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Tunneling is often claimed to be the key mechanism underlying possible speedups in quantum
optimization via quantum annealing (QA), especially for problems featuring a cost function with tall and
thin barriers. We present and analyze several counterexamples from the class of perturbed Hamming weight
optimization problems with qubit permutation symmetry. We first show that, for these problems, the
adiabatic dynamics that make tunneling possible should be understood not in terms of the cost function but
rather the semiclassical potential arising from the spin-coherent path-integral formalism. We then provide
an example where the shape of the barrier in the final cost function is short and wide, which might suggest
no quantum advantage for QA, yet where tunneling renders QA superior to simulated annealing in the
adiabatic regime. However, the adiabatic dynamics turn out not be optimal. Instead, an evolution involving
a sequence of diabatic transitions through many avoided-level crossings, involving no tunneling, is optimal
and outperforms adiabatic QA. We show that this phenomenon of speedup by diabatic transitions is not
unique to this example, and we provide an example where it provides an exponential speedup over
adiabatic QA. In yet another twist, we show that a classical algorithm, spin-vector dynamics, is at least as
efficient as diabatic QA. Finally, in a different example with a convex cost function, the diabatic transitions
result in a speedup relative to both adiabatic QA with tunneling and classical spin-vector dynamics.

DOI: 10.1103/PhysRevX.6.031010 Subject Areas: Computational Physics, Quantum Physics

I. INTRODUCTION

The possibility of a quantum speedup for finding the
solution of classical optimization problems is tantalizing, as a
quantumadvantage for this class of problemswould provide a
wealth of new applications for quantum computing. The goal
of many optimization problems can be formulated as finding
an n-bit string xopt that minimizes a given cost function fðxÞ,
which can be interpreted as the energy of a classical Ising
spin system whose ground state is xopt. Finding the ground
state of such systemscanbe hard if, e.g., the system is strongly
frustrated, resulting in a complex energy landscape that
cannot be efficiently explored with any known algorithm
due to the presence ofmany local minima [1]. This can occur,
e.g., in classical simulated annealing (SA) [2], when the
system’s state is trapped in a local minimum.
Thermal hopping and quantum tunneling provide two

starkly different mechanisms for solving optimization

problems, and finding optimization problems that favor
the latter continues to be an open theoretical question [3,4].
It is often stated that quantum annealing (QA) [5–9] uses
tunneling instead of thermal excitations to escape from
local minima, which can be advantageous in systems with
tall but thin barriers that are easier to tunnel through than to
thermally climb over [4,9,10]. It is with this potential
tunneling-induced advantage over classical annealing that
QAand thequantumadiabatic algorithm [11]were proposed.
Our goal in this work is to address the question of the role
played by tunneling in providing a quantum speedup, and to
elucidate it by studying a number of illustrative examples.
We demonstrate that the role of tunneling is significantly
more subtle than what might be expected on the basis of
the “tall and thin barrier” picture.
In order to make progress on this question, the potential

with respect to which tunneling occurs must be clearly
specified. Tunneling, in quantum mechanics, is always
defined with respect to a potential that delineates classically
allowed and forbidden regions. This potential is usually
obtained by the semiclassical (SC) limit of the quantum
dynamics: i.e., by the potential energy term of the action
obtained in a path-integral representation of the quantum
dynamics. In QA, one typically initializes the system in the
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known ground state of a simple Hamiltonian and evolves the
system towards a Hamiltonian representing the final cost
function. We argue that when one takes a natural semi-
classical limit, the semiclassical potential does not become
the final cost function. Instead, one obtains a potential
appearing in the action of the spin-coherent path-integral
representation of the quantum dynamics. This potential,
which here we call the spin-coherent potential, was first
considered in the setting of adiabatic quantum computation
by Refs. [12,13]. It has also been used profitably before in
Refs. [14,15].
We analyze the spin-coherent potential for several

examples from a well-known class of problems known as
perturbed Hamming weight oracle (PHWO) problems.
These are problems for which instances can be generated
where QA either has an advantage over classical random
search algorithms with local updates, such as SA [12,16], or
has no advantage [16,17]. Moreover, because PHWO prob-
lems exhibit qubit permutation symmetry, their quantum
evolutions are easily classically simulatable, and further-
more, their spin-coherent potential is one dimensional.
Tunneling becomes clear and explicit for these problems
when using the spin-coherent potential. While earlier works
had already indicated that tunneling can be understood via
this potential, here we provide comprehensive evidence
for this claim. In the process, we provide a list of intuitive
criteria that defines what one means by tunneling in the
examples studied (see Sec. III).
Having obtained a clear picture of tunneling, we focus on

a particular PHWO problem that has a plateau in the final
cost function (henceforth,“the fixed plateau”). This prob-
lem offers a counterexample to two commonly held views:
(1) QA has an advantage, due to tunneling, over SA only on
problems where the barrier in the final cost function is tall
and thin, and (2) tunneling is necessary for a quantum
speedup in QA. We refute the first statement by showing
that for the fixed plateau, which is a short and wide cost
function, QA significantly outperforms SA by using
tunneling. Indeed, we find numerically that adiabatic QA
(AQA) needs a time of Oðn0.5Þ to find the ground state,
where n is the number of spins or qubits. Moreover, using
the spin-coherent potential, we observe the presence of
tunneling during the quantum anneal. On the other hand,
we prove that single-spin update SA takes a time of
Oðnplateau widthÞ. Thus, we have essentially an arbitrary
polynomial tunneling speedup of QA over SA on a cost
function that is neither tall nor thin. We remark that this
result about SA’s performance is also a rigorous proof of a
result due to Reichardt [16] that classical local search
algorithms will fail on a certain class of PHWO problems
and is of independent interest.
We refute the second statement by showing that, for the

fixed plateau, it is actually optimal to run QA diabatically
(henceforth, DQA for diabatic quantum annealing). The
system leaves the ground state, only to return through a

sequence of diabatic transitions associated with avoided-
level crossings. In this regime, the run time for QA isOð1Þ.
Moreover, in this regime, we do not observe any of the
standard signatures of tunneling.We show that this feature—
that the optimal evolution time tf for QA is far from being
adiabatic—is present in a few other PHWO problems and
that this optimal evolution involves no multiqubit tunneling.
Given that the optimal evolution involves no tunneling,

we are inspired to investigate a classical algorithm,
spin-vector dynamics (SVD), which can be interpreted
as a semiclassical limit of the quantum evolution with a
product-state approximation. We observe that SVD evolves
in an almost identical manner to DQA, and is able to
recover the speedup by DQA. Thus, in these problems, we
show that what may be suspected to be a highly quantum-
coherent process—diabatic transitions—can be mimicked
by a quantum-inspired classical algorithm.
The structure of this paper is as follows. In Sec. II, we list

the PHWO problems we study. In Sec. III, we use these
problems to present evidence that tunneling can be under-
stood with respect to the spin-coherent potential. In Sec. IV,
we focus on the fixed plateau PHWO problem and
exhaustively analyze the performance of various algorithms
for this problem. In particular, we numerically characterize
AQA (Sec. IVA), provide a rigorous proof of SA’s
performance (Sec. IV B), and numerically analyze DQA
(Sec. IV C), SVD (Sec. IV D), and a quantum Monte Carlo
algorithm (Sec. IV E). We conclude in Sec. V by discussing
the implications of our work and possible directions for
future work. Additional background information and tech-
nical details can be found in the Appendixes.

II. PERTURBED HAMMING WEIGHT
OPTIMIZATION PROBLEMS AND

THE EXAMPLES STUDIED

The cost function of a PHWO problem is defined as

fðxÞ ¼
� jxj þ pðjxjÞ l < jxj < u

jxj elsewhere;
ð1Þ

where jxj denotes the Hamming weight [18] of the bit
string x ∈ f0; 1gn. Since jxj is invariant under permutation
of bits, so is fðxÞ ¼ fðjxjÞ. For SA, this is the cost function.
For QA, this will be proportional to the energy of the final
Hamiltonian. More precisely, we define QA as the closed-
system quantum evolution governed by the time-dependent
Hamiltonian,

HðsÞ ¼ 1

2
ð1 − sÞ

X
i

ð1 − σxi Þ þ s
X
x

fðxÞjxihxj; ð2Þ

where we have chosen the standard transverse field “driver”
Hamiltonian Hð0Þ that assumes no prior knowledge of
the form of fðxÞ, and a linear interpolating schedule,
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with s≡ t=tf being the dimensionless time parameter.
The initial state is the ground state of Hð0Þ.
Below, we list several of PHWO examples that we study

in greater detail. We refer to the case with p ¼ 0 as the
plain Hamming weight problem.
(1) Fixed plateau:

fðxÞ ¼
�
u − 1 l < jxj < u

jxj otherwise:
ð3Þ

Clearly, this forms a plateau in Hamming weight
space. We take u, l ¼ Oð1Þ. Since the location of
the plateau does not change with n, we refer to it as
“fixed.” An instance of this cost function with l ¼ 3
and u ¼ 8 is illustrated in Fig. 1. By numerical
diagonalization, we find that QA has a constant gap
for this cost function.

(2) Reichardt:

fðxÞ ¼
� jxj þ hðnÞ lðnÞ < jxj < uðnÞ
jxj otherwise;

ð4Þ

with h½ðu − lÞ= ffiffi
l

p � ¼ oð1Þ. For this case, Reichardt
[16] proved a constant lower bound on the minimum
spectral gap during the quantum anneal. In
Appendix A, we provide a pedagogical review of
this proof and fill in some details not explicitly
provided in the original proof.

(3) Moving plateau:

fðxÞ ¼
�
u − 1 lðnÞ < jxj < uðnÞ
jxj otherwise;

ð5Þ

with lðnÞ ¼ n=4 and uðnÞ ¼ Oð1Þ. This is termed
“moving” since the location of the plateau changes
with n. Note that this is a special case from the
Reichardt class.

(4) Grover:

fðxÞ ¼
�
n jxj ≥ 1

0 jxj ¼ 0.
ð6Þ

This is a minor modification of the standard Grover
problem: the marked state is the all-zeros string with
energy 0, and the energy of all the other states is n.
Scaling the energy by n keeps the maximum energy
of all the PHWO problems we consider comparable.

