. Very
recently, convection induced by Korteweg stresses has been
proposed as a new mechanism for self-propulsion of
droplets [30] and vesicles [31], demonstrating artificial
chemotaxis and opening new scenarios in active matter and
drug delivery systems. We may thus state quite generally
that effective interfacial tension plays an important role in
all miscible multifluid systems and at all length scales.
In spite of its importance, our understanding of the

effective interfacial tension is still limited and several
fundamental questions are not settled yet. The very exist-
ence of an interfacial tension between miscible fluids is
debated. The classical theory of capillarity predicts that the
interfacial tension vanishes in the limit of fully miscible
fluids. [32]. Simulations [33] and experiments [34,35]
probing the Saffman-Taylor instability led to the conclu-
sions that no interfacial tension exists between miscible
fluids; in particular, the observation of a fractal-like inter-
face between two miscible fluids was attributed to a
vanishing interfacial energy cost, i.e., to Γe ¼ 0 [34,35].
This has to be contrasted with experiments and simulations
on miscible fluids probing capillary waves [14,15,36], the
shape of drops and menisci [13,16,17,37,38], and that of
patterns in hydrodynamic instabilities [18,27–29,39–41],
which all claimed the existence of an effective interfacial
tension. The sign of Γe is also debated. This has profound
implications on the evolution and stability of the interface,
since a positive (negative) sign corresponds to a stabilizing
(destabilizing) effect against the creation of additional
interfacial area. While experiments generally suggest
Γe > 0, a recent dynamic density-functional theory study
[42] reports a negative interfacial tension in complex fluids
composed of repulsive particles, in the short-time limit. A
similar result has been obtained in calculations of the
interfacial tension between dense and dilute phases of
active Brownian particles [43] and in molecular dynamics
simulations measuring the square gradient parameter of
water and olefines [44].

On the theoretical side, a comprehensive description of
out-of-equilibrium interfacial phenomena is still missing.
The only available theory, Korteweg’s square gradient
model [Eq. (1)], is restricted to small gradients of the
compositional mismatch. No a priori arguments are avail-
able to quantitatively asses whether Korteweg’s law would
be adequate to model a given system. Moreover, deviations
from Korteweg’sΔφ2 scaling have been clearly observed in
molecular [13] and complex fluids alike [16,41], thus
demonstrating the need for a more general theory. Even
for those systems where Korteweg’s law correctly captures
the Δφ scaling of Γe, no predictions are available for the
magnitude of the square gradient coefficient κ, with
the exception of microgel colloidal particles [18]. This
limits the usefulness of Eq. (1) and prevents the interface
thickness—an important parameter experimentally difficult
to access directly—from being inferred from ameasurement
of Γe versus Δφ.
More broadly, square gradient-based formulas are at the

core of the density-functional theory [45] and the “phase
field” method [46], two powerful techniques for the
description of inhomogeneous systems, from binary mix-
tures of phase separating fluids to metallic alloys [47],
crystal growth and defects [48,49], and fractures [50].
While a square-gradient approach is usually adequate for
the description of systems with smeared interfaces, there is
a need for more-refined approaches to satisfactorily
describe sharp interfaces within the density-functional
theory or phase field method [44,47–51]. Thus, any
progress in modeling the effective interfacial tension
beyond Korteweg’s square-gradient formalism is likely
to also have an impact on the broader problem of modeling
sharp interfaces in multiphase systems.
Here, we investigate the effective interfacial tension with

both experiments and theoretical modeling. The experi-
ments leverage on the unique features of complex fluids such
as polymer and colloidal suspensions: more accessible time
and length scales and slower diffusion—and thus longer-
lived interfaces—as compared to molecular fluids, and the
possibility of systematically varying the particle structure
and interparticle interactions. Experimentally, we establish
several key results. We show that a nonvanishing, positive
interfacial tension exists between a variety of complex fluids
and their solvent. We uncover that both the magnitude and
the concentration dependence of Γe depend dramatically on
the nature of the fluids. For long polymer chains, Γe is
consistent with Korteweg’s quadratic scaling. By contrast,
for suspensions of compact colloidal particles Γe exhibits a
striking, exponential-like increase with Δφ. For these
systems, Γe varies over 5 decades for mild changes in
concentration, reaching values as high as tens of mNm−1,
close to the interfacial tension of molecular fluids and orders
of magnitude larger than the typical interfacial tension of
equilibrium colloidal phases. Short polymer chains display a
behavior intermediate between that of long polymers and
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compact particles: as the chain length decreases, the growth
of Γe with concentration becomes increasingly steeper,
departing from Korteweg’s quadratic scaling. As a first step
towards rationalizing these results and previous literature
data for complex fluids andmolecular systems,we explicitly
calculate Korteweg’s constant for polymer solutions and
molecular mixtures. We then go beyond Korteweg’s small
gradient approximation and introduce a simple yet general
model applicable to systems with arbitrarily large compo-
sition mismatches. The model quantitatively accounts for
the full spectrum of the observed behaviors, with adjustable
parameters—the interface thickness, an additional length
scale, and a free-energy density scale—consistent with
estimates based on simple physical arguments.
Our experiments and theoretical modeling provide a

unified framework for understanding and tailoring off-
equilibrium interfacial stresses, with implications from
geosciences to microfluidic and active matter. More gen-
erally, the model proposed here provides a compact yet
powerful description of the interface contribution to the
(free) energy of a multiphase system, for arbitrary concen-
tration gradients. We thus expect it to be of use in the
description of systems with sharp interfaces, namely within
density-functional theory or phase field approaches.

