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A fundamental problem in modern high-dimensional data analysis involves efficiently inferring a set of
P unknown model parameters governing the relationship between the inputs and outputs of N noisy
measurements. Various methods have been proposed to regress the outputs against the inputs to recover the
P parameters. What are fundamental limits on the accuracy of regression, given finite signal-to-noise ratios,
limited measurements, prior information, and computational tractability requirements? How can we
optimally combine prior information with measurements to achieve these limits? Classical statistics gives
incisive answers to these questions as the measurement density α ¼ ðN=PÞ → ∞. However, these classical
results are not relevant to modern high-dimensional inference problems, which instead occur at finite α. We
employ replica theory to answer these questions for a class of inference algorithms, known in the statistics
literature as M-estimators. These algorithms attempt to recover the P model parameters by solving an
optimization problem involving minimizing the sum of a loss function that penalizes deviations between
the data and model predictions, and a regularizer that leverages prior information about model parameters.
Widely cherished algorithms like maximum likelihood (ML) and maximum-a posteriori (MAP) inference
arise as special cases of M-estimators. Our analysis uncovers fundamental limits on the inference accuracy
of a subclass of M-estimators corresponding to computationally tractable convex optimization problems.
These limits generalize classical statistical theorems like the Cramer-Rao bound to the high-dimensional
setting with prior information. We further discover the optimal M-estimator for log-concave signal and
noise distributions; we demonstrate that it can achieve our high-dimensional limits on inference accuracy,
while ML and MAP cannot. Intriguingly, in high dimensions, these optimal algorithms become
computationally simpler than ML and MAP while still outperforming them. For example, such optimal
M-estimation algorithms can lead to as much as a 20% reduction in the amount of data to achieve the same
performance relative to MAP. Moreover, we demonstrate a prediction of replica theory that no inference
procedure whatsoever can outperform our optimal M-estimation procedure when signal and noise
distributions are log-concave, by uncovering an equivalence between optimal M-estimation and optimal
Bayesian inference in this setting. Our analysis also reveals insights into the nature of generalization and
predictive power in high dimensions, information theoretic limits on compressed sensing, phase transitions
in quadratic inference, and connections to central mathematical objects in convex optimization theory and
random matrix theory.
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I. INTRODUCTION

Remarkable advances in measurement technologies have
thrust us squarely into the modern age of “big data,” which
yields the potential to revolutionize a variety of fields
spanning the sciences, engineering, and humanities, includ-
ing neuroscience [1,2], systems biology [3], health care [4],
economics [5], social science [6], and history [7]. However,
the advent of large-scale data sets presents severe statistical

challenges that must be solved if we are to gain conceptual
insights from such data.
A fundamental origin of the difficulty in analyzing

many large-scale data sets lies in their high dimensionality
[8–10]. For example, in classically designed experiments,
we often measure a small number of P variables, chosen
carefully ahead of time to test a specific hypothesis, and
we take a large number of N measurements. Thus, the
measurement density α ¼ ðN=PÞ is extremely large, and
such data sets are low dimensional: They consist of a large
number of N points in a low P dimensional space
[Fig. 1(a)]. Much of the edifice of classical statistics
operates within this low-dimensional, high-measurement
density limit. Indeed, as reviewed below, as α → ∞,
classical statistical theory gives us fundamental limits on
the accuracy with which we can infer statistical models of
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such data, as well as the optimal statistical inference
procedures to follow in order to achieve these limits.
In contrast to this classical scenario, our technological

capacity for high-throughput measurements has led to a
dramatic cultural shift in modern experimental design
across many fields. We now often simultaneously measure
many variables at once in advance of choosing any specific
hypothesis to test. However, we may have limited time or
resources to conduct such experiments, so we can only
make a limited number of such simultaneous measure-
ments. For example, through multielectrode recordings, we
can simultaneously measure the activity P ¼ 1000 neurons
in mammalian circuits but only for N ¼ Oð100Þ trials of
any given trial type. Through microarrays, we can simulta-
neously measure the expression levels of P ¼ Oð6000Þ
genes in yeast but again in a limited number of N ¼
Oð100Þ experimental conditions. Thus, while both N and P
are large, the measurement density α is finite. Such data sets
are high dimensional, in that they consist of a small number
of points in a high-dimensional space [Fig. 1(b)], and it
can be extremely challenging to detect regularities in such
data [10]. Moreover, classical statistical theory gives no
prescriptions for how to optimally analyze such data.
In our work, we focus on one of the most ubiquitous

statistical inference procedures: regression, which attempts
to find a linear relationship between a cloud of data points
and another variable of interest. In order to study regression
in the high-dimensional regime, we apply the technique of
replica theory [11] from statistical physics. Indeed, replica
theory has long played an important role in the analysis of
high-dimensional statistical inference problems where the
number of measurements or constraints is proportional to
the number of unknowns, for example, in neural network
memory capacity [12], perceptron learning theory [13,14],
communication theory [15], compressed sensing [16–19],
and most recently matrix factorization [20]. See also
[10,21] for general reviews on replica theory in high-
dimensional inference problems.
By applying replica theory to the central problem

of high-dimensional regression, we obtain fundamental

generalizations of statistical theorems dating back to the
1940s [22,23]. These theorems (reviewed below) place
general limits on the accuracy of statistical inference through
a set of procedures known as M-estimators (defined below,
and see Refs. [24,25] for reviews) in a low-dimensional
setting and reveal the optimal M-estimator (maximum
likelihood estimation). We generalize these results to the
high-dimensional setting with prior information, by (1)
characterizing the performance of any convex regularized
M-estimator on any high-dimensional regression problem,
(2) finding the optimal convex M-estimator that achieves
the best performance amongst all M-estimators, under the
condition of log-concave signal and noise distributions, and
(3) demonstrating that no inference algorithm whatsoever
can outperform our optimal M-estimator in the setting where
the prior distribution over parameters is known. Overall, our
results reveal new optimal regression algorithms and quan-
titative insights into how the predictive power, or generali-
zation capability, of a regression algorithm is related to its
accuracy in separating signal from noise.Moreover, a variety
of topics—including random matrix theory, compressed
sensing, and fundamental objects in convex optimization
theory, such as proximal mappings andMoreau envelopes—
emerge naturally through our analysis. We give an intuitive
summary of our results in the discussion section.

A. Statistical inference framework

To more concretely introduce this work, we give a
precise definition of the inference problem we are studying.
Formally, let s0 be an unknown P-dimensional vector
governing the linear response of a system’s scalar output
y to a P-dimensional input x through the relation
y ¼ x · s0 þ ϵ, where ϵ denotes noise originating either
from unobserved inputs or imperfect measurements. For
example, in sensory neuroscience, y could reflect a linear
approximation of the response of a single neuron to a
sensory stimulus x, so s0 is the neuron’s receptive field.
Alternatively, in genetic networks, y could reflect the linear
response of one gene to the expression levels x of a set of P
genes. Suppose we perform N measurements, indexed by
μ ¼ 1;…; N, in which we probe the system with an input
xμ and record the resulting output yμ. This yields a set of
noisy measurements constraining the linear response vector
s0 through the N equations yμ ¼ xμ · s0 þ ϵμ.
We assume the noise ϵμ and components s0i are each

drawn independently and identically distributed (i.i.d.)
from a zero mean noise density PϵðϵÞ and a prior
distribution PsðsÞ. For convenience, below we define signal
and noise energies in terms of the minus log probability
of their respective distributions: Eϵ ¼ − logPϵ and Es ¼
− logPs. We further assume the experimental design of
inputs is random: Input components xμ

i are drawn i.i.d.
from a zero mean Gaussian with variance 1=P, yielding
inputs of expected norm 1. In many systems-identification
applications, including, for example, in sensory

FIG. 1. A cartoon view of low-dimensional (a) versus high-
dimensional (b) data. In the latter scenario, a finite measurement
density, or ratio between data points and dimensions, leads to
errors in inference.
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neuroscience, this random design would correspond to a
white-noise stimulus. Now, given knowledge of theN input-
output pairs fxμ; yμg, the noise density Pϵ, and the prior
information encoded in Ps, we would like to infer, in a
computationally tractable manner, an estimate ŝ of the true
response vector s0. A critical parameter governing inference
performance is the ratio of the number of measurements N
to the dimensionalityP of the unknownmodel parameter s0,
i.e., the measurement density α ¼ ðN=PÞ.
The performance of any inference procedure can be

characterized in several ways. Most simply, we would like
to achieve a small, per-component mean-square error,
qs ¼ ð1=PÞPP

i¼1ðŝi − s0i Þ2, in inferring the true parame-
ters, or signal s0. Alternatively, it is useful to note that any
inference procedure yielding an estimate ŝ implicitly
decomposes the measurement vector y into the sum of a
signal component Xŝ and a noise estimate ϵ̂ ¼ y −Xŝ.
Here, X is an N-by-P matrix whose rows are the meas-
urement vectors xμ. Thus, an inference procedure corre-
sponds to a particular separation of measurements into
estimated signal and noise, y ¼ Xŝþ ϵ̂, which will generi-
cally differ from the true decomposition, y ¼ Xs0 þ ϵ.
While qs reflects the error in estimating signal, qϵ ¼
1
N

P
N
μ¼1ðϵ̂μ − ϵμÞ2 reflects the error in estimating noise.