(5) Spike:

fðxÞ ¼
�
n jxj ¼ n=4

jxj otherwise:
ð7Þ

This was studied by Farhi et al. in Ref. [12], where it
was argued that the quantum minimum gap scales

as Oðn−1=2Þ and that SA will take exponential time
to find the ground state. However, we show below
(Fig. 8) that SVD is more efficient than QA for this
problem.

(6) Precipice:

fðxÞ ¼
�−1 jxj ¼ n

jxj otherwise:
ð8Þ

This was studied by van Dam et al. in Ref. [17],
where it was proved that the quantum minimum gap
for this problem scales as Oð2−n=2Þ.

(7) α rectangle:

fðxÞ ¼
� jxj þ nα n

4
− 1

2
cnα < jxj < n

4
þ 1

2
cnα

jxj otherwise:
ð9Þ

We call this an α rectangle because the width of
the perturbation (cnα) is c times the height. This
was studied in Ref. [19], where evidence for the
following conjecture for the scaling of the quantum
minimum gap gmin was presented:

gmin ¼

8>><
>>:

const α < 1
4

1=polyðnÞ 1
4
< α < 1

3

1= expðnÞ α > 1
3
:

ð10Þ

Note that α < 1=4 is a member of the Reichardt
class, and thus the constant lower bound on the
minimum gap is a theorem, and not a conjecture. We
restrict ourselves to the case of c ¼ 1.

Notice that the different examples listed above supply
different types of barriers to single-spin update SA. Some of
them are purely energetic barriers: e.g., the spike. Some of
them are purely entropic barriers [20]: e.g., the plateau. And
some of them are a combination of both: e.g., the α-rectangle
problems. We show in our analysis that when viewed via the
SC potential, these entropic barriers get translated into
energy barriers for the adiabatic dynamics.

FIG. 1. Fixed plateau cost function with l ¼ 3, u ¼ 8.
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We remark that all the problems listed above are
representative members of a large family of problems: if
the input bit string to any of the above problems is
transformed by an XOR mask, then all of our analysis
below will hold. For QA, the XORmask can be represented

as a unitary transformation: ⊗
n

i¼1
ðσxi Þai , with a ∈ f0; 1gn

being the mask string. As this unitary commutes with the
QA Hamiltonian at all times, none of our subsequent
analysis is affected. Similar arguments go through for
SA and all the other algorithms that we consider.
We note that PHWO problems are strictly toy prob-

lems since these problems are typically represented by
highly nonlocal Hamiltonians (see Appendix B) and thus
are not physically implementable, in the same sense
that the adiabatic Grover search problem is unphysical
[21,22]. Nevertheless, these problems provide us with
important insights into the mechanisms behind a quan-
tum speedup (or lack thereof), and illuminate the relative
advantages of one computational model over another. In
our case, among other lessons, these problems show us
the ability of quantum annealing to tunnel, which SA is
unable to do. Analysis of these problems could also be
viewed as stepping stones towards realizable quantum
algorithms.

III. SEMICLASSICAL POTENTIAL
AND TUNNELING

In order to study tunneling, we need a potential arising
from a semiclassical limit, which defines classically
allowed and forbidden regions. One approach to writing
a semiclassical potential for quantum Hamiltonians is to
use the spin-coherent path-integral formalism [23]. This

semiclassical potential has been used profitably in various
QA studies, e.g., Refs. [12–15], and we extend its appli-
cations here. For the quantum evolution, since the initial
state [the ground state of Hð0Þ] is symmetric under
permutations of qubits and the unitary dynamics preserves
this symmetry [it is a symmetry of HðsÞ for all s], we
can consistently restrict ourselves to spin-1=2 symmetric
coherent states jθ;ϕi:

jθ;ϕi ¼ ⊗
n

i¼1

�
cos

�
θ

2

�
j0ii þ sin

�
θ

2

�
eiφj1ii

�
: ð11Þ

The spin-coherent potential is then given by

VSCðθ;ϕ; sÞ ¼ hθ;ϕjHðsÞjθ;ϕi: ð12Þ

We show that for all the examples defined above except
the Reichardt class (we address this below), this potential
captures important features of the quantum Hamiltonian
[Eq. (2)] and reveals the presence of tunneling. Specifically,
as follows:
(1) The spin-coherent potential displays a degenerate

double well almost exactly at the point of the
minimum gap. In Fig. 2(a), we plot, for the fixed
plateau, the potential near the minimum gap. The
potential transitions from having a single minimum
on the right to a single minimum on the left. In
between, it becomes degenerate and displays a
degenerate double well. Since the instantaneous
ground state corresponds to the position of the
global minimum, which exhibits a discontinuity,
the degeneracy point is where tunneling should be
most helpful. In Fig. 3(a), we show that the location

FIG. 2. Results for the fixed plateau problem with l ¼ 0 and n ¼ 512. (a) The semiclassical potential with u ¼ 6 exhibits a double-
well degeneracy at the position s ≈ 0.89 (solid line), but is nondegenerate before and after this point (dotted and dashed lines), thus
leading to a discontinuity in the position of its global minimum. The same is observed for the other PHWO problems we study (not
shown). (b) The trace-norm distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhψGSjψSC GSij2

p
between the quantum ground state jψGSi (obtained by numerical

diagonalization) and the spin-coherent state jψSC GSi corresponding to the instantaneous global minimum in VSC, as a function of t=tf.
The peak corresponds to the location of the tunneling event, at which point the semiclassical approximation breaks down. (c) hHWi in
the instantaneous quantum ground state (GS) and the instantaneous ground state as predicted by the semiclassical (SC GS) potential, as a
function of t=tf . The sharp drop in the GS and SC GS curves is due to a tunneling event wherein ∼u qubits are flipped, which occurs at
the degeneracy point observed in the spin-coherent potential.
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of the minimum gap of the quantum evolution is
very close to the location of the degenerate double
well in the spin-coherent potential.

(2) The ground state predicted by the spin-coherent
potential is a good approximation to the quantum
ground state except near the degeneracy point. As
expected from a potential that arises in a semi-
classical limit, the ground state predicted by the
spin-coherent potential (i.e., the spin-coherent state
corresponding to the instantaneous global minimum
in VSC) agrees well with the quantum ground state,
except where tunneling is important. In particular,
delocalization when the spin-coherent potential is a
degenerate double well (or is close to being one)
should imply that approximating the ground state
with a wave function localized in one of the wells
fails. Indeed, we find this to be the case. We illustrate
this for the fixed plateau in Fig. 2(b); similar results
hold for the other examples we consider.

(3) There is a sharp change in the ground state of the
adiabatic quantum evolution at the degeneracy point.
Tunneling should be accompanied by a sharp change
in the properties of the ground state at the degeneracy
point as the state shifts from being localized in one
well to the other. We quantify this change by calcu-
lating the expectation value of the Hamming weight
operator, defined as HW ¼ 1

2

P
n
i¼1 ð1 − σzi Þ. We ex-

pect a discontinuity in the spin-coherent ground-state
expectation value hHWi, because the spin-coherent
ground state changes discontinuously at the degen-
eracy point. We find that there is a nearly identical
change in the quantum ground-state expectation
value hHWi for all of the examples listed above.

This is illustrated explicitly for the fixed plateau in
Fig. 2(c). In Fig. 3(b), we show that there is close and
increasing agreement (as a function of n) between the
position of the sudden drop in hHWi and the position
of the degeneracy point, for all of the problems
considered.

(4) The scaling of the barrier height in the spin-coherent
potential is positively correlated with the scaling of
the minimum gap of the quantum Hamiltonian. In
Fig. 4, we see that as the barrier height increases, the
inverse of the quantum minimum gap also increases.

Note that the Reichardt class is absent from the
discussion above. The reason is that, for these problems,
the barrier in the spin-coherent potential is very small,
which makes its numerical detection difficult. Fortunately,
we can make some analytical claims about this class of
problems. By adapting Reichardt’s proof (reviewed in
Appendix A) that these problems have a constant minimum
gap, we are able to prove that the barrier height in the
spin-coherent potential for this class vanishes as n → ∞.
More precisely, we can show, for any perturbed Hamming
weight problem that,

Vpert
SC − Vunpert

SC ¼ s
X
l<k<u

fðkÞ
�
n
k

�
pðθÞk½1 − pðθÞ�n−k

¼ O
�
h
u − lffiffi

l
p

�
; ð13Þ

where the unperturbed case refers to hðnÞ ¼ 0 in Eq. (4).
Recall that h½ðu − lÞ= ffiffi

l
p � ¼ oð1Þ for the Reichardt class.

Thus, asymptotically, the spin-coherent potential for this
class approaches the spin-coherent potential of the

FIG. 3. (a) The difference in the position of the minimum gap from exact diagonalization and the position of the double-well
degeneracy [as shown in Fig. 2(a) for the fixed plateau) from the semiclassical potential, as a function of n for the fixed plateau, the
spike, the 0.5-rectangle, the 0.33-rectangle, the precipice, and Grover problems (log-log scale). (b) The difference in the position of the
sudden drop in Hamming weight [as seen in Fig. 2(c)] and the position of the double-well degeneracy from the semiclassical potential
[as seen in Fig. 2(a)], as a function of the number of qubits n for the fixed plateau, the spike, the 0.5-rectangle, the 0.33-rectangle, the
precipice, and Grover problems (log-log scale).
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unperturbed Hamming weight problem. It is easy to check
that the latter has a single minimum throughout the
evolution, and hence no barriers.
Taken together, these observations indicate that the spin-

coherent potential (not the cost function alone) is the
appropriate potential with respect to which tunneling is
to be understood for these problems.

