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A universal quantum computer requires a full set of basic quantum gates. With Majorana bound states
one can form all necessary quantum gates in a topologically protected way, bar one. In this paper, we
present a scheme that achieves the missing, so-called, π=8magic phase gate without the need of fine-tuning
for distinct physical realizations. The scheme is based on the manipulation of geometric phases described
by a universal protocol and converges exponentially with the number of steps in the geometric path.
Furthermore, our magic gate proposal relies on the most basic hardware previously suggested for
topologically protected gates, and can be extended to an any-phase gate, where π=8 is substituted by any α.
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I. INTRODUCTION AND MAIN RESULTS

In two landmark papers, Kitaev suggested that non-
Abelian anyons could be used to store and process quantum
information in a topologically protected way [1,2].
Furthermore, he outlined how one would try to realize
the simplest of these non-Abelian states, Majorana zero-
energy bound states (Majoranas for short), in a solid-state
system. Since then, much activity has been dedicated to
realizing Majoranas in quantum Hall states as well as
quantum wells in proximity to superconductors, both
theoretically [3–9] and experimentally [10–17], with sig-
nificant recent success. Moreover, the experimental efforts
recently shifted from a mere detection of Majorana sig-
natures to concrete steps towards the realization of plat-
forms that reveal their non-Abelian statistics and allow for
quantum information processing via braiding [18,19].
Nevertheless, a stubborn roadblock still prevents us from

proposing a topologically protected Majorana-based plat-
form that is capable of universal quantum computation.
Kitaev and Bravyi demonstrated that all gates could be
realized in a platform that could carry out the Clifford gates
[Hadamard, π=4 and controlled-not (CNOT) gates], and,
crucially, possesses a magic state e−iπ=8j0i þ eiπ=8j1i
[20,21]. (Here j0i and j1i present the two quantum states
of the qubit.) A four-Majorana network can realize a NOT

operation (σx) by braiding, and a Hadamard and π=4 gate
through exchange. CNOT can also be implemented

employing projective measurements [22]. Despite much
inspirational effort [20,23–26], there is still no protected or
precise practical way to produce Majorana magic states, or
the equivalent π=8 gate.
The quest for a magic gate is hampered by a pervasive

challenge of quantum computing. Decoherence, and even
more so, the lack of precise control of quantum information
processing systems, necessitates the development of elabo-
rate error-correction strategies and quantum state distilla-
tion techniques. Topological quantum computing was
developed as the ultimate fault-tolerant scheme, where
environment noise is unable to decohere the quantum state
of a qubit, since it is encoded nonlocally and spread over
the entire platform. Also, gates that can be realized using
topological manipulations such as braiding or exchange are
completely insensitive to the imprecision in the control of
the system’s parameters. When it comes to Majorana
platforms, however, the absence of a topologically pro-
tected scheme for a magic gate requires us to revert to
nontopological procedures [18,27–33] and, therefore, to
rely on conventional error-correction schemes [20], which
come at the cost of a significant overhead [34].
Indeed, procedures proposed so far for the realization of

the Majorana magic gate require precise control of the
coupling constants in the system. For instance, a relative
phase between the two states of a two-Majorana parity
qubit could be produced by bringing the two Majoranas
close to each other; the tunneling between them produces a
relative phase winding, as in, e.g., Refs. [27,28,30]. The
integrated dynamical phase winding is dictated by the
strength of tunneling and the time of proximity, which
need to be precisely controlled to achieve the coveted π=4
difference. A particularly clever way to produce a Majorana
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phase gate is through interference. A Majorana state bound
to a quantum-mechanical vortex could be made to split
between a path that carries out an exchange gate and one
that does not [26]. If the splitting is exactly equal, a π=8
gate will result. While experiments are progressing at a
precipitous rate, such a level of control is unlikely to be
reached soon. Furthermore, any improvements in the fault
tolerance of Majorana magic-gate realizations with respect
to systematic machine errors will dramatically reduce the
amount of hardware necessary for state distillation.
In this work, we present a robust scheme for obtaining a

Majorana π=8 gate, which is insensitive to such machine
control imprecision. The protection against such errors
arises from universal geometric properties of the Majorana
Hilbert space, along with the topological properties of
the system. Our starting point is a four-Majorana system
arranged in a Y junction. The Y junction is the archetype
model for a general Majorana exchange [35] and has been
the simplest proposed platform for carrying out braiding.
Moreover, as explained in Refs. [18,36], it could be realized
with the most accessible Majorana supporting building
blocks so far, which are spin-orbit coupled nanowires in
proximity with superconductors. Our multistep scheme
guarantees, under very broad assumptions, that the gate
converges to the desired π=8 gate with an error δα such
that ln δα ¼ −OðNÞ, where N is the number of steps. The
crucial assumption is that, in the translation from ideal to
actual control of the system, the spectral weight of the error
function, i.e., uncertainty in the actual parameters of the
system, is small at frequencies above the control clock rate.
The magic-gate scheme we outline can be realized in any

system where the coupling between Majorana states can be
controlled, even if imprecisely. Notwithstanding, we
require the ability to decouple the Majorana states from
each other with high precision, which is also required for
topologically protected Clifford gates, and therefore should
be the case for any topological quantum information
processing platform. The main setup, shown in Fig. 1, is
described by three Majorana coupling parameters, Δx, Δy,
and Δz. Exchange of Majoranas’ positions is performed by
changing the coupling between them in a specific time
sequence using gates or fluxes in a system of finite size
superconductors [36,37]. Our scheme does not require any
modification of this hardware; rather, it shows that certain
time sequences of the coupling constants can result in
exponentially high accuracy even for calculations that do
not enjoy topological protection.
The main hindrance to a precise π=8 gate is the

uncertainty in the values of Δa, a ¼ x, y, z. It is this
obstacle that our scheme completely eliminates. We assume
the following:
(1) The system controls are temporally constant for the

duration of the gate.
(2) The true physical parameters realized in the system,

Δa, are given by unknown but deterministic and

smooth (C∞) functions of the controls δa. Further-
more, Δa ¼ δa þ faðfδx; δy; δzgÞ (see Fig. 1).

Both assumptions can be relaxed. Achieving the same
precision would, however, impose more stringent con-
straints on the rate with which the gate could be performed.
Our realization of the π=8 gate requires methods that are

reminiscent of universal dynamical decoupling [38] and
NMR echoes. (However, here we deal with geometric
phases rather then dynamical ones.) To eliminate the error

due to the unknown device functions fað~δÞ, we describe a
trajectory in the ~δ space with 2N turning points. These will
eliminate the first N − 1 coefficients in a Chebyshev-
Fourier expansion of the errors. Since under rather broad
assumptions (see Appendix B) Chebyshev expansion
coefficients decay exponentially, the error due to the
machine uncertainty can be made to vanish exponentially
in the number of steps N. Note, however, that the under-
lying topological protection of Majoranas provides boun-
dary conditions that are crucial to unlock this exponential
behavior (see Sec. III and Appendix D).
A second grave problem arises from unavoidable

dynamical phases due to couplings not included in the
ideal, three-couplings, Y-junction setup. These dynamical
phases, however, can be eliminated by repeating the gate
protocol after applying a NOT gate to the Majoranas. Just as
in a π spin echo in NMR [39], this would cancel the error
due to the extra coupling, as long as the system control
functions are constant in time. (Additional steps to elimi-
nate error when this is not the case can be applied.)