Finally, one of the main performance measures of an
inference procedure is its ability to generalize, or make
predictions about, the measurement outcome y in response
to a new randomly chosen input x not present in the
training set fxμg. Given an estimate ŝ, it can be used to
make the prediction ŷ ¼ x · ŝ, and the average performance
of this prediction is captured by the generalization error
Egen ¼ ⟪ðy − ŷÞ2⟫. Here, the double average ⟪ · ⟫ denotes
an average over both the training data fxμ; yμg, which ŝ
depends on, and the held-out testing data fx; yg, which is
necessarily independent of ŝ. An alternate measure of
performance is the average error in the ability of ŝ to
simply predict the training data: Etrain ¼ ð1=NÞP

N
μ¼1 ðyμ − xμ · ŝÞ2 ¼ ð1=NÞPN

μ¼1 ϵ̂
2
μ. In general, Etrain <

Egen, since through the process of inference, the learned
parameters ŝ can acquire subtle correlations with the
particular realization of training inputs fxμg and noise
fϵμg so as to reduce Etrain. Situations where Etrain ≪ Egen

correspond to inference procedures that overfit to the
training data and do not exhibit predictive power by
generalizing to new data.
Now, what inference procedures can achieve good

performance in a computationally tractable manner?
Regularized M-estimation (see Refs. [24,25] for reviews)
yields a large family of computationally tractable estimation
procedures inwhich ŝ is computed through theminimization

ŝ ¼ argmin
s

"XN
μ¼1

ρðyμ − xμ · sÞ þ
XP
i¼1

σðsiÞ
#
: ð1Þ

Here, s is a candidate responsevector, ρ is a loss function that
penalizes deviations between actual measurements yμ and
expectedmeasurementsxμ · sunder thecandidates, andσðsÞ
is a regularization function that exploits prior information
about s0.
In the absence of such prior information, a widely used

procedure is maximum likelihood (ML) inference,

ŝML ¼ argmax
s

logPðfyμgjfxμg; sÞ: ð2Þ

ML corresponds to noise energy minimization through the
choice ρ ¼ Eϵ and σ ¼ 0 in Eq. (1). Amongst all unbiased
estimation procedures (in which hŝi ¼ s0, where h·i
denotes an average over noise realizations), this energy
minimization is optimal but only in the low-dimensional
limit. Thus, amongst unbiased procedures, ML achieves the
minimum mean-squared error (MMSE), when α → ∞, but
not at finite α.
With prior knowledge, the Bayesian posterior mean

achieves the MMSE estimate,

ŝMMSE ¼ hsjfyμ;xμgi ¼
Z

ds sPðsjfyμ;xμgÞ: ð3Þ

However, while no inference procedure can outperform
high-dimensional Bayesian inference of the posterior
mean, this procedure is not an M-estimator. It is also, in
general, often computationally intractable because of the
P-dimensional integral. However, as we discuss below in
the related work section, it is thought that in the dense i.i.d.
Gaussian measurement setting for xμ

i considered here, a
good approximation to the integral can be obtained via
efficient message-passing algorithms.
Awidely used, generally more computationally tractable

surrogate for the computation of the full posterior mean is
maximum- a posteriori (MAP) inference,

ŝMAP ¼ argmax
s

logPðsjfyμ;xμgÞ; ð4Þ

which corresponds to noise and signal energy minimization
through the choice ρ ¼ Eϵ and σ ¼ Es in Eq. (1). MAP
inference, by potentially introducing a nonzero bias (so that
hŝi ≠ s0), can outperform ML at finite α, but it is not, in
general, optimal. However, the exploitation of prior infor-
mation through a judicious, even if suboptimal, choice of σ
can dramatically reduce estimation error. For example, the
seminal advance of compressed sensing (CS) [26–28], as
well as LASSO regression [29], uses ρ ¼ 1

2
ϵ2 and σ ∝ jsj.

This choice can lead to accurate inference of sparse s0 even
when α < 1, where sparsity means that PsðsÞ assigns a
small probability to nonzero values.
Despite the important and successful special cases of

MAP inference, CS and LASSO, there is no general
method to choose the best ρ and σ for inference. The
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central questions we address in this work are as follows:
(1) Given an estimation problem defined by the triplet of
measurement density, noise, and prior (α, Eϵ, Es), and an
estimation procedure defined by the loss and regularization
pair (ρ, σ), what is the typical error qs achieved for random
inputs xμ and noise ϵμ? (2) What is the minimal achievable
estimation error qopt over all possible choices of convex
procedures (ρ, σ)? (3) Which procedure (ρopt, σopt) achieves
the minimal error qopt, and under what conditions? (4) Are
there simple universal relations between qs and qϵ which
measure the ability of an inference procedure to accurately
separate signal and noise, Etrain and Egen, which capture the
predictive power of an inference procedure? (5) How does
the performance qopt of an optimal M-estimator compare to
the best performance achievable by any algorithm, namely,
that obtained by Bayesian MMSE inference? Our discus-
sion section gives a summary of the answers we find to
these questions.

B. Related work

For the special case of unregularized M-estimation
(σ ¼ 0), the error qs and the form of the optimal loss
function were characterized in a recent work [30], using
mathematical arguments that are reminiscent of the cavity
method in statistical physics. A closely related work [31]
studied the same questions using a different technique
known as approximate message passing (AMP), again
assuming no regularization. By focusing on unregularized
M-estimation, these works leave open the important ques-
tion of how to exploit prior information about the signal
distribution, which can often be essential for accurate
inference in high dimensions. For example, the seminal
advances of compressed sensing and LASSO reveal that
simple choices of convex regularization can yield dramatic
performance improvements in sparse signal recovery even
at measurement densities less than 1. In contrast, the
methods of Refs. [30,31] can be applied only in the case
of measurement densities greater than 1 because of their
focus on unregularized M-estimation. Here, motivated by
the dramatic performance improvements enabled by even
simple regularization choices, we focus on the fundamental
question of how to optimally exploit prior information by
choosing the best regularizer at any measurement density.
Also, in contrast to these works, we employ replica

theory for our analysis. However, the techniques of AMP
and replica theory are closely related. In particular, opti-
mization problems of the form in Eq. (1) can be viewed as a
graphical model [32] or a joint (zero-temperature) distri-
bution over P variables with N þ P factors or constraints
corresponding to each term in the sum. Belief propagation
(BP) is a technique for finding the marginal distribution of a
single variable in such a graphical model. BP is known to
be exact on tree structured graphical models, and it often
provides good approximate marginals on random sparse
graphical models in which small numbers of variables

interact with each other in each constraint [33,34]. In
contrast, Eq. (1) corresponds to a dense graphical model in
which all N variables interact in the measurement con-
straints due to the random Gaussian distribution of xμ

i .
AMP is an approximate version of BP designed to work
well in such dense graphical models. It was proposed, for
example, in Ref. [35] to study compressed sensing with
Gaussian measurements. In such a dense Gaussian setting,
the AMP algorithm was proven in Ref. [36] to yield the
same answer as that obtained via a direct solution of the
convex optimization problem. This result was extended in
Ref. [37] from a Bayesian perspective.
A theoretical advantage of AMP is that its performance

across iterations can be tracked using a set of state-
evolution (SE) update equations. Remarkably, the fixed-
point conditions of these SE equations often correspond to
the self-consistency equations for the order parameters in
replica theory (see, e.g., Refs. [19,34]), though there is no
general theory that explains why this correspondence
should always hold. However, it is fortunate that in our
case, this correspondence does hold; in the very special
case of zero regularization, our replica theory predictions
for performance match those of Ref. [31], derived via state
evolution, as well as those of Refs. [30,38], derived via
cavitylike methods. For a general overview of replica
theory, the cavity method, and message passing within
the context of neural systems and high-dimensional data,
see Ref. [10].
Interestingly, the Bayesian MMSE estimation algorithm

(3) has also been studied from the perspective of both the
replica method and AMP (see, e.g., Refs. [15,19,37]).
Although it has not yet been rigorously proven, the AMP
algorithms for Bayesian MMSE inference are conjectured
to yield the same answer as direct integration in Eq. (3) in
the high-dimensional data limit assuming Gaussian i.i.d.
measurements xμi (see Ref. [19] for a discussion). Such
replica methods are widely accepted and have even been
extended to analyze optimal matrix factorization [20].
Although Bayesian MMSE estimation is not the primary
focus of this paper, we do compare the replica solution of
Bayesian MMSE inference to the performance predicted by
the optimal M-estimators we derive.

