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The recent Advanced LIGO detection of gravitational waves from the binary black hole GW150914
suggests there exists a large population of merging binary black holes in the Universe. Although most
are too distant to be individually resolved by advanced detectors, the superposition of gravitational waves
from many unresolvable binaries is expected to create an astrophysical stochastic background. Recent
results from the LIGO and Virgo Collaborations show that this astrophysical background is within reach
of Advanced LIGO. In principle, the binary black hole background encodes interesting astrophysical
properties, such as the mass distribution and redshift distribution of distant binaries. However, we show that
this information will be difficult to extract with the current configuration of advanced detectors (and using
current data analysis tools). Additionally, the binary black hole background also constitutes a foreground
that limits the ability of advanced detectors to observe other interesting stochastic background signals, for
example, from cosmic strings or phase transitions in the early Universe. We quantify this effect.
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I. INTRODUCTION

The first direct detection of gravitational waves was
recently announced by the Advanced LIGO (Laser
Interferometer Gravitational-Wave Observatory) and Virgo
Collaborations [1–4]. The observation of GW150914, a
binary black hole (BBH) merger with individual black
hole masses of 36 and 29M⊙ at a luminosity distance of
≈400 Mpc [5], implies that the masses and coalescence
rate of stellar-mass BBHs are at the high end of previous
predictions [6–8]. As a consequence, the astrophysical
stochastic gravitational-wave background, arising from all
coalescing binary black holes too distant to individually
resolve [9–14], is potentially within reach of advanced
detectors. When operating at design sensitivity, Advanced
LIGO may detect this binary black hole background with
signal-to-noise ratio SNR ¼ 3 in as few as 1.5 yr [15].
However, there is significant uncertainty in the strengthof the
stochastic signal due to uncertainty in the coalescence rate,
currently estimated from only 16 days of double-coincident
observation [6,15]. In this paper, we build on the LIGO and
Virgo results from Ref. [15] and investigate the potential
to extract astrophysical information from measurements of
the stochastic background.
The detection of an astrophysical stochastic background

would be a major accomplishment, providing us with a

glimpse of sources at cosmological distances. Given this
exciting possibility, we address three key questions con-
cerning the future prospects for gravitational-wave science
with stochastic backgrounds:
First, how does the information contained in the sto-

chastic signal compare to what we learn from resolvable
binaries in the nearby Universe? In Sec. II, we demonstrate
that the stochastic signal is dominated by unresolvable
sources between redshifts z ≈ 0.1 and 3.5; thus, observa-
tions of the stochastic background will probe a BBH
population that is distinct from directly resolvable sources
in the more local Universe.
Second, what astrophysics and cosmology can we

explore using results from stochastic searches? In Sec. III,
we find that, while second-generation gravitational-wave
detectors may successfully measure the amplitude of the
stochastic background, it is difficult to further distinguish
between different models for the binary black hole
background.
Third, how does the presence of the expected binary

black hole background affect our ability to measure other
potentially interesting backgrounds arising, e.g., from
cosmic strings [16,17], the core collapse of population
III stars [18], or phase transitions in the early Universe
[19–22]? In Sec. IV, we show that the BBH background
acts as a limiting foreground, significantly decreasing our
sensitivity to other backgrounds of interest.

II. INFORMATION CONTAINED
IN THE BBH BACKGROUND

A stochastic background of gravitational waves
introduces a correlated signal in networks of terrestrial
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detectors. Although this signal is much weaker than the
detector noise, it is detectable by cross-correlating the
strain data from two or more detectors. For a two-detector
network and an isotropic, unpolarized, and stationary
Gaussian background, the optimal SNR of a cross-
correlation search is given by [23]

SNR ¼ 3H2
0

10π2
ffiffiffiffiffiffi
2T

p �Z
∞

0

γ2ðfÞΩ2
GWðfÞ

f6P1ðfÞP2ðfÞ
df

�
1=2

; ð1Þ

where PiðfÞ is the noise power spectral density of detector
i, γðfÞ is the normalized isotropic overlap reduction
function [24], and T is the total accumulated coincident
observation time. The energy density spectrum ΩGWðfÞ of
the stochastic background is defined as

ΩGWðfÞ ¼
1

ρc

dρGW
d ln f

; ð2Þ

where dρGW is the energy density in gravitational waves per
logarithmic frequency interval d ln f and ρc ¼ 3H2