IV. FIXED PLATEAU: PERFORMANCE
OF ALGORITHMS

Having motivated the spin-coherent potential for under-
standing tunneling, we now exhaustively analyze the fixed
plateau. We choose this problem because it forces us to
confront some intuitions about the performance of certain
algorithms. Considering the final cost function, the fixed
plateau has neither local minima nor a barrier going from
large to small jxj: it just has a long, flat section before the
ground state at jxj ¼ 0. This might suggest that it is easy for
an algorithm such as SA, and is not a candidate for a
quantum speedup. Moreover, given the absence of a barrier,
one might suspect that the quantum evolution would not
even involve multiqubit tunneling. In other words, given
that the final cost function presents only an entropic
obstacle to SA and tunneling typically needs an energetic
obstacle, one might suspect that there is no tunneling
present in this problem.
We dispel both of these intuitions and summarize our

findings first. In the previous section, we provided evidence
that tunneling is unambiguously present for this problem.
The spin-coherent potential involves energy barriers,
despite their absence in the final cost function, and the
adiabatic quantum evolution is forced to tunnel in order to
follow the ground state. By numerically solving the
Schrödinger equation, we find that AQA needs a time of

Oðn0.5Þ in order to reach a given success probability
(see Sec. IVA). Therefore, the adiabatic algorithm, via
tunneling, is able to solve this problem efficiently.
Moreover, we see that an entropic barrier in the final cost
function can get translated into an energetic barrier during
the quantum evolution.
Turning to SA, an algorithm that performs a local

stochastic search on the final cost function, we prove that
simulated annealing with single-spin updates takes time
Oðnu−l−1Þ ¼ Oðnplateau widthÞ to find the ground state (see
Sec. IV B). This result is due to the fact that a random
walker on the plateau has no preferred direction and
becomes trapped there. More precisely, the probability of
a leftward transition while on the plateau is proportional to
the probability of flipping one of a constant number of bits
(given by the Hamming weight) out of n, which scales as
∼1=n if l, u ¼ Oð1Þ. And since the walker needs to make
as many consecutive leftward transitions as the width of the
plateau in order to fall off the plateau, the time taken for
this to happen scales as Oðnplateau widthÞ. Consequently, we
obtain a polynomial speedup of AQA over SA that can be
made as large as desired. Therefore, using the fixed plateau,
we are able to demonstrate that a quantum speedup over
SA is possible via tunneling in the adiabatic regime.
However, is the adiabatic evolution optimal? In order to

find the optimal evolution time, we employ the optimal
time to solution (TTSopt), a metric that is commonly used in
benchmarking studies [24] (also see Appendix C). It is
defined as the minimum total time such that the ground
state is observed at least once with desired probability pd:

TTSopt ¼ min
tf>0

�
tf

lnð1 − pdÞ
ln ½1 − pGSðtfÞ�

�
; ð14Þ

FIG. 4. (a) The height of the barrier between the two wells at the degeneracy point of the spin-coherent potential [as seen in Fig. 2(a)],
as a function of n for the fixed plateau, the spike, the 0.5-rectangle, the 0.33-rectangle, the precipice, and Grover problems (log-log
scale). (b) The inverse of the minimum gap as a function of n for the fixed plateau, the spike, the 0.5-rectangle, the 0.33-rectangle, the
precipice, and Grover problems (log-log scale). The important thing to note is that the order of scaling is preserved in both plots; that is,
the steeper the scaling of the barrier height, the steeper the scaling of the inverse minimum gap.
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where tf is the duration (in QA) or the number of single-
spin updates (in SA) of a single run of the algorithm, and
pGSðtfÞ is the probability of finding the ground state in a
single such run. The use of TTSopt allows for the possibility
that multiple short runs of the evolution, each lasting an
optimal annealing time ðtfÞopt, result in a better scaling than
a single long (adiabatic) run with an unoptimized tf. The
quantum evolution that gives the optimal annealing time
relative to this cost function is actually DQA, with an
asymptotic scaling of Oð1Þ. Importantly, this diabatic
evolution does not contain any of the signatures of
tunneling discussed in the previous section. Therefore,
for the fixed plateau, tunneling does not give rise to the
optimal quantum performance.
Motivated by the fact that the optimal quantum evolution

involves no multiqubit tunneling, we consider spin-vector
dynamics [25] (see also Refs. [26,27]), a model that evolves
according to the spin-coherent potential in Eq. (12). SVD
can be derived as the saddle-point approximation to the
path-integral formulation of QA in the spin-coherent basis
[27]. The SVD equations are equivalent to the Ehrenfest
equations for the magnetization under the assumption that
the density matrix is a product state; i.e., ρ ¼⊗n

i¼1 ρi, where
ρi denotes the state of the ith qubit. This algorithm is useful
since it is derived under the assumption of continuity of the
angles ðθ;ϕÞ, so tunneling, which here would amount to a
discrete jump in the angles, is absent.
We also consider a quantum Monte Carlo based algo-

rithm, often called simulated quantum annealing (SQA)
[28,29]. We show that SQA has a scaling that is better than
SA’s. Indeed, this is consistent with the fact that SQA
thermalizes not just relative to the final cost function, but
also during the evolution.
We provide further details of our implementations of

each of these algorithms in Appendix D. We now turn to
each of the algorithms individually and detail their perfor-
mance for the fixed plateau problem.

A. Adiabatic dynamics

In order to study the scaling of adiabatic dynamics, we
consider the minimum time τ0 required to reach the ground
state with some probability p0, where we choose p0 to
ensure that we are exploring a regime close to adiabaticity
for QA. We call this benchmark metric the “threshold
criterion,” and set p0 ¼ 0.9. As shown in Fig. 5, we observe
a scaling for AQA that is ∼n0.5. As is to be expected given
that the tunneling for the fixed plateau problem is con-
trolled by the width of the plateau, which is constant (does
not scale with n), we find that τ0 scales in the same way for
the fixed plateau and the plain Hamming weight problems
(see Appendix A). This suggests that the dominant con-
tribution to the scaling at large n is not the time associated
with tunneling but rather the time associated with the plain
Hamming weight problem.

As also shown in Fig. 5, we find that the textbook
adiabatic criterion [30] given by

tf ≳ max
s∈½0;1�

jhε0ðsÞj∂sHðsÞjε1ðsÞij
gapðsÞ2 ð15Þ

serves as an excellent proxy for the scaling of AQA [31].
The scaling of AQA is matched by the scaling of the
numerator of the adiabatic condition, which is explained by
the fact that we find a constant minimum gap for the case l,
u ¼ Oð1Þ. This numerator turns out to be well approxi-
mated in our case by the matrix element of HðsÞ between
the ground and first excited states, leading to tf ∼ n0.5 in the
adiabatic limit. Note that calculating this matrix element
can easily be done for arbitrarily large systems, and is hence
much easier to check directly than the scaling of AQA.

B. Simulated annealing using random spin selection

We consider a version of SAwith random spin selection
as the rule that generates candidates for Metropolis updates.
Our main motivation is to understand the behavior of a

FIG. 5. Performance of different algorithms for the fixed
plateau problem with l ¼ 0 and u ¼ 6. Shown is a log-log plot
of the scaling of the time to reach a threshold success probability
of 0.9, as a function of system size n for AQA, SQA (β ¼ 30,
Nτ ¼ 64) and SA (βf ¼ 20). The time for SQA and SA is
measured in single-spin updates (for SQA this is Nτ times the
number of sweeps times the number of spins, whereas for SA this
is the number of sweeps times the number of spins), where both
are operated in “solver” mode as described in Appendix D. Also
shown is the scaling of the numerator of the adiabatic condition as
defined in Eq. (15). The scaling for AQA and the adiabatic
condition extracted by a fit using n≳ 102 is approximately n0.44.
However, the true asymptotic scaling is likely to be ∼n0.5 since
the scaling for the fixed plateau problem is clearly lower bounded
by the plain Hamming weight problem, for which we have
verified τ0 ∼ n0.5 (see Appendix A), and we expect the effect of
the plateau to become negligible in the large n limit. SQA scales
more favorably (∼n1.5) than SA (∼n5). We have checked that the
scaling of SQA does not change even if we double the number of
Trotter slices Nτ and keep the temperature 1=β fixed.
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local, stochastic search algorithm that has access only to the
final cost function. We note that our analysis below is
general for any plateau problem, and is not limited to the
fixed plateau or the moving plateau.
If we pick a bit string at random, then for large nwe start

with very high probability at a bit string with Hamming
weight close to n=2. The plateau may be to the left or to the
right of n=2; if the plateau is to the right, then the random
walker is unlikely to encounter it and can quickly descend
to the ground state. Thus, the more interesting case is
when the random walker arrives at the plateau from the
right. We proceed to analyze these two cases separately.

1. Walker starts to the right of the plateau

In this case, howmuch timewould it take, typically, for the
walker to fall off the left edge? It is intuitively clear that
traversing the plateauwill be the dominant contribution to the
time taken to reach the ground state, as after that the random
walker can easily walk down the potential. We show below
(for the walker that starts to the left of the plateau) that this
time can be at most Oðn2Þ if β ¼ ΩðlognÞ.
To evaluate the time to fall off the plateau, note that the

perturbation is applied on strings of Hamming weight
lþ 1; lþ 2;…; u − 1, so the width of the plateau is
w≡ u − l − 1. Consider a random walk on a line of
wþ 1 nodes labeled 0; 1;…; w. Node i represents the set
of bit strings with Hamming weight lþ i, with 0 ≤ i ≤ w.
We may assume that the random walker starts at node w.
Only nearest-neighbor moves are allowed and the walk
terminates if the walker reaches node 0.
Our analysis provides a lower bound on the actual time

to fall off the left edge, because in the actual PHWO
problem one can also go back up the slope on the right,
and in addition, we disallow transitions from strings of
Hamming weight l to lþ 1. This is justified because the
Metropolis rule exponentially (in β) suppresses these
transitions.
The transition probabilities pi→j for this problem can

be written as a ðwþ 1Þ × ðwþ 1Þ row-stochastic matrix
pij ¼ pi→j. Here, p is a tridiagonal matrix with zeros
on the diagonal, except at p00 and pww. Consider
1 ≤ i ≤ w − 1. If the walker is at node i, then the transition
to node iþ 1 (which has Hamming weight lþ iþ 1)
occurs with probability ½n − ðlþ iÞ=n� (the chance that
the bit picked had the value 0). Similarly, for 1 ≤ i ≤ w, the
Hamming weight will decrease to lþ i − 1with probability
½ðlþ iÞ=n� (the chance that the bit picked had the value 1).
Combining this with the fact that a walker at node 0 stays
put, we can write

bi ≡ pi→i ¼

8>><
>>:

1 if i ¼ 0

0 if 1 ≤ i ≤ ðw − 1Þ
1 − lþw

n if i ¼ w;

ð16aÞ

ci ≡ pi−1→i ¼
�
0 if i ¼ 1

1 − lþi−1
n if i ¼ 2;…; w;

ð16bÞ

ai ≡ pi→i−1 ¼
lþ i
n

if i ¼ 1; 2;…; w: ð16cÞ

Let XðtÞ be the position of the random walker at time step t.
The random variable measuring the number of steps the
random walker starting from node r would need to take to
reach node s for the first time is

τr;s ≡minft > 0∶XðtÞ ¼ s; Xðt − 1Þ ≠ sjXð0Þ ¼ rg: ð17Þ

The quantity we are after is Eτw;0, the expectation value of
the random variable τw;0, i.e., the mean time taken by the
random walker to fall off the plateau. Since only nearest-
neighbor moves are allowed, we have

Eτw;0 ¼
Xw
r¼1

Eτr;r−1: ð18Þ

Stefanov [35] (see also Ref. [36]) has shown that

Eτr;r−1 ¼
1

ar

�
1þ

Xw
s¼rþ1

Ys
t¼rþ1

ct
at

�
; ð19Þ

where cwþ1 ≡ 0. Evaluating the sum term by term, we
obtain

Eτw;w−1 ¼
n

lþ w
; ð20aÞ

..