II. RESULTS

A. Review and formulation of classical scalar inference

Before considering the finite α regime, it is useful to
review classical statistics in the α → ∞ limit, in the context
of scalar estimation, where P ¼ 1. In particular, we for-
mulate these results in a suggestive manner that will aid
in understanding the novel phenomena that emerge in
modern, high-dimensional statistical inference, derived
below. Here, for simplicity, we choose the scalar measure-
ments xμ ¼ 1∀μ in Eq. (1). Thus, we must estimate the
scalar s0 from α ¼ N noisy measurements, yμ ¼ s0 þ ϵμ.
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With no regularization (σ ¼ 0), for large N, ŝ in Eq. (1) will
be close to s0, so Taylor expanding ρ about s0 simply yields
the asymptotic error (see Refs. [24,25], and Appendix A. 1
of Ref. [39])

qs ¼
1

N
⟪ρ0ðϵÞ2⟫ϵ

⟪ρ00ðϵÞ⟫2
ϵ
: ð5Þ

The Cramer-Rao (CR) bound is a fundamental informa-
tion theoretic lower bound, at any N, on the error of any
unbiased estimator ŝðfyμgÞ (obeying hŝ − s0iϵ ¼ 0):

qs ≥
1

N
1

J½ϵ� ; ð6Þ

where J½ϵ� is the Fisher information from a single meas-
urement y,

J½ϵ� ¼ ⟪
� ∂
∂s0 logPðyjs

0Þ
�
2⟫

y
¼ ⟪

� ∂
∂ϵEϵ

�
2⟫

ϵ
: ð7Þ

The Fisher information measures the susceptibility of the
output y to small changes in the parameter s0. The higher
this susceptibility, the lower the achievable error in
Eq. (6). For finite N, it is not clear if there exists a loss
function ρ whose performance saturates the CR bound.
However, a central result in classical statistics states that
as N → ∞, the choice ρ ¼ Eϵ saturates Eq. (6), as can be
seen by substituting ρ ¼ Eϵ in Eq. (5) (see Ref. [39],
Appendix A. 2). Interestingly, at finite N the optimal
equivariant estimator, in which a constant shift in the data
results in the same shift in the estimator, is known. This
estimator is an unbiased procedure known as Pitman
estimation [40], which corresponds to ŝP ¼ 1=½PðfyμgÞ�R
dssPðfyμgjsÞ. However, it is not an M-estimator, corre-

sponding to any choice of ρ in Eq. (1).
It is also possible to perform more accurate inference

with biased estimates by using knowledge of the true
signal distribution Pðs0Þ. In particular, the posterior mean
hsjfyμgi ¼ R

dssPðsjfyμgÞ achieves a minimal possible
error qs, amongst all inference procedures, biased or not, at
any finite N. We compute this minimal qs, in the limit of
large N, via a saddle-point approximation to this Bayesian
integral, yielding a mean-field theory (MFT) for low-
dimensional Bayesian inference (see Ref. [39],
Appendix A. 3), where the N measurements yμ of s0,
corrupted by non-Gaussian noise ϵμ, can be replaced by a
single measurement y ¼ s0 þ ffiffiffiffiffi

qd
p

z, corrupted by an
effective Gaussian noise of variance

qd ¼
1

NJ½ϵ� : ð8Þ

Here, z is a zero-mean unit-variance Gaussian variable. In
our MFT, qs is the MMSE error qMMSE

s of this equivalent
single-measurement, Gaussian noise inference problem:

qMMSE
s ðqdÞ ¼ hhðs0 − hsjy ¼ s0 þ ffiffiffiffiffi

qd
p

ziÞ2iis0;z: ð9Þ

We further prove a general lower bound on the asymptotic
error,

qs ≥
1

NJ½ϵ� þ J½s0� ; ð10Þ

and demonstrate that this bound is tight when the signal
and noise are Gaussian (see Ref. [39], Appendix A. 3).
This bound is also known in the statistics literature as the
Bayesian Cramer-Rao or Van-Trees inequality (see,
e.g., Ref. [41]).
Thus, the classical theory of unbiased statistical infer-

ence as the measurement density α → ∞ reveals that ML
achieves information theoretic limits on error (6).
Moreover, an asymptotic analysis of Bayesian inference
as α → ∞ [Eqs. (8)–(10)] reveals the extent to which biased
procedures that optimally exploit prior information can
circumvent such limits. Our work below constitutes a
fundamental extension of these results to modern high-
dimensional problems at finite measurement density.

B. Statistical mechanics framework

To understand the properties of the solution ŝ to Eq. (1),
we define an energy function

EðsÞ ¼
XN
μ¼1

ρðyμ − xμ · sÞ þ
XP
i¼1

σðsiÞ; ð11Þ

yielding a Gibbs distribution PGðsÞ ¼ ð1=ZÞe−βEðsÞ that
freezes onto the solution of Eq. (1) in the zero-temperature
β → ∞ limit. In this statistical mechanics system, xμ, ϵμ,
and s0 play the role of quenched disorder, while the
components of the candidate parameters s comprise ther-
mal degrees of freedom. For large N and P, we expect self-
averaging to occur: The properties of PG for any typical
realization of disorder coincide with the properties of PG
averaged over the disorder. Therefore, we compute the
average free energy −βF̄≡ ⟪ lnZ⟫xμ;ϵμ;s0 using the replica
method [42]. We employ the replica symmetric (RS)
approximation, which is effective for convex ρ and σ
(see Ref. [39], Sec. II. 1 for details of our replica calcu-
lation). For a review of statistical mechanics methods
applied to high-dimensional inference in diverse settings,
see Ref. [10].
Central objects in optimization theory emerge naturally

from our replica analysis, and the resulting MFT is most
naturally described in terms of them. First is the proximal
map x → Pλ½f�ðxÞ, where

Pλ½f�ðxÞ ¼ argmin
y

�ðy − xÞ2
2λ

þ fðyÞ
�
: ð12Þ
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This mapping is a proximal descent step that maps x to a
new point that minimizes f while remaining proximal to x,
as determined by a scale λ. The proximal map is closely
related to the Moreau envelope of f, given by

Mλ½f�ðxÞ ¼ min
y

�ðy − xÞ2
2λ

þ fðyÞ
�
: ð13Þ

Mλ½f� is a minimum convolution of fðxÞ with a quadratic
x2=2λ, yielding a lower bound on f that is smoothed over a
scale λ. See Figs. 2(a) and 2(b) for an example. The
proximal map and Moreau envelope are related:

Pλ½f�ðxÞ ¼ x − λM0
λ½f�ðxÞ; ð14Þ

where the prime denotes differentiation with respect to x.
Thus, a proximal descent step on f can be viewed as a
gradient descent step on Mλ½f� with step length λ. See
Ref. [39], Appendix C. 1, and also Ref. [43] for a review of
these topics.
Our replica analysis yields a pair of zero-temperature