0c
2=8πG

is the critical energy density required to close the Universe.
HereG isNewton’s constant, c is the speed of light, andH0 is
the Hubble constant. We assume a standard “737 cosmol-
ogy,” with H0¼70kms−1Mpc−1, Ωm¼0.3, and ΩΛ¼0.7.
The energy density spectrum of a binary black hole

background is determined in part by the binary chirp mass
Mc ¼ η3=5M, where M is the binary’s total mass and η
its symmetric mass ratio. Figure 1 shows example energy
density spectra for stochastic BBH backgrounds of various
“average chirp masses” [more precisely, the background

depends on the average M5=3
c ; hereafter, the average chirp

mass Mc refers to ðM5=3
c Þ3=5], assuming equal mass

binaries with η ¼ 0.25. Also shown in Fig. 1 are power-
law integrated (PI) curves [25] indicating the sensitivity
of the stochastic search after one year of integration with
Advanced LIGO at early, middle, and design sensitivity.
Power-law integrated curves are defined such that a power-
law energy density spectrum drawn tangent to the PI curve
will give SNR ¼ 1 after one year. More generally, energy
density spectra lying above a PI curve have SNR≳ 1 after
one year, while those below have SNR≲ 1.
We adopt the Fiducial model of Ref. [15], with BBH

energy density spectra given by [9,15,26,27]

ΩBBHðfÞ ¼
f
ρc

Z dEBBH½fð1þzÞ�
df RmðzÞ

ð1þ zÞHðzÞ dz; ð3Þ

where dEBBH=df is the source-frame energy spectrum
of a single BBH source [28] (see Appendix A).
Since energy and frequency are identically redshifted,
dEBBH=df is in fact redshift invariant, depending on z
only through its argument as shown in Eq. (3). HðzÞ ¼
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

p
describes the evolution of the

Hubble parameter in a flat universe. Finally, RmðzÞ is
the BBH merger rate per comoving volume as measured in
the source frame; the factor of (1þ z) in the denominator of
Eq. (3) converts this rate into the detector frame.
We assume that RmðzÞ traces the star formation rate

R�ðzÞ, subject to a time delay td between a binary’s
formation and merger [15]:

RmðzÞ ¼ R0

R tmax
tmin

R�½zfðtd; zÞ�F½zfðtd; zÞ�PðtdÞdtdR tmax
tmin

R�½zfðtd; 0Þ�F½zfðtd; 0Þ�PðtdÞdtd
: ð4Þ

Here, R0 is the local coalescence rate at z ¼ 0, PðtdÞ is
the probability of a time delay td, and zfðtd; zÞ is the
formation redshift corresponding to merger at redshift z.
We take tmin ¼ 50 Myr to be the minimum time required
for binary evolution through merger, and integrate up to
tmax ¼ 13.5 Gyr. We assume PðtdÞ ∝ t−1d for td ≥ tmin [29].
For R�ðzÞ, we adopt the star formation rate presented in
Sec. II.1 of Ref. [30], based on the observed gamma-ray
burst rate [31]. We also assume that binary black holes
are born preferentially in low-metallicity environments,
multiplying R�ðzÞ by the fraction FðzÞ of stars formed with
metallicities Z < Z⊙=2 [15], where Z⊙ ¼ 0.02 is the solar
metallicity; see Appendix B for details. Below, we also
consider theLowMetallicitymodel of Ref. [15], which
instead assumes progenitor metallicities Z < Z⊙=10.
Unlike direct searches for binary coalescences, the

results of which are dominated by the closest sources,

FIG. 1. Binary black hole backgrounds of various chirp masses,
assuming a local coalescence rate of R0 ¼ 16 Gpc−3 yr−1 and the
Fiducial model for the stochastic background. Power-law
integrated curves [25] for one year of integration with Advanced
LIGO at early, middle, and design sensitivity are shown for
comparison. Approximately 95% of the signal-to-noise ratio
comes from a band spanning 15–45 Hz. The shape and amplitude
of ΩBBHðfÞ depend on the average chirp mass of the BBH
population. As Mc increases with fixed R0, the peak value of
ΩBBHðfÞ grows like M5=3

c , while the knee frequency fmax at
which the peak occurs scales as fmax ∼ 1=Mc.
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the stochastic background is dominated by distant sources.
To explain this simply, we imagine an idealized static
Universe with a constant merger rate and no cosmological
expansion. The gravitational-wave energy density dΩ
contributed by binaries within a thin spherical shell of
radius r and thickness dr scales like dΩ ∼ h2dN ∼ 1=r2dN,
where h is gravitational-wave strain and dN is the number
of sources within the shell. In our idealized universe, BBH
binaries are equally distributed in volume, so dN ∼ r2dr,
giving dΩ ∼ dr. The background contribution from any
shell is therefore constant, independent of distance. Since
the number of such shells beyond Advanced LIGO’s
horizon distance is much greater than the number within,
the stochastic background is dominated by distant, unre-
solvable sources. (This is a reformulation of Olber’s
paradox.)

