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Recent improvements in the control of quantum systems make it seem feasible to finally build a quantum
computer within a decade. While it has been shown that such a quantum computer can in principle solve
certain small electronic structure problems and idealized model Hamiltonians, the highly relevant problem
of directly solving a complex correlated material appears to require a prohibitive amount of resources. Here,
we show that by using a hybrid quantum-classical algorithm that incorporates the power of a small quantum
computer into a framework of classical embedding algorithms, the electronic structure of complex
correlated materials can be efficiently tackled using a quantum computer. In our approach, the quantum
computer solves a small effective quantum impurity problem that is self-consistently determined via a
feedback loop between the quantum and classical computation. Use of a quantum computer enables much
larger and more accurate simulations than with any known classical algorithm, and will allow many open
questions in quantum materials to be resolved once a small quantum computer with around 100 logical
qubits becomes available.

DOI: 10.1103/PhysRevX.6.031045 Subject Areas: Condensed Matter Physics,
Quantum Information,
Strongly Correlated Materials

I. INTRODUCTION

The current workhorse for materials simulation is
density-functional theory (DFT) [1]. DFT circumvents the
exponential scaling of resources required to directly solve
the electronic quantum many-body Hamiltonian by map-
ping the problem of finding the total energy and particle
density of a system to that of finding the energy and particle
density of noninteracting electrons in a potential that is a
functional only of the electron density, and requiring
self-consistency between the density and potential. The
noninteracting electron and self-consistency problems are
manageable on classical computers. While the universal
functional that gives the dependence of the potential on the
electron density cannot be efficiently evaluated [2], several
approximations to it are known empirically to be good;
for example, the local density approximation (LDA) [3].
LDA and related approximations yield reliable results for
many weakly correlated materials, such as band insulators,
metals, semiconductors, and classes of biomolecules.
However, many effects, including the intriguing physics
of strongly correlated transition metal materials near a
Mott transition [4], the phenomenon of high-temperature
superconductivity [5], the properties of heme and other

molecular complexes involving transition metals [6], and
the complex physics of the actindes [7], are beyond the
scope of DFT.
To go beyond DFT, one can attempt to exactly solve the

quantum many-body problem using methods such as full
configuration interaction; however, because the required
computational effort on classical computers scales expo-
nentially in the number of orbitals, the method is limited to
relatively small systems. In contrast, it has been shown that
quantum computers can in principle solve certain electronic
structure problems [8,9] in polynomial time. Recent
advances towards building a small quantum computer
[10–12] have led to increasing interest in what a small
quantum computer could realistically simulate, and it has
been shown that the simulation of small molecules [13–17]
and simplified model Hamiltonians [18] is within reach.
However, in part because of the multiplicity of relevant
interaction terms, the scaling of the currently known
algorithms is not benign enough to allow naive direct
simulations of complex correlated materials, for which
thousands of electrons would have to be considered.
To make progress, the problem must therefore be

simplified. One approach is to approximate the material
with idealized model Hamiltonians, such as the Hubbard
model [19], which have a sufficiently small number of
interaction terms that they can easily be studied on quantum
computers [18]. While capturing qualitative phenomena,
such simple models do not offer a quantitative description
of real materials.
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II. HYBRID QUANTUM-CLASSICAL APPROACH

We thus propose a hybrid approach, illustrated in Fig. 1,
that combines classical and quantum algorithms within the
framework of the DFT plus dynamical mean-field theory
(DMFT) embedding approach. In this framework, a compu-
tationally inexpensive DFT calculation is used to define a set
of orbitals and determine the electronic structure of the
majority of the orbitals, while a more expensive many-body
method (here, DMFT) is used to solve a reduced model
involving a much smaller set of correlated orbitals. The
simplification lies in that one must deal only with a small set
of correlated orbitals; the trade-offs are that one requires a
relatively complete solution of the correlated problem (full
frequency dependence of the Green’s function) and one
obtains only an approximation to the true answer. The
required highly accurate solution of a small problem is an
ideal application for a small quantum computer where it
enjoysmaximal benefits over all known classical algorithms.
This approach is being successfully employed in calcu-

lations of properties of correlated materials [20]. DMFT
provides an approximation to the solution of a full
correlated problem by leveraging the solution of a quantum
impurity problem, in which a finite cluster of interacting
orbitals is self-consistently coupled to a bath of noninter-
acting electrons. DMFT becomes exact in an infinite lattice
coordination limit or when the momentum dependence of
the self-energy may be neglected [21], or when the number
of orbitals in the impurity model becomes equal to the
number of orbitals in the original problem to be solved [22].
Practical implementations require impurity models with a
relatively small number of orbitals, thus providing only an
approximate solution to the full model; however, in many
cases the approximation is reasonably good. DMFT has
been very successful at qualitatively describing the Mott
transition [23,24], and its “cluster” extensions [22] have
produced important results for model systems (in particular,
the two-dimensional Hubbard model). The combination
with DFT is quantitatively explaining some properties of
correlated materials [20,25].