FIG. 1. The Y-junction system. Lines and labels indicate the
model Hamiltonian of four coupled Majoranas γi, while the
background shows a possible realization using wires (gray)
proximity coupled to s-wave superconductors (green). We
assume that couplings at the arms are determined through
external imprecise controls. The true couplings are
~Δ ¼ ~δþ ~fð~δÞ. It is indeed beneficial to think of the coupling
to the x, y, and z arms as geometric objects, namely, vectors in a
three-dimensional space. In addition to the couplings along the
arms, any physical system will also exhibit couplings between the
tips (dashed blue lines). These unavoidable couplings introduce a
parity-dependent dynamical phase, and, along with the control
uncertainty, are leading sources of error.
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In what follows, we first describe the ideal Y-junction
system and how to use it to get a nonprotected π=8 gate
(Sec. II). Next, we describe the Chebyshev universal
geometric decoupling trajectory (Sec. III). We then present
the echo method to eliminate the dynamical phase error
(Sec. IV). Another possible source of error is the retardation
effects in the system, which we discuss in Sec. V.
Before concluding, we demonstrate our π=8 scheme
through numerical simulations for particular generic error
functions and discuss the necessary scales of the coupling
and motion rates (Sec. VI). The simulations are done by
solving the full time-dependent Schrödinger equation,
without any assumptions on the adiabaticity of the process.

II. π=8 GATE IN AN IDEALIZED SYSTEM

The platform at the root of our scheme is the Y-junction
system (see Fig. 1). It contains four Majoranas. Three of
them, γx, γy, and γz, are located at the tips of the Y junction
and interact only with the fourthMajorana γ0, which is at the
center of the junction. The Hamiltonian for this system is

H ¼ 2iγ0ð~Δ · ~γÞ; ð1Þ

where we conveniently define the Majorana vector ~γ ¼
ðγx; γy; γzÞ and the coupling vector ~Δ ¼ ðΔx;Δy;ΔzÞ.
The topological nature of the Majoranas enters through

the exponential dependency of the Y-junction couplings on
physical parameters. For example, it depends exponentially
on the distance between the Majoranas, and in the flux-
controlled qubit it depends exponentially on the flux
applied to SQUIDs placed near the Y’s arms [36].
Therefore, it is easy to essentially turn off one of the
couplings. The Majorana state at the tip of this coupling is
then an exact zero mode of the Hamiltonian (i.e., it
commutes with the Hamiltonian). This robustness (i.e.,
Δa ¼ 0 if δa ¼ 0) lies at the heart of the protected Majorana
braiding process and is also crucial for the π=8 gate we
discuss in this paper.

A. Exchange process

The presence of this zero-energy mode allows for
exponentially (topologically) protected exchange opera-
tions. For simplicity, let us assume that j ~Δj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

x þ Δ2
y þ Δ2

z

q
≡ Δ remains constant throughout the

process. Consider the following trajectory: we start with
Δz ≈ Δ ≫ Δx;Δy, then move to Δy ≈ Δ ≫ Δz;Δx in a
continuous fashion while keeping Δx ≪ Δ. This is fol-
lowed by similar moves to Δx ≈ Δ ≫ Δy;Δz (while keep-
ing Δz ≪ Δ) and finally returning the system to its original
state Δz ≫ Δx;Δy (while keeping Δy ≪ Δ). This sequence
is easily visualized as the arm of a clock indicating which
coupling is strong; the sequence describes the armmaking a
full clockwise rotation. By doing so, we carry out an

exchange of the Majoranas γx and γy (see the upper panel of
Fig. 2) [40].
How do we mathematically see that the full turn of the

“clock arm” corresponds to performing an exchange?
We can elegantly show this by taking advantage of the
geometric analogy of ~Δ to a vector in a three-dimensional

space described by spherical coordinates [41]. While ~Δ is
analogous to the radius vector, we can additionally make
use of the polar angle (θ) and the azimuthal angle (ϕ) of
the spherical coordinates and their unit vectors. Noticing

that ~Δ ¼ j ~Δjðsin θ cosϕ; sin θ sinϕ; cos θÞ, and denoting êθ
and êϕ as the unit vectors in the θ and ϕ directions, we now
define

γθ ¼ ~γ · êθ; γϕ ¼ ~γ · êϕ: ð2Þ
Clearly these are zero modes:

½H; γθ� ¼ 2iγ0 ~Δ · êθ ¼ 0;

½H; γϕ� ¼ 2iγ0 ~Δ · êϕ ¼ 0: ð3Þ
The exchange process consists of the unit vector ~Δ=j ~Δj

marking an octant on the unit sphere. The octant is bounded

FIG. 2. A visualization of the exchange process as the turning
arm of a clock. First, Δz ≫ Δx;Δy, to indicate that the line
presenting the coupling between γ0 and γz is bold. Then,
Δy ≫ Δx;Δz, then Δx ≫ Δy;Δz, and finally,Δz ≫ Δx;Δy again,
so that the arm of the clock completes a full turn. This process can
also be visualized as a line covering an octant on a unit sphere.
The Berry phase difference of the two parity sectors accumulated
in this process is equal to the covered solid angle, −π=2. We show
in the text (see Appendix A) that this gives rise to a −π=4 phase
gate, meaning a phase∓π=4 for each fusion channel. (The minus
sign appears due to the clockwise orientation of the trajectory and
the convention we chose.) Since we can make one of the coupling
constants exponentially smaller than the other two, the trajectory
in the parameter space is glued to the edges of the octant making
the accumulated Berry phase difference equal to −π=2 with
exponential accuracy.
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between the ϕ ¼ 0, θ ¼ π=2, and ϕ ¼ π=2 planes. See the
lower panel of Fig. 2.
These two zero modes combine into a single Fermi

annihilation operator:

a ¼ 1

2
ðγθ þ iγϕÞ; ð4Þ

and we are interested in the difference of the accumulated
Berry phase 2α between the process where the system is in
its ground state j0i, defined by aj0i ¼ 0, and its partner,
which is a†j0i ¼ j1i. As we show in Appendix A, the
phase difference accumulated during the process of
exchange, or any process (described by a contour c) for
that matter, is

2
dα
dt

¼ i

�
a;
da†

dt

�
¼ − cos θ _ϕ; ð5Þ

2α ¼ −
I
c
cos θdϕ ¼

ZZ
sin θdθdϕ ¼ Ωc: ð6Þ

Just like the Berry phase of a spin system, the phase-gate
angle α is equal to half of the solid angle Ωc enclosed by a
contour c. Indeed, for the exchange process of Fig. 2, we
obtain

αexchange ¼ −
π

4
: ð7Þ

(The minus sign appears because the contour is counter-
clockwise.) This corresponds to the operator Uexchange ¼
e−ðπ=4Þγϕγθ—a π=4 gate.