In reality, the BBH population is not uniformly distrib-
uted in volume; we assume it traces the star formation rate
via Eqs. (3) and (4). In order to more rigorously investigate
the SNR contribution from binaries at different redshifts,
we define the “SNR density”:

dðSNRÞ
dz

¼ 2T
SNR

�
3H2

0

10π2

�
2
Z

∞

0

γ2ðfÞΩBBHðfÞdΩBBH
dz ðf;zÞ

f6P1ðfÞP2ðfÞ
df;

ð5Þ
with

dΩBBH

dz
ðf; zÞ ¼ f

ρc

dEBBH½fð1þzÞ�
df RmðzÞ

ð1þ zÞHðzÞ : ð6Þ

SNR density for design-sensitivity Advanced LIGO is
plotted as a function of z in Fig. 2 for several choices of chirp

FIG. 2. Top: SNR density dðSNRÞ=dz for various choices of chirp mass, assuming the Fiducial (left) and LowMetallicity
(right) background models. Each curve is normalized such that its integral over all redshifts is 1. Bottom: Cumulative SNR, found by
integrating SNR density from ð0; zÞ assuming the Fiducial (left) and LowMetallicity (right) models. For each choice of mass,
the total SNR is normalized to 1. The dashed vertical lines indicate Advanced LIGO’s “threshold redshifts” z50% for binaries of each
chirp mass (given by the respective color). More than 50% of binaries merging at z < z50% (in the shaded regions) will be individually
resolvable. Most binaries at z > z50% cannot be individually resolved, but contribute to the measured stochastic signal. Note that,
because much of the signal from high-redshift Mc ¼ 150M⊙ binaries is redshifted out of Advanced LIGO’s sensitivity band, z50% for
such binaries is lower than for those with Mc ¼ 100M⊙.
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mass, assuming the Fiducial and LowMetallicity
models. Also shown are the cumulative SNRs obtained
by integrating the SNR density up to some cutoff z.
For purposes of comparison, the curves shown are each
normalized to total SNR ¼ 1. In each figure, the dashed
vertical lines indicate “threshold redshifts” z50% beyond
which BBHs of each chirp mass (indicated by the respective
colors) are individually resolvable less than 50% of the time
(see Appendix C for details). The redshifts z50% therefore
indicate the typical range of a direct search for compact
binary coalescences—binaries at redshifts z<z50% are, on
average, directly resolvable, while those at z > z50% are not.
For binaries like GW150914, with Mc ≈ 28 M⊙ and

z50% ≈ 0.5, approximately 70% of the stochastic SNR
is due to unresolvable binaries when assuming the
Fiducial model. In this case, 90% of the stochastic
signal is contributed by sources between z ≈ 0.1 and 3.5,
and 50% is due to binaries beyond z ≈ 0.9. These precise
values depend on the specific choice of background model.
The LowMetallicity model, for instance, predicts
that 80% of the SNR is due to unresolvable sources, with
90% of the signal contributed by binaries between z ≈ 0.1
and 4.2. For very high-mass systems (Mc ¼ 150 M⊙),
z50% ≈ 0.9, and so a much larger fraction of the stochastic
SNR is due to resolvable sources. In this case, only
approximately 20% of the stochastic signal remains due
to unresolvable binaries.
It is interesting to see how SNR density changes with

average chirp mass. For Mc ≲ 50 M⊙, the curves are all
similar because the knee frequency of ΩBBHðfÞ is outside
the sensitive part of the band; 95% of the SNR is contained
between ≈15 and 45 Hz (see the PI curves in Fig. 1).
At Mc ≈ 100 M⊙, the SNR density distribution shifts
to higher z because the loud merger signal from high-z
sources is redshifted into the most sensitive band. Finally,
as Mc increases further to ≳150 M⊙, the merger signal
from high-z signals begins to leave the observing band
entirely, leaving mostly signal from low-z sources.

III. STOCHASTIC MODEL SELECTION

Valuable astrophysical information is contained in the
BBH background, including the masses and merger rates of
distant BBH populations inaccessible to direct searches for
compact binary coalescences. The degree to which this
information can be extracted, however, depends on our
ability to perform model selection and parameter estima-
tion. Model selection and parameter estimation has been
shown to be difficult for astrophysical backgrounds domi-
nated by low-mass binaries of severalM⊙ [32], which only
depart from ΩðfÞ∝f2=3 power laws at frequencies above
∼1 kHz. The low stochastic search sensitivity above 50 Hz
suggests that this high-frequency behavior will be
extremely difficult to observe.
Backgrounds of more massive BBHs are shifted to lower

frequencies (see, e.g., Fig. 1), where non-power-law

spectral features are increasingly visible to ground-based
detectors. This suggests that black hole backgrounds may
be more promising targets for model selection and param-
eter estimation. In order to evaluate the prospects for model
selection on BBH backgrounds, we investigate at what
point an astrophysical Fiducial background can be
distinguished from a power-law spectrum:

ΩPLðfÞ ¼ Ω0

�
f
f0

�
2=3

; ð7Þ

where f0 is an arbitrary reference frequency.
The standard stochastic search employs a cross-

correlation statistic ŶðfÞ ∝ ~s�1ðfÞ~s2ðfÞ that is proportional
to the strain cross power between the signals ~s1 and ~s2
measured by two detectors [23]. The expectation value and
variance of the cross-correlation statistic ŶðfÞ in a fre-
quency bin of width df are, with appropriate normalization,

hŶðfÞi ¼ ΩðfÞ ð8Þ
and

σ2ðfÞ ¼ 1

2Tdf

�
10π2

3H2
0

�
2 f6P1ðfÞP2ðfÞ

γðfÞ2 : ð9Þ

Here, ΩðfÞ is the true gravitational-wave background.
When adopting a particular model ΩMðfÞ for the stochastic
background, the likelihood for ŶðfÞ is the Gaussian [23,32]