II. EFFECTIVE INTERFACIAL TENSION
MEASUREMENTS

A. Setup

We measure Γe by analyzing the patterns formed when
injecting the solvent in a colloid or polymer suspension,
confined between two closely spaced, parallel plates (Hele-
Shaw geometry). The interface between the two fluids
develops a distinctive instability, termed viscous fingering
or Saffman-Taylor instability, resulting from the competi-
tion between the viscosity contrast between the fluids,
which tends to destabilize the interface, and interfacial
tension, which tends to minimize the surface fluctuations.
The Hele-Shaw cell consists of two square glass plates of
side L separated by four spacers of thickness b, in the range
0.25 ≤ b ≤ 1.00 mm. To optimize the visualization of the
fingers, both L and b are chosen according to the typical
wavelength of the instability. For very low interfacial
tensions, we use L ¼ 50 mm and b ¼ 1 mm in order to
minimize the number of fingers, to avoid nonlinear
effects occurring after the onset of the instability, such
as tip splitting, and to enlarge the field of view. For
large Γe, a smaller cell (L ¼ 25 mm) and a thinner gap
(b ¼ 0.25 mm) are used, to favor the destabilization of the
interface in order to clearly observe the instability. For
some selected samples, we check the robustness of our
method by performing experiments at different gaps,
finding no dependence of Γe on b.
The cell is initially filled with the more viscous fluid (the

suspension), with viscosity η2, and left to equilibrate for

180 s. The less viscous fluid is then injected through a hole
of radius r0 ¼ 0.5 mm in the center of the top plate. For all
experiments, we use the solvent of the suspensions with
0.5% w/w of methylene blue as the less viscous fluid, with
viscosity η1 ¼ 1.011 mPa s (water) for most samples, or
η1 ¼ 15.570 mPa s (water-glycerol mixture) for some col-
loidal suspensions. The injected volume per unit time _V is
controlled via a syringe pump. A fast CMOS camera
(Phantom v7.3 by Vision Research) run at 100 to 3000
frames per second is used to record movies during the
injection, by imaging the sample through the bottom plate.

B. Analysis of the viscous fingering patterns

We briefly recall the method introduced in Ref. [18] and
used here to obtain Γe from an analysis of the fingering
instability. In the framework of a linear evolution theory,
the instability is conveniently described by decomposing
the interface profile in Fourier modes. In experiments, the
number of lobes, or fingers, observed at the onset of
the instability corresponds to nA, the Fourier mode of the
instability with maximum amplitude [18,29]. For data
analysis, the relation between nA and the desired interfacial
tension Γe is conveniently expressed by introducing the
finger function K [18]:

KðnA; rÞ ¼
bð16.85n2A − 1Þ
4rr0½η2ð_γrÞ − η1�

¼ 1

Γe
_γI; ð2Þ

where r ¼ ½r20 þ _Vt=ðπbÞ�0.5 is the time-dependent average
radius of the interface, Γe the interfacial tension between the
two fluids, _γI ¼ 3 _Vð2πr0b2Þ−1 the shear rate at the injection
hole, and η2ð_γrÞ the shear rate-dependent viscosity
[18,52,53], with _γr ¼ ð4r0 _γI=rÞ the shear rate calculated
at a distance r from the injecting hole, where the onset of the
instability is observed. The shear-rate-dependent viscosity
η2 is measured independently by standard rheometry [54].
Operationally, for a sample at a given volume fraction φ,
several experiments are performed at different injection rates
and Γe is obtained by fitting Eq. (2) to the experimental K
versus _γI curve. The injection rate _γI is kept high enough and
the experiment duration short enough (froma fewms to a few
hundreds of ms depending on the fluid viscosity) to make
diffusion-driven mixing between the two fluids negligible
[55].All experiments are performed in the range ofReynolds
number 10−2 ≲ Re≲ 10, where Darcy’s law [56] and the
linear stability analysis of the Saffman-Taylor instability are
applicable.