However, within a classical computational framework
the complexity of the impurity model scales exponentially
with the number of orbitals, placing severe limitations on
the types of materials that can be tackled and restricting
most real-materials DFTþ DMFT simulations to the
“single-site” DMFT approximation involving an impurity
model representing a single correlated atom and neglecting
all momentum dependence of the electron self-energy. The
restriction to just a small set of correlated orbitals also
means that the method cannot be used to test the embedding
hypothesis by systematically increasing the number of
kinds of orbitals treated as “correlated.” We show here
that these limitations can be overcome by using a quantum
computer to solve the impurity problem. Even an impurity
problem with only ∼102 degrees of freedom would enable
the study of fundamentally new problems by allowing
materials with multiple correlated atoms per unit cell to be
considered, allowing cluster DMFT calculations of real
materials and (given some further development of DMFT
methodology) examination of the embedding hypothesis
and the closely associated “double counting correction”.
The Hamiltonian of the embedded impurity problem in

DMFT may be written as

H ¼ Himp þHbath þHmix;

Himp ¼
X
αβ

tαβc
†
αcβ þ

X
αβγδ

Uαβγδc
†
αc

†
βcγcδ;

Hmix ¼
X
αi

ðVαic
†
αdi þ V̄αid

†
i cαÞ;

Hbath ¼
X
i

ϵid
†
i di;

ð1Þ

where c†α creates a fermion in one of the Nso spin orbitals of
the interacting system labeled by a combined spin and
orbital index α, and d†i creates a fermion on one of the Nb
bath sites. Nso is finite by construction and Nb ¼ ∞, but
many approaches approximate the problem using a finite
number of bath sites.
While the hopping integrals tαβ and interaction integrals

Uαβγδ are directly given by the underlying material, the bath
coupling Vαi and bath energies ϵi are determined from a
self-consistency condition involving the Green’s function
of the impurity model and appropriate matrix elements
of the Green’s function of the lattice model. The self-
consistency condition is typically solved iteratively by
repeating the following steps. (i) Starting with an initial
guess for the bath parameters ϵi andVαi, solve for the ground
state of Eq. (1) and extract the impurity Green’s function G.
(ii) FromG, calculate the self-energyΣ ¼ G−1

0 − G−1 and an
updated noninteracting Green’s function G0. (iii) Determine
the discrete bath parameters ϵi and Vαi to closely match
the desired noninteracting Green’s function. In practical
calculations, about 20 solutions of the impurity model are
required. For further details, see Appendix C.

FIG. 1. Overview of the DFTþ DMFT approach. In our
proposal, the solution of the impurity problem (highlighted in
red), which is the computationally limiting step in computations
using classical computers, is performed by a quantum computer.
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The impurity solver is by far the most computationally
demanding step in this loop. A variety of approaches exist
[24,26]. Viewed as a generic quantum problem, the model
has an interesting sparsity structure: the interactions couple
only the Nso impurity states, while the bath states are
noninteracting. This sparsity structure is exploited by the
widely used continuous-time quantum Monte Carlo [26]
methods, in which the bath is integrated out leaving an
action involving Nso degrees of freedom. However, these
quantum Monte Carlo algorithms [27,28] scale exponen-
tially in Nso and currently remain limited to Nso ≈ 10.
Additionally, they suffer from a severe sign problem in
low-symmetry situations where there is no choice of basis
that diagonalizes the hybridization function ΔαβðiωnÞ ¼P

iVαiV̄βi=ðiωn − ϵiÞ at all frequencies.
Exact diagonalization solvers [29] approximate the

continuous bath by a finite number of bath orbitals and
do not take advantage of the sparsity structure. Therefore,
on a classical computer they have a cost that is exponential
in the total system size Nso þ Nd. This and the need to
obtain the full Green’s function means that practical
calculations are limited to Nso þ Nd ≈ 25, in other words,
to five or fewer correlated orbitals, often corresponding to
just a single correlated atom within a unit cell, and with a
very small number of bath sites per correlated orbital.
Recent developments [30–32] based on quantum chemical
methods to define reduced basis sets for the exact diago-
nalization calculation permit inclusion of somewhat larger
numbers of bath orbitals, but, at least as presently formu-
lated, these methods work in a natural orbital basis that
strongly mixes the bath and correlated orbitals, so that the
sparsity structure mentioned above cannot be exploited. In
a parallel development, ideas to solve the impurity problem
using tensor networks [33] have recently started to show
great promise [34–36].