LfðŶjΩMÞ ∝ exp

�
−
½ŶðfÞ −ΩMðfÞ�2

2σ2ðfÞ
�
: ð10Þ

The value ŶðfÞ measured in any single experiment is a
random variable, depending on the particular noise instan-
tiation δΩðfÞ through ŶðfÞ ¼ ΩðfÞ þ δΩðfÞ. The noise
δΩðfÞ is itself Gaussian distributed about zero with
variance σ2ðfÞ. In the absence of real data, we cannot
compute Eq. (10), but can instead calculate the ensemble-
averaged likelihood

hLfðŶjΩMÞi ∝ exp

�
−
½ΩðfÞ −ΩMðfÞ�2

4σ2ðfÞ
�
; ð11Þ

obtained by marginalizing over δΩðfÞ; this result is similar
to Eq. (10), but with an additional factor of 1=2 in the
exponential. Simply assuming δΩ ¼ 0 produces an
overly optimistic estimate of an experimental likelihood.
The full (ensemble-averaged) likelihood is the product
L ∝

Q
fhLfi, given by

LðΩjΩMÞ ¼ N exp

�
−
1

4
ðΩ −ΩMjΩ −ΩMÞ

�
; ð12Þ

where N is a normalization factor and we have defined the
inner product

CALLISTER, SAMMUT, QIU, MANDEL, and THRANE PHYS. REV. X 6, 031018 (2016)

031018-4



ðAjBÞ ¼ 2T
�
3H2

0

10π2

�
2
Z

∞

0

γðfÞ2 ~AðfÞ ~BðfÞ
f6P1ðfÞP2ðfÞ

df: ð13Þ

Note that Ω, not Ŷ, appears on the left-hand side of
Eq. (12), since this ensemble-averaged likelihood depends
only on the expectation value hŶðfÞi ¼ ΩðfÞ.
Given an underlying BBH background described by the

Fiducialmodel, we investigate the maximum likelihood
ratioR ¼ LMLðΩBBHjΩBBHÞ=LMLðΩBBHjΩPLÞ between the
Fiducial and power-law models. Large values of R
indicate that the Fiducial model is (correctly) prefer-
enced over the power-law background model; values close
toR ¼ 1 indicate that the twomodels are indistinguishable.
The maximum likelihood when correctly assuming the
Fiducial model is LMLðΩBBHjΩBBHÞ ¼ N , since the
background itself is contained within the space of BBH
models. The maximum likelihood when incorrectly assum-
ing a power-law model can be derived analytically. The
power-law model has one free parameter—the amplitude
Ω0. The amplitude maximizing the likelihood Eq. (12)
satisfies dLðΩBBHjΩPLÞ=dΩ0 ¼ 0, which is solved to give

ΩML
0 ¼ ðωjΩBBHÞ

ðωjωÞ ; ð14Þ

where ωðfÞ ¼ ðf=f0Þ2=3. The corresponding maximum
likelihood for the power-law model is

LMLðΩBBHjΩPLÞ

¼ N exp

�
−
1

4

�
ðΩBBHjΩBBHÞ −

ðωjΩBBHÞ2
ðωjωÞ

��
: ð15Þ

When formally comparing models with different num-
bers of parameters (such as the one-parameter power law
versus the many-parameter Fiducial model), one could
alternatively calculate a Bayes factor rather than a maxi-
mum likelihood ratio. However, the Bayes factor is
approximated by the maximum likelihood ratio, multiplied
by an additional “Occam’s factor” penalizing the more
complex of the two models [33]. The inclusion of the
Occam’s factor here would only serve to penalize the
Fiducial model; by neglecting it here, we are showing
the most optimistic prospects for discerning the form of an
astrophysical BBH background. Additionally, when model
parameters are not informative, the associated Occam’s
factor is near unity and the maximum likelihood ratio well
approximates the Bayes factor.
Figure 3 shows contours of the maximum log-

likelihood ratio lnR as a function of the local coalescence
rate and chirp mass after three years of observation at
design sensitivity. The solid black curve indicates the
rates above which a BBH background is detectable
with optimal SNR ¼ 3 after three years when correctly
assuming the Fiducial model. The dashed black curve