C. Samples

We study suspensions of colloidal particles (CP) and
solutions of linear polymers (LP) (see Table I) of different
chemistry, size, and molecular weight, at volume fractions
φ ranging from 2.8 × 10−3 to 0.633, depending on the
sample [57]. For polymers, φ is the volume fraction
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occupied by the monomers, calculated from the mass
fraction used to prepare the sample and the known polymer
mass density. For colloids, φ is obtained from the particle
density and the mass fraction measured by drying a small
amount of suspension. Polyethylene glycol (LP-PEG) and
linear polystyrene sulfonate (LP-PSS) are purchased from
Sigma-Aldrich and suspended in pure water (η1 ¼ 1 mPa s)
without any further purification or addition. For the sake of
completeness, we also include the data of Ref. [18] on
water-based microgels formed by cross-linked poly(N-
isopropylacrylamide) (MG-PNIPAm), synthesized accord-
ing to the protocol of Ref. [60]. Colloidal particles are
made of silica (CP-Ludox, Ludox-TM 50 purchased from
Sigma-Aldrich and used as is; CP-silica, silica particles
synthesized according to Ref. [61]) or poly(ethyl methac-
rylate) (CP-Pema, synthesized according to Ref. [62]).
Preliminary data for CP-Ludox at the higher volume
fractions were reported in Ref. [41]. For most of the CP
samples, the solvent is water, to which salt is added to
partially screen the Coulombic repulsion due to surface
charges: we use 50 mmol KCl forCP-Ludox andCP-silica,
and 250 mmol NaCl for CP-Pema. For the CP-Ludox
samples with φ ≤ 0.25, the viscosity contrast between
the water-based suspensions and water is too low and
particle diffusion too fast for the viscous fingering insta-
bility to be observable. We thus use a more viscous mixture
of water and glycerol (2=3 water/glycerol v/v, viscosity
η1 ¼ 15.57 mPa s) as a solvent, with the same salt content
as in the water-based samples. Details on all samples are
reported in Table I. Note that for CP-silica the critical

packing fraction φc where the suspension viscosity
seemingly diverges is close to φrcp ≈ 0.64, the volume
fraction of randomly close-packed spheres. This indicates
that interparticle interactions are nearly hard-sphere-like.
For CP-Pema and CP-Ludox, by contrast, φc is substan-
tially lower, due to long-range electrostatic repulsions.
In addition to our data, we also analyze literature data

obtained by spinning drop tensiometry for dodecyl acryl-
ate-poly(dodecyl acrylate) mixtures [17] (DA-PDA, the
solvent is pure DA) and water-glycerol mixtures [13] (the
solvent is pure water). The relevant parameters for these
systems are summarized in Table II. For consistency with
the other sets of data, we express concentration as the
volume fraction φ of PDA and of glycerol, for the data of
Refs. [17] and [13], respectively.

D. Experimental results

For all polymer and colloidal suspensions displaced by
their solvent, the interface exhibits a distinctive finger
pattern, qualitatively similar to that obtained for immiscible
fluids with positive interfacial tension: a _γ-dependent
number of fingers [54] is systematically observed. This
rules out the possibility that the interfacial tension be null or
negative: in fact, Γe ≤ 0 would lead to the “ultraviolet
catastrophe” of the Saffman-Taylor instability [69,70].
The dispersion relation would not show any maxima,
the dominant wavelength of the instability would be
independent of _γI, and it would be limited only by the
shortest length scale of the system, the gap b [33]. By
contrast, our data are very well fitted by the proportionality
law K ¼ _γI=Γe [54], thereby demonstrating that the inter-
facial tension is positive and that it can be reliably extracted
from the analysis of the Saffman-Taylor instability via
Eq. (2).
We investigate systematically the φ and sample depend-

ence of Γe and summarize our results and previous
literature data in Fig. 1. Note that for selected samples
the gap has been varied and the same value of Γe (within
experimental uncertainty) has been found regardless of b,

TABLE I. Molecular mass Mw, degree of polymerization N,
hydrodynamic radius Rh, and Flory parameter χ for the various
polymers and colloidal particles used in the viscous fingering
experiments. The last column reports the overlap concentration
φ�, for the polymers, and the packing fraction φc where the zero-
shear viscosity appears to diverge, for the colloids.

Code Mw (Da) N Rh (nm) χa φ�b, φc
c

LP-PSS2260 2.6 × 106 12 942 110 1.10 0.0061
LP-PSS666 6.7 × 105 3233 79 1.10 0.0064
LP-PEG100 1.0 × 105 1611 8 0.45 0.0446
LP-PEG35 3.5 × 104 564 4.5 0.45 0.0877
LP-PEG2 2.0 × 103 32 1 0.45 0.1354
MG-PNIPAm 5.8 × 108 4.6×106 165 0.375
CP-Ludox 18 0.38
CP-Pema 122 0.55
CP-silica 697 0.62

aAll values are for polymers dissolved in water [63–65].
For the PEG and PNIPAm samples, we use the average of the
values reported in literature.

bThe overlap concentration is calculated according to
φ� ¼ 0.64Mw=ð43 πR3

hNAρpÞ, where NA is Avogadro’s number
and ρp the polymer mass density.

cφc is the volume fraction at which the zero-shear viscosity of
the suspension apparently diverges, as obtained by fitting ηðφÞ to
the Krieger-Dougherty equation [66], η ∝ ð1 − φ=φcÞ−2.