MFT distributions PMFðs0; ŝÞ and PMFðϵ; ϵ̂Þ. The first
describes the joint distribution of a single component
ðs0i ; ŝiÞ in Eq. (1), while the second describes the joint
distribution of a noise component ϵμ and its estimate
ϵ̂μ ≡ yμ − xμ · ŝ. The MFT distributions can be described
in terms of a pair of coupled scalar noise and signal
estimation problems, depending on a set of RS order
parameters (qs, qd, λρ, λσ). Here, qs and qd reflect the
variance of additive Gaussian noise that corrupts the noise ϵ
and signal s0, respectively, yielding the measured variables

ϵqs ¼ ϵþ ffiffiffiffiffi
qs

p
zϵ; s0qd ¼ s0 þ ffiffiffiffiffi

qd
p

zs; ð15Þ

where zϵ and zs are independent zero-mean unit-variance
Gaussians. From these measurements, estimates ϵ̂ and ŝ
of the original noise ϵ and signal s0 are obtained through
proximal descent steps on the loss ρ and regularization σ:

ϵ̂ðϵqsÞ ¼ Pλρ ½ρ�ðϵqsÞ; ŝðs0qdÞ ¼ Pλσ ½σ�ðs0qdÞ; ð16Þ

where λρ and λσ reflect scale parameters. The joint MFT
distributions are then obtained by integrating out zϵ and zs.
These MFT equations can be thought of as defining a pair
of scalar estimation problems, one for the noise and one for
the signal [see Figs. 3(a) and 3(b) for a schematic].
The order parameters obey self-consistency conditions

that couple the performance of these scalar estimation
problems:

qd ¼
⟪M0

λρ
½ρ�ðϵqsÞ2⟫ϵqs

α⟪M00
λρ
½ρ�ðϵqsÞ⟫2

ϵqs

; qs ¼ ⟪ðŝ − s0Þ2⟫s0qd
; ð17Þ

1 −
1

α

λρ
λσ

¼ hhϵ̂0ðϵqsÞiiϵqs ;
λρ
λσ

¼ hhŝ0ðs0qdÞiis0qd : ð18Þ

Here, ⟪ · ⟫ denotes averages over the quenched disorder in
Eq. (15). The pair of MF distributions determine various
measures of inference performance in Eq. (1). In particular,
qs predicts the typical per-component error of the learned
model parameters, or signal ŝ, while qϵ ¼ ⟪ðϵ̂ − ϵÞ2⟫ϵqs
predicts the typical per-component error of the estimated
noise. The model’s prediction, or generalization error
Egen ¼ ⟪ðy − x · ŝÞ2⟫ on a new example ðx; yÞ not present
in the training set fxμ; yμg, can be obtained by substituting
y ¼ x · s0 þ ϵ into Egen. This yields the MFT prediction for
the generalization error, Egen ¼ ⟪ðϵqsÞ2⟫ ¼ qs þ hϵ2i. In
contrast, the MFT prediction for the training error is
simply Etrain ¼ ⟪ϵ̂ðϵqsÞ2⟫.
Because the proximal map is contractive, with Jacobian

less than 1 [43], the MFT predicts, as expected, that
Etrain < Egen. The reduced Etrain is due to the subtle

(a) Moreau envelope (b) Proximal map

FIG. 2. (a) An example of a smooth, lower-bounding Moreau
envelope Mλ½f�ðxÞ in Eq. (13) for fðxÞ ¼ jxj. Explicitly,
Mλ½f�ðxÞ ¼ ðx2=2λÞ for jxj ≤ λ, and jxj − ðλ=2Þ for jxj ≥ λ.
(b) The proximal map Pλ½f�ðxÞ in Eq. (12) for fðxÞ ¼ jxj.
Explicitly, Pλ½f�ðxÞ ¼ 0 for jxj ≤ λ, and x − signðxÞλ for
jxj ≥ λ. Thus, the proximal descent map x → Pλ½f�ðxÞ moves
x towards the minimum of fðxÞ.

(a) (b)

FIG. 3. A low-dimensional scalar MFT for high-dimensional
inference. Diagrams (a) and (b) are schematic descriptions of
Eqs. (15) and (16). They describe a pair of scalar statistical
estimation problems, one for a noise variable ϵ, drawn from Pϵ in
(a), and the other for a signal variable s0, drawn from Ps in (b).
Each variable is corrupted by additive Gaussian noise, and from
these noise-corrupted measurements, the original variables are
estimated through proximal descent steps, yielding a noise
estimate ϵ̂ in (a) and a signal estimate ŝ in (b). The MFT
distributions PMFðϵ; ϵ̂Þ and PMFðs0; ŝÞ are obtained by integrating
out zϵ and zs in (a) and (b), respectively. These joint MF
distributions describe the joint distribution of pairs of single
components ðϵμ; ϵ̂μÞ and ðs0i ; ŝiÞ in Eq. (1), after integrating out
all other elements of the quenched disorder in the training data
and true signal.
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correlations that the learned parameters ŝ can acquire with
the particular realization of training inputs fxμg and noise
fϵμg, through the optimization in Eq. (1). Remarkably,
these subtle correlations are captured in the MFT simply
through a proximal descent step in Eq. (16) on the cost ρ.
This step contracts the variable ϵqs controlling E

gen towards
the minimum of ρ at the origin, leading to smaller Etrain. We
explore many more consequences of this MFT below.

C. Inference without prior information

If we cannot exploit prior information, we simply choose
σ ¼ 0, which yields ŝ ¼ s0qd in Eq. (16), so that the rhs of
Eqs. (17) and (18) reduce to qs ¼ qd and λρ ¼ λσ . Then,
replacing qd with qs on the lhs of Eq. (17), and comparing
to Eq. (5), we see that the high-dimensional inference error
is analogous to the low-dimensional one, with the number
of measurements N replaced by the measurement density α,
the cost ρð·Þ replaced by its Moreau envelope Mλρ ½ρ�ð·Þ,
and the noise ϵ further corrupted by additive Gaussian noise
of variance qs, with qs and λρ determined self-consistently
through Eqs. (17) and (18).
As a simple example, consider the ubiquitous case

of quadratic cost: ρðxÞ ¼ 1
2
x2. Then the proximal map

(16) is simply linear shrinkage to the origin, ϵ̂ðϵqsÞ ¼
½1=ð1þ λρÞ�ϵqs , and Eqs. (17) and (18) are readily solved:
qs ¼ ½1=ðα − 1Þ�hϵ2i, λρ ¼ ½1=ðα − 1Þ�, yielding Egen ¼
½α=ðα − 1Þ�hϵ2i and Etrain ¼ ½ðα − 1Þ=α�hϵ2i. Thus, as the
measurement density approaches 1 from above, the errors
in inferred parameters ŝ and Egen diverge, while Etrain

vanishes, indicating severe overfitting.

Now, in the space of all convex costs ρ, for a given
density α and noise energy Eϵ, what is the minimum
possible estimation error qopt? By performing a functional
minimization of qs over ρ subject to the constraints (17) and
(18) (see Ref. [39], Secs. 4.1 and 5.1 for details), we find
that qopt is the minimal solution to

qopt ¼ 1

α

1

J½ϵqopt �
≥

1

ðα − 1ÞJ½ϵ� ; ð19Þ

where the second inequality follows from the convolutional
Fisher inequality (Ref. [39], Appendix B. 2). This result
is the high-dimensional analog of the Cramer-Rao bound
in Eq. (6). By the data-processing inequality for Fisher
information, J½ϵqopt � < J½ϵ�, indicating higher error in
the high-dimensional setting [Eq. (19)] than the low-
dimensional setting [Eq. (6)]. Thus, the price paid for even
optimal high-dimensional inference at finite measurement
density, relative to ML inference at infinite density, is
increased error due to the presence of additional Gaussian
noise with dimensionality-dependent variance qs.
Now can this minimal error qopt be achieved, and if so,

which cost function ρopt achieves it? Constrained functional
optimization over ρ yields the functional equation
Mqopt ½ρ�ðxÞ ¼ Eϵqopt

(see Ref. [39], Sec. V. 1 for details),

which can be inverted (see Ref. [39], Appendix B. 2) to find

ρoptðxÞ ¼ −Mqopt ½−Eϵqopt
�ðxÞ: ð20Þ

The validity of this equation under the RS assumption
requires that ρopt be convex. Convexity of the noise energy