FIG. 3. Contours of maximum log-likelihood ratios lnR between the Fiducial and power-law background models [Eqs. (3) and
(7), respectively] for Advanced LIGO (H1-L1) (left) and colocated detectors (H1-H2) (right), as a function of the background’s average
chirp mass and local coalescence rate. The results shown assume three years of integration time at design sensitivity. The solid and
dashed black curves indicate the local coalescence rates at which a BBH background is detectable with SNR ¼ 3 after three years when
assuming the Fiducial and power-law models, respectively, and the star indicates the background associated with GW150914 [15].
Although the background inferred from GW150914 may be marginally detectable with Advanced LIGO after three years of observation,
it is indistinguishable from a simple power-law model. The background remains indistinguishable from a power law even for colocated
detectors, which are predicted to make a strong detection of the BBH background.
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similarly indicates rates above which BBH backgrounds
are detectable with SNR ¼ 3 when assuming a power-law
model. This is not the optimal SNR, since the space
of power-law models does not contain the true BBH
spectrum. The best-fit background parameters inferred
from GW150914 [5,6,15] are indicated by a star. Over a
large region of parameter space, lnR≲ 1; in this region,
the power-law and Fiducial models cannot be distin-
guished. Only for chirp masses and local rates much larger
than those implied by GW150914 is lnR > 1. While
Advanced LIGO is therefore likely to detect the stochastic
background associated with GW150914, such a back-
ground is indistinguishable from a simple power law. In
particular, ≈6000 yr of observation at design sensitivity
are required to attain lnR ¼ 3.
The Advanced LIGO network consists of two interfero-

meters at Hanford, Washington and Livingston, Louisiana.
The sensitivity of the Hanford-Livingston (H1-L1) network
to a BBH background is ultimately limited at high
frequencies by the overlap reduction function γðfÞ, which
rapidly approaches zero for f ≳ 60 Hz [24]. During Initial
LIGO, a third interferometer (H2) was present at Hanford,
colocated and co-oriented with H1 [34]. With a constant
overlap reduction function of γH1-H2ðfÞ ¼ 1, the H1-H2
pair is significantly more sensitive at high frequencies than
H1-L1. While there are currently no plans to reinstall a

second interferometer at Hanford during Advanced
LIGO, it is interesting to consider the performance of a
hypothetical H1-H2 network of colocated 4-km aLIGO
interferometers. Figure 3 also shows maximum likelihood
ratios between the Fiducial and power-law models for
this hypothetical H1-H2 network. Although the BBH
background is detectable by the H1-H2 network after
three years, it remains indistinguishable from a power
law. Approximately 50 yr of observation with design-
sensitivity colocated detectors are required to reach
lnR ¼ 3. Although this represents a factor ≈ 120 improve-
ment over the H1-L1 performance above, it is nevertheless
an impractically long time.
In Fig. 4, contours of lnR are instead shown in terms

of the background amplitude at 10 Hz (which scales as

Ω ∼M5=3
c R0) and the frequency fmax at which the back-

ground’s energy density is at a maximum (fmax ∼ 1=Mc;
see Fig. 1). From this figure, it is apparent that the only
backgrounds distinguishable from power laws using H1-L1
are those for which fmax ∼ 10–50 Hz, which corresponds
to the most sensitive frequency band for the isotropic
stochastic search. The H1-H2 network shows sensitivity
across a broader frequency band, as this configuration
avoids the penalty associated with the overlap reduction
function at high frequencies.

FIG. 4. Maximum log-likelihood contours between the astrophysical and power-law models, as a function fmax (see Fig. 1) and the
background’s amplitude at 10 Hz. Results are shown for Advanced LIGO (left) and a network of colocated aLIGO detectors (right),
assuming three years of integration at design sensitivity. Advanced LIGO is best able to distinguish realistic background models from
power laws for frequencies fmax between 10 and 50 Hz, corresponding to the most sensitive frequency band for the stochastic search. As
in Fig. 3, solid and dashed black curves show the amplitudes at which a background is detectable with SNR ¼ 3 after three years, using
the Fiducial and power-law models, respectively. The star indicates the Fiducial background associated with GW150914.
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Any configuration of advanced detectors appears
unlikely to differentiate an astrophysical BBH model from
a simple power law. Hence, parameter estimation and
model selection on the BBH background is limited to
studying only its amplitude rather than its shape, and efforts
to simultaneously constrain multiple parameters (e.g., Mc
and R0) from the stochastic background alone will be
thwarted by large degeneracies. Some sensitivity can be
gained, however, by applying direct CBC measurements as
priors on stochastic background parameters. With tight
priors on the chirp mass and local rate, for instance, the
stochastic search becomes increasingly sensitive to ampli-
tude differences between different models of the BBH
merger rate and redshift distribution.
For a GW150914-like background, for instance, Fig. 5

shows likelihood ratios between the Fiducial and
LowMetallicity models as a function of observation
time, for both the H1-L1 and H1-H2 detector networks
(solid and dashed curves, respectively). We take the
Fiducial model as the “true” background, and assume
delta-function priors on the average chirp mass and local
coalescence rate. Even in this most optimistic case, at least
25 yr of observation with H1-L1 are required to distinguish
(with log-likelihood ratio lnR ¼ 3) between these models.
Colocated detectors, however, begin to distinguish between
the Fiducial and LowMetallicity models in only
three years. In a more careful treatment using realistic
priors on the average chirp mass and local coalescence rate,
we find that approximately 30 yr of observation are
required to distinguish between background models using
H1-L1, while 10 yr are required with H1-H2.
As a rule of thumb, it is only possible to distinguish

between two astrophysical scenarios if the difference

ΔΩðfÞ between their predicted spectra exceeds the sensi-
tivity of the detector network. For the Advanced LIGO
Hanford-Livingston network operating at design sensitiv-
ity, a deviation of