TABLE II. Sample parameters for the spinning drop tensiom-
etry experiments of Refs. [13,17].

Mw (Da) N Rh, a (nm)a χ

PDA 25 000 104 4b 0c

Glycerol 0.4 −0.96d

aFor the water-glycerol mixtures, a is the radius of the glycerol
molecule.

bRh has been estimated from the radius of Poly(dodecyl
methacrilate) (PDMA) in good solvent [67], by rescaling the
size of PDMA in order to take into account the difference in
molar mass between PDA and PDMA.

cχ ¼ 0 if the solvent is composed by the same monomers that
form the polymer [68].

dEstimated from the enthalpy of mixing of water-glycerol (See
Supplemental Material [54]).
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which further validates Eq. (2). For all the linear polymers
except the shortest one (LP-PEG2) and for the microgels of
[18], we find Γe ∼ φ2, in agreement with Korteweg’s
theory. For the polymer-monomer mixtures of Ref. [17],
Γe seemingly grows as φ2 at the lower concentrations, but
the growth becomes steeper at larger φ. For the shortest
polymer (LP-PEG2), Γe is clearly incompatible with
Korteweg’s law: the data may be fitted by a power law,
but with a much higher exponent: Γe ∼ φβ with
β ¼ 4.24� 0.25. The growth of ΓeðφÞ is much steeper
for the suspensions of colloidal particles: the interfacial
tension of CP-Ludox increases by almost 5 orders of
magnitude when varying φ over a mere factor of 2;
similarly steep growths of Γe are also seen for the other
colloidal suspensions. The data of Ref. [13] (up triangles)
have a behavior intermediate between that of polymers and
colloidal particles: the curved shape in the log-log plot of
Fig. 1 rules out a power law, but the φ dependence is less
steep than for the CP samples.
Not only does the particle internal structure have great

influence on the functional form of ΓeðφÞ, it also signifi-
cantly impacts the absolute magnitude of the interfacial
tension. For the polymers that follow Korteweg’s law, Γe at
fixed concentration varies by 2 orders of magnitude when
changing from LP-PSS2260 to LP-PEG35. An even more
spectacular change is observed between the colloidal
samples and those of Refs. [13,17]: at the same φ ≈ 0.5,
three decades and a half separate the interfacial tension of
CP-Pema from that of the water-glycerol or DA-PDA
mixtures. Remarkably, for our complex fluids, Γe may
be as large as tens of mNm−1, comparable to immiscible

molecular fluids [71] and orders of magnitude larger than
for colloidal phases at equilibrium, for which, typically,
Γ ∼ 10−3 mNm−1 [72]. Note that body forces originating
from these tensions dominate over gravitational forces for
all particles and polymers under investigation [73].

III. MODEL

The square-gradient model clearly fails to capture both
the variety of the functional forms and the large variability
of the magnitude of Γe shown in Fig. 1. To overcome these
limitations, we present here a simple model that provides a
unified framework for rationalizing the interfacial tension
between miscible fluids.
Following a thermodynamic approach, the effective

interfacial tension is obtained from [19]

Γe ¼
∂F
∂A ; ð3Þ

with F the mixing free energy of the two fluids and A the
area of the interface between them. Assuming local
equilibrium [74], the free energy to be input in Eq. (3)
is expressed as a sum over powers of the concentration
gradient at the interface [45,75]:

F ¼
Z
V
fdV ¼

Z
V

�
f0 þ

X∞
l¼1

κ2lð ~φÞð∇ ~φÞ2l
�
dV; ð4Þ

where f and f0 are the mixing free-energy density of the
inhomogeneous and homogeneously mixed system, respec-
tively, and κ2lð ~φÞ are the coefficients of the expansion. ~φ
denotes the local concentration: ~φ ¼ 0 ( ~φ ¼ φ) in the
solvent (in the bulk). Note that for symmetry reasons only
the even coefficients are non-null, as argued by Cahn and
Hilliard [76,77]. Equation (4) extends the square-gradient
model, which retains only the first term, l ¼ 1.
By integrating the local part of the free energy over the

coordinates ðx; yÞ tangential to the interface, one obtains F
as an integral in z, the coordinate normal to the interface.
By inserting this expression in Eq. (3), the desired effective
interfacial tension is finally obtained as

Γe ¼
Z

δ=2

−δ=2
dz

X∞
l¼1

κ2lð ~φÞ
φ2l

δ2l
: ð5Þ

In writing Eq. (5), we assume that the concentration
gradient at the interface may be approximated by a linear
profile over a thickness δ:

∇ ~φ ¼ φ=δ − δ=2 < z < δ=2

0 elsewhere: ð6Þ

Note that, due to diffusion, the thickness δ is an increasing
function of time; it is expected to be of the order of the
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FIG. 1. Nonequilibrium interfacial tension Γe for aqueous
solutions of polymers (semifilled symbols), colloidal suspensions
(full symbols), and water-glycerol and DA-PDA mixtures (empty
symbols, Refs. [13] and [17], respectively). The labels indicate
the gap b for the Hele-Shaw experiments; the solvent is water
unless specified otherwise. For all LP systems except the shortest
polymer, LP-PEG2, the lines are power-law fits with an exponent
2. For all the other samples, the lines are fits of Eq. (9).
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interparticle distance on time scales shorter than the time it
takes a particle to diffuse over this distance.
The coefficients κ2l in Eqs. (4) and (5) are the Taylor

coefficients of the free-energy expansion around ∇ ~φ ¼ 0:

κ2l ¼
1

ð2lÞ!
∂2lf

∂ð∇ ~φÞ2l
����∇ ~φ¼0

: ð7Þ

On the grounds of dimensional analysis, κ2l is expected
to scale as ϵ2lðφÞL2l

2lðφÞ, with ϵ2l and L2l (concentration-
dependent) energy densities and length scales, respectively.
To make progress, we assume that the energy and length
scales that appear in κ2l do not depend on either the order l
or on φ. We thus postulate

κ2l ¼
1

ð2lÞ! ϵL
2l: ð8Þ

Note that one expects L ≥ δ, since the interface thickness
represents the smallest length scale in the problem. Hence,
Eq. (8) implies the possibility that particles beyond the
layer directly exposed to the solvent are perturbed when
creating an interface. We elaborate further on this point
when discussing the experimental results. With this choice,
the sum on the rhs of Eq. (5) can be calculated explicitly,
yielding a closed form for Γe:

Γe ¼ Γ0

�
cosh

�
φ
L
δ

�
− 1

�
; ð9Þ

where Γ0 ¼ ϵδ sets the scale of the effective interfacial
tension, via the energy density ϵ and the interface thick-
ness δ.
Equation (9) correctly captures the φ dependence of all

data. The Korteweg-like behavior of the polymer samples
(except LP-PEG2) corresponds to the φL=δ≲ 1 regime,
where Eq. (9) reduces to the quadratic scaling Γe ∼ φ2.
Data for LP-PEG2 are also well reproduced, as shown
by the line in Fig. 1; they correspond to the regime
1≲ φL=δ≲ 4, where higher-order terms start to be impor-
tant and Γe deviates sensibly from a quadratic behavior.
Finally, Eq. (9) yields excellent fits to the interfacial tension
for colloidal particles and the water-glycerol mixtures (lines
in Fig. 1), for which φL=δ > 4.
While Eq. (9) provides a simple yet general expression

for describing the concentration dependence of Γe, it is
difficult to obtain direct insight on the model parameters by
fitting the experimental data: operationally, the fitting
parameters are Γ0 and the ratio L=δ, such that ϵ and L
can be disentangled from the fitting parameters only by
assigning a priori a value to δ, e.g., δ is approximately the
interparticle separation. We circumvent this difficulty by
replacing ðΓ0=2ÞðφL=δÞ2, the quadratic term in the Taylor
expansion of the rhs of Eq. (9), by a suitable expression ΓSG

derived in the framework of a square-gradient approach:

Γe ¼ ΓSGðφ; δÞ þ Γ0

�
cosh

�
φ
L
δ

�
−

L2

2δ2
φ2 − 1

�
: ð10Þ

As indicated by the notation in Eq. (10) and as we show
in the following, for most systems it is possible to derive
analytical expressions for ΓSG that depend explicitly on δ.
Our generalized law for the interfacial tension, Eq. (10), can
then be fitted to the data to obtain the two length scales δ
and L and the energy density ϵ. For linear polymers and
molecular liquids, ΓSG can be computed using lattice
theory. Here, we outline the calculations, providing all
details in Ref. [54]. For polymer-solvent mixtures at
equilibrium, the square-gradient coefficient κ2ð ~φÞ has
been computed in Ref. [78]. Its φ ¼ 0 limit has been
used to compute the effective interfacial tension Γe for
microgels [18]. We generalize the calculation using the full
~φ-dependent expression of κ2 and assuming a linear
concentration gradient at the solvent-solution interface,
finding [54]

ΓSG
p ¼ κpðφÞ

δ
φ2; ð11Þ

with

κpðφÞ ¼
RTR2

g

6Vs

�
χ −

3

φ
lnð1 − φÞ

�
ð12Þ

the Korteweg parameter for polymers. Here, R is the ideal
gas constant, T the absolute temperature, Vs the molar
volume of the solvent, Rg the gyration radius of the
polymer [78], which is proportional to the hydrodynamic
radius Rh [79], and χ the Flory-Huggins parameter of the
mixture [54,63,81]. The χ term on the rhs of Eq. (12)
accounts for the enthalpic contribution to κp, while the
second term in the square brackets reflects the entropic
contributions. The latter term stems from the decrease of
entropy due to the constraint that the chain’s configuration
be compatible with the concentration gradient at the inter-
face. Crucially, this term differs from previous formulations
[18] by the φ−1 lnð1 − φÞ factor, which we show to be
necessary to correctly account for some of the polymer
data. Note that all quantity defining κp are known or
independently measurable: the only unknown in the rhs of
Eq. (11) is thus the interface thickness δ, which will be
treated as a fitting parameter.
To the best of our knowledge, no explicit expressions

have been derived for κf, the Korteweg parameter for
miscible molecular fluids. We calculate both the enthalpic
and the entropic contributions to κf using lattice theory
arguments and assuming for simplicity that the mixture is
symmetric, i.e., that the two fluids have the same molecular
volume Ω. The two terms are due, respectively, to the
variation of the internal energy density u and the decrease
of configurational entropy density s in the region where