III. QUANTUM ALGORITHM FOR THE
IMPURITY SOLVER

Significantly larger problems can be tackled when
solving the impurity problem on a quantum computer.
The key points are that the wave function of the impurity
problem requires only Nso þ Nd logical qubits and that
the quantum computation takes advantage of the sparsity
structure mentioned above. In particular, the number of
bath sites affects the number of required qubits, but does
not have a strong effect on the computation time. We
leverage standard quantum algorithms discussed previously
for quantum chemistry and model Hamiltonian applications
to first obtain a quantum representation of the ground state
of Eq. (1), and then measure the Green’s function.
To obtain the ground state, we combine adiabatic state

preparation and quantum phase estimation (QPE) [37,38].
We start from the easily prepared ground state of a simple
Hamiltonian H0 and evolve it under a time-varying
Hamiltonian HðtÞ that adiabatically interpolates from H0

to the desired Hamiltonian Eq. (1). Changing the param-
eters slowly compared to the inverse spectral gap of HðtÞ
ensures that the wave function always remains close to the
ground state. Possible choices for the initial Hamiltonian
could be either the atomic limit of turning off all hopping
terms, such that the ground state becomes a simple product
state of occupied and unoccupied spin orbitals, or turning
off interactions, such that the initial state is a Slater
determinant that can be efficiently prepared using tech-
niques discussed in Ref. [18]. At the end of the adiabatic
process, QPE can be used to measure the energy of the state
and collapse the wave function into an eigenstate jΨi of the
Hamiltonian. QPE relies on the ability to apply expð−iHtÞ
to the state, and avoids measuring the individual terms of
the Hamiltonian separately, since such measurements do
not commute among themselves and with H, and would
thus destroy the state. In contrast, quantum phase estima-
tion performs a measurement that is diagonal in the energy
basis and which will project a state close to the ground state
onto the ground state with high probability. This is achieved
with an accuracy ϵ ∼Oð1=TÞ, where T is the total compu-
tation time. Details of the method are discussed in
Appendix B. State preparation has succeeded if we measure
the ground-state energy (jΨi, then, is the corresponding
ground-state wave function), but needs to be repeated if the
measured energy corresponds to an excited state.
Because of the constraint of unitary evolution on a

quantum computer, we can measure the Green’s function
only in real time (or real frequencies [18]). For t ≥ 0, the
particle and hole Green’s functions in real time are
defined as

Gp
αβðtÞ ¼ hΨjcαðtÞc†βð0ÞjΨi;

Gh
αβðtÞ ¼ hΨjc†αðtÞcβð0ÞjΨi:

ð2Þ

In the following, we present the details involved in
extracting the Green’s function in Matsubara frequencies
from our quantum impurity solver. We suppress the orbital
indices for notational simplicity and implicitly assume that
the Green’s function is treated as a matrix. As the self-
consistency condition is best enforced in imaginary
frequencies, we perform a Hilbert transformation to find

GðiωnÞ ¼ −i
Z

∞

ϵ
dte−tωn ½GpðtÞ þ ḠhðtÞ�; ð3Þ

where ωn ¼ ½πð2nþ 1Þ=β�, n ¼ 1;…; Nω, and β is a
fictitious inverse temperature. To obtain ground-state prop-
erties, β is chosen sufficiently small to guarantee converged
results and the frequencies are cut off at some suitably
chosen Nω. In practice, the integral in Eq. (3) is replaced by
a discrete sum over a logarithmic grid, and the real-time
Green’s function must be measured separately for every
time point. This is discussed in more detail in Appendix C.
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Alternative approaches to measure dynamical correlation
functions are discussed in Ref. [18].
To measure the real-time Green’s functions Eq. (2),

we relate them to expectation values of unitary operators,
q1ðtÞ ¼ cðtÞ þ c†ðtÞ, q2ðtÞ ¼ i½cðtÞ − c†ðtÞ�, which can be
measured directly; for details, see Appendix B 3. Note that
this formulation allows for straightforward determination
of the superconducting components of the Green’s func-
tion, at the cost of twice as many measurements. In a naive
approach, measurements are destructive and jΨi must be
reprepared for each measurement.
We perform numerical simulations of our proposed

quantum algorithms to establish a baseline of how many
gates need to be executed to solve a simple impurity
problem. Since these simulations on a classical computer
scale exponentially in the size of the impurity system, we
are limited to very small problems. We thus consider a
single spinful impurity site (Nso ¼ 2) coupled to a bath of
five spinful sites (Nb ¼ 10). We run a self-consistent
DMFT calculation, based on a simulation of our quantum
algorithm, for a Hubbard model on the Bethe lattice for two
different strengths of the on-site interaction U correspond-
ing to the Fermi liquid and the Mott insulating regime,
respectively. Our results for the spectral function of the
converged DMFT solution are shown in Fig. 2.
To evaluate the integral Eq. (3) in each iteration of the

DMFT loop, we measure the real-time Green’s function on
a grid of 1000 time points and take 400 measurements at
each time point, where we need to measure both the particle
and hole contributions, the imaginary and real part, as well
as spin components separately (unless the system is spin
degenerate). These numbers have been chosen such that the
error from the measurement of the Green’s function is small
compared to the uncertainty in the bath fitting procedure,
i.e., the limitations of DMFT with a small, discrete bath.
With these choices, we need a total of 3.2 × 106 measure-
ments, each giving one bit of information. For each
measurement, we prepare the ground state, which we find
to require 3 × 105 total gate operations in this instance.
For more complex problems, the preparation of the