ΔΩðfÞ ≳ 10−9ðf=10 HzÞ2=3ð1 yr=TÞ1=2 ð16Þ
is required in order to select between two models with 3σ
significance.
The above analysis assumes a standard cross-correlation

pipeline, optimal for a stochastic background that is sta-
tionary, isotropic, and Gaussian. However, the BBH stochas-
tic background is non-Gaussian [15], and it may be possible
to improve upon the above results with future pipelines
optimized for non-Gaussian backgrounds [33,35,36].

IV. RESOLVING ADDITIONAL BACKGROUNDS

Once a stochastic signal is observed by advanced
detectors, a natural question will be: is it consistent with
the expected background from binary black hole mergers
(the “BBH-only” hypothesis), or is there a contribution
from something else, e.g., cosmic strings or cosmological
sources (the “BBH+” hypothesis)? In this sense, the BBH
background now becomes a limiting foreground, obscuring
the presence of additional, weaker background compo-
nents. As a simple scenario, consider the combined signal
ΩðfÞ ¼ ΩBBHðfÞ þΩc from a Fiducial background of
GW150914-like black holes (chirp mass Mc ¼ 28 M⊙
and local rate R0 ¼ 16 Gpc−3 yr−1) and a flat background
Ωc of cosmological origin. How loud must the cosmologi-
cal background be in order to be detectable against the
BBH background? This question is equivalent to asking:
how loud must the stochastic signal be in order to detect a
spectral index that is inconsistent with the BBH scenario?
Since we know that a potentially detectable background
from BBHs is expected, thanks to the observation of
GW150194, only observation of a spectral index incon-
sistent with 2=3 can provide evidence of a distinct
cosmological background.
This question can be cast as a model selection problem.

The simplest “BBH-only” model is an f2=3 power law
parametrized only by an amplitude Ω0 ∝ R0M

5=3
c :

ΩBBH−ðfÞ ¼ Ω0

�
f
f0

�
2=3

: ð17Þ

This model is valid if we restrict our attention to the Mc≲
150M⊙ regime, where a power law is indistinguishable from
a realistic background as demonstrated in Sec. III. For the
“BBH+” model, assume a power law plus a constant Ω2:

ΩBBHþðfÞ ¼ Ω1

�
f
f0

�
2=3

þ Ω2: ð18Þ
As in Sec. III, we consider the maximum likelihood

ratio R ¼ LMLðΩjΩBBHþÞ=LMLðΩjΩBBH−Þ between these
models, with likelihoods defined as in Eq. (12). The
“BBH-only” likelihood is maximized by the amplitude

FIG. 5. Projected log-likelihood ratios lnR between the
Fiducial and LowMetallicity background models, as a
function of observation time with Advanced LIGO (H1-L1, solid
curves). We assume that the underlying BBH background is
given by the Fiducial model, with chirp mass Mc ¼ 28M⊙
and local coalescence rate R0 ¼ 16 Gpc−3 yr−1 following
GW150914. We also include log-likelihoods for a network of
colocated Advanced LIGO detectors (H1-H2, dashed curves).
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ΩML
0 given in Eq. (14) [replacing ΩBBHðfÞ with the

combined background ΩðfÞ ¼ ΩBBHðfÞ þ Ωc considered
here]. The “BBH+” likelihood is maximized by

ΩML
1 ¼ ðωj1ÞðΩj1Þ − ð1j1ÞðΩjωÞ

ðωj1Þ2 − ðωjωÞð1j1Þ ;

ΩML
2 ¼ ðωj1ÞðΩjωÞ − ðωjωÞðΩj1Þ

ðωj1Þ2 − ðωjωÞð1j1Þ : ð19Þ

Contours of the maximum log-likelihood ratio are
shown in Fig. 6 as a function of the cosmological
background amplitude Ωc and the total integration time,
for the H1-L1 detector network (left-hand panel) and for
two colocated detectors (right-hand panel). In each panel,
the black solid (dashed) curves indicate the observation
times necessary to detect the combined astrophysical and
cosmological background with optimal SNR ¼ 3 (5); note
that these curves become vertical as Ωc approaches zero,
corresponding to the fixed detection time of the BBH
background alone. The gray solid (dashed) curves indicate
the cosmological background amplitudes that would
otherwise be detectable with optimal SNR ¼ 3 (5), if
there existed no BBH background.
The fact that the gray curves lie deep within the lnR≃ 0

region implies that the presence of a BBH background
serves to obscure any cosmological background that
would otherwise be detectable. If no BBH background

were present, for instance, Advanced LIGO could detect a
cosmological background of amplitude Ωc ≈ 10−9.0 with
SNR ¼ 3 after three years of observation. When a BBH
background is present, however, a much larger amplitude
of Ωc ≈ 10−8.2 (corresponding to lnR ¼ 3) is required to
resolve an additional flat background component. After
three years of observation at design sensitivity, Advanced
LIGO will therefore be able to constrain the amplitudes
of additional background components to Ωc ≲ 10−8.2.
A network of colocated detectors performs somewhat
better, constraining additional background components to
Ωc ≲ 10−8.4 after one year of observation and to ≲10−8.6
after three years of observation.
In the above, we treat the power-law amplitudes Ω0 and