TRUZZOLILLO, MORA, DUPAS, and CIPELLETTI PHYS. REV. X 6, 041057 (2016)

041057-6



j∇φj > 0. They are obtained by expressing u and s as a
function of the local concentration, assuming a concen-
tration gradient across three adjacent lattice layers orthogo-
nal to the z direction, and finally by expanding the local
concentration around that of the central layer, up to second
order in the spatial derivatives of ~φ. As detailed in Ref. [54],
we find

ΓSG
f ¼ κfðφÞ

δ
φ2; ð13Þ

where the Korteweg parameter for molecular fluids is

κfðφÞ ¼
kbTa2

Ω

�
χ

6
þ 2

3φ2

�
1þ 1 − φ

φ
lnð1 − φÞ

��
; ð14Þ

with kb Boltzman’s constant and a the radius of the fluid
molecules. The first term on the rhs of Eq. (14), propor-
tional to the χ parameter that characterizes the interaction
between the small molecules of the two fluids, quantifies
the energy penalty (or gain) due to a local compositional
inhomogeneity, while the second term, always positive and
only dependent on φ, is due to the entropy loss due to the
(transient) gradient of concentration. As a final remark
on the expressions for ΓSG for polymers and molecular
fluids, we note that the approximations used to derive
Eqs. (11)–(14) imply φ ≠ 0, φ ≠ 1 and that the concen-
tration gradient at the interface be small, i.e., that the
effective interfacial tension be dominated by ΓSG.

IV. DATA ANALYSIS AND DISCUSSION

We now use the general expression for the interfacial
tension, Eq. (10), together with Eqs. (11) and (13), to model
the data shown in Fig. (1). The data for the microgels and
all linear polymers, except the shortest chain LP-PEG2, are
well accounted for by the square-gradient expression for
polymers with no need to add higher-order terms, i.e., the
term proportional to Γ0 in Eq. (10). We thus use Eq. (11)
with Eq. (12), where the only fit parameter is the interface
thickness δ. The fit quality is excellent over 2 decades in φ,
as shown in Fig. 2(a), where we plot the interfacial tension
in reduced units, δΓe=κp. The inset shows the fit parameter
δ as a function of the radius of gyration of the polymers and
microgels: we find that the interface thickness is propor-
tional to the polymer size, δ ¼ 2mRg, with a proportion-
ality coefficient m ¼ 2.2� 0.2 of order unity. This is
consistent with the fact that our experiments are performed
fast enough for interdiffusion between the polymer solution
and the injected solvent to be negligible, a regime where the
interface thickness is expected to be comparable to the
interparticle distance, which in turn is close to the particle
size [82]. The δ ∼ Rg scaling, together with the size
dependence of κp, Eq. (12), implies Γe ∼ Rg, consistent

with the growth of Γe with the degree of polymerization
seen in Fig. 1 for the PEG-based samples.
Quite remarkably, Eqs. (11) and (12) also capture very

well the spinning drop tensiometry data for DA-PDA
mixtures [17]. The authors of Ref. [17] explicitly discuss
the failure of a simple quadratic scaling Γe ∼ φ2 for their
data, which is clearly seen in a log-log graph (see the
upward curvature of the up triangles’ data set in Fig. 1). By
contrast, the excellent quality of the fit shown in Fig. 2(a)
demonstrates that a more-refined formulation of the square-
gradient theory is, in fact, adequate to model the data,
in spite of the large compositional mismatch between the
two fluids. The success of the square-gradient-based
model, Eq. (11), is due to the small concentration gradient,
because of the diffusion-driven smearing of the interface on
the time scale of the experiment: the fit yields δ ¼ 68�
20 μm [83], more than 104 times the molecular size, and is
consistent with δ ≈ 102 μm, as estimated by optical means
in Ref. [17].
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FIG. 2. Nonequilibrium interface tension (samedata as inFig. 1),
plotted using the reduced variables suggested by Eqs. (10), (11),
and (13). (a) Data for all polymer systems except LP-PEG2. The
line is the law Γeδ=κpðφÞ ¼ φ2 predicted by the theory. Inset:
Interface thickness obtained from the fits as a function of the
polymer size. The line is the linear law δ ¼ 4.4Rg. (b) Normalized
interfacial tension for colloidal suspensions, short polymers
(LP-PEG2), and water-glycerol mixtures. The lines are fits of
Eq. (10), with ΓSG ¼ 0 forCP suspensions and ΓSG as in Eqs. (11)
and (13) for LP-PEG2 and water-glycerol mixtures, respectively.
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For the shortest polymer, LP-PEG2, the water-glycerol
mixtures and the colloidal particle systems, neither the
basic Korteweg law, Eq. (1), nor its refined versions,
Eqs. (11) and (13), are adequate to model the data. We
thus use the full expression, Eq. (10), finding in all cases an
excellent agreement between the fit and the data, as seen in
Fig. 2(b). For LP-PEG2, ΓSG is evaluated using Eqs. (11)
and (12): the fitting parameters are thus δ, L, and ϵ. We find
δ ¼ 10� 8 nm, somehow larger than δ ≈ 6.8 nm, as esti-
mated from the δ versus Rg scaling established for the other
polymers (inset of Fig. 1). This slight discrepancy is likely
due to the fact that on the time scale of the experiment
interdiffusion is not fully negligible for LP-PEG2, leading
to a slight smearing of the interface [55]. We discuss the
values of the other fitting parameters in the following,
together with those for the other sets of data of Fig. 2(b).
We fit the data for water-glycerol mixtures of Ref. [13]