ground state will be much more costly, and, thus, should
be avoided if possible. Since each measurement extracts
only one bit of information, the state after the projective
measurement may have significant overlap with the ground
state. A relatively short quantum circuit, using a QPE, can
then be used to project back into the ground state. This
motivates the approach sketched in Fig. 3. For the simple
test case we consider here, the cost of performing a QPE is
comparable to the adiabatic state preparation, and thus no
advantage can be gained by attempting to project back into
the ground state after measuring one bit. In general,
however, adiabatic state preparation will scale with the
square of the inverse gap, Oð1=Δ2Þ, while the cost of QPE
scales only roughly linearly, Oð1=ΔÞ, leading to quadratic
advantage of QPE over repreparing the state. For large

simulations, avoiding the preparation at the cost of per-
forming QPE more often is therefore highly advantageous.
Further improvements can be gained with a fully

coherent measurement procedure, as described in Ref. [18]
and reviewed in Appendix D. This procedure quadratically
speeds up sampling, reducing the scaling of the time
required for a given accuracy from Oð1=ϵ2Þ to
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FIG. 2. Spectral function of a Hubbard model on the Bethe
lattice (with hopping tij ¼ t=

ffiffiffiffiffi
2z

p
in the limit z → ∞), with

U=t ¼ 8 (upper panel) and U=t ¼ 2 (lower panel) and Nb ¼ 10
bath sites. For this simulation, both the imaginary-time Green’s
function required in the self-consistency as well as the spectral
function are extracted from real-time Green’s function data. For
the self-consistency, a time grid of 1200 points from Tmin ¼ 10−5

to Tmax ¼ 40 is used. Other parameters of the self-consistency are
β ¼ 20, Nω ¼ 400. For extracting the spectral function, a time
grid of 1000 points with the same limits is used. We emphasize
that no analytic continuation is required to obtain AðωÞ in our
approach. Nmeas in the legend indicates how many good samples
of the real-time Green’s function are obtained at each time slice.
The results for Nmeas ¼ 100 are very similar to those for larger
Nmeas, and those for Nmeas ¼ 400 are almost indistinguishable
from those for Nmeas ¼ 1600.

FIG. 3. Overview of the incoherent estimation of the Green’s
function.
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O½ð1=ϵÞ logð1=ϵÞ�. In our numerical example given above,
the coherent approach will reduce the number of measure-
ments needed to achieve the same accuracy from 400 toffiffiffiffiffiffiffiffi
400

p ¼ 20 and thus yield roughly a tenfold improvement.
In other applications, where a higher accuracy is required,
the improvement will be more significant.
Having established a baseline for the number of gates

that must be executed, we now address the question of how
this number scales with the size of the impurity problem.
The important contributions to the scaling are (i) the
number of terms in the Hamiltonian, which determines
the number of gates required to perform a single time step
of the evolution, (ii) the number of measurements that must
be taken, (iii) the time that is required to accurately prepare
the ground state, and (iv) the time step required to reach the
desired accuracy.
The number of terms in the Hamiltonian scales like

OðN4
so þ Nb þ NbNsoÞ [note that Nb enters linearly while

OðNsoÞ enters quartically; this is an example of exploiting
the sparsity structure mentioned above]. If gates can be
executed in parallel, an even more favorable scaling is
obtained by mapping the bath onto a set of Nso chains
[rather than the “star” topology used in Eq. (1)]; this can be
achieved by block tridiagonalizing the quadratic bath terms
using a Krylov approach [39]. Using this mapping, many
terms can be executed in parallel, such that the scaling
becomes independent of the size of the bath and scales
as N3

so. The number of noncommuting terms in the
Hamiltonian also modestly affects the required time step
[16]. The self-consistency condition requires measurements
of the Nso × Nso Green’s function matrix. However, in
many cases orbital and spin symmetries of the system can
be used to block diagonalize the Green’s function and thus
reduce the number of independent measurements.
Since our algorithm spends significant time preparing

the ground state, the requirements of the adiabatic state
preparation play a crucial role in scaling. This generally
depends on the minimal spectral gap along the chosen
adiabatic path, which in turn depends on the physical
properties of the system in question. For gapped systems,
such as Mott insulators or superconductors with gapped
order parameter fluctuations, the required preparation time
is not expected to scale significantly with the size of the
bath or the complexity of the impurity. Systems with very
small gaps, such as Kondo systems, or in gapless regimes,
such as Fermi liquids, likely pose greater challenges, in
particular, for the accurate preparation of the ground state,
where special care must be taken to find an optimal
adiabatic path and choose a sufficiently long preparation
time. However, it is important to note that, even for physical
systems, which are gapless, the finite size of the discrete
impurity bath induces a nonzero gap in the problem we are
solving.
Taking the above scaling considerations into account, a

relevant physical problem of 10 orbitals (Nso ¼ 20) with

the corresponding number of 60–100 bath sites seems
within reach for a small quantum computer of about 100
qubits. Such a problem would require on the order of 108

measurements, which each can be achieved in a coherent
run of about 108 gates. While this leads to a large total
number of gates of 1016, it is important to keep in mind that,
in contrast to other approaches [13,14], these gates need
not be executed in a single coherent simulation, but are
broken up into 108 independent runs that can be executed
sequentially or in parallel if several quantum computers are
available. If the concrete quantum computing architecture
allows the execution of more gates coherently, large
improvements on the total gate count can be gained from
exploiting the improved measurement schemes mentioned
above.