.

Eτw−k;w−k−1 ¼
n

lþ w − k

�
1þ n − ðlþ w − kÞ

lþ w − ðk − 1Þ þ � � �

þ n − ðlþ w − kÞ
lþ w − ðk − 1Þ × � � �

×
n − ðlþ w − 2Þ

lþ w − 1
×
n − ðlþ w − 1Þ

lþ w

�
:

ð20bÞ

Now consider the following cases:
(1) Fixed plateau, l, u ¼ Oð1Þ.—Here, using the fact

that k ¼ OðwÞ ¼ Oð1Þ, we conclude that
Eτw−k;w−k−1 ¼ Oðnkþ1Þ. Since the leading-order
term is Eτw−ðw−1Þ;w−w ¼ Eτ1;0, the time to fall off
the plateau is OðnwÞ ¼ Oðnu−l−1Þ. This result about
SA’s performance is confirmed numerically
in Fig. 5.

(2) In order for Reichardt’s bound (see Appendix A) to
give a constant lower bound to the quantum prob-
lem, we need u ¼ lþ oðl1=4Þ. Since at most we can
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have l ¼ OðnÞ, we can conclude Eτw−k;w−k−1 ¼
Oðn=lÞkþ1. Therefore, the time to fall off
becomes Eτw;0 ¼ O½wðn=lÞw�.
(i) Moving plateau.—If l ¼ ΘðnÞ and w ¼ Oð1Þ,

we can see that Eτw;0 ¼ Oð1Þ, which is a
constant time scaling.

(ii) Moving plateau with changing width.—If
l ¼ ΘðnÞ and w ¼ OðnaÞ, where 0 < a < 1=4,
then Eτw;0 ¼ OðnaOð1ÞnaÞ, which is superpo-
lynomial.

(iii) Most general plateau in the Reichardt class.—
More generally, if l ¼ OðnbÞ, with b ≤ 1 and
w ¼ OðnaÞ, where 0 ≤ a < b=4, then we get
the scaling Eτw;0 ¼ O(naOðn1−bÞna).

2. Walker starts to the left of the plateau

Note that this case is equivalent to the unperturbed
Hamming weight problem, which is a straightforward
gradient descent problem. We may therefore consider a
simple fixed temperature version of SA (i.e., the standard
Metropolis algorithm). We show that the performance of
SA on this problem provides an upper bound of Oðn2Þ on
the time for a random walker to arrive at the plateau and
on the time for a random walker to reach the ground state
after descending from the plateau. Moreover, our analysis
provides a lower bound of Oðn log nÞ on the efficiency of
such algorithms.
For this problem, the transition probabilities are

ci ≡ pi−1→i ¼
n − iþ 1

n
e−β; ð21aÞ

ai ≡ pi→i−1 ¼
i
n
; ð21bÞ

with i ¼ 1; 2;…; n denoting strings of Hamming weight i,
and β is the inverse temperature. Using the Stefanov
formula Eq. (19), we can write (after much simplification)

Eτn−k;n−k−1 ¼
n

n − k

�
n
k

�
−1Xk

l¼0

e−lβ
�

n
k − l

�
: ð22Þ

We bound

Eτn;0 ¼
Xn−1
k¼0

n
n − k

�
n
k

�
−1Xk

l¼0

e−lβ
�

n
k − l

�
; ð23Þ

the expected time to reach the all-zeros string starting from
the all-ones string. This is the worst-case scenario, as we are
assuming that we are starting from the string farthest from
the all-zeros string. Note again that if we start from a
random spin configuration, then with overwhelming prob-
ability we will pick a string with Hamming weight close to
n=2. Thus, most probably, Eτn=2;0 will be the time to hit the
ground state.

We first show that β ¼ Oð1Þ will lead to an exponential
time to hit the ground state, irrespective of the walker’s
starting string. Toward that end,

Eτ1;0 ¼ Eτn−ðn−1Þ;n−n ð24aÞ

¼
Xn−1
l¼0

e−lβ
�

n
n − 1 − l

�
ð24bÞ

¼ eβ½ðe−β þ 1Þn − 1�; ð24cÞ

which is clearly exponential in n if β ¼ Oð1Þ.
Next, let βðnÞ ¼ logn; i.e., we decrease the temperature

logarithmically in system size. In this case,

Eτ1;0 ¼ n

��
1þ 1

n

�
n
− 1

�
≤ nðe − 1Þ ¼ OðnÞ: ð25Þ

Now it is intuitively clear that Eτ1;0 > Eτr;r−1 for all r > 1,
which implies that nEτ1;0 ≥ Eτn;0. Thus, if β ¼ log n, then
Eτn;0 ¼ Oðn2Þ at worst.
To obtain a lower bound on the performance of the

algorithm, we take β → ∞. Thus, for each k in Eq. (23),
only the l ¼ 0 term will survive. Hence,

lim
β→∞

Eτn;0 ¼
Xn−1
k¼0

n
n − k

¼ n
Xn
i¼1

1

i
≈ nðlog nþ γÞ; ð26Þ

for large n, with γ being the Euler-Mascheroni constant.
The scaling here is Oðn log nÞ. This is the best possible
performance for single-spin update SA with random
spin selection on the plain Hamming weight problem.
Therefore, if β ¼ ΩðlognÞ, the scaling will be between
Oðn log nÞ and Oðn2Þ. Of course, this cost needs to be
added to the time taken for the walker starting to the right of
the plateau.
Two clarifications are in order regarding the comparison

between our theoretical bound on SA’s performance and
the associated numerical simulations we have presented.
First, while Fig. 5 displays the time to cross a threshold
probability, our theoretical bound of Oðnu−l−1Þ is on the
expected time for the random walker to hit the ground state
[Eq. (18)]. However, we find that both metrics show
identical scaling. Second, while the SA data in Fig. 5
are generated using sequential spin updates, the theoretical
bound assumes random spin updates (see Appendix D 1 for
more details on the update schemes). However, we find that
the asymptotic scaling for both cases is nearly identical in
the long-time regime, and thus plot only the former.
Finally, we remark that SA as we consider here has only

oracle access to the cost function and thus cannot exploit
the symmetry of the cost function. This is the fair way to
compare its performance to QA because QA too has only
oracle access to the final Hamiltonian. QA’s dynamics are
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automatically restricted to the symmetric subspace. This is
not an unfair advantage for QA because the user of either
algorithm—QA or SA—need not be aware of the sym-
metry of the problem.

C. Optimal QA via diabatic transitions

Having established that for the fixed plateau AQA enjoys
a quantum speedup over local search algorithms such as
SA via tunneling, we are motivated to ask, Is tunneling
necessary to achieve a quantum speedup on these problems?
In order to answer this question, we demonstrate using the
optimal TTS criterion defined in Eq. (14) that the optimal
annealing time for QA is far from adiabatic. Instead, as
shown in Fig. 6(a), the optimal TTS for QA is such that the
system leaves the instantaneous ground state for most of
the evolution and returns to the ground state only towards
the end. The cascade down to the ground state is mediated by
a sequence of avoided energy level crossings, as shown in
Fig. 7. We consider this a diabatic form of QA (DQA) and
call this mechanism through which DQA achieves a speedup
a diabatic cascade.
As n increases for fixed u, repopulation of the ground

state improves for fixed ðtfÞopt, hence causing TTSopt to
decrease with n, as shown Fig. 6(b), until it saturates to a
constant at the lowest possible value, corresponding to a
single run at ðtfÞopt. At this point, the problem is solved in
constant time ðtfÞopt, compared to the ∼Oðn0.5Þ scaling of

the adiabatic regime. Moreover, as shown in Fig. 6(c), there
are no sharp changes in hHWi, suggesting that the non-
adiabatic dynamics do not entail multiqubit tunneling
events, unlike the adiabatic case. Thus, this establishes
that we may have speedups in QA that do not involve
multiqubit tunneling.
One may worry that for this diabatic evolution to be

successful the optimal annealing time may need to be very
finely tuned. We address this concern in Appendix E, where
we show that if ϵ is the precision desired in pGS, we need
only have a precision of polylogð1=ϵÞ in setting tf, which
means that the diabatic speedup is robust.
Figure 8 shows that the speedup of DQA and SVD over

AQA exists for three other PHWO problems: the moving
plateau, the spike, and the 0.5-rectangle problems.
Importantly, DQA and SVD have an exponential speedup
overAQA for the 0.5-rectangle problem.Wedonot observe a
diabatic speedup for the precipice or Grover problems.
One might ask why it is that we see tunneling with

respect to the spin-coherent potential for AQA but not for
DQA. The reason for this is simple: In AQA, the adiabatic
dynamics keep the state of the quantum evolution close to
the instantaneous ground state. Thus, the wave function is
localized around the instantaneous global minimum in the
spin-coherent potential. Thus, in order to follow the true
ground state, the system is forced to tunnel. On the other
hand, in DQA there is no restriction that the dynamics
need to follow the instantaneous ground state; indeed, the