using Eq. (10) with ΓSG given by Eqs. (13) and (14); the
fitting parameters are again δ, L, and ϵ. The interface
thickness obtained from the fit is δ ¼ 66� 30 nm, much
larger than the molecular size, as expected due to the high
diffusivity of molecular fluids, but still fully compatible
with an upper bound of about 0.2 μm, set by the remark
that no interdiffusion could be detected by optical obser-
vations, as pointed out in Ref. [13].
For the colloidal suspensions, no analytical expression is

available for ΓSG. Furthermore, Γe is dominated by the
higher-order terms of the development in powers of the
concentration gradient: by testing various trial values of
ΓSG, we find that the fit quality does not depend appreci-
ably on the square-gradient term, as long as jΓSGj≲ 104Γ0.
We conclude that, within experimental uncertainties, the
second term of the rhs of Eq. (10) is sufficient to reproduce
very well the CP experiments, and that the data are
compatible with a non-null, albeit very small, value of
ΓSG, including the possibility that the contribution of the
square-gradient term be negative [42,54]. For the sake of
simplicity, we set ΓSG ¼ 0 in Eq. (10) and fit the CP data
with Γ0 and L=δ as fitting parameters.
For all systems for which the square-gradient model is

not sufficient to describe Γe, the fitting parameters L=δ and
Γ0 may be used to build master curves. As seen in Fig. 2(b),
two regimes may be identified when plotting Γe=Γ0 versus
the scaled concentration φL=δ. For φL=δ≳ 10, the con-
tribution of ΓSG is negligible: this is the case of the CP
suspensions, for which all data collapse on a master curve.
The high-φ extrapolation of the fits for LP-PEG2 and
water-glycerol [lines in Fig. 2(b)] also belong to this regime
and fall onto the same master curve. By contrast, at lower
φL=δ the contribution of the square-gradient term becomes
important. Since the relative weight of ΓSG with respect to
Γ0 is system dependent, the fits to LP-PEG2 and to the data
of Ref. [13] form distinct branches of the master curve of
Fig. 2(b). In particular, the empirical power-law behavior
Γe ∼ φ4.24 for LP-PEG2 (see also Fig. 1) is, in fact, a

crossover between the exponential growth of Γe at large
φL=δ and the φ2 behavior expected in the limit φ → 0.
Figure 3 shows the ratio L=δ for the five systems of

Fig. 2(b). In all cases, L > δ. Since the interface thickness δ
is of the order of the interparticle spacing, the largest
structural length scale for a system at equilibrium, we argue
that the emergence of a larger length scale L is a
consequence of the system being strongly driven. Long-
range spatial correlations, up to more than 1 order of
magnitude larger than the equilibrium structural length
scale, have been observed in the structure and the dynamics
of a variety of driven systems, from flowing granular matter
[84,85] to colloidal [86,87] and polymer systems [88]
where the Péclet number, the ratio of the Brownian
diffusion time over the advection time imposed by the
drive, is larger than unity. To quantify the importance of the
drive in our Hele-Shaw geometry, we calculate the Péclet
number Pe ¼ ð2RhÞ3πη2 _γr=ðkBTÞ. For the polymer and
colloid suspensions reported in Fig. 3, we find that Pe is
larger than unity and ranges from 2.3 to 680, supporting the
notion that the additional length scale L stems from the
system exploring microscopic configurations different from
the equilibrium ones.
Interestingly, the trend of the data for the CP samples

reflects the difference in the range of particle interactions,
L=δ being smallest for CP-silica, for which the interactions
are close to hard sphere and thus shorter ranged as
compared to those for CP-Pema and CP-Ludox. Both
the water-glycerol mixtures and the short polymer LP-
PEG2 have a L=δ ratio significantly smaller than that of
colloidal suspensions. We attribute this effect to a gentler
concentration profile at the suspension-solvent interface.
Indeed, we recall that all the experiments involving CP
have been performed on a time scale shorter than the
diffusion-driven relaxation time of the interface [55]. Under
these conditions, one expects δ ∼ 2Rh. By contrast, for
water-glycerol and LP-PEG2, δ is estimated to be larger
than the polymer or molecule size, due to diffusion-driven
smearing of the interface. Accordingly, the concentration