(b)          Training error (c)(a)     Generalization error

FIG. 4. Unregularized inference for Laplacian noise Eϵ ¼ jϵj. A comparison of the generalization error (a) and training error (b) of the
optimal unregularized M-estimator (20) (black lines) with ML (red lines) and quadratic (blue lines) loss functions. Solid curves reflect
theoretically derived predictions of performance. Error bars reflect performance obtained through numerical optimization of Eq. (1)
using standard convex optimization solvers for finite-size problems (N and P vary, with N ¼ αP and

ffiffiffiffiffiffiffi
NP

p ¼ 250). The width of the
error bars reflects standard deviation of performance across 100 different realizations of the quenched disorder. (c) The shape of the
optimal loss function in Eq. (20) for high-dimensional inference as a function of the error or smoothing parameter q. As α varies from
high to low measurement densities, q varies from low to high values, and the optimal loss function varies from the ML loss to quadratic.
Intermediate versions of the optimal loss behave like a smoothed version of the ML loss, with increased smoothing as measurement
density decreases (or dimensionality increases).
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Eϵ is sufficient to guarantee the convexity of ρopt (see
Ref. [39], Appendix C. 3 for details), and so for this class of
noise, Eq. (20) yields the optimal inference procedure.
In the classical α → ∞ limit, we expect qopt to be small;

indeed, to leading order in 1=α, Eq. (19) has the solution
qopt ¼ ½1=α�f1=J½ϵ�g, while Eq. (20) reduces to ρopt ¼ Eϵ,
recovering the optimality of ML and its performance
[Eq. (6)] at infinite measurement density. In the high-
dimensional α → 1 limit, qopt diverges, so ϵqopt approaches
a Gaussian with variance hϵ2i þ qopt, yielding ρoptðxÞ ¼
ðx2=2Þ in Eq. (20). Thus, remarkably, at low measurement
density, simple quadratic minimization, independent of the
noise distribution, becomes an optimal inference pro-
cedure. As the measurement density decreases, ρopt inter-
polates between Eϵ and a quadratic; in essence, ρopt at finite
density α is a smoothed version of the ML choice ρ ¼ Eϵ

where the amount of smoothing increases as the density
decreases (or dimensionality increases). See Fig. 4 for an
example of a family of optimal inference procedures, and
their performance advantage relative to ML, for Laplacian
noise (Eϵ ¼ jϵj).
These results are consistent with and provide a new

statistical-mechanics-based derivation of results in
Refs. [30,31,38], and they illustrate the severity of
overfitting in the face of limited data.

D. Inference with prior information

We next explore how we can combat overfitting by
optimally exploiting prior information about the distribu-
tion of the model parameters or signal s0.

1. Optimal quadratic inference: A high
SNR phase transition

To understand the MFT for regularized inference, it is
useful to start with the oft-used quadratic loss and regu-
larization: ρðxÞ ¼ 1

2
x2 and σðxÞ ¼ 1

2
γx2. In this case, the

proximal maps in Eq. (16) become linear and the RS
equations (17) and (18) are readily solved (Ref. [39],
Sec. III. 1). It is useful to express the results in terms of
the fraction of unexplained variance q̄s ¼ ½qs=hs2i� and the
SNR ¼ hs2i=hϵ2i. For quadratic inference, q̄s depends on
the signal and noise distributions only through the SNR.
We find that in the strong regularization limit, γ → ∞,
q̄s → 1, as the regularization pins the estimate ŝ to the
origin, while in the weak regularization limit γ → 0,
q̄s → f1=½SNRðα − 1Þ�g, recovering the unregularized
case. There is an optimal intermediate value of the
regularization weight, γ ¼ ð1=SNRÞ, leading to the highest
fraction of variance explained. Thus, optimal quadratic
inference obeys the principle that high-quality data, as
measured by high SNR, requires weaker regularization. For
this optimal γ, q̄s arises as the solution to the set of
simultaneous equations

qd ¼
hϵ2i þ qs

α
;

qs
hs2i ¼

1

1þ hs2i
qd

: ð21Þ

We denote the solution to these equations by

q̄s ¼ q̄Quads ðα; SNRÞ. This function is simply the fraction
of unexplained variance of optimal quadratic inference at a
given measurement density and SNR, and an explicit
expression is given by

q̄Quads ¼ 1 − α − ϕþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕþ α − 1Þ2 þ 4ϕ

p
2

; ð22Þ

where ϕ ¼ ð1=SNRÞ (see Ref. [39], Sec. III. 2 for details).
This expression simplifies in several limits. At high

SNR ≫ 1,

q̄Quads ¼

8>><
>>:

1 − α α < 1

1ffiffiffiffiffiffiffi
SNR

p α ¼ 1

1
SNRðα−1Þ α > 1:

ð23Þ

Thus, as a function of measurement density, the high SNR
behavior of quadratic inference exhibits a phase transition
at the critical density αc ¼ 1. Below this density, in the
undersampled regime, performance asymptotes to a finite
error, independent of SNR. Above this density, in the
oversampled regime, inference error decays with SNR as
SNR−1. Surprisingly, at the critical density, the decay with
SNR is slower, and it exhibits a universal decay exponent
of − 1

2
, independent of the signal and noise distributions.

This exponent, and its universality, is verified numerically
in Fig. 5(a). Moreover, as α → 1, q̄Quads remains Oð1Þ at
any finite SNR, unlike the unregularized case. Indeed,
for α ≪ 1, q̄Quads ¼ 1 − α½SNR=ðSNRþ 1Þ�. Thus, quad-
ratic regularization can tame the divergence of unregular-
ized inference at low measurement density.
The phase transition behavior of optimal quadratic

inference can be understood from the perspective of
random matrix theory (RMT). In the special case of
Eq. (1) when ρðxÞ ¼ 1

2
x2 and σðxÞ ¼ 1

2
ð1=SNRÞx2, the

optimal estimate ŝ has the analytic solution

ŝ ¼
�
XTXþ 1

SNR
I

�
−1
XTy; ð24Þ

where X is an N-by-P measurement matrix whose N rows
are the N measurement vectors xμ (see Ref. [39], Sec. III. 5,
for more details). This analytic solution for ŝ enables a
direct average over the noise ϵ and true signal s0 in y to
yield

q̄Quads ¼ 1

P
Tr½Iþ SNRXTX�−1: ð25Þ
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This expression can be reduced to an average over the
eigenvalue distribution of the random measurement corre-
lation matrix XTX, which has the well-known Marcenko-
Pasteur (MP) form [44]

ρMPðλÞ ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλþ − λÞðλ − λ−Þ
p

λ
þ 1α<1ð1 − αÞδðλÞ; ð26Þ

where the nonzero support of the density is restricted to the
range λ ∈ ½λ−; λþ�, with λ� ¼ ð ffiffiffi

α
p � 1Þ2. Also, 1α<1 is 1

whenα < 1 and0otherwise.Thus, atmeasurement densities
α < 1, the MP distribution has an additional delta function
at the origin with weight 1 − α, reflecting the fact that the
P × P measurement correlation matrix XTX is not full
rank when N < P. In terms of ρMPðλÞ, Eq. (25) reduces to

q̄Quads ¼
Z

ΔðλÞρMPðλÞdλ; ð27Þ

where ΔðλÞ ¼ ð1þ λ · SNRÞ−1. Direct calculation reveals
that expression (27) for q̄Quads ðα;SNRÞ, derived via random
matrix theory, is consistent with the expression (22), derived
via our theory of high-dimensional statistical inference.
The expression for q̄Quads in Eq. (27) can now be used to

elucidate the nature of the phase transition in Fig. 5(a). At
high SNR, the function ΔðλÞ remains Oð1Þ in a narrow
regime of widthOð1=SNRÞ near the origin. However, when
α < 1, the left edge λ− of the nonzero part of the MP

density remains separated from the origin. Because of this
eigenvalue density gap, the dominant contribution to the
integral in Eq. (27) arises from the δ function at the origin,
yielding q̄Quads ≈ 1 − α when α < 1 [see Fig. 5(b), top].
When α > 1, the δ function is absent, and the dominant
contribution arises from the nonzero part of the MP density.
This density has support over a range that is OðαÞ yielding
q̄Quads ¼ Oð1=SNRαÞ [see Fig. 5(b), bottom]. Only when
α ¼ 1 does the gap in the MP density vanish. In this case,
near the origin, the density diverges as λ−1=2 [see Fig. 5(b),
middle]. At high SNR, because ΔðλÞ induces an effective
cutoff at 1=SNR, the integral in Eq. (27) can be approxi-
mated as

R
SNR−1

0 λ−1=2dλ ¼ OðSNR−1=2Þ.
Thus, the origin of the phase transition in Eq. (23) at the

critical value α ¼ 1 arises from the vanishing of a gap in the
MP distribution. Moreover, the universal decay exponent at
the critical value of α ¼ 1 is related to the power-law
behavior of the MP density near the origin at α ¼ 1.
Remarkably, this highly nontrivial behavior is captured
simply through the outcome of our replica analysis for
optimal quadratic inference, encapsulated in the pair of
equations in Eq. (21).