-

FIG. 6. Diabatic QAverus SA and SVD for the fixed plateau problem with l ¼ 0. (a) Population Pi in the ith energy eigenstate along
the diabatic QA evolution at the optimal TTS for n ¼ 512 and u ¼ 6. Excited states are quickly populated at the expense of the ground
state. By t=tf ¼ 0.5 the entire population is outside the lowest nine eigenstates. In the second half of the evolution the energy eigenstates
are repopulated in order. This kind of dynamics occurs due to a lining up of avoided-level crossings as seen in Fig. 7. (b) Scaling of the
optimal TTS with n for u ¼ 6, with an optimized number of single-spin updates for SA, and equal ðtfÞopt for DQA and SVD. SA scales
as OðnÞ, a consequence of performing sequential single-spin updates. DQA and SVD both approach Oð1Þ scaling as n increases. Here,
we set pd ¼ 0.7 in Eq. (14), in order to be able to observe the saturation of SVD’s TTS to the point where a single run suffices, i.e.,
TTSopt ¼ ðtfÞopt. The conclusion is unchanged if we increase pd: this moves the saturation point to larger n for both SVD and DQA, and
we have checked that SVD always saturates before DQA. Inset: Scaling as a function of u for n ¼ 1008. SVD is again seen to exhibit the
best scaling, while for this value of n the scaling of DQA and SA is similar (DQA’s scaling with n improves faster than SA’s as a function
of n, at constant u). (c) hHWi of the QAwave function and the SVD state (defined as the product of identical spin-coherent states) for
n ¼ 512 and u ¼ 6. The behavior of the two is identical up to t=tf ≈ 0.8, when they begin to differ significantly, but neither displays any
of the sharp changes observed in Fig. 2(c) for the instantaneous ground state. Inset: The trace-norm distance between the DQA and SVD
states, showing that they remain almost indistinguishable until t=tf ≈ 0.8.
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dynamics extensively populate higher energy levels. Thus,
the problem is solved without needing to tunnel.

D. Spin-vector dynamics

Given the absence of tunneling in the time-optimal
quantum evolution, we are motivated to consider the
behavior of spin-vector dynamics, which arise in a

semiclassical limit (see Appendix D 3 for an overview of
this algorithm). As we show in Fig. 6(b), the scaling of
SVD’s optimal TTS also saturates to a constant time, i.e.,
ðtfÞopt. Moreover, it reaches this value earlier (as a function
of problem size n) than DQA, thus outperforming DQA for
small problem sizes, while for large enough n, both achieve
Oð1Þ scaling. As seen in the inset, SVD’s advantage
persists as a function of u at constant n.
The dynamics of DQA are well approximated by SVD

until close to the end of the evolution, as shown in Fig. 6(c):
the trace-norm distance between the instantaneous states of
DQA and SVD is almost zero until t=tf ≈ 0.8, after which
the states start to diverge. This suggests that SVD is able to
replicate the DQA dynamics up to this point, and deviates
only because it is more successful at repopulating the
ground state than DQA.
In Fig. 8, we show that SVD’s speedup over AQA is

replicated for the spike, moving plateau, and 0.5-rectangle
problems as well. Remarkably, while the 0.5-rectangle
problem has an exponentially small gap [see Eq. (10) and
Fig. 4(b)], SVD and DQA both achieve Oð1Þ scaling, and
hence the diabatic cascades provides an exponential
speedup relative to AQA.
It is important to note that SVD is ineffective if one

desires to simulate the adiabatic evolution. In the absence
of unitary dynamics (which allow for tunneling) or thermal

FIG. 7. The eigenenergy spectrum along the evolution for the
fixed plateau with n ¼ 512, l ¼ 0, and u ¼ 16. Note the
sequence of avoided-level crossings that unmistakably line up
in the spectrum to reach the ground state. This is the pathway
through which DQA is able to achieve a speedup over AQA.

FIG. 8. (a)–(c) The optimal TTS for the spike, moving plateau, and 0.5-rectangle problems, respectively. Inset for (a) and (c): The
optimal TTS for small problem sizes, where we observe SVD at first scaling poorly. However, as n grows, this difficulty vanishes and it
quickly outperforms DQA. (d)–(f) Population Pi in the ith energy eigenstate along the diabatic QA evolution at the optimal TTS. We
observe similar diabatic transitions for these problems (shown are the cases with n ¼ 512 and tf ¼ 9.85 for the spike, n ¼ 512 and
tf ¼ 10 for the moving plateau, and n ¼ 529 and tf ¼ 9.8 for the 0.5-rectangle problems) as we observed for the fixed plateau problem
[Fig. 6].
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activation (to thermally hop over the barrier), SVD gets
trapped behind the barrier that forms in the semiclassical
potential separating the two degenerate minima [see
Fig. 2(a)] and is unable to reach the new global minimum.
In this sense, SVD does not enjoy the guarantee provided
by the quantum adiabatic theorem for the unitary evolution
[32–34], that for sufficiently long tf dictated by the
adiabatic condition, the ground state can be reached with
any desired probability.
Likewise, it is important to keep in mind the distinction

between a classical algorithm being able to match, or
sometimes outperform, a quantum algorithm (as SVD does
here) and the classical algorithm approximating the evo-
lution or instantiating the physics of the quantum algorithm
(as SVD fails to do here). Indeed, in both the diabatic
and adiabatic regimes, SVD provides a poor approximation
to the instantaneous quantum state. For example, in the
diabatic regime, it is clear from Fig. 6(c) that the trace-norm
distance between the instantaneous SVD state and the
instantaneous quantum state starts to increase significantly
for s≳ 0.8. In the same spirit, consider the instantaneous
semiclassical ground state, i.e., the spin-coherent state
evaluated at the minimum of the spin-coherent potential,
which may be suspected to provide a good approximation
to the instantaneous quantum ground state, but does not, as
shown in Fig. 2(b). Thus, the unentangled semiclassical
ground state also fails to provide a good approximation to
the quantum ground state.

E. Simulated quantum annealing

Simulated quantum annealing is a quantum Monte Carlo
algorithm performed along the annealing schedule (see
Appendix D 4 for further details). It is often used as a
benchmark against which QA is compared (however, see
Ref. [4] for caveats). SQA scales better than SA for the fixed
plateau problem using the threshold criterion (see Fig. 5).
In order to understand why SQA enjoys an advantage over
SA using this benchmark metric, it is useful to study the
behavior of the state of SQA along the annealing schedule.
We show the behavior of hHWi for SQA in Fig. 9, where we
observe that SQA at the optimal number of sweeps (sweeps
are defined in Appendix D 1; the case of 1500 sweeps shown
in Fig. 9) does not follow the instantaneous ground state.
Instead, it reaches the threshold success probability by
thermally relaxing to the ground state after the minimum
gap point (and tunneling event) of the quantumHamiltonian.
Therefore, SQA’s advantage over SA stems from the fact that
it thermalizes in a different energy landscape than SA.
We also contrast the behavior of SQA and AQA using

the threshold criterion. While SQA is able to follow the
instantaneous ground state for a sufficiently large number
of sweeps and thus mimic the tunneling of AQA (see
Fig. 9), this is not the optimal way for it to reach the
threshold criterion. For a fixed threshold success proba-
bility, the process of thermal relaxation after the minimum

gap point uses fewer sweeps (and hence is more efficient)
than following the instantaneous ground state closely
throughout the anneal [37]. This is in contrast to AQA,
where tunneling is the only means for it to reach a high
success probability and, nevertheless, is more efficient than
SQA, as shown in Fig. 5.
We note that SQA’s threshold criterion advantage over

SA does not carry over to the optimal TTS criterion. In fact,
we find that using the optimal TTS criterion, SQA scales as
Oðn1.5Þ, while SA scales as OðnÞ, as shown in Fig. 6(b).
The reason for the latter scaling is that the optimal number
of sweeps for SA is 1, simply because there is a small but
nonzero probability that in the first sweep all the 1’s are
flipped to 0’s.

V. DISCUSSION

It is often assumed that the shape of the final cost
function determines how hard it is for QA to solve the
problem (in fact, this is partly the motivation for the spike
problem in Ref. [12]), and that potentials with tall and thin
barriers should be advantageous for AQA, since this is

FIG. 9. The expectation value of the Hamming weight operator
for the quantum ground state, SQA, and AQA for the fixed
plateau problem with n ¼ 512, l ¼ 0, and u ¼ 6 and annealing
time chosen so as to reach a success probability of 0.9. The
expectation value for SQA (β ¼ 30, Nτ ¼ 64) at a given t=tf is
calculated by averaging over the Hamming weight of the Nτ

imaginary-time states at that time and over 105 independent trials.
The case of 1500 sweeps is the minimum number of sweeps
required for SQA (in “annealer” mode) to reach the threshold
ground-state probability of p0 ¼ 0.9, and similarly for the
annealing time value of tf ¼ 4931.16 for AQA. While AQA is
able to approximately follow the quantum ground state (i.e., the
evolution is very close to being adiabatic), the optimal SQA
evolution (i.e., that requires the fewest sweeps) for achieving the
threshold criterion involves not following the ground state at
the minimum gap point and instead thermally relaxing towards
the ground state after this point. As shown using the higher Nsw
values, only after increasing the number of sweeps by more than 2
orders of magnitude does SQA follow the instantaneous ground
state closely.
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where tunneling dominates over thermal hopping (see, e.g.,
Ref. [4], p. 215; Ref. [9], p. 1062; and Ref. [10], p. 226).
It is then assumed that problems where the final potential
has this feature are those for which there should be a
quantum speedup. We have given several counterexamples
to such claims, and have shown that tunneling is not
necessary to achieve the optimal TTS. Instead, the optimal
trajectory may use diabatic transitions to first scatter
completely out of the ground state and return via a sequence
of avoided-level crossings. That diabatic transitions can
help speed up quantum algorithms has also been noted and
advantageously exploited in Refs. [38–41]. Moreover, we
show that the instantaneous semiclassical potential pro-
vides important insight into the role of tunneling, while the
final cost function can be rather misleading in this regard.
While both adiabatic and diabatic QA outperform SA for

the fixed plateau problem, the faster quantum diabatic
algorithm is not better than the classical SVD algorithm for
this problem. The PHWO problems due to Reichardt [16],
which include problems very similar to the fixed plateau,
have widely been considered an example where tunneling
provides a quantum advantage; we show that this holds if
one limits the comparison to SA, but that there is, in fact, no
quantum speedup in the problem when one compares the
quantum diabatic evolution (which outperforms adiabatic
quantum annealing) to SVD.
These results of the diabatic optimal evolution extend