IV. OUTLOOK AND DISCUSSION

Our hybrid quantum-classical approach to materials
simulations is similar in spirit to complete active space
methods in quantum chemistry, which pick a subset of
orbitals to be treated by a method with higher accuracy, but
go beyond these methods by feeding back the solution of
the quantum impurity problem into the DFT problem. The
ideas put forward here are not restricted to the commonly
used DFTþ DMFT approach, but can be generalized to
other quantum embedding approaches, such as the recently
proposed density-matrix embedding theory [40]. There,
one strives to attain self-consistency between an extended
noninteracting lattice model and an interacting impurity
problem. The parameters that must be determined self-
consistently are hopping parameters of the noninteracting
model, which are chosen in such a way that the single-
particle equal-time Green’s functions of the two models
match. This scheme requires knowledge of only equal-time
Green’s functions, which are straightforward to measure on
a quantum computer.
While it has been known for a long time [8,41] that many

quantum problems can be simulated on quantum computers
with polynomial scaling, such scaling in the asymptotic
regime is insufficient to make an algorithm practical,
especially if the power of the polynomial is high and
constants are large—as is the case for quantum chemistry
solutions of molecules and materials [13,14]. Recent
improvements in algorithms and run-time estimates
[15–17] make the solution of small but classically chal-
lenging molecules practical on small quantum computers.
With our hybrid quantum-classical algorithm, small

quantum computers will also be useful for the simulation
of larger systems, and especially strongly correlated crys-
talline materials or complex molecules, which exhibit a
wide variety of interesting physical phenomena and have a
broad range of applications. Today, materials simulations
are one of the major uses of supercomputing facilities, and
will profit enormously from the availability of quantum
computers as special-purpose accelerators. Quantum
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algorithms like the one we present here have the potential to
solve many of the problems that plague today’s simulation
of correlated materials on classical computers, revolution-
izing the field by opening new horizons for computational
investigation of quantum materials.
A different class of algorithms that have been explored

over the past few years are “variational quantum
eigensolvers” [42,43]. These approaches, which are tailored
for first-generation quantumcomputers that can execute only
short circuits coherently, rely onHamiltonianswith only very
few noncommuting terms to be practically feasible. As such,
they are well suited to the approximate simulation of simple,
local model Hamiltonians, such as the single-band Hubbard
model. However, simulating complex materials, as we
discuss here, will be prohibitive both in the number of
required qubits to represent an extended system and in the
number of relevant noncommuting interaction terms, which
severely affect the scaling of the variational algorithms.
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Note added.—Recently, a related approach where a
quantum computer is used as impurity solver within the
variational cluster approach [44,45] appeared in Ref. [46].
Our approach differs in several crucial ways. Most impor-
tantly, the embedding method we use in our paper is the
more broadly applicable and widely used DMFT method.
Furthermore, we describe a zero-temperature approach in
this paper, while the method of Ref. [46] operates at finite
temperature. Since the circuit-based quantum computers
for which both approaches are designed perform unitary
evolution of a quantum system, computing the required
time-dependent correlation functions for thermal (mixed)
states incurs significant overhead, both in the number of
required qubits as well as the computation time. No attempt
at estimating the scaling of the algorithm, or establishing a
baseline for the gate counts, is made in Ref. [46].

APPENDIX A: INTRODUCTION
TO QUANTUM CIRCUITS

In this Appendix, we show the quantum circuits neces-
sary to implement the operations we discuss in the main
text. In these circuit diagrams, the horizontal lines indicate
individual qubits and boxes indicate quantum gates. For
example, in the following circuit, the Hadamard gate

H ¼ j →ih↑j þ j←ih↓j, which transforms between the X
and Z basis, is applied to one qubit:

H ðA1Þ

Other important ingredients are controlled gates, as shown
in this circuit:

Control

i U
ðA2Þ

Here, we first apply a controlled unitary, and then a
controlled- NOT (CNOT) gate. The operation (U or
NOT ¼ X) is applied to those components of the input
state where the control qubit is in state j1i, but not to those
where the control is in state j0i. Other gates we use are

RðθÞ ¼
�
1 0

0 eiθ

�
; Y ¼ 1ffiffiffi

2
p

�
1 i

i 1

�
: ðA3Þ

Figure 4 shows how to perform the measurement of a
unitary Umeas by applying the unitary controlled on an
ancilla qubit that is in the state 1=

ffiffiffi
2

p ðj0i þ j1iÞ. This
will entangle the ancilla qubit with the qubits on which
the unitary is applied and make the expectation value
accessible by measuring the ancilla.
Figure 5 shows how a single time step of the Trotter

evolution is implemented as a quantum circuit. In the
present Hamiltonian, terms fall into three categories:
(i) chemical potential terms of the form h1 ¼ εc†i ci,
(ii) hopping terms of the form h2 ¼ tðc†i cj þ c†jciÞ, and
(iii) an interaction term hU ¼ Uninj. Here, the subscript is
a multi-index that contains both spin and orbital index.
Figure 5 shows the way these different terms are imple-
mented as quantum circuits. Here, for the sake of com-
pleteness, we always include the control qubit that is
necessary to perform subsequent steps of the algorithm.
In the case of the hopping circuit hpq, in general, a Jordan-
Wigner transformation has to be performed to correctly
account for the fermionic sign structure. For an overview of
how to achieve this, see Ref. [15].