2. The worst signal and noise distributions are Gaussian

We note that this optimal quadratic inference procedure
is optimal amongst all possible inference procedures, if and
only if the signal and noise are Gaussian since, in that case,

(a) Optimal quadratic error vs SNR (b) RMT interpretation

FIG. 5. A high SNR phase transition in optimal quadratic inference. (a) At large SNR, the MSE of optimal quadratic inference exhibits
three distinct scaling regimes for α < 1, α ¼ 1, and α > 1 [see Eq. (23)], independent of the signal and noise distributions. For example,
when α ¼ 0.9 < 1, q̄Quads approaches a constant, whereas when α ¼ 1 or α ¼ 1.1 > 1, q̄Quads approaches 0 as SNR−1=2 or SNR−1,
respectively. The theoretical curves (blue) match numerical experiments (error bars) for a finite-sized problems (N and P vary with
N ¼ αP and

ffiffiffiffiffiffiffi
NP

p ¼ 300), where the error bars reflect the standard deviation across 80 trials using both signal and noise either Gaussian
(black) or Laplacian (red) distributed. (b) The behavior of the MP density (black) in Eq. (26). For α ≠ 1, the nonzero continuous part of
the density exhibits a gap at the origin, whereas for α ¼ 1, the gap vanishes and the distribution diverges at the origin. For α < 1, there is
an additional δ function at the origin (green bar) with weight 1 − α (red dot). The blue curve shows the function ΔðλÞ ¼ ð1þ λ · SNRÞ−1
appearing in the integral for q̄Quads in Eq. (27), for the value SNR ¼ 100.
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it is equivalent to the Bayesian MMSE inference procedure.
Moreover, we note that Gaussian signal and noise are, in
some sense, the worst type of signal and noise distributions,
in the space of all inference problems with a given SNR. To
see this, consider a non-Gaussian signal and noise with a
given SNR. The performance of optimal quadratic infer-
ence for this non-Gaussian signal and noise only depends
on the pair of distributions through their SNR, and it is
equivalent to the performance of optimal quadratic infer-
ence for Gaussian signal and noise at the same SNR.
However, in the non-Gaussian case, a nonquadratic infer-
ence algorithm could potentially outperform the quadratic
one but not in the Gaussian case since quadratic inference is
already optimal in that case. Thus, in the space of inference
problems of a given SNR, the worst-case performance of
optimal inference occurs when both the signal and noise are
Gaussian.

3. Optimal inference with non-Gaussian signal and noise

What is the optimal (nonquadratic) inference procedure
in the face of non-Gaussian signal and noise? We address
this by performing a functional minimization of qs over
both ρ and σ, subject to constraints (17) and (18), which
yields (Ref. [39], Sec. V. 2),

ρoptðxÞ ¼ −Mqopts
½−Eϵ

qopts

�ðxÞ; ð28Þ

σoptðxÞ ¼ −Mqoptd
½−Es

qopt
d

�ðxÞ; ð29Þ

where qopts and qoptd satisfy

qoptd ¼ 1

αJ½ϵqopts
� ; qopts ¼ qMMSE

s ðqoptd Þ; ð30Þ

and the function qMMSE
s is defined in Eq. (9). Again, the

validity of Eqs. (28) and (29) under the RS assumption
requires convexity of ρopt and σopt. Convexity of the signal
and noise energies, Es and Eϵ, is sufficient to guarantee
convexity of ρopt and σopt (see Ref. [39], Appendix C. 3, for
details), and so for this class of signal and noise, with log
concave distributions, Eqs. (28) and (29) yield an optimal
inference procedure. However, by judicious applications of
the Cauchy-Schwarz inequality, we prove (Ref. [39],
Sec. IV. 2) that even for nonconvex Es and Eϵ, the inference
error qs for any convex procedure ðρ; σÞ must exceed qopts

in Eq. (30). This result yields a fundamental limit on the
performance of any convex inference procedure of the form
(1) in high dimensions.
Intriguingly, by comparing the optimal achievable

high-dimensional M-estimation performance qopts in
Eq. (30) to the asymptotic performance of low-dimensional
scalar Bayesian inference in Eqs. (8) and (9), we find a
striking parallel. In particular, qopts corresponds to the low-
dimensional asymptotic MMSE in a scalar estimation

problem where the effective number of measurements
N ¼ α and the noise ϵ is further corrupted by additional

Gaussian noise of variance qopts (ϵ → ϵþ
ffiffiffiffiffiffiffiffi
qopts

p
z). The

correction to the low-dimensional scalar asymptotics
[Eq. (9)], valid only at large N, in the high-dimensional
regime at finite measurement density α, is obtained by self-
consistently solving for qopts in Eq. (30). In essence, at finite
measurement density, there is irreducible error in estimat-
ing the signal, qopts . This error contributes to the effective
Gaussian noise qoptd in the scalar MFT estimation problem
for the signal, shown in Fig. 3(b), where the proximal map
becomes the Bayesian posterior mean map in the optimal
case. On the other hand, this irreducible, extra Gaussian
noise is absent in low dimensions [compare lhs of Eq. (30)
to Eq. (8)]. This irreducible error qopts can be found by self-
consistently solving for it in the rhs of Eq. (30). Finally, as a
simple point, we note that direct calculation reveals that
Eq. (30) reduces to Eq. (21) when the signal and noise are
both Gaussian distributed, as expected, since optimal
quadratic inference is the best procedure for Gaussian
signal and noise.
Furthermore, using the fact that the equalities in Eq. (30)

become inequalities for nonoptimal procedures (see
Ref. [39], Sec. IV.2), we can derive a high-dimensional
analogue of Eq. (10) and prove a lower bound on the
inference error qs for any convex ðρ; σÞ:

qs ≥
1

αJ½ϵqs � þ J½s0� : ð31Þ

This result reflects a fundamental generalization of the
high-dimensional CR bound (19), which includes informa-
tion about the signal distribution Ps that can be optimally
exploited by a regularizer σ. Since J½ϵqs � < J½ϵ�, by the
data-processing inequality for Fisher information, this
high-dimensional lower bound is larger than the low-
dimensional one [Eq. (10)] under the replacement
α → N. Thus, as in the unregularized case [Eq. (19)],
the price paid for even optimal high-dimensional
regularized inference at finite measurement density,
relative to scalar Bayesian inference at asymptotically
infinite density, is increased error due to the presence of
additional Gaussian noise with dimensionality-dependent
variance qopts .

4. Optimal high-dimensional inference smoothly
interpolates between MAP and quadratic inference

The optimal inference procedure in Eqs. (28) and (29) is
a smoothed version of MAP inference [see Fig. 4(c) for an
example of smoothing], where the MAP choices ρ ¼ Eϵ

and σ ¼ Es are smoothed over scales qopts and qoptd ,
respectively, to obtain ρopt and σopt. As α → ∞, both
qopts and qoptd approach 0 at the same rate, implying ρopt →
Eϵ and σopt → Es. Thus, at high measurement density,
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MAP inference is the optimal M-estimator. This conclusion
is intuitively reasonable because, at high measurement
densities, the mode of the posterior distribution over the
signal, returned by the MAP estimate, is typically close to
the mean of the posterior distribution, which is the optimal
MMSE estimate amongst all inference procedures.
Alternatively, as α → 0, qopts → hs2i from below, while

qoptd diverges as 1=α. The divergence of qoptd implies that
σopt in Eq. (29) approaches a quadratic. Thus, remarkably,
at low measurement density, simple quadratic regulariza-
tion, independent of the signal distribution, becomes an
optimal inference procedure. Furthermore, in the low-
density-plus-high-SNR limit, where hϵ2i ≪ hs2i, ρopt also
approaches a quadratic. Thus, overall, optimal high-
dimensional inference at high SNR interpolates between
MAP and quadratic inference as the measurement density
decreases. In Fig. 6, we demonstrate, for Laplacian signal
and noise, that optimal inference outperforms both MAP
and quadratic inference at all α, approaching the former at
large α and the latter at small α.