beyond the plateau problems: even the spike problem
studied in Ref. [12]—which is in some sense the antithesis
of the plateau problem since it features a sharp spike at a
single Hamming weight—also exhibits the diabatic-beats-
adiabatic phenomenon, indicating that tunneling is not
required to efficiently solve the problem. Thus, diabatic
evolution, especially via diabatic cascades, is an important
and relatively unexplored mechanism in quantum optimi-
zation that is different from tunneling. The fact that we
observe a speedup relative to AQA for several problems,
especially an exponential speedup for the 0.5-rectangle
problem, motivates the search for algorithms exploiting this
mechanism and may yield fruitful results. However, we
also already know that diabatic cascades are not generic.
For example, we found that this mechanism is absent in the
Grover and precipice problems, even though the Grover
problem is equivalent to a “giant” plateau problem.
In summary, our work provides a counterargument to the

widely made claims that tunneling should be understood
with respect to the final cost function, that speedups due to
tunneling require tall and thin barriers, and that tunneling is
needed for a quantum speedup in optimization problems.
Which features of Hamiltonians of optimization problems
favor diabatic or adiabatic algorithms remains an open
question, as is the understanding of tunneling for non-
permutation-symmetric problems.
We finish on a positive note for QA. We have given

several examples where SVD outperforms QA, e.g., the

spike problem [12]. However, we make no claim that SVD
will always have an advantage over QA. A simple and
instructive example comes from the class of cost functions
that are convex in Hamming weight space, which have a
constant minimum gap [42]:

fðxÞ ¼
�
2 jxj ¼ 0

jxj otherwise:
ð27Þ

We observe similar diabatic transitions for this problem as
for the fixed plateau (not shown), but find that DQA
outperforms SVD, as shown in Fig. 10. This results because
the optimal TTS for QA occurs at a slightly higher optimal
annealing time, i.e., there is an advantage to evolving
somewhat more slowly, though still far from adiabatically.
Thus, this provides an example of a “limited” quantum
speedup [24].
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FIG. 10. The optimal TTS for the potential given in Eq. (27).
QA outperforms SVD over the range of problem sizes we were
able to check. The reason can be seen in the inset, which displays
the ground-state probability for SVD and QA for different
annealing times tf, with n ¼ 512. The optimal annealing time
for SVD occurs at the first peak in its ground-state probability
(tf ≈ 8.98), whereas the optimal annealing time for QA occurs at
the much larger second peak in its ground-state probability
(tf ≈ 10.91).
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APPENDIX A: REVIEW OF THE HAMMING
WEIGHT PROBLEM AND REICHARDT’S

BOUND FOR PHWO PROBLEMS

Here, we closely follow Ref. [16].

1. Hamming weight problem

We review the analysis within QA of the minimization of
the Hamming weight function fHWðxÞ ¼ jxj, which counts
the number of 1’s in the bit string x. This problem is of
course trivial, and the analysis we give here is done in
preparation for the perturbed problem.
For the adiabatic algorithm, we start with the driver

Hamiltonian,

HD ¼ 1

2

Xn
i¼1

ð1i − σxi Þ ¼
Xn
i¼1

j−iih−j; ðA1Þ

which has jþi⊗n as the ground state.
The final Hamiltonian for the cost function fHWðxÞ is

HP ¼ 1

2

Xn
i¼1

ð1i − σzi Þ ¼
Xn
i¼1

j1iih1j; ðA2Þ

which has j0i⊗n as the ground state.
We interpolate linearly between HD and HP:

HðsÞ ¼ ð1 − sÞHD þ sHP; s ∈ ½0; 1� ðA3Þ

¼
Xn
i¼1

1

2

�
1 − s −ð1 − sÞ

−ð1 − sÞ 1 − s

�
i

þ
�
0 0

0 s

�
i

ðA4Þ

¼ 1

2

Xn
i¼1

½1 − ð1 − sÞσxi − sσzi �≡HiðsÞ: ðA5Þ

We note that HiðsÞ in Eq. (A5) is similar to a variant of the
Landau-Zener (LZ) Hamiltonian with finite coupling
duration [45,46], for which the Schrödinger equation has
an analytical solution, except that there it is assumed that
the σx term is constant and only the σz term has a (linear)
time dependence over a finite interval. The analytical
solution of the problem obtained in Ref. [45] is rather
complicated, and for our purposes a simpler approach
suffices.
Since there are no interactions between the qubits, the

adiabatic problem can be solved exactly by diagonalizing
the Hamiltonian acting on each qubit separately. For each
term, we have the energy eigenvalues E�ðsÞ,

E�ðsÞ ¼
1

2
½1� ΔðsÞ�; ΔðsÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2sþ 2s2

p
; ðA6Þ

and associated eigenvectors,

jv�ðsÞi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΔðΔ∓sÞp ½∓ðΔ∓sÞj0i þ ð1 − sÞj1i�: ðA7Þ

The ground state of HðsÞ is

jψGSðsÞi ¼ jv−ðsÞi⊗n: ðA8Þ

The gap is given by

gap½HðsÞ� ¼ HðsÞjvþðsÞi ⊗ jv−ðsÞi⊗ðn−1Þ

−HðsÞjv−ðsÞi⊗n ðA9aÞ

¼ Eþ þ ðn − 1ÞE− − nE− ðA9bÞ

¼ Eþ − E− ðA9cÞ

¼ ΔðsÞ: ðA9dÞ

The gap is minimized at s ¼ 1
2
with minimum value

Δð1
2
Þ ¼ ð1= ffiffiffi

2
p Þ. The minimum gap is independent of n

and hence does not scale with problem size. Therefore,
we can predict an adiabatic run time to be given by

tf ¼ O
�
∥∂sH∥
Δ2

�
¼ OðnÞ; ðA10Þ

where the n dependence is solely due to ∥∂sH∥ (see
Appendix D 2). However, this is actually a loose upper
bound. We next provide separate numerical and analytical
arguments to demonstrate that the actual scaling for AQA
is Oðn0.5Þ.

a. Numerical argument

Suppose the adiabatic algorithm runs long enough so as to
attain a desired success probability p0. Let this time be tf.
Using the fact that the quantum evolution of the plain
Hamming weight problem is the evolution of n noninteract-
ing qubits,we can express theglobal ground-state probability
in terms of the ground-state probabilities of single qubits.
So, if the single qubit ground-state probability for this run
time is pGSðtfÞ, then we must have p0 ¼ pGSðtfÞn.
We find numerically (see Fig. 11) that pGSðtfÞ has an

envelope that is excellently approximated by

pGSðtfÞ ¼ 1 −
1

t2f
þOðt−3f Þ; ðA11Þ

for sufficiently large tf. We therefore can write

lnp0 ¼ n lnpGSðtfÞ ≈ n ln

�
1 −

1

t2f

�
; ðA12Þ

and upon expanding the ln, we extract a tighter scaling for
our adiabatic time,
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tf ¼ Oðn1=2Þ: ðA13Þ

b. Analytical argument

Here, we invoke a result due to Boixo and Somma [47].
This result states the following.
Theorem 1 (Ref. [47]).—To adiabatically prepare a final

eigenstate using a Hamiltonian evolution HðsÞ requires
time that scales at least asOðL=ΔÞ. Here, L is the eigenpath
length,

L≡
Z

1

0

∥j∂sψðsÞi∥ds; ðA14Þ

where jψðsÞi is the eigenpath traversed to reach the final
eigenstate.
We analytically compute L for the ground-state path in

the plain Hamming weight problem, and show that it scales
as Oð ffiffiffi

n
p Þ. Since we know that in this case Δ ¼ Oð1Þ, we

conclude that the adiabatic algorithm will require at least
Oð ffiffiffi

n
p Þ time.
Recall that the instantaneous ground state is [Eq. (A8)]

jψGSðsÞi ¼ ⊗
n

i¼1
jvi−ðsÞi, where jvi−ðsÞi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − qðsÞp j0iiþffiffiffiffiffiffiffiffiffi

qðsÞp j1ii, with [Eq. (A7)],

qðsÞ ¼ ð1 − sÞ2
2ΔðΔþ sÞ : ðA15Þ

Differentiating,

d
ds

jψGSðsÞi ¼
Xn
i¼1

�
⊗
j≠i
jvj−ðsÞi ⊗

d
ds

jvi−ðsÞi
�
; ðA16Þ

so that

∥j∂sψGSðsÞi∥2 ≡ h∂sψGSðsÞj∂sψGSðsÞi ðA17Þ

¼ n∥
d
ds

jvi−ðsÞi∥2 þ nðn − 1Þj

× hvi−ðsÞj
d
ds

jvi−ðsÞij2: ðA18Þ

The term ∥ðd=dsÞjvi−ðsÞi∥ does not have any scaling with
n, and the second term vanishes because it is equal to
1
2
ðd=dsÞhvi−ðsÞjvi−ðsÞi ¼ 0, where we use the fact that

jvi−ðsÞi is real valued and normalized. Thus, taking the
square root on both sides and integrating from 0 to 1, we
obtain the

ffiffiffi
n

p
scaling of L.

If we desire to fix the constant in front of L, a
straightforward calculation shows that

Z
1

0

∥
d
ds

jvi−ðsÞi∥ds ¼ π=4: ðA19Þ

2. Reichardt’s bound for PHWO problems

Here, we review Reichardt’s derivation of the gap lower
bound for general PHWO problems and provide additional
details not found in the original proof [16].
We use the same initial Hamiltonian [Eq. (A1)] and linear

interpolation schedule as before, ~HðsÞ ¼ ð1 − sÞHD þ s ~HP,
and choose the final Hamiltonian to be

~HP ¼
X

x∈f0;1gn
~fðxÞjxihxj; ðA20Þ

where

~fðxÞ ¼
� jxj þ pðxÞ l < jxj < u

jxj elsewhere;
ðA21Þ

where pðxÞ ≥ 0 is the perturbation. Note that here we do
not assume that the perturbation pðxÞ respects qubit
permutation symmetry.
We wish to bound the minimum gap of ~HðsÞ. Unlike the

Hamming weight problem HðsÞ, this problem is no longer
noninteracting. Define

hk ≡max
jxj¼k

pðxÞ; h≡max
k

hk ¼ max
x

pðxÞ: ðA22Þ
Lemma 1 (Ref. [16]).—Let u ¼ OðlÞ and let E0ðsÞ and

~E0ðsÞ be the ground-state energies of HðsÞ and ~HðsÞ,
respectively. Then, ~E0ðsÞ ≤ E0ðsÞ þO½hðu − lÞ=ð ffiffi

l
p Þ�.