APPENDIX B: QUANTUM ALGORITHMS

1. Quantum simulation of time evolution

The most basic building block of our simulation algo-
rithm is the ability to simulate time dynamics of quantum

FIG. 4. Incoherent measurement circuit for Umeas. Here,
S ¼ ffiffiffiffi

Z
p

is applied only if the imaginary part of the expectation
value is desired.
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systems on a quantum computer. To this end, we first map
the Hilbert space of the quantum system onto that of the
quantum computer. The simplest method is to allocate one
qubit per spin orbital and work in a second-quantized
occupation-number basis, i.e., use the state of the qubit to
indicate whether the spin orbital is occupied or empty.
Next, we need to apply the unitary expð−iHtÞ to this state.
While many approaches to approximating this unitary
on a quantum computer are known [47–54], here we use
the simple approach of a Trotter-Suzuki decomposition
[47,48]. We decompose the Hamiltonian H as a sum
of noncommuting terms H ¼ P

iHi, where the Hi
include both one-body and two-body terms, and make
the approximation

e−iHt ≈ ðe−iH1t=Ne−iH2t=N � � �ÞN; ðB1Þ

where N is some integer. This approximation becomes
exact as N → ∞, and it may often be advantageous to use
higher-order decompositions [55]. The simple quantum
circuits that implement expð−iHit=NÞ for the various
terms Hi are discussed in Appendix A. For the evolution
under a time-dependent Hamiltonian, as required for the
adiabatic state preparation, we update the parameters of the
Hamiltonian in each of the N time steps.

2. Quantum phase estimation

Given the ability to apply expð−iHtÞ to the state, we can
measure the energy hψ jHjψi of a given state jψi using an
approach known as quantum phase estimation [37,38].
The basic idea of quantum phase estimation is to implement
an interference experiment: an additional ancillary qubit
(labeled PE) is used to control the application of
expð−iHtÞ so that if the PE qubit is in the state j1i, then
expð−iHtÞ is applied, while if it is j0i, the identity
operation is applied to the state. Effectively, this interferes
two distinct trajectories with a phase difference expð−iEtÞ,
where E is the energy of the state. This phase difference
rotates the angle of the qubit, and by measuring this angle
one can determine the phase difference. By taking large t,
one can make the phase difference sensitive to small energy
differences, allowing precise measurement of the energy by
combining the information from measurements at several
different times.

3. Measurement of Green’s functions

Within the computational model we assume here, we can
perform measurements on individual qubits in a fixed basis.
In order to measure the real-time Green’s function Eq. (2),
we first relate its expectation values to those of unitary
operators [18]. We can then use a standard approach that
allows the measurement of expectation values of unitary

FIG. 5. (a) High-level overview of one step of the Trotterized time evolution. (b) Circuit h1 ¼ expð−iTεc†i ciÞ. (c) Circuit
hU ¼ expð−iTUninjÞ, where θ ¼ TU=2. (d) Circuit h2 ¼ expð−iTt½c†i cj þ c†jci�Þ. Here, we show the simplest case j ¼ iþ 1, which
does not require a Jordan-Wigner transformation.
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operators. This approach, shown in detail in Appendix A,
uses a controlled unitary operation to entangle an ancilla
qubit with the qubits on which the unitary should be
measured, and thereby makes the expectation value acces-
sible through a measurement of the ancilla in the computa-
tional basis.
We define the unitary operators

Uαβ
measðtÞ ¼ eitHqαe−itHqβ; ðB2Þ

where

q1 ¼ cþ c†; q2 ¼ iðc − c†Þ: ðB3Þ

When applied to an eigenstate jΨni with energy En, the
unitary can be simplified using hΨnjeitHqαe−itHqβjΨni ¼
eitEnhΨnjqαe−itHqβjΨni. In general, Eq. (B2) contains
terms of the form cðtÞcð0Þ, c†ðtÞcð0Þ, etc. However,
assuming the absence of superconductivity, operators that
do not conserve particle number will have vanishing
expectation values in the ground state, and we obtain

hU11
measi ¼ hcðtÞc†ð0Þi þ hc†ðtÞcð0Þi;

hU12
measi ¼ i½hc†ðtÞcð0Þi − hcðtÞc†ð0Þi�:

ðB4Þ

We can thus reconstruct the desired expectation values as

GpðtÞ ¼ ðhU11
measi þ ihU12

measiÞ=2;
GhðtÞ ¼ ðhU11

measi − ihU12
measiÞ=2:

ðB5Þ

To get the real and imaginary part of both GpðtÞ and GhðtÞ
for a given t requires four measurements. In the presence of
superconductivity, where fermion number conservation is
broken down to fermion parity conservation, cross terms
such as cðtÞcð0Þ and c†ðtÞc†ð0Þ do not vanish when
evaluated on the ground state. Finding Gp and Gh thus
requires measurement of the real and imaginary part of all
of the four operators Uαβ

measðTÞ, thus increasing the total
number of measurements at each time point from four
to eight.