B. Naive π=8 gate

When considering how to perform a π=8 gate, the
calculation of the exchange gate is very suggestive. The
exchange entails a π=4 gate; all we need is half the angle.
For half the angle, we simply need to cover half the area of
the octant.
Consider the following trajectory. Starting with

θ ¼ ϕ ¼ 0, we turn θ ¼ 0 → π=2, then ϕ ¼ 0 → π=4,
and return with θ ¼ π=2 → 0, followed by ϕ ¼ π=4 → 0
to close the trajectory. This clearly yields a π=8 phase gate,
cf. Fig. 3.
While the geometric construction seems to be taking

advantage of simple area consideration, the result contains
deeper roots. Conceptually, we would obtain a π=4 phase
difference between the j0i and j1i states. Instead of carrying
out an exchange between the twoMajoranas, wewould have
managed to do the following feat: split one of the Majoranas
into an equal superposition, where one part carries out the
exchange, and the other does not. Next, we reunite the two
parts. The interference between the two processes will yield
to the relative phase ð1= ffiffiffi

2
p Þð1þ iÞ ¼ eiπ=4. This process,

which combines the weirdness of quantum mechanics with
that of Majoranas, is precisely what the Y-junction sequence
above is performing.
Unlike the exchange process, however, there is no

protection for the ϕ ¼ π=4 plane. Equivalently, we can
keep δx ¼ δy within our control module, but clearly
Δx − Δy ¼ fx − fy ≠ 0. The error in the device control
may introduce an arbitrary error in our computation. An
additional complication arises due to the need to go through
the center region of the octant. In the π=8 trajectory, we
cannot avoid a region where all three Majorana couplings
have similar strengths. Invariably, they give rise to a direct
next-nearest-neighbor coupling between the Majoranas at
the Y-junction tip [42]. In this case, the ground-state
degeneracy is split, and the relative phase between the
j0i and j1i states receives a time-dependent dynamical
phase on top of the path-dependent Berry phase contribu-
tion. In the following sections, we demonstrate how these
errors could be universally corrected.

III. SYSTEMATIC ERROR ELIMINATION USING
UNIVERSAL GEOMETRIC DECOUPLING

In this section, we analyze a universal scheme that allows
us to dramatically reduce the errors of the “magic” π=8
phase gate as compared to the naive implementation.
Intuitively, it seems that smooth errors due to the

imprecise coupling constants tend to be canceled in
contours that have the snakelike shape as in Fig. 4. The
unwanted geometric phase accumulated on the way from
θ ¼ 0 to θ ¼ π=2 is subtracted by a similar perturbation on
the way back from θ ¼ π=2 to θ ¼ 0. We treat the snakelike
trajectory of Fig. 4 as a variation trajectory and optimize the
turning points ϕN

1 ;ϕ
N
2 ;…;ϕN

n ; n ¼ 1;…; 2N, in order to
minimize the error in the accumulated phase.

FIG. 3. The sequence for a π=8 gate in the ideal Y-junction
system. This trajectory is not protected as we have to keep Δx ¼
Δy while modifying Δz; small fluctuations will yield a different
phase. This trajectory corresponds to a split of one of the
Majoranas to two and an exchange of the position of another
Majorana with only half of the split Majorana.

KARZIG, OREG, REFAEL, and FREEDMAN PHYS. REV. X 6, 031019 (2016)

031019-4



We have to choose the turning points ϕN
n such that

α ¼ π=8. It is useful to perform the transformation x ¼
ð2=πÞϕ and y ¼ 1 − cos θ, then the topologically protected
boundaries are transformed to the boundary of a square
x ∈ ½0; 1� and y ∈ ½0; 1�. We find

αc0 ¼
π

4
ac; ac ¼

I
c
ydx ¼ −

I
c
xdy: ð8Þ

The last equation is correct for any closed contour c. The
contour c in the x-y plane is the image of the contour c0 in
the ϕ-θ surface. For example, the topologically protected
contour of Fig. 2 simply follows the boundaries of a unit
square in the x-y plane.
We now want to find a contour c in the x-y square that

gives ac ¼ 1=2with an exponential accuracy. For the perfect
snake contour of Fig. 4, this leads to a single condition for the
2N turning points xn ¼ ð2=πÞϕn. The idea of our geometric
decoupling scheme is to use the remaining 2N − 1 degrees of
freedom to systematically reduce the effect of errors. The
latter will change the contour from c to C with a parametric
representation (XðtÞ; YðtÞ) different from the ideal desired
contour (xðtÞ; yðtÞ). When assuming that the ideal contour
does not stop in regions with finite errors, there is a one-to-
one correspondence between t and ðx; yÞ that allows us to
parametrize the error functions as δxðx; yÞ ¼ Xðx; yÞ − x
and δyðx; yÞ ¼ Yðx; yÞ − y. Importantly, due to the topo-
logical protection, the functions δx and δymust vanish on the
square boundaries (δx on x ¼ 0, 1 and δy on y ¼ 0, 1).
Using the undisturbed coordinates ðx; yÞ, the area AC ¼

−
H
C XdY encircled by the disturbed contour can be written

as a sum over the 2N vertical sweeps n, where y changes
from 0 to 1 (for odd n and from 1 to 0 for even n) while x is
fixed at xn:

AC ¼
X2N
n¼1

ð−1Þn½xn þ δxeffðxnÞ�; ð9Þ

where [43]

δxeffðxÞ ¼
Z

1

0

δxðx; yÞ∂yYðx; yÞdy: ð10Þ

The alternating sum over xn yields the desired enclosed
area of the perfect contour ac and is reproduced in Eq. (9)
due to the vanishing boundary conditions of δy.
Equation (9) then further suggests that the remaining effect
of the errors δx and δy can be mapped to that of a snake
contour with straight vertical trajectories (∂yδx ¼ 0), where
the turning points are shifted by δxeffðxnÞ relative to the
perfect implementation. Note that the vanishing boundary
conditions of δx at x ¼ 0, 1 carry over to δxeff . We now
want to systematically cancel the alternating sum over
δxeffðxnÞ. To this end, we use the expansion

δxeffðxÞ ¼
X∞
m¼1

AmPmðxÞ; ð11Þ

where at the square boundaries the set of orthonormal
functions PmðxÞ, m ¼ 1;…;∞, vanishes; explicitly,
Pmð0Þ ¼ Pmð1Þ ¼ 0.
Inserting this expansion into Eq. (10) yields

δac ¼ Ac − ac ¼
X∞
m¼1

Am

X2N
n¼1

ð−1ÞnPmðxNn Þ: ð12Þ

By assumption, the error function f and its mapping to δxeff

all have physical origins. We can, therefore, assume that
they are smooth and analytic. In addition, they are bounded
due to the topologically protected gluing to the square
boundaries, so we may conclude that limm→∞Am ¼ 0,
for any orthonormal set of basis functions PmðxÞ,
m ¼ 1;…;∞. Choosing xNn ¼ ð2=πÞϕN

n properly, we can
eliminate the first M ¼ 2N − 1 components of the expan-
sion, which protects the phase gate by reducing the error to
δac ¼ OðA2NÞ [44].
A protected π=8 phase gate can, therefore, be imple-

mented when aiming for turning points that fulfill the
equations

X2N
n¼1

ð−1ÞnxNn ¼ ac;