Proof.—First note that

~HðsÞ −HðsÞ ¼ s
X

x∶l<jxj<u

pðxÞjxihxj: ðA23Þ

Below, we suppress the s dependence of all the terms for
notational simplicity. We know that E0 ¼ hv⊗n

− jHjv⊗n
− i.

Using this,

h ~E0j ~Hj ~E0i ≤ hψ j ~Hjψi ∀ jψi ∈ H ðA24aÞ

⇒ ~E0 − E0 ≤ hv⊗n
− j ~Hjv⊗n

− i − E0 ðA24bÞ

≤ hv⊗n
− j ~H −Hjv⊗n

− i ðA24cÞ

FIG. 11. Ground-state probability for a single qubit for different
total time tf, evolving under the plain Hamming weight
Hamiltonian in Eq. (A5).
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¼ s
X

x∶l<jxj<u
pðxÞjhv⊗n

− jxij2 ðA24dÞ

¼ s
X

x∶l<jxj<u
pðxÞqjxjð1 − qÞn−jxj ðA24eÞ

≤
X

k∶l<k<u
hk

�
n
k

�
qkð1 − qÞn−k; ðA24fÞ

where ðnkÞ is the number of strings with Hamming weight k,
we use the fact that if we measure in the computational
basis, the probability of getting outcome x is jhv⊗n

− jxij2 ¼
qðsÞjxj½1 − qðsÞ�n−jxj, and qðsÞ is given in Eq. (A15).
Consider the partial binomial sum (dropping the hk’s),

X
k∶l<k<u

�
n
k

�
qkð1 − qÞn−k: ðA25Þ

Using the fact that the binomial is well approximated by the
Gaussian in the large n limit [note that this approximation
requires that qðsÞ and 1 − qðsÞ not be too close to zero], we
can write

X
k∶l<k<u

�
n
k

�
qkð1 − qÞn−k ≈

Z
u

l
dξ

1ffiffiffiffiffiffi
2π

p
σ
e−ðξ−μÞ2=2σ2

¼ 1

σ

Z
u

l
dξϕ

�
ξ − μ

σ

�

¼
Z ðu−μÞ=σ

ðl−μÞ=σ
dtϕðtÞ; ðA26Þ

where μ≡nq, σ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nqð1 − qÞp

, and ϕðtÞ≡ e−t
2=2=

ffiffiffiffiffiffi
2π

p
.

Note that σ and μ depend on n, and also on s via qðsÞ.
The parameters l and u are specified by the problem
Hamiltonian, and are therefore allowed to depend on n as
long as lðnÞ < uðnÞ < n is satisfied for all n.
Let us define

B½s; n; lðnÞ; uðnÞ�≡
Z ½uðnÞ−μðn;sÞ�=σðn;sÞ

½lðnÞ−μðn;sÞ�=σðn;sÞ
dt

e−t
2

=2ffiffiffiffiffiffi
2π

p : ðA27Þ

We seek an upper bound on this function. We observe that
qðsÞ decreases monotonically from 1

2
to 0 as s goes from

0 to 1. Thus, the mean of the Gaussian μðn; sÞ ¼ nqðsÞ
decreases from n=2 to 0. Depending on the values of lðnÞ,
uðnÞ, and μðn; sÞ, we thus have three possibilities:
(i) lðnÞ < μðn; sÞ < uðnÞ, (ii) μðn; sÞ < lðnÞ < uðnÞ, and
(iii) lðnÞ < uðnÞ < μðn; sÞ. Note that (ii) and (iii) are cases
where the integral runs over the tails of the Gaussian and so
the integral is exponentially small. We focus on (i), as this
induces the maximum values of the integral. In this case,
the lower limit of the integral Eq. (A27) is negative,
while the upper limit is positive. Thus, the integral runs
through the center of the standard Gaussian, and we can

upper bound the value of the integral by the area of the
rectangle of width f½uðnÞ − lðnÞ�=½σðn; sÞ�g and height
1=

ffiffiffiffiffiffi
2π

p
. Hence,

B½s; n; lðnÞ; uðnÞ� ≤ 1ffiffiffiffiffiffi
2π

p uðnÞ − lðnÞ
σðn; sÞ ðA28aÞ

¼ 1ffiffiffiffiffiffi
2π

p uðnÞ − lðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðnÞ½1 − qðsÞ�p ðA28bÞ

≤
1ffiffiffiffiffiffi
2π

p uðnÞ − lðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðnÞ½1 − qðsÞ�p ; ðA28cÞ

where we use the fact that lðnÞ < μðn; sÞ ¼ nqðsÞ.
Thus, we obtain the bound:

~E0 − E0 ≤ O
�
h
u − lffiffi

l
p

�
: ðA29Þ

▪
Lemma 2 (Ref. [16]).—If ~H −H is non-negative, then

the spectrum of ~H lies above the spectrum of H. That is,
~Ej ≥ Ej for all j, where ~Ej and Ej denote the jth largest
eigenvalue of ~H and H, respectively.
This can be proved by a straightforward application of

the Courant-Fischer min-max theorem (see, for example,
Ref. [48]).
Combining these lemmas results in the desired bound on

the gap:

gap½ ~HðsÞ� ¼ ~E1 − ~E0 ðA30aÞ
≥ E1 − ~E0 ðA30bÞ

¼ E1 − E0 − ð ~E0 − E0Þ ðA30cÞ

≥ Δ −O
�
h
u − lffiffi

l
p

�
; ðA30dÞ

where in Eq. (A30b) we use Lemma 2 and in Eq. (A30d)
we use Lemma 1.
Now, if we choose a parameter regime for the perturba-

tion such that h½ðu − lÞ= ffiffi
l

p � ¼ oð1Þ, then the perturbed
problem maintains a constant gap. For example, if
l ¼ ΘðnÞ and hðu − lÞ ¼ Oðn1=2−ϵÞ, for any ϵ > 0, then
the gap is constant as n → ∞.

APPENDIX B: (NON-)LOCALITY OF PHWO
PROBLEMS

Since the PHWO problems, including the plateau, are
quantum oracle problems, they cannot generically be
represented by a local Hamiltonian. For completeness,
we prove this claim here and also show why the (plain)
Hamming weight problem is 1-local.
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Let r be a bit string of length n, i.e., r ∈ f0; 1gn, and let

σr ≡ σr11 ⊗ σr22 ⊗ … ⊗ σrnn ; ðB1Þ

with σ0i ≡ Ii and σ1i ≡ σzi . This forms an orthonormal basis
for the vector space of diagonal Hamiltonians. Thus,

HP ¼
X

r∈f0;1gn
Jrσr; ðB2Þ

with

Jr ¼
1

2n
TrðσrHPÞ ðB3aÞ

¼ 1

2n

X
x∈f0;1gn

fðxÞhxjσrjxi ðB3bÞ

¼ 1

2n

X
x∈f0;1gn

fðxÞð−1Þx·r: ðB3cÞ

Note that, generically, Jr will be be nonzero for arbitrary-
weight strings r, leading to jrj-local terms in HP, even as
high as n-local.
For example, substituting the plateau Hamiltonian

[Eq. (3)] into this, we obtain

Jr ¼
1

2n

� X
jxj≤l and jxj≥u

jxjð−1Þx·rþðu − 1Þ
X

l<jxj<u
ð−1Þx·r

�
:

ðB4Þ

On the other hand, if fðxÞ ¼ jxj (i.e., in the absence of a
perturbation), the Hamiltonian is only 1-local:

HP ¼
X

x∈f0;1gn
jxjjxihxj ðB5aÞ

¼
X1
x1¼0

…
X1
xn¼0

ðx1 þ x2 þ � � � þ xnÞjx1ihx1j

⊗ jx2ihx2j ⊗ … ⊗ jxnihxnj ðB5bÞ

¼
Xn
k¼1

ðxkjxkihxkjÞ⊗
j≠k

�X1
xj¼0

jxjihxjj
�

ðB5cÞ

¼
Xn
k¼1

j1ikh1j⊗
j≠k

Ij ¼
Xn
k¼1

j1ikh1j: ðB5dÞ

APPENDIX C: DERIVATION OF EQ. (14)

Equation (14) is easily derived as follows: the probability
of successively failing k times to obtain the ground state is

½1 − pGSðtfÞ�k, so the probability of succeeding at least
once after k runs is 1 − ½1 − pGSðtfÞ�k, which we set equal
to the desired success probability pd; from here, one
extracts the number of runs k and multiplies by tf to get
the time-to-solution TTS. Optimizing over tf yields TTSopt,
which is natural for benchmarking purposes in the sense
that it captures the trade-off between repeating the algo-
rithm many times versus optimizing the probability of
success in a single run.
A disadvantage of using the TTSopt as a benchmarking

metric is that extracting toptf is, in general, difficult and is
problem dependent. Algorithms that have an adiabatic
regime (e.g., SA, QA) alleviate this issue by providing a
theoretical guarantee that one will have a certain probability
of success provided tf is sufficiently large. Of course, the
adiabatic regime is typically suboptimal.
In our analyses we extract TTSopt by running the

algorithm under consideration—i.e., SA, QA, SVD, or
SQA—for a wide range of values of tf, computing the
pGSðtfÞ for each value of tf, using these to compute the
TTSðtfÞ for that value of tf, and, finally, choosing tf that
has the smallest TTS in the range considered. This method
is not guaranteed to achieve the true optimum because the
true toptf may lie outside the range of values that we
consider. Nevertheless, in the cases we study, the trends
followed by the pGS versus tf suggest that we are extracting
a value very close to the optimal TTS.