1

10

LP-PEG2 Water-
Glycerol

CP-silicaCP-Pema

L/

CP-Ludox

FIG. 3. Ratio L=δ obtained by fitting the data shown in
Fig. 2(b) with Eq. (10). Large values of L=δ are obtained for
CP samples where interfaces are probed on a time scale shorter
than the diffusion-driven relaxation time of the interface.
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gradient is smaller than for the CP systems, the configu-
ration of the layers adjacent to the interface is less
perturbed, and the interfacial tension behavior is closer
to its square-gradient limit, corresponding to smaller L=δ
ratios.
The energy density ϵ obtained by fitting Eq. (10) to the

data of Fig. 2(b) is shown in Table III. Remarkably, ϵ
exhibits a very strong system dependence, ranging from
∼10−5 Pa for colloidal Pema to more than ∼106 Pa for the
short polymer LP-PEG2. In order to rationalize such a wide
range of values, we consider the LP-PEG2 and CP-silica
samples, which are both characterized by excluded-volume
interactions, with no enthalpic or Coulombic contributions
as for the other samples, and for which Γe is measured in
the t → 0 limit, unlike for the water-glycerol mixtures.
Under these conditions, we expect the effective interfacial
tension to have a purely entropic origin and ϵ to be the free-
energy density associated to the frustration of degrees of
freedom due to the additional constraint of creating a
concentration gradient at the interface. For CP-silica, we
estimate the cost in energy density due to excluded volume
interactions as the thermal energy kbT divided by the
particle volume ð2RhÞ3, yielding ϵ ¼ 1.49 × 10−3 Pa, close
to the energy density obtained by fitting our model to the
data. Similarly, for a LP-PEG2 chain the energy cost due to
excluded volume interactions is estimated as the thermal
energy kbT times the number N of monomers in the chain.
The energy density is thus ϵ ∼ kbTN=R3

F, where RF ¼
bmN0.58 is the coil size in a good solvent and bm the
monomer length. Using bm ¼ 0.35 nm and N ¼ 32, we
obtain ϵ ¼ 7.26 × 106 Pa, again of the same order of
magnitude as the value obtained from the fit. As a further
consistency check, we also evaluate ϵ for the longer PEG
polymers, by rescaling the result for LP-PEG2 to take into
account the difference in the polymerization degree N. We
find ϵ ¼ 1.68 × 105 Pa for LP-PEG35 (ϵ ¼ 7.70 × 104 Pa
for LP-PEG100); with these values, we calculate the
relative contribution to Γe stemming from the terms with
powers of φ larger than 2 to be smaller than 10% for LP-
PEG35 and as low as 3.4 × 10−4 for LP-PEG100.
Therefore, our model explains quantitatively why the
square-gradient theory is sufficient to reproduce the con-
centration dependence of the interfacial tension for these
samples, while an anomalous Γe ∼ φ4.2 scaling is observed
for the shorter polymer LP-PEG2.

Our experiments have shed new light on the interfacial
tension between miscible fluids, unveiling surprisingly
large variations of Γe according to the fluid composition,
and revealing a concentration dependence much stronger
than in earlier reports. Korteweg’s century-old square-
gradient theory cannot capture this fascinating richness
of behavior. The simple model we introduce here is a first
step towards a rationalization of these results. The model
extends Korteweg’s approach by introducing a length and
an energy density scale, whose magnitude are consistent
with estimates based on simple physical arguments; in spite
of its simplicity, it reproduces remarkably well both our
new measurements and existing literature data on molecu-
lar and polymer fluids. Further work is needed to achieve a
finer understanding of interfacial stresses in miscible fluids:
open questions concern, in particular, the role of the
interparticle potential, the time behavior of the interfacial
tension, and the possible existence of a transiently negative
interfacial tension in the dilute regime.
At a more general level, we expect the model we develop

here to be applicable to other systems where the presence of
an interface between different phases plays a key role.
Density-functional theory and phase field methods have
been used to tackle problems of this kind in the context of
phase transitions, metallurgy, and material science. Both
approaches typically rely on a square-gradient description
of the interface contribution: such an approximation is now
recognized as a crucial limitation preventing a more faith-
ful modeling, especially for sharp interfaces [44,47–51].
Current strategies to overcome the square-gradient
approach are based on the inclusion of a quartic gradient
term, the next term in a Taylor expansion of F [48–50]. By
providing an analytical form for the full contribution of the
interface to the free energy, our model represents a
significant advance with respect to low-order Taylor
expansions.
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