X2N
n¼1

ð−1ÞnPmðxNn Þ ¼ 0; m ¼ 1;…; 2N − 1; ð13Þ

with ac ¼ 1=2. These are 2N nonlinear equations for 2N
unknowns xNn , n ¼ 1; 2;…; 2N. Remarkably, if solutions of
Eq. (13) exist, the errors can be canceled up to order 2N − 1
independent of the expansion coefficients Am. The scheme
is therefore universal and independent of the details of
the errors as long as they are smooth. In fact, Eq. (13)

FIG. 4. The vertical snake contour. A proper choice of the
turning point ϕN

n yields a trajectory covering a solid angle of π=4
with an exponentially small error. Here, we plot the contour for
the Chebyshev polynomials with N ¼ 5 and ϕN

n ¼ ðπ=2ÞxNn , and
xNn ; n ¼ 1;…; 2N, are given in Eq. (15).
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resembles similarities to the concept of universal dynamical
decoupling [38].
For a good choice of expanding functions Pm, we rely on

the common knowledge in numerical analysis that expan-
sions of analytic and bounded functions in terms of
Chebyshev polynomials [45] converge very quickly with
expansion coefficients decaying exponentially Am ∼ e−m.
(See also Appendix B. Legendre or Laguerre polynomials
are as good as the Chebyshev ones; however, for the Fourier
expansion we discuss in Appendix C we expect that the
convergence is slower.) Expanding in terms of Chebyshev
polynomials therefore leads to an exponential suppression
of the gate errors in the number of turns δac ∼ e−2N .
Interestingly, the topological protection is crucial for

enabling such an exponential decay of errors in the number
of turns. Solutions of Eq. (13) for nonvanishing ac exist
only if x is linearly independent from the set of functions
fPmðxÞg. Fortunately, the function x violates the topologi-
cal boundary conditions Pmð0Þ ¼ Pmð1Þ ¼ 0 and is there-
fore orthogonal to the basis functions Pm. If the topological
protection is relaxed and the errors are expanded in more
general Pm, an exponential decay of the expansion coef-
ficients allows for solutions only when ac is exponentially
small in N (see Appendix D for details).
As a particular choice of Pm that uses the power of

Chebyshev polynomials and is compatible with the topo-
logical boundary conditions, we use

PmðxÞ ¼ Tmþ1ð2x − 1Þ þ ð−1Þmþ1ðx − 1Þ − x; ð14Þ

with TmðxÞ being Chebyshev’s polynomials of the first
kind. Note that the order m ¼ 0 that involves only linear
terms in x vanishes identically, which again reflects the
orthogonality of the function x with respect to fPmg.
The solutions of Eq. (13) for ac ¼ 1=2 (π=8 gate) can be

expressed analytically and are given by

xNn ¼ 1

2

�
1 − cos

�
πn

2N þ 1

��
: ð15Þ

The general solution for other ac’s can be found numeri-
cally and are be discussed in Sec. VI.

IV. DYNAMICAL PHASE ERROR AND ITS
ELIMINATION WITH A PARITY ECHO

The Chebyshev protocol above efficiently eliminates the
systematic machine error, but at the same time introduces
an equally potent source of error: an uncontrollable
dynamical phase. The geometric decoupling method of
Sec. III requires that at certain times all the couplingsΔi are
comparable. In these time spans, it is unavoidable that
substantial direct couplings emerge between the tip
Majoranas γx, γy, and γz. These couplings induce a finite
energy splitting between the two, otherwise degenerate,
parity sectors of the system. This splitting integrated over

the gate’s duration will distort the relative phase we seek to
control. This distortion can be completely eliminated by
carrying out a parity echo: canceling the dynamical phase
accrued in the gate by the opposite dynamical phase
accrued from the same gate when reversing the parity
for the low-lying parity sector. In order to add instead of
subtract the wanted geometric phase, the second gate is
applied with reversed trajectory.
Let us first consider the strength and origin of the

parasitic couplings. Majoranas i and j will, in general,
be coupled by a term of order ΔiΔj= ~Δ, where ~Δ is the
energy scale of high-energy modes that are integrated out to
obtain the four-Majorana low-energy Hamiltonian, typi-
cally of the order of the superconducting gap. In the
spherical polar coordinates, the parasitic couplings induce
the term

δH ¼ 2iεΔFðθ;ϕÞγθγϕ; ð16Þ

where γθ and γϕ are defined in Eq. (2) and ε ¼ Δ= ~Δ. The
function Fðθ;ϕÞ < 1 captures the splitting’s angular
dependence, and it vanishes at the edge of the octant in
parameter space (where the zero modes are protected). For
a concrete example, see Appendix E.
Conventionally, the dynamical phase induced by the

splitting OðεΔÞ can be minimized by imposing ε ≪ 1. For
protocol durations τprot much smaller then ½εΔ�−1, the
acquired dynamical phase will be small [OðετprotΔÞ].
This strategy for mitigating the dynamical phase error,
however, results in strong constraints on the speed with
which the π=8 gate could be carried out.
A superior strategy employs spin-echo-like schemes

[39]. If we switch the sign of the Hamiltonian (here δH)
for half the duration of the protocol, the dynamical phases
from the two halves of the procedure exactly cancel,
regardless of how strong they are. Indeed, the Majorana
structure of the energy splitting, Eq. (16), allows us to
switch the sign of δH without the fine-tuning of any
parameters by applying a parity flip (NOT gate of the qubit):
γθγϕ → −γθγϕ. One possible implementation of this “parity
echo” includes (1) carrying out a geometrically robust π=16
gate [by solving Eq. (13) for ac ¼ 1=4 instead of
ac ¼ 1=2], (2) performing a parity flip, and (3) carrying
out the same π=16 gate with a reversed direction of the
contour. The contribution to the geometric phase switches
sign twice (parity flip and reverse of direction), thus adding
up to an overall phase of π=8. The dynamical phase,
however, is direction independent, and thus cancels out
after the echo is completed. Alternative parity echoes, and
echoes based on a sign change of Fðθ;ϕÞ by manipulating
θ and ϕ (“angular echo”), are discussed in Appendix F.
Needless to say, these simple echo procedures rely on

the system not changing during the gate execution.
More complicated echoes (similar to the original idea of
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dynamical decoupling) could also allow us to suppress
finite frequency noise effects in the dynamical phase.

V. RETARDATION EFFECTS ELIMINATION
USING ECHO

In addition to the geometric variations of Xðx; yÞ and
Yðx; yÞ, inductive and capacitive effects might introduce
velocity-dependent changes. For the vertical snake protocol
(Fig. 4), this could, in particular, introduce terms of the
form Xðx; y; _yÞ ¼ P

nX
ðnÞðxÞ_yn. All the terms with an even

power are canceled by our protocol as they simply lead to
an overall (lateral) shift of X for the trajectories of constant
longitude. The odd terms are problematic, as they tend to
influence the northwards (at xN2n) and southwards (at x

N
2nþ1)

trajectories in an opposite and correlated manner so that the
total area enclosed by the trajectory will deterministically
change.
Fortunately, these terms with an odd power are eliminated

by the same parity-echo protocols of Sec. IV that eliminate
possible dynamical phases. The idea of the parity echo is to
cover half of the solid angle for the geometric phase on the
forward run and the other half on the backward run. If odd-
order terms lead to a velocity-dependent deformation of the
contour that changes the Berry phase of the first run, there
will be an opposite deformation on the way back where
velocities are reversed. In the total geometric phase of the
echo, the velocity-dependent effects, therefore, cancel out.
There might be higher-order errors from an imperfect
cancellation of the dynamical phase since the forward and
backward contour are now slightly different. Note, however,
that when implementing the same velocity profile _yðtÞ (up to
the switching sign) for each trajectory of constant longitude,
the error for the imperfect cancellation due to the odd-order
velocity-dependent terms will be again an alternating sum of
the 2N trajectories, which cancels in the limit of largeN [46].