5. A relation between optimal high-dimensional inference
and low-dimensional Bayesian inference

There is an interesting connection between optimal high-
dimensional inference and low-dimensional scalar Bayesian
inference. Indeed, when ρ and σ take their optimal forms
in Eqs. (28) and (29), then the proximal descent steps in
Eq. (16), which are used to estimate noise and signal in
the pair of coupled estimation problems comprising the
MFT [shown schematically in Figs. 3(a) and 3(b)] become
optimal Bayesian estimators. In particular, for optimal ρ
and σ, Eq. (16) becomes (see Ref. [39], Sec. V. 2)

ϵ̂ðϵqsÞ ¼ hϵjϵqsi; ŝðs0qdÞ ¼ hsjs0qdi: ð32Þ

In essence, computation of the proximal map becomes
computation of the posterior mean, which is the optimal,
MMSE method for estimating signal and noise in the MFT
scalar estimation problems. This gives an intuitive explan-
ation for the formof ρopt and σopt in Eqs. (28) and (29): These
are exactly the forms of loss and regularization required for
the proximal descent estimates inEq. (16) to becomeoptimal
posterior mean estimates in Eq. (32).

6. A relation between signal-noise separation
and predictive power

Furthermore, there is an interesting connection between
our ability to optimally estimate noise and signal, and the
training and test error. In particular, just as our error qopts in
estimating the signal is given by Eqs. (30) and (9), our error
in estimating the noise is given by qoptϵ ¼ ⟪ðϵ̂ − ϵÞ2⟫, with
ϵ̂ given in Eq. (32), yielding

qoptϵ ¼ qMMSE
ϵ ðqopts Þ ¼ ⟪ðϵ − hϵjϵqopts

iÞ2⟫: ð33Þ

In terms of these quantities, the generalization and training
errors of the optimal M-estimator have very simple forms
(see Ref. [39], Sec. V. 2):

Etrain ¼ hϵ2i − qoptϵ ; Egen ¼ hϵ2i þ qopts : ð34Þ

This result leads to an intuitively appealing result: Inability
to estimate the signal leads directly to increased generali-
zation error, while inability to estimate the noise leads to
decreased training error.
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FIG. 6. Regularized inference for Laplacian noise and signal Eϵ ¼ jϵj, Es ¼ js0j. (a) The normalized MSE, or fraction of unexplained
variance q̄s. (b) The training error. Each plot shows the respective performance of three different inference procedures: our optimal
inference (28), (29) (black), MAP inference (red), and optimal quadratic inference (blue). The theoretical predictions (solid curves)
match numerical simulations (error bars), which reflects the standard deviation calculated over 20 trials using a convex optimization
solver for randomly generated, finite-sized data (withN and P varying whileN ¼ αP and

ffiffiffiffiffiffiffi
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p ¼ 250). Note that optimal inference can
significantly outperform common but suboptimal methods. For example, to achieve a fraction of unexplained variance of 0.4, optimal
inference requires a measurement density of α ≈ 1.7, while quadratic and MAP inference require α ≈ 2.1 and α ≈ 2.2, respectively. This
reflects a reduction of approximately 20% in the amount of required data.
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The reason for this latter effect is that if the optimal
inference procedure cannot accurately separate signal from
noise to correctly estimate the noise, then it mistakenly
identifies noise in the training data as signal, and this noise
is incorporated into the parameter estimate ŝ. Thus, ŝ
acquires correlations with the particular realization of noise
in the training set so as to reduce training error. However,
this reduced training error comes at the expense of
increased generalization error, again due to mistaking noise
for signal. The predicted decrease of training error and
increase of generalization error for the optimal inference
procedure as measurement density decreases is demon-
strated in Fig. 6. Interestingly, this figure also demonstrates
that training error need not decrease at low measurement
density for suboptimal algorithms, like MAP.
Thus, in summary, the ability to correctly separate signal

from noise to extract a model of the measurements y in
Eq. (1) is intimately related to the predictive power of the
extracted model ŝ in Eq. (1). Inability to estimate noise
reduces training error, while inability to estimate signal
increases generalization error. The combination is a hall-
mark of overfitting the learned model parameters to the
training data, thereby leading to a loss of predictive power
on new, held-out data.

E. No performance gap between optimal M-estimation
and Bayesian MMSE inference

The improved performance of optimal inference via M-
estimation, compared to either MAP or quadratic inference,
demonstrated in Fig. 6(a) raises an important question:
How does the performance of optimal M-estimation com-
pare to the best performance achievable by any algorithm,
namely, that obtained by Bayesian MMSE inference,
described in Eq. (3)? To answer this question, we study
the statistical mechanics of the energy function (11) at a
finite, unit temperature β ¼ 1, in contrast to the zero-
temperature β → ∞ limit that governs the performance of
M-estimation. With β ¼ 1, we further choose ρ ¼ − logPϵ

and σ ¼ − logPs in Eq. (11) so that the corresponding
Gibbs distribution is simply the posterior distribution over
the signal:

PGðsÞ ¼
1

Z
e−βEðsÞ ¼ Pðsjfyμ;xμgÞ: ð35Þ

Previous works have employed this statistical-mechanics-
based method for studying Bayes optimal inference in the
settings of compressed sensing [16,19] and matrix factori-
zation [20].
We work out the replica theory for this finite-temperature

statistical-mechanics problem in Ref. [39], Sec. V. 7.
We work in the replica symmetric approximation at unit
temperature. A sufficient, though not necessary,
assumption guaranteeing the validity of the RS approxi-
mation is that ρ and σ are convex, or equivalently, the signal

and noise distributions are log-concave. Indeed, as dis-
cussed above, this condition on signal and noise is
sufficient to guarantee the validity of our optimal
M-estimators. See, however, Refs. [19,20] for more general
settings in which the RS assumption is valid for MMSE
inference. In the setting of log-concave signal and noise,
we discover an equivalence between MMSE inference and
optimal M-estimation performance: Finite-temperature rep-
lica theory yields predictions for the corresponding replica
symmetric order parameters identical to those provided
by the zero-temperature replica theory for optimal
M-estimation.
In particular, we find that the corresponding order

parameters qBayess and qBayesd in the finite-temperature
replica theory satisfy precisely the same equations
[Eq. (30)] that qopts and qoptd satisfy in the zero-temperature
theory for optimal M-estimation. This result implies an
equivalence in performance between optimal M-estimation
and Bayesian MMSE inference: qopts ¼ qBayess . This equiv-
alence, in turn, implies that no algorithm whatsoever can
outperform optimal convex M-estimation in the restricted
scenario of log-concave signal and noise.
We note, however, that this equivalence between Bayes-

optimal inference and optimal M-estimation is unlikely to
hold in more general scenarios because a variety of non-
log-concave signal distributions lead to hard MMSE
inference problems that may not be solvable in polynomial
time (see, e.g., Ref. [19]). Therefore, it is unlikely that a
convex M-estimator that is solvable in polynomial time
could match MMSE performance for such general distri-
butions of signal and noise. However, even for the restricted
setting of log-concave signal and noise, it is striking
that two very different algorithms, namely, optimal
M-estimation, solved via a convex optimization problem,
and Bayesian inference, solved via a high-dimensional
integral, yield identical performance.
Given the striking nature of this replica prediction, we

test it numerically. It is computationally intractable to
perform Bayes optimal MMSE inference by directly
computing the high-dimensional integral in Eq. (3).
However, in the asymptotic setting of high-dimensional,
dense Gaussian measurements, with log-concave signal
and noise distributions that we consider here, it is thought
that an approximate message passing (AMP) procedure
yields the same estimate for ŝMMSE obtained via the integral
in Eq. (3) [37]. For the case of Laplacian signal and noise,
we implemented this AMP procedure to numerically
compute the optimal Bayes estimate ŝMMSE and compared
its performance to the theoretical performance curve
predicted by our zero-temperature replica theory for opti-
mal M-estimation in Fig. 7, finding excellent agreement.
Thus, this simulation provides numerical evidence for
the replica prediction that the performance of optimal
M-estimation is equivalent to Bayesian MMSE estimation
in high dimensions.
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F. Inference without noise