APPENDIX C: SELF-CONSISTENCY
AND BATH FITTING

The self-consistency loop, which is used to determine the
free parameters of the bath, ϵi and Vαi, is most conveniently
and reliably executed in imaginary (Matsubara) frequen-
cies, and we must, therefore, extract the Green’s function in
imaginary time from our quantum impurity solver. In the
following, we omit orbital indices for notational simplicity;
in the general case, the Green’s function must be assumed
to be a matrix. We define the particle and hole contribution
to the real-time Green’s functions [cf. Eq. (2)] as

GpðtÞ ¼ hΨjcðtÞc†ð0ÞjΨi;
GhðtÞ ¼ hΨjc†ðtÞcð0ÞjΨi:

ðC1Þ

The standard time-ordered Green’s function
GðtÞ ¼ −ihΨjT cðtÞc†ð0ÞjΨi, where T is the time-ordering
operator, can be recovered as

GðtÞ ¼ −iΘðtÞhΨjcðtÞc†ð0Þi þ iΘð−tÞhΨjc†ð−tÞcð0ÞjΨi
¼ −iΘðtÞGpðtÞ þ iΘð−tÞGhð−tÞ:

ðC2Þ

Performing a Fourier transform on the Green’s function,
GðωÞ ¼ R

∞
−∞ eiωtGðtÞdt, we find, using the above

definitions,

GðωÞ ¼ −i
�Z

∞

ϵ
dteiðωþiηÞtGpðtÞþ

Z
∞

ϵ
dte−iðω−iηÞtGhðtÞ

�
;

ðC3Þ

where the lower bound ϵ in the time integrals has been
introduced for later convenience, and can be taken to be on
the order of the floating point precision when numerically
performing the integrals. η is a numerical broadening factor
that should be taken small compared to the relevant
physical energy scales of the system for extracting the
spectral function, but can be taken to be η ¼ 0 if only the
imaginary-frequency Green’s function is desired. Viewed
as a function of complex frequencies z ¼ ωþ iωn, the
many-body Green’s function GðzÞ is analytic in the lower
and upper complex half-plane, with nonanalyticities only
along the real axis Imz ¼ 0, and asymptotically behaves as
GðzÞ → 1=jzj, for jzj → ∞. Following standard definitions,
the spectral function is given by

AðωÞ ¼ −2ImGðωÞ ¼ i½GðωÞ − ḠðωÞ�: ðC4Þ

In this definition of the spectral function, positive
frequencies encode the particle contribution, and negative
frequencies encode the hole contributions. For equilibrium
systems, AðωÞ ≥ 0.
Given the Green’s function on the real frequency axis, or

the spectral function, we can rely on the analyticity
properties mentioned above and use a Hilbert transforma-
tion of the spectral function to obtain the Green’s function
in imaginary frequencies:

GðiωnÞ ¼
Z

∞

−∞

dω
2π

AðωÞ
iωn − ω

: ðC5Þ

Using the integrals (for t > 0, ωn > 0)

Z
∞

−∞

dω
2π

eiωt

iωn − ω
¼ −ie−tωn ;

Z
∞

−∞

dω
2π

e−iωt

iωn − ω
¼ 0; ðC6Þ
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one can, for example, compute the particle contribution
to be

GpðiωnÞ¼
Z

∞

ϵ

dte−ηt

2π

Z
∞

−∞

dω
iωn−ω

½eiωtGpðtÞ−e−iωtḠpðtÞ�

¼−i
Z

∞

0

dte−tðηþωnÞGpðtÞ:

Here, Ḡ denotes complex conjugation. The computation for
the hole contribution proceeds analogously, to yield the
final expression (for ωn > 0)

GðiωnÞ ¼ −i
Z

∞

ϵ
dte−tðηþωnÞ½GpðtÞ þ ḠhðtÞ�: ðC7Þ

We turn this into a discrete sum over a set of times ti at
which the integrand is evaluated. For best convergence of
the integral, we use an improved integrator scheme such as
Simpson’s rule. We choose the times as

ti ¼ ϵ exp

�
logðT=ϵÞ i

N − 1

�
; i ¼ 0;…; N − 1: ðC8Þ

We now describe the DMFT self-consistency condition,
which relates the free parameters of the impurity model to
the parameters of the original Hubbard model. Here, we
follow closely the notation of Sec. VI A 1d of Ref. [24].
The self-consistency condition can be stated as