VI. NUMERICAL SIMULATION OF THE π=8 GATE

A. Verification of the Chebyshev protocol

First, let us demonstrate the robustness of the above
protocols in the absence of a dynamical phase. For this
purpose,we conduct a simulation of the full time evolution of
the system where the change of the Hamiltonian HðtÞ
[cf. Eq. (1)] in parameter space is described by the vertical
snake contour of Fig. 4. We extract the gate angle α from
the time evolution operator obtained by numerically solving
the time-dependent Schrödinger equation corresponding
to HðtÞ.
Adiabaticity is certainly a concern in our protocol

[47–49]. In order to reach the adiabatic regime more easily,
we slow down the speed of parameter change close to the
sharp turning points of the protocol. This allows us to stay
well inside the adiabatic regime for moderate time spans τ
between the turns. Throughout this paper, we use
τ ¼ 25=Δ, which yields nonadiabatic phase errors< 10−10.

As expected, we find that a perfect implementation of the
protocol with turning points ϕN

n ¼ ðπ=2ÞxNn , as in Eq. (15),
gives a π=8 gate up to (the simulating) machine accuracy.
Systematic errors in the control of the Majorana system
would give rise to deviations of the implemented ΦN

n ðϕN
n Þ

from the perfect turning points of Eq. (15). Figure 5(a)
shows an error model that leads to substantial deviations,
corresponding to an analytic control function ΦðϕÞ [50].
Despite this control error, and the strong deviations of the
turning points (of up to 20%), the relative phase error of the
gate δα ¼ ðα − π=8Þ=ðπ=8Þ vanishes exponentially fast
with increasing N [see Fig. 5(c)]. More complicated error
functions Φðϕ; θÞ that include cross-correlations between θ
and Φ yield (as expected by the general argument in
Sec. III) a similar exponential decay and are discussed
in Appendix G. Note that we choose here an error function
that is analytic on the real axis with complex poles. As we
explain in Appendix B, this leads to a simple exponential

FIG. 5. Numerical demonstration of the robustness of the π=8
gate. (a) Systematic deviation of the angle Φ from its perfect
implementation ϕ (dashed black line). The corresponding modi-
fied contour for N ¼ 4 (solid blue line) is depicted in (b) and
shows clear variations from the perfect implementation (dashed
black line). (c) The relative error in the phase gate angle δα, which
decays exponentially with the number of turns N. (The dashed
red line shows the exponential fit.) (d),(e) Effect of a finite outer
coupling [ε ¼ 0.001, cf. Eq. (17)] without and with an accom-
panying parity echo (see Sec. IV). (f) An imperfect echo
implementation where ε changes by δε ¼ 0.01ε between the
echo sequences.
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decay rather than an exp½−N logðNÞ� decay when the poles
are absent.
As we note above, our procedure is not limited to phase

gates with α ¼ π=8. Although simple analytic solutions of
ϕn will, in general, not exist for α ≠ π=8, Eq. (13) can be
solved numerically for any α ¼ acπ=4. We checked that
these numerical solutions indeed possess the same stability
and protection as the π=8 case, reproducing essentially the
same behavior as in Fig. 5.

B. Simulations of the parity-echo procedure

Let us next include in our simulations the errors due to
the dynamical phase we discuss in Sec. IV. Finite next-
neighbor Majorana couplings give rise to dynamically
induced phase errors that have to be addressed independ-
ently of the control-function errors. To study their effect,
we add a term

δH ¼ 2iεΔ
X
i<j

ΔiΔj

Δ2
γiγj ð17Þ

to the Hamiltonian. In the absence of steps to mitigate the
dynamical phase error, as expected, the performance of the
Chebyshev protocol is limited, and we find that δα cannot
be reduced beyond 2NrεΔτ [see Fig. 5(d)], where r ≈ 0.06
is a numerical constant given by averaging the energy
splitting over time (it is much smaller than 1 because our
protocols slow down close to the turning points, where the
energy splitting is small).
The echo sequences we discuss in Sec. IV, however, can

cancel the dynamical phase effects. In Fig. 5(e), we carry
out the parity-echo protocol: first, applying a π=16 gate,
then performing a parity switch (NOT gate), and, finally,
applying the π=16 gate in reverse. This, as the numerical
results of Fig. 5(e) show, fully restores the ε ¼ 0 behavior.
Interestingly, finite next-neighbor couplings as in

Eq. (17) also alter the geometric aspects of the problem,
since they also modify the Berry phase acquired by the
system. This is due to the change of the fermionic low-
energy mode a (zero mode at ε ¼ 0), which leads to extra
contributions to the Berry phase and thus geometric errors.
Since these errors, however, vanish at the edges of the
octant in parameter space where the zero mode is recov-
ered, they are automatically taken into account and cor-
rected by our snake contours [51]. When applying the
parity echo, we therefore observe an expected e−N logðNÞ
decay of δα even for “perfect” implementations Φ ¼ ϕ.

C. Consequences of time dependence in the system

Finally, we note that there are some remaining errors
from the temporal change of the system between the parity-
echo protocol steps. We model this numerically by chang-
ing ε to εþ δε on the second part of the echo. We find that
the performance of the gate is then limited by 2NrδεΔτ
[see Fig. 5(f)]. Note that it is, in principle, possible to
reduce ε and the corresponding δε by choosing a coupling

strength Δ much smaller than the superconducting gap.
Also note that δε itself can be very small. A likely source
of a time-dependent change of ε is charge noise, which
leads to typical δε ∼ 10−3ε [52] and can even be reduced
to δε ∼ 10−6ε when tuning the system to the charge-
insensitive sweet spot.