Ω1 of Eqs. (17) and (18) as entirely free parameters. In
reality, we will likely be able to place a prior on these
parameters, using CBC estimates of the average chirp mass
and local coalescence rate as well as estimates of the
theoretical uncertainty in background modeling [15].
However, even if we assume the amplitudes Ω0 and Ω1

are known to within a factor of 2 (an optimistic assumption
given the uncertainty in the merger rate evolution with
redshift [15]), we find little change in the results presented
in Fig. 6. With optimistic priors, the ability of H1-L1 and
H1-H2 to resolve a cosmological background is improved
only for observation times T ≲ 1 yr. After T ≈ 1 yr of
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FIG. 6. Contours of the maximum likelihood ratio between the “BBH+” and “BBH-only” models, as a function of the amplitude
of the cosmological background Ωc and the total integration time. Results are shown for both the H1-L1 detector combination (left) and
for two colocated detectors (right). Black curves indicate observation times required to detect the combined (astrophysical plus
cosmological) background with a given optimal SNR. Gray curves indicate the amplitude of a flat cosmological background that alone
would be detectable to a given SNR. Solid curves represent SNR ¼ 3 and dashed curves represent SNR ¼ 5.
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integration, the experimental uncertainty on the stochastic
background amplitude falls below the width of the prior
distribution, and so the priors are no longer informative.

V. CONCLUSION AND FUTURE OUTLOOK

In this paper, we seek to address three questions
concerning an astrophysical binary black hole background.
First, how does the information contained in a stochastic
background compare with what can be learned from
nearby, individually resolvable binary mergers? Direct
searches for binary black hole coalescences are, on average,
sensitive to redshifts less than z50% ≈ 0.5 for events like
GW150914. The stochastic background, on the other hand,
is dominated by binary mergers in the far more distant
Universe, with 90% of the stochastic SNR due to sources
between redshifts z ≈ 0.1 and 3.5. The stochastic back-
ground therefore encodes astrophysical information (e.g.,
the mass distribution and rate of BBHmergers as a function
of redshift) about a population of black hole binaries that is
distinct from the local population visible to CBC searches.
Second, what astrophysics can we hope to extract from

future observations of the binary black hole background? In
principle, the functional form of the background’s energy
density spectrum depends upon the precise characteristics
of the underlying binary black hole population (mean chirp
mass, local coalescence rate, star formation history, etc).
We demonstrate, however, that for realistic chirp masses
and coalescence rates, the form of the stochastic back-
ground is indistinguishable from a simple f2=3 power law
with Advanced LIGO. In the near future, parameter
estimation and model selection on the stochastic back-
ground are therefore limited to measuring only the overall
amplitude of the background.
Finally, how is our ability to measure other stochastic

backgrounds affected by the presence of an astrophysical
BBH background? We find that an astrophysical BBH
background obscures the presence of any underlying cos-
mological background that might otherwise be detected
with Advanced LIGO. For such a cosmological background
to be resolvable, it must be strong enough to overcome
our uncertainty in the amplitude and spectral shape of the
BBH background. In this sense, the BBH background now
acts as a foreground, limiting Advanced LIGO’s sensitivity
to additional, weaker background components.
It should be noted that the Fiducial and

LowMetallicity background models we consider here
make specific assumptions about the metallicities of black
hole progenitors and the masses and formation times of
black hole binaries, properties that are currently only
poorly understood. Different models of the BBH back-
ground will yield different numerical results for the above
three questions. Qualitatively, however, the above conclu-
sions are robust.
Future developments, however, may brighten these pros-

pects. It may be possible to achieve better model selection

than we show here through the development of a non-
Gaussian stochastic pipeline, optimized for signals like the
expected BBH background. Future stochastic measurements
will also be strongly aided by any developments in instru-
mentation or data analysis that improve detector sensitivities
at high frequencies, as it is only at high frequencies that the
BBH background deviates substantially from a power law.
To this end, one strategy is the use of colocated detectors,
such as the H1-H2 configuration of Initial LIGO, to avoid the
penalty associatedwith the overlap reduction function at high
frequencies (at the potential cost of introducing correlated
environmental noise) [34]. As we see in Sec. II, it may in fact
be possible for an Advanced LIGO H1-H2 configuration to
differentiate between astrophysical background models on a
more practical time scale of ∼5–10 yr (as opposed to hund-
reds or thousands of years with the H1-L1 configuration).
In the more distant future, third-generation detectors like

the Einstein Telescope (ET) [37] will be able to probe black
hole binaries at cosmological distances. ET is projected
to resolve individual events like GW150914 to redshifts of
z ∼ 15 [38], allowing for precision observation of the binary
black hole population over the entire history of star
formation. The ability of ET to resolve such events raises
the exciting possibility of the individual identification and
subtraction of each BBH coalescence from the data, opening
the way for the detection of weaker, underlying stochastic
backgrounds of astrophysical or even cosmological origin.
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APPENDIX A: BINARY BLACK HOLE ENERGY
SPECTRUM