Motivated by compressed sensing, there has been a great
deal of interest in understanding when and how we can
perfectly infer the signal, so that qs ¼ 0, in the under-
sampled measurement regime α < 1. This can only be done
in the absence of noise (ϵ ¼ 0), but what properties must
the signal distribution satisfy to guarantee such remarkable
performance? In this special case of no noise, ϵqs simply
becomes a Gaussian variable with variance qs, with Fisher
information J½ϵqs � ¼ ð1=qsÞ. Using this, and a relation
between MMSE and Fisher information (Ref. [39],
Appendix B. 4), the optimality formulas in Eq. (30) become

qoptd ¼ qopts

α
qopts ¼ qoptd

�
1 − qoptd J

h
s0
qoptd

i�
: ð36Þ

Partially eliminating qoptd yields

qopts ¼ αð1 − αÞ
J½s0

qoptd
� ≥

1 − α

J½s0� : ð37Þ

Here, the inequality arises through an application of the
convolutional Fisher inequality

1

J½s0
qoptd

� ≥
1

J½s0� þ qoptd ; ð38Þ

and then by fully eliminating qoptd .
Given that for any signal and noise distribution, we have

proven that no convex inference procedure can achieve an
error smaller than qopts , Eq. (37) yields a general, sufficient,
information theoretic condition for perfect recovery of the
signal in the noiseless undersampled regime: The Fisher
information of the signal distribution must diverge. This
condition holds, for example, in sparse signal distributions
that place finite probability mass at the origin. More
generally, Eq. (37) yields a simple lower bound on noise-
less, undersampled inference in terms of the measurement
density and signal Fisher information. Moreover, in sit-
uations where the signal energy is convex, Eq. (29) remains
the optimal inference procedure, while ρopt is replaced with
a hard constraint enforcing optimization only over candi-
date signals s satisfying the noiseless measurement con-
straints yμ ¼ xμ · ŝ.

III. DISCUSSION

In summary, our theoretical analyses, verified by sim-
ulations, yield a fundamental extension of time-honored
results in low-dimensional classical statistics to the modern
regime of high-dimensional inference, relevant in the
current age of big data. In particular, we characterize the
performance of any possible convex inference procedure
for arbitrary signal and noise distributions [Eqs. (17) and
(18)], we find fundamental information theoretic lower
bounds on the error achievable by any convex procedure
for arbitrary signal and noise [Eq. (31)], and we find the
inference procedure that optimally exploits information
about the signal and noise distributions, when their energies
are convex [Eqs. (28) and (29)]. Moreover, we find a simple
information theoretic condition for successful compressed
sensing [Eq. (37)], or perfect inference without full meas-
urement. These results generalize classical statistical
results, based on Fisher information and the Cramer-Rao
bound, that were discovered over 60 years ago.
Intriguingly, there may be additional connections to
classical statistical theorems that deserve further explora-
tion in future work. One such theorem is the Rao-Blackwell
theorem [45], proved in the 1950s, which demonstrates that
any optimal estimator that achieves MMSE is a function of
only the sufficient statistics of the noise distribution.
Exploring relations between our work and extensions of
this classical theorem that incorporate prior knowledge is
an interesting future direction.
Moreover, our analysis uncovers several interesting

surprises about the nature of optimal high-dimensional
inference. In particular, we find that the optimal high-
dimensional inference procedure is a smoothed version of
ML in the unregularized case and a smoothed version of
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MMSE - AMP sim.

Bayes optimal comparison

FIG. 7. A comparison between optimal M-estimation and
Bayesian MMSE inference for the setting of Laplacian noise
and signal (Eϵ ¼ jϵj, Es ¼ js0j, as also used in Fig. 6). We
compare the normalized MSE, or fraction of unexplained
variance q̄s predicted by our theory of optimal regularized
M-estimation (solid line), with simulations (error bars) of
Bayes-optimal approximate message passing [37]. For our
simulations, we randomly generated finite-size data (with N
and P varying while N ¼ αP and

ffiffiffiffiffiffiffi
NP

p ¼ 250), and the error
bars reflect standard deviations of message-passing performance
calculated over 100 trials. We find an excellent match between
optimal M-estimation theory and Bayesian AMP simulations.
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MAP in the regularized case, where the amount of
smoothing increases as the measurement density decreases
or, equivalently, as the dimensionality increases. At low
measurement densities and high dimensions, the optimal
smoothed loss and regularization functions become simple
quadratics [in the regularized case, this is provably true
strictly at high SNR, but empirically, replacing the optimal
loss with quadratic loss incurs very little performance
decrement even at moderate SNR—Fig. 6(a)]. This obser-
vation reveals a fortuitous interplay between problem
difficulty and algorithmic simplicity: At low measurement
density, precisely when inference becomes statistically
difficult, the optimal algorithm becomes computationally
simple. Finally, we uncover phase transitions in the
behavior of this simple quadratic inference algorithm, with
a universal critical exponent in the decay of inference error
with SNR at a critical measurement density [Eq. (23)].
Also, our analyses reveal several conceptual insights into

the nature of overfitting and generalization in optimal high-
dimensional inference through novel connections to scalar
Bayesian inference in one dimension. This connection
arises because of the nature of the mean-field theory of
general high-dimensional inference, which can be
expressed in terms of two coupled scalar estimation
problems for the noise and signal, respectively (Fig. 3).
In the optimal case, these scalar inference procedures based
on proximal descent steps [Eq. (16)] become Bayesian
inference procedures [Eq. (32)]. In particular, any inference
algorithm implicitly decomposes the given measurements
yμ ¼ xμ · s0 þ ϵμ into a superposition of estimated signal
and estimated noise: yμ ¼ xμ · ŝþ ϵ̂μ. The scalar Bayesian
inference problems yield a MFT prediction for the error in
estimating the signal (average per component L2 discrep-
ancy between s and ŝ) and noise (average per component
L2 discrepancy between ϵμ and ϵ̂μ). Errors in inference arise
because the noise ϵμ seeps into the estimated signal ŝ. This
inability to accurately separate signal and noise by even the
optimal inference algorithm leads to divergent effects on
the training and generalization error. The former decreases
as the estimated signal ŝ acquires spurious correlations with
the true noise ϵμ to explain the measurement outcomes yμ.
The latter increases because the noise in a held-out,
previously unseen measurement outcome cannot possibly
be correlated with the signal ŝ estimated from previously
seen training data. Indeed, for the optimal inference
algorithm, we find exceedingly simple quantitative rela-
tionships between inference errors of noise and signal,
and high-dimensional training and generalization error
[Eq. (34)]. This yields both quantitative and conceptual
insight into the nature of overfitting in high dimensions,
whereby training error can be far less than generaliza-
tion error.
Finally, we also demonstrate a prediction of replica

theory that no inference algorithm whatsoever can outper-
form our optimal M-estimator. We do so by deriving an

equivalence between the replica prediction for the perfor-
mance of the optimal M-estimator, derived using zero-
temperature statistical mechanics, and the replica prediction
for the performance of Bayesian MMSE inference, derived
using unit-temperature statistical mechanics. This equiv-
alence holds specifically when the signal and noise energies
are convex or, equivalently, when their distributions are
log-concave, and this excludes many interesting examples
with nonconvex signal and noise energies in which MMSE
inference is thought to be hard (not achievable in poly-
nomial time). Even for this restricted class of log-concave
signal and noise, this equivalence seems surprising since
optimal M-estimation corresponds to solving an optimiza-
tion problem, while Bayesian MMSE inference corre-
sponds to solving an integration problem. Thus, at its
heart, replica theory predicts a remarkable equivalence
between optimization and integration. We provided
numerical evidence for this prediction in Fig. 7. An
understanding of this equivalence using rigorous, non-
replica techniques constitutes an important direction for
future work. We believe that proving the equivalence
between these algorithms via approximate message-passing
techniques may be a fruitful direction of approach.
Overall, our results illustrate the power of statistical-

mechanics-based methods to generalize classical statistics
to the modern regime of high-dimensional data analysis.
We hope that these results will provide both firm theoretical
guidance and practical algorithmic advantages in terms
of both statistical and computational efficiency, to many
fields spanning the ranges of science, engineering, and the
humanities, as they all attempt to navigate the brave new
world of big data.
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