VII. SUMMARY AND DISCUSSION

In this paper, we suggest a geometric multistep protocol
realizing a π=8 phase gate with an exponential accuracy in
the number of steps N and generalize it to any α phase gate,
which may be useful as practical shortcut protocols for
producing desired phase gates. We demonstrate the proto-
col on a setup [36], where four Majoranas are situated at the
three tips and the center of a Y-shaped junction. This makes
the scheme particularly appealing, as one may use any
hardware realizing Majoranas that does not support uni-
versal quantum computation and make it universal with the
multistep protocol we suggest.
Manipulating the system through a sequence of coupling

constants between the four Majoranas induces various
phase gates. We map the coupling sequences to contours
on the Bloch sphere, and, in particular, we show that the
topologically protected exchange process (the π=4 phase
gate) corresponds to a contour encircling an octant of the
Bloch sphere. A contour covering a solid angle Ω produces
an α ¼ Ω=2 phase gate. Because of the topological nature
of the exchange process, deviations from that contour are
exponentially small in the laboratory physical parameters.
Contours that cover parts of the octant can be interpreted

as a split of one Majorana where another is exchanged with
only one of the split parts, leading (in the case when the two
parts have equal weights) to a π=8 phase gate. The exact
splitting portions depend on details and are not protected by
any symmetry or topology. The algorithm we suggest in the
form of a contour with N switchbacks does not enjoy the
full topological protection, such as the π=4 phase gate.
However, because parts of the trajectory are at the boundary
of the octant, we are able to show that the geometric phase
accumulated in the process is π=8 with an exponential
accuracy. We demonstrate that realizations of different
phase gates are also possible. Although the topological
protection at the boundary is crucial in our scheme, it might
still be interesting to study whether extensions exist that
also improve the performance of geometric quantum
computation schemes in nontopological systems [53–55].
Because parts of the contour are in the vicinity of the

octant’s middle, next-nearest-neighbor coupling effects
may not be negligible. We analyze parity and angular echo
protocols, eliminating these dynamical effects, as well as
parasitic retardation effects.
Assuming that the induced superconductor gap energy

is ΔSC ¼ 3 K ≈ ð60 GHzÞ, the couplings between the
Majoranas is at maximum Δ ¼ ð5 mKÞ ≈ 100 MHz (lead-
ing to next-neighbor couplings εΔ ≈ 0.2 MHz), a π=8 gate
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(with 2N ¼ 10 turns) can be operational at turn frequencies
1=τ ≈ 10 MHz. The latter fulfills the adiabatic condition
τΔ ≫ 1 and leads to a small dynamical phase error, which
we estimate to be δα ¼ 0.01. Applying a parity echo with
temporal fluctuations δε < 0.01ε would then allow us to
reach relative errors < 10−4. (Note that this is a
conservative estimate. When the temporal fluctuations
are caused only by charge noise, the overall errors would
be 10−5, and even 10−8 at the charge-insensitive sweet spot;
see Sec. VI C).
The scheme we suggest relies on a variational protocol

and can still be improved upon. In particular, we do not try
to optimize the contours used in the calculation, and the
snakelike contours may not be the most optimal. Also, we
employ only a one-step protocol for the cancellation of the
dynamical effects. We are currently considering possible
improvements along these lines.
Finally, we emphasize that the scheme we propose here

is universal. It should be operational for all realizations of
Majoranas and all models of environmental noise.
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APPENDIX A: BRAIDING USING A Y JUNCTION

1. Operation of α phase gate

To define the α phase gate we assume that there are two
Majoranas γθ and γϕ forming an annihilation fermion
operator a ¼ ðγθ þ iγϕÞ=2.
Defining the operator Uθϕ;α ¼ eαγθγϕ ¼ cosαþ sinαγθγϕ,

we notice thatU†
θϕ;α ¼ cosαþ sinαγϕγθ ¼ cosα− sinαγθγϕ,

so that U†
θϕ;αγθUθϕ;α ¼ cos 2αγθ þ sin 2αγϕ, while

U†
θϕ;αγϕUθϕ;α ¼ cos 2αγϕ − sin 2αγθ.
In particular, for α ¼ π=4, the Majoranas γθ → γϕ and

γϕ → −γθ; i.e., under the π=4 phase gate, the particles are
interchanged and one of the operators acquires an addi-
tional sign.

2. α phase gate and geometrical phases

To calculate the phase one accumulates in physical
models with a particular trajectory of the model’s param-
eters. We note that iγθγϕ ¼ 2a†a − 1, so that to find α

associated with a trajectory we need to calculate the
difference in the geometrical phases for the empty a state

j0ð~ΔðtÞÞi, defined by cj0ð ~ΔðtÞÞi ¼ 0, and an occupied

state j1ð~ΔðtÞÞi ¼ c†j0ð ~ΔðtÞÞi.
Using the notation j1i ¼ j1ðtÞi ¼ j1( ~ΔðtÞ)i, j0i ¼

j0ðtÞi ¼ j0( ~ΔðtÞ)i for these instantaneous states, the geo-
metric phase accumulated in a contour c is given by

2αc ¼ i
I
c
ðh1j∂tj1i − h0j∂tj0iÞdt

¼ i
I
c
ðh0ja∂tða†j0iÞ − h0j∂tj0iÞdt

¼ i
I
c
ðh0ja∂ta†j0i þ h0jaa†∂tj0i − h0j∂tj0iÞdt

¼ i
I
c
ðh0ja∂ta†j0i þ h0jð1 − a†aÞ∂tj0i − h0j∂tj0iÞdt

¼ i
I
c
ðh0ja∂ta†j0i − h0ja†a∂tj0iÞdt

¼ i
I
c
ðh0ja∂ta†j0iÞdt

¼ i
I
c
ðh0ja∂ta† þ ð∂ta†Þaj0iÞdt ⇒

αc ¼
1

2
i
I
c
fa; ∂ta†gdt: ðA1Þ

The last term in the equation vanishes since h0ja† ¼
ðaj0iÞ† ¼ 0.
To find the geometric phase in terms of the trajectory

in the θ;ϕ plane, we use again the definition a ¼
ðγθ þ iγϕÞ=2, so that we have

∂ta† ¼ ∂θa† _θ þ ∂ϕa† _ϕ

¼ 1=2ð∂θγθ − i∂θγϕÞ_θ þ 1=2ð∂ϕγθ − i∂ϕγϕÞ _ϕ;

using now the mathematical identities ∂θγθ ¼ −γr,∂θγϕ ¼ 0, and ∂ϕγθ ¼ cos θγϕ, ∂ϕγϕ ¼ − cosϕγx−
sinϕγy ¼ − cos θγθ − sin θγr, and using the expression
for the Berry phase in terms of the operator in Eq. (A1),
we find that the variation with respect to the polar angle θ
vanishes,

fa; ∂θa†g ¼ −1=4fðγθ þ iγϕÞ; γrg ¼ 0;

and the variation with respect to the azimuthal angle ϕ
gives

fa; ∂ϕa†g ¼ fγθ þ iγϕ; cos θγϕ þ iðcos θγθ þ sin θγrÞg=4
¼ cos θfγθ þ iγϕ; γϕ þ iγθg=4
¼ i cos θfγθ þ iγϕ; γθ − iγϕg=4
¼ i cos θfa; a†g ¼ i cos θ:
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We therefore have

αc ¼ −
1

2

I
c
cos θdϕ ¼ 1

2
Ωc; ðA2Þ

with Ωc being the solid angle enclosed by the contour c.