We adopt the BBH model described in Ref. [28], which
presents a phenomenological description of the inspiral,
merger, and ringdown of a black hole coalescence. The
corresponding energy spectrum for a single binary is [9]

dEBBH

df
¼ ðGπÞ2=3M5=3

c

3
HðfÞ; ðA1Þ

where
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HðfÞ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

f−1=3 ðf<fmergeÞ
f2=3

fmerge
ðfmerge≤f<fringÞ

1

fmergef
4=3
ring

�
f

1þðf−fringσ=2 Þ2
�

2

ðfring≤f<fcutoffÞ

0 ðf≥fcutoffÞ:
ðA2Þ

Definitions for fmerge, fring, fcutoff , and σ are given in
Sec. IV of Ref. [28].

APPENDIX B: STAR FORMATION AND MEAN
METALLICITY EVOLUTION

Following the Fiducial model of Ref. [15], we adopt
the star formation rate [30,31]

R�ðzÞ ¼ ν
a exp ½bðz − zmÞ�

a − bþ b exp ½aðz − zmÞ�
M⊙

Mpc3 yr
; ðB1Þ

with ν ¼ 0.145, zm ¼ 1.86, a ¼ 2.80, and b ¼ 2.62.
In the Fiducial model, the rate of binary black hole

formation is proportional to the rate of star formation with
metallicity below Z⊙=2. The mean stellar metallicity is
given as a function of redshift by [15,39]

logZðzÞ ¼ 0.5þ log

�
yð1 − RÞ

ρb

Z
20

z

RBBH� ðz0Þdz0
Hðz0Þð1þ z0Þ

�
;

ðB2Þ

with stellar metal yield y ¼ 0.019, return fraction R ¼ 0.27,
baryon density ρb ¼ 2.77×1011Ωbh20M⊙ Mpc−3, and
Ωb ¼ 0.045. The star formation rate used in calibrating y
and R is [39]

RMD� ðzÞ ¼ 0.015
ð1þ zÞ2.7
1þ ð1þz

2.9 Þ5.6
M⊙

Mpc3 yr
: ðB3Þ

Assuming that stellar metallicity is log-normally distributed
with a standard deviation of 0.5, the fraction of stars with
Z < Z⊙=2 is

FðzÞ ¼
R
logZ⊙=2
−∞ expf−2½logZ − logZðzÞ�2gd logZR∞

−∞ expf−2½logZ − logZðzÞ�2gd logZ : ðB4Þ

The rate of binary black hole formation is assumed to be
proportional to R�ðzÞFðzÞ.

APPENDIX C: THRESHOLD REDSHIFTS

The optimal signal-to-noise ratio of a single-detector
matched filter search is

ρ2 ¼ 4

Z
∞

0

j ~hðfÞj2
PðfÞ df; ðC1Þ

where ~hðfÞ is the measured strain signal. Using the
phenomenological BBH model of Ref. [28], the signal-
to-noise ratio of an optimally positioned and oriented
binary is

ρ2 ¼ 5

6

c2

π4=3D2
L

�
GMcð1þ zÞ

c3

�
5=3

f−7=3merge

Z
∞

0

sðfÞ2
PðfÞ df;

ðC2Þ

where DL ¼ Dð1þ zÞ is the luminosity distance, D the
proper distance to the source, and

sðfÞ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

�
f

fmerge

�
−7=6

ðf<fmergeÞ
�

f
fmerge

�
−2=3

ðfmerge≤f<fringÞ
�

fring
fmerge

�
−2=3 σ2=4

ðf−fringÞ2þσ2=4
ðfring≤f<fcutoffÞ

0 ðf≥fcutoffÞ:
ðC3Þ

The values of fmerge, fring, fcutoff , and σ are given in
Ref. [28]. The source distance D is given in terms of
redshift by

DðzÞ ¼ c
Z

z

0

dz0

Hðz0Þ : ðC4Þ

In general, the squared signal-to-noise ratio of an
arbitrarily positioned and oriented source is reduced from
the optimal value Eq. (C2) by an antenna factor F ,
which depends on the source’s sky position, polarization
angle, and inclination. Given an ensemble of randomly
positioned and oriented sources, the median value of F is
hF imed ¼ 0.107. The threshold redshifts z50% quoted in
Sec. II are obtained by numerically solving Eqs. (C2) and
(C4) for the redshift at which the squared signal-to-noise
ratio of an optimally positioned and oriented binary is
ρ2 ¼ 64=hF imed. Beyond redshift z50%, less than 50% of
binaries are directly resolvable.
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