GðiωnÞ ¼
Z

∞

−∞
dϵ

DðϵÞ
iωn þ μ − ΣðiωnÞ − ϵ

; ðC9Þ

where μ is the chemical potential, Σ denotes the self-energy,

ΣðiωnÞ ¼ G−1
0 ðiωnÞ − G−1ðiωnÞ; ðC10Þ

G0 is the noninteracting impurity Green’s function corre-
sponding to a set of bath parameters, and G is the impurity
Green’s function measured from the solution of the
interacting impurity problem. In general, the properties
of the bath are encapsulated in the hybridization function
ΔðiωnÞ ¼ ΣðiωnÞ þ G−1ðiωnÞ − iωn − μ. For the specific
case of a discrete bath used in this paper, the hybridization
function is related to the bath parameters by
ΔðiωnÞ ¼

PðV2
i =iωn − ϵiÞ, and the noninteracting

Green’s function is then given by [29]

½Gdiscr
0 ðiωnÞ�−1 ¼ iωn þ μþ

X
i

V2
i

iωn − ϵi
: ðC11Þ

In most practical cases, the self-consistency must be
achieved iteratively by means of executing the self-
consistency loop. Given as input the noninteracting
Green’s function G0 [which in the case of a discrete bath,

as we discuss here, is parametrized by the bath parameters
ϵi, Vi through Eq. (C11)] as well as the interacting impurity
Green’s function G obtained from the solution of the
impurity problem for that set of bath parameters, one first
computes the self-energy Σ using Eq. (C10) and then
evaluates

~G0
−1 ¼

�Z
∞

−∞

dϵDðϵÞ
iωn þ μ − Σ − ϵ

�
−1

þ Σ ðC12Þ

to obtain a new estimate for the noninteracting Green’s
function.
Having obtained the new noninteracting Green’s func-

tion in imaginary frequencies, we must obtain the bath
parameters ϵi, Vi (for a single spin-degenerate impurity)
such that the discrete version of the noninteracting Green’s
function of Eq. (C11) best approximates the desired
Green’s function. To this end, we optimize the cost function

X
n

j ~G0
−1ðiωnÞ − ½Gdiscr

0 ðiωnÞ�−1j2 ðC13Þ

using a nonlinear optimization scheme in the parameters
Vi, ϵi. For more details on how to reliably perform
optimization of the bath parameters, see Ref. [32].
In the case of the Bethe lattice [56] in the limit of infinite

coordination number, the density of states follows the
semicircular form DðϵÞ ¼ ð1=2πÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
4 − ϵ2

p
, −2 ≤ ϵ ≤ 2,

and 0 otherwise (here, we set the hopping integral to
t ¼ 1) [57]. In this particular case, the integral of Eq. (C9)
can be evaluated to find [where z ¼ iωn þ μ − ΣðiωnÞ]

GðiωnÞ ¼
1

2
ðz −

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4

p
Þ: ðC14Þ

Using Eq. (C10), this can be simplified to yield the concise
self-consistency condition for the Bethe lattice [29]:

G−1
0 ðiωnÞ ¼ iωn þ μ − GðiωnÞ: ðC15Þ

In this case, a new noninteracting Green’s function ~G0
−1

can be obtained by simply evaluating the right-hand side of
Eq. (C15) using the numerically obtained impurity Green’s
function G. This is then used as input for the same bath
fitting procedure of Eq. (C13).

APPENDIX D: GATE-COUNT ESTIMATES

1. Incoherent approach

The most naive possible workflow to measure an
expectation value for a fixed time t is as follows.
(1) Prepare the ground state jΨ0i by adiabatic evolution

from an easily prepared initial state, for example,
free fermions or the atomic limit.
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(2) Measure the expectation value of the unitary oper-
ator Uαβ

meas. This is achieved using the circuit illus-
trated in Fig. 4, which projects into a final state jΨ1i.

Since the most costly step of the above procedure is the
preparation of jΨ0i, it would be very helpful to reduce
the number of preparations. This seems feasible since the
measurement measures only a single bit of information, and
the final state will likely still have significant overlap with
the ground state. To exploit this, we can apply a projective
measurement that, if successful, projects the state back into
the ground state. This can be achieved by performing QPE
on the unitary U ¼ e−itH to measure the energy. In the
successful case, where the final measurement in the QPE
yields the known ground-state energy, the state has been
successfully projected into the ground state and can be used
as input to a new measurement; however, if the measure-
ment yields an eigenstate of different energy, which is
orthogonal to the ground state, the state would have to be
reprepared. To avoid this, the measurement of the ancilla
qubits in the final step of QPE can be replaced by the
measurement of a single qubit which encodes whether
the system is in the ground state or not. This yields the
algorithm sketched in Fig. 3. The probability of returning
to the ground state, which dictates how often the state must
be reprepared from scratch, depends on the numerical
details of the model and must, therefore, be estimated on a
case-by-case basis.
Numerical simulations of the example we discuss in the

main text show that, following the above scheme, we need
to prepare the ground state from scratch 1.7 × 105 times,
and have to perform QPE for a total of 6.8 × 106 times.

2. Coherent approach

The coherent measurement procedure was first described
in Ref. [18]. For a detailed description of this approach,
see Ref. [18]. For the purpose of this paper, it suffices to
note that this approach gains a quadratic speed-up in the
accuracy; i.e., the number of measurements required at each
time step are reduced quadratically.
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