3. Evolution of operators

The operators γθ and γϕ defined in Eq. (2) evolve
explicitly due to the instantaneous change of the coupling
constant and due to the Berry phase. To find their evolution
it is convenient to use the evolution operator [49,56],
UðtÞ ¼ P

n¼0;1e
iβnðtÞjnðtÞihnð0Þj, with jnðtÞi the instanta-

neous eigenstates and βnðtÞ ¼ Entþ
R
t
0 hnðtÞj∂tjnðtÞidt

the acquired phase. The dynamical phase Ent may be
omitted here since the eigenenergy of both the occupied
and the empty states are zero, En ¼ 0, n ¼ 0, 1. Evolving
the operator a† ¼ ðγθ − iγϕÞ=2, we find

a†ðtÞ ¼ U†ðtÞa†ð0ÞUðtÞ
¼

X
n;n0

e2i½αnðtÞ−αn0 ðtÞ�

× jn0ðtÞihn0ð0Þjj1ð0Þih0ð0Þjjnð0ÞihnðtÞj
¼ eiΩcðtÞj1ðtÞih0ðtÞj
¼ eiΩcðtÞa†ðtÞ;

with ΩcðtÞ ¼ i
R
t
0 ðh1ðtÞj∂tj1ðtÞi − h0ðtÞj∂tj0ðtÞiÞdt ¼

−
R
t
0 cos θðdϕ=dtÞdt, and the bar in a indicates that it is

a physical operator with the additional evolution due to
Berry’s phase. Using the relation of Eq. (4), we establish
the following relation between the instantaneous Majoranas
γ and the physical Majoranas γ that evolve with the Berry
phase:

�
γθ

γϕ

�
¼

�
cosΩcðtÞ sinΩcðtÞ
− sinΩcðtÞ cosΩcðtÞ

��
γθ

γϕ

�
:

We find that the relation between the instantaneous and
the physical operators is given by an additional rotation
with an angle equal to the Berry phase. Note that for a
closed contour with Berry phase Ωc ¼ π=2, the instanta-
neous γ’s return to their original positions while the
physical γ’s exchange their positions and γθ acquires an
additional sign. For Ωc ¼ π=4, the physical operators are a
superposition of the instantaneous ones.

APPENDIX B: PROPERTIES OF CHEBYSHEV
POLYNOMIALS

The Chebyshev polynomials of the first kind are
defined as

TmðxÞ ¼ cosðm arccos xÞ; x ∈ ½−1; 1�: ðB1Þ

A direct substitute of this definition in Eq. (14) proves
that

Pmð0Þ ¼ Tmð−1Þ − ð−1Þm ¼ cosmπ − ð−1Þm ¼ 0;

Pmð1Þ − Tmð1Þ − 1 ¼ cos 0 − 1 ¼ 0: ðB2Þ

To show that xNn in Eq. (15) solve the set of 2N nonlinear
equations [Eq. (13)], we use the fact that Tm satisfy the
discrete orthogonality condition:

XN−1

k¼0

TiðxkÞTjðxkÞ ¼
8<
:

0 i ≠ j

N i ¼ j ¼ 0

N=2 i ¼ j ≠ 0;

ðB3Þ

where xk ¼ cos πð2kþ 1=2NÞ are the N Chebyshev nodes.
For completeness, here we quote the following theorems

on the Chebyshev expansion, their proof can be found in
many textbooks; for example, see Ref. [45], p. 37.
Consider the following expansion of the function fðxÞ

with the partial sum of the form fðxÞ ≈ SnðxÞ ¼ 1
2
c0þP

n
k¼1 ckTkðxÞ, with ck ¼ ð2=πÞ R 1

−1ðfðzÞTkðzÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
Þ.

Define the error function ϵn ¼ supx∈½−1;1�jfðxÞ − SnðxÞj as
follows:
(1) Functions with continuous derivative. When a func-

tion f has mþ 1 continuous derivatives on ½−1; 1�,
wherem is a finite number, ϵn ¼ Oðn−mÞ as n → ∞.

(2) Analytic functions inside an ellipse. When a func-
tion f on x ∈ ½1; 1� can be extended to a function that
is analytic inside an ellipse with semiaxis of length
ðr� 1=rÞ=2 on the real and imaginary axis, respec-
tively, ϵn ¼ Oðr−nÞ as n → ∞.

(3) Entire functions. For entire functions f (functions
that have no poles), the error ϵn ¼ Oð1=n!Þ (mean-
ing that log ϵn ¼ −Oðn log nÞ as n → ∞.

APPENDIX C: OTHER PROTOCOLS

Here, we discuss other possible protocols that reduce the
systematic control errors. A straightforward variation of the
vertical snake contour of Fig. 4 is to perform horizontal
sweeps with turning points θNn (see Fig. 6). Since

H
XdY ¼

−
H
YdX on any closed path, exchanging the role of X and

Y has no effect on the arguments in Sec. III. Then, we will
have a set of yNn instead of xNn . One should, however, note
that due to the nontrivial relation y ¼ cosðθÞ, YðyÞ ¼
cos½ΘðarccosðyÞÞ� is not necessarily analytic when ΘðθÞ
is analytic. It might then be useful to instead implement
modified turning points yNn → ξðyNn Þ (with some function
ξð0Þ ¼ 0 and ξð1Þ ¼ 1), such that YðξðyÞÞ is analytic.
It is also possible to choose different basis functions for

the expansion of the errors (while keeping in the vertical
snake contour). In particular, a choice that agrees with
the boundary conditions Pmð0Þ ¼ 1 and Pmð1Þ ¼ 1 is
PmðxÞ ¼ sinðmπxÞ. Using the symmetry properties of
the sine function, we conclude that with
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xNn ¼ 2n − 1

4N
ðC1Þ

we satisfy Eq. (13) with ac ¼ 1=2. Interestingly, in this
case, we can also find analytic solutions xNn ¼ ðn − 1=2þ
ð−1Þnðac − 1=2Þ=ð2NÞ for arbitrary ac.
Unfortunately, the above Fourier expansion does not

enjoy the same exponential convergence as the Chebyshev
polynomials, and errors in the gate would decay poly-
nomially in the number of turns N.

APPENDIX D: TOPOLOGICAL PROTECTION
AND EXPONENTIAL CONVERGENCE

In this section, we detail the connection between the
exponential convergence of our scheme with the turn
number N and the underlying topological protection of
the Majoranas. The topological boundary conditions enter
at two crucial points in the derivation of Sec. III. First, an
overshooting or undershooting δyðxn; 1Þ ≠ 0 would add an
extra error to Eq. (9),

AC ¼
X2N
n¼1

ð−1Þnfxn½1 − δyðxn; 1Þ� þ δxeffðxnÞg; ðD1Þ

that goes beyond an effective shift of turning points. In the
absence of the topological boundary conditions the expan-
sion δyðxn; 1Þ ¼

P∞
m¼0 BmTmð2xn − 1Þ will, in general,

have a constant contribution B0 ≠ 0. Canceling this error
then would require

P
2N
n¼1ð−1Þnxn ¼ 0, which only allows

trivial ac ¼ 0.
Even when assuming that δy fulfills the topological

boundary conditions, we arrive at similar limitations when
considering the effect of unrestricted δx. Expanding the
latter requires a general Chebyshev expansion δx ¼P∞

m¼0 AmTmð2x − 1Þ (as opposed to the constrained
version in the main text). The problem is that we can also

expand x ¼ P∞
m¼0 CmTmð2x − 1Þ. We then find that the

first equation in Eq. (13) takes the form

ac ¼
X∞

m¼2N−1
Cm

X2N
n¼1

ð−1ÞnTmð2xn − 1Þ; ðD2Þ

where the ordersm ¼ 0;…; 2N − 2 drop out because of the
error-canceling equations in Eq. (13). With Tm being
Chebyshev polynomials of the first kind, the only non-
vanishing expansion coefficient is Cm¼1 ¼ 1, such that we
again find ac ¼ 0. In principle, we could use different basis
functions for the expansion, but if their coefficients decay
(as required) exponentially with the order of the expansion,
Eq. (D2) constraints ac to be at most exponentially small
in 2N − 1.

APPENDIX E: DETAILED MODEL FOR
NEXT-NEAREST-NEIGHBOR COUPLINGS

A concrete model for the emerging next-neighbor
couplings can be obtained when explicitly deriving
Hamiltonian Eq. (1) from three coupled Majorana wires
(see Fig. 7).
In this case the central Majorana γ0 emerges from a

strong coupling of three inner Majoranas ~γi (i ¼ x, y, z):

H1 ¼ 2i
X
i<j

~Δij ~γi ~γj: ðE1Þ

DiagonalizingH1 yields the zero mode γ0 along with a pair
of Majoranas corresponding to a finite energy state at

~Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i<j
~Δ2
ij

q
. Taking into account virtual transitions to

energy ~Δ up to second order yields a low-energy
Hamiltonian,

H ¼ 2i

�X
i

Δ0
iγiγ0 þ

X
i<j

Δijγiγj

�
; ðE2Þ

FIG. 6. The horizontal snake contour. A proper choice of the
turning point θNn yields a solid angle of π=4 with an exponentially
small error. Here, we show the contour based on Chebyshev
polynomials with N ¼ 4 and cos θNn ¼ xNn , and xNn ; n ¼ 1;…;
2N, are given in Eq. (15).

FIG. 7. Underlying substructure of the setup in Fig. 1. The
central Majorana mode γ0 emerges from the low-energy subspace
of three strongly coupled Majoranas ~γi.
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with Δ0
i ¼ ϵijkΔi

~Δjk= ~Δ (ϵijk being the Levi-Civita symbol

and j < k) and Δij ¼ −ΔiΔj
~Δij= ~Δ2.

In the spherical polar coordinates introduced in the main
text (note that they parametrizeΔ0

i notΔi), the leading order
[up to corrections of Oðε2ΔÞ] of the induced energy
splitting takes the form

δH ¼ 2iελ
Δ
4
sinðθÞ sinð2θÞ sinð2ϕÞγθγϕ; ðE3Þ

with λ ¼ ~Δ3=ð ~Δxy
~Δyz

~ΔxzÞ, and as in the main text,

ε ¼ Δ= ~Δ. From the angular dependence of Eq. (E3), we
find the expected behavior that the correction vanishes
along the edges of the octant in parameter space where θ, ϕ
are 0 or π=2. Along the contours considered for the
geometric decoupling protocols, however, δH will not
vanish. Also, a fine-tuning of the inner couplings ~Δij does
not allow us to eliminate this energy splitting since the
minimal value of jλj ¼ 33=2. Note that the apparent diver-
gence of λ when one of the couplings ~Δij ¼ 0 is an artifact
of the corresponding vanishing coupling Δ0

k (k ≠ i, j).
Since the spherical parametrization assumes that all Δ0

k can
be tuned to Δ, the bare coupling Δi would need to diverge,
which leads to a breakdown of our perturbation theory.
When using Eq. (E3) it should therefore be understood that
all inner couplings remain large, i.e., ~Δij ≫ Δ.

APPENDIX F: OTHER POSSIBLE ECHO
PROTOCOLS

It might be easier to ensure the equivalence of
the canceling contributions in the echo when implementing
an echo with multiple parity flips. A possible protocol
as a modification of the vertical snake contour is applying
the sequence …ð0; 0Þ → ðπ=2;ϕN

n Þ → P → ð0; 0Þ →
ðπ=2;ϕN

nþ1Þ → P… in ðθ;ϕÞ space with P denoting a
parity flip. In this case the dynamical phases of each path
from the north pole to ð0;ϕN

n Þ are immediately canceled
out. The protocol can also be thought of as, instead of doing
a parity flip, going from the north pole over ðπ=2;ϕnÞ to the
south pole. Since this doubles the geometric phase, the
correct ϕN

n are that of a π=16 gate.
As we indicate above, instead of applying parity flips,

the sign flip of δH can also be caused by flipping the sign
of the angular dependence, denoted by Fðθ;ϕÞ in the main
text [see Eq. (16)]. From Eq. (E3), we observe that shifting
θ → π − θ (or equivalently ϕ → π − ϕ) leads to a sign
switch in δH. An angular echo protocol can, therefore, be
implemented by repeating a π=16 gate in two adjacent
octants in parameter space.

APPENDIX G: CROSS-CORRELATIONS Φðϕ;θÞ
In Sec. III, we map a general error function Φðϕ; θÞ to

ΦeffðϕÞ, which shows that the error model ΦðϕÞ considered

in the main text is already of the most general form. As an
additional check we now implement cross-correlations
Φðϕ; θÞ explicitly. One possible source of cross-
correlations is that in experiments systematic errors mani-

fest at the level of couplings ~Δ, which translate nontrivially
to the coordinates Φ and Θ. Moreover, note that although
there is no explicit cross-correlation between Φ and θ in the
main text, the presence of the next-neighbor couplings
already introduces implicit cross-correlations in the Berry
phase. In general, a finite εwill lead to corrections fε and gε
in the Berry phase:

2α ¼
I

½fεðθ;ϕÞ − cos θ�dϕþ
I

gεðθ;ϕÞdθ: ðG1Þ

Instead of changing the formula for the Berry phase, one
could redefine Φ and Θ to include fε and gε, which then
would obtain cross-correlations. The fact that our scheme is
stable for finite ε (when applying an appropriate echo to
cancel the dynamical phase) already shows that cross-
correlations are also effectively corrected.
To include explicit cross-correlations, we use the error

model

ΦðϕÞ → ΦðϕÞ þ cθðθÞcϕðϕÞ; ðG2Þ

where the functions cθ=ϕ vanish when θ=ϕ are 0 or π=2 due
to the topological protection at the edge of the octant in
parameter space. In particular, we choose two polynomials
for cθ=ϕ obtained from interpolating five random numbers
in between the vanishing boundary conditions. Figure 8(a)
shows the resulting contour for variations jcθcϕj≲ 0.01. As
expected, we still find an exponential decay of the phase
error with increasing number of turns (for the same reason
as in the main text, the strength of the errors is not crucial
for the exponential behavior). Figure 8(b) shows the
corresponding behavior for ε ¼ 0 with an decay that is
only slightly weaker, as in the absence of the cross terms.
Finite values of ε can be corrected by echo protocols similar
to the main text.

FIG. 8. Effect of cross-correlations between Φ and θ on the
geometric decoupling scheme. (a) The modified protocol (solid
blue) described by the error model [Eq. (G2)] in comparison to
the perfect implementation (dashed black). (b) Decay of the phase
error in terms of the number of turns N. The red dashed line
shows an exponential fit starting at N ¼ 5.
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