APPENDIX D: METHODS

1. Simulated annealing

SA is a general heuristic solver [2], whereby the system
is initialized in a high-temperature state, i.e., in a random
state, and the temperature is slowly lowered while under-
going Monte Carlo dynamics. Local updates are performed
according to the Metropolis rule [49,50]: a spin is flipped
and the change in energyΔE associated with the spin flip is
calculated. The flip is accepted with probability PMet:

PMet ¼ minf1; expð−βΔEÞg; ðD1Þ

where β is the current inverse temperature along the anneal.
Note that there could be different schemes governing which
spin is to be selected for the update. We consider two
such schemes: random spin selection, where the next spin
to be updated is selected at random, and sequential spin
selection, where one runs through all of the n spins in a
sequence. Random spin selection (including just updating
nearest neighbors) satisfies detailed balance and thus is
guaranteed to converge to the Boltzmann distribution.
Sequential spin selection does not satisfy strict detailed
balance (since the reverse move of sequentially updating in
the reverse order never occurs), but it too converges to the
Boltzmann distribution [51]. In sequential updating, a
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“sweep” refers to all the spins having been updated once. In
random spin selection, we define a sweep as the total
number of spin updates divided by the total number of
spins. When it is possible to parallelize the spin updates, the
appropriate metric of time complexity is the number of
sweeps Nsw, not the number of spin updates (they differ by
a factor of n) [24]. However, in our problem, this
parallelization is not possible and hence the appropriate
metric is the number of spin updates, and this is what we
plot in Fig. 6(b). After each sweep, the inverse temperature
is incremented by an amount Δβ according to an annealing
schedule, which we take to be linear; i.e., Δβ ¼ ðβf − βiÞ=
ðNsw − 1Þ.
We can use SA both as an annealer and as a solver [52].

In the former, the state at the end of the evolution is the
output of the algorithm, and can be thought of as a method
to sample from the Boltzmann distribution at a specified
temperature. For the latter, we select the state with the
lowest energy found along the entire anneal as the output of
the algorithm, the better technique if one is interested in
finding only the global minimum. We use the latter to
maximize the performance of the algorithm.

2. Quantum annealing

Here, we consider the most common version of quantum
annealing:

HðsÞ ¼ ð1 − sÞ
Xn
i¼1

1

2
ð1i − σxi Þ þ s

X
x∈f0;1gn

fðxÞjxihxj;

ðD2Þ

where s≡ t=tf is the dimensionless time parameter and tf
is the total anneal time. The initial state is taken to be
jþi⊗n, which is the ground state of Hð0Þ.
The initial ground state and the total Hamiltonian are

symmetric under qubit permutations [recall that fðxÞ ¼
fðjxjÞ for our class of problems]. It then follows that the
time-evolved state, at any point in time, will also obey the
same symmetry. Therefore, the evolution is restricted to
the (nþ 1)-dimensional symmetric subspace, a fact that we
can take advantage of in our numerical simulations. This
symmetric subspace is spanned by the Dicke states jS;Mi,
with S ¼ n=2;M ¼ −S;−Sþ 1;…; S, which satisfy

S2jS;Mi ¼ SðSþ 1ÞjS;Mi; ðD3aÞ

SzjS;Mi ¼ MjS;Mi; ðD3bÞ

where Sx;y;z ≡ 1
2

P
n
i¼1 σ

x;y;z
i , S2 ¼ ðSxÞ2 þ ðSyÞ2 þ ðSzÞ2.

We can denote these states by

jwi≡
				n2 ;M ¼ n

2
− w



¼

�
n
w

�
−1=2 X

x∶jxj¼w

jxi; ðD4Þ

where, w ∈ f0;…; ng.
In this basis the Hamiltonian is tridiagonal, with the

following matrix elements:

½HðsÞ�w;wþ1 ¼ ½HðsÞ�wþ1;w

¼ −
1

2
ð1 − sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − wÞðwþ 1Þ

p
; ðD5aÞ

½HðsÞ�w;w ¼ð1 − sÞ n
2
þ sfðwÞ: ðD5bÞ

The Schrödinger equation with this Hamiltonian can be
solved reliably using an adaptive Runge-Kutte Cash-Karp
method [53] and the Dormand-Prince method [54] (both
with orders 4 and 5).
If the quantum dynamics is run adiabatically the system

remains close to the ground state during the evolution, and
an appropriate version of the adiabatic theorem is satisfied.
For evolutions with a nonzero spectral gap for all s ∈ ½0; 1�,
an adiabatic condition of the form

tf ≥ const sup
s∈½0;1�

∥∂sHðsÞ∥
gapðsÞ2 ðD6Þ

is often claimed to be sufficient [55] [however, see the
discussion after Eq. (21) in Ref. [32]]. In our case,
∥∂sHðsÞ∥ ¼ ∥Hð1Þ −Hð0Þ∥ is upper bounded by n; since
we are considering a constant gap, the adiabatic algorithm
can scale at most linearly by condition Eq. (D6). This is true
for the plateau problems.
In the main text we show that the following version of

the adiabatic condition, known to hold in the absence of
resonant transitions between energy levels [33], estimates
the scaling we observe very well:

max
s∈½0;1�

jhε0ðsÞj∂sHðsÞjε1ðsÞij
gapðsÞ2 ≪ tf; ðD7Þ

where ε0ðsÞ and ε1ðsÞ are the instantaneous ground and
excited states in the symmetric subspace, respectively.
The permutation symmetry is explicitly enforced only in

our numerical simulations of the quantum evolution. Since,
of course, we do not have quantum hardware that can
implement the problems under consideration, we must
explicitly enforce this symmetry in order to be able to
perform numerical simulations at large problem sizes. Note
that even if we were to simulate the quantum system
without explicitly imposing this symmetry, the symmetry
would be automatically preserved in the dynamics, and we
would draw the same lessons about the performance of the
quantum algorithm (but our classical simulations would
quickly become intractable).
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3. Spin-vector dynamics

Starting with the spin-coherent path-integral formulation
of the quantum dynamics, we can obtain spin-vector
dynamics as the saddle-point approximation (see, for
example, Ref. [27], p. 10, or Refs. [25,26]). It can be
interpreted as a semiclassical limit describing coherent
single qubits interacting incoherently. In this sense, SVD is
a well-motivated classical limit of the quantum evolution of
QA. SVD describes the evolution of n unit-norm classical
vectors under the Lagrangian (in units of ℏ ¼ 1):

L ¼ ihΩðsÞj d
ds

jΩðsÞi − tfhΩðsÞjHðsÞjΩðsÞi; ðD8Þ

where jΩðsÞi is a tensor product of n independent spin-
coherent states [56]:

jΩðsÞi ¼ ⊗
n

i¼1

�
cos

�
θiðsÞ
2

�
j0ii þ sin

�
θiðsÞ
2

�
eiφiðsÞj1ii

�
:

ðD9Þ

We can define an effective semiclassical potential associ-
ated with this Lagrangian:

VSCðfθig; fφig; sÞ≡ hΩðsÞjHðsÞjΩðsÞi

¼ ð1 − sÞ
Xn
i¼1

1

2
½1 − cosφiðsÞ sin θiðsÞ�

þ s
X

x∈f0;1gn
fðxÞ

Y
j∶xj¼0

cos2
�
θjðsÞ
2

�

×
Y

j∶xj¼1

sin2
�
θjðsÞ
2

�
; ðD10Þ

with the probability of finding the all-zero state at the end of
the evolution (which is the ground state in our case), asQ

n
i¼1 cos

2ðθið1Þ=2Þ. The quantum Hamiltonian obeys qubit
permutation symmetry: PHP ¼ H, where P is a unitary
operator that performs an arbitrary permutation of the
qubits. This implies that our classical Lagrangian obeys
the same symmetry:

L0 ≡ ihΩðsÞjP d
ds

PjΩðsÞi − tfhΩðsÞjPHðsÞPjΩðsÞi

¼ ihΩðsÞj d
ds

jΩðsÞi − tfhΩðsÞjHðsÞjΩðsÞi ¼ L;

ðD11Þ
where the derivative operator is trivially permutation
symmetric. Therefore, the Euler-Lagrange equations of
motion derived from this action will be identical for all
spins. Thus, if we have symmetric initial conditions, i.e.,
½θið0Þ;φið0Þ� ¼ ½θjð0Þ;φjð0Þ� ∀i; j, then the time-evolved
state will also be symmetric:

½θiðsÞ;φiðsÞ� ¼ ½θjðsÞ;φjðsÞ� ∀i; j
∀ s ∈ ½0; 1�: ðD12Þ

As we show below, under the assumption of a permutation-
symmetric initial condition, we need to solve only two
(instead of 2n) semiclassical equations of motion:

n
2
sin θðsÞθ0ðsÞ − tf∂φðsÞV

sym
SC ½θðsÞ;φðsÞ; s� ¼ 0; ðD13aÞ

−
n
2
sin θðsÞφ0ðsÞ − tf∂θðsÞV

sym
SC ½θðsÞ;φðsÞ; s� ¼ 0; ðD13bÞ

where we define the symmetric effective potential
Vsym
SC as

Vsym
SC ½θðsÞ;φðsÞ; s�≡ hΩsymðsÞjHðsÞjΩsymðsÞi

¼ ð1 − sÞ n
2
½1 − cosφðsÞ sin θðsÞ�

þ s
Xn
w¼0

fðwÞ n
w
sin2w

�
θðsÞ
2

�

× cos2ðn−wÞ
�
θðsÞ
2

�
; ðD14Þ

and jΩsymðsÞi is simply jΩðsÞi, with all the θ’s and φ’s
set equal. Note that in the main text [see Eq. (12)] we
slightly abuse notation for simplicity, and use VSC

instead of Vsym
SC . The probability of finding the all-zero

bit string at the end of the evolution is accordingly given
by cos2n½θð1Þ=2�. We would have arrived at the same
equations of motion had we used the symmetric spin-
coherent state in our path-integral derivation, but that
would have been an artificial restriction. In our present
derivation the symmetry of the dynamics naturally
imposes this restriction.
Note that the object in Eq. (D10) involves a sum over all

2n bit strings and is thus exponentially hard to compute; on
the other hand, the object in Eq. (D14) involves only a
sum over n terms and is thus easy to compute. Therefore,
just as in the quantum case—where due to permutation
symmetry the quantum evolution is restricted to the
(nþ 1)-dimensional subspace of symmetric states instead
of the full 2n-dimensional Hilbert space—given knowledge
of the symmetry of the problem, we can efficiently compute
the SVD potential and efficiently solve the SVD equations
of motion.
We also remark that the computation of the potential in

Eq. (D10) is significantly simplified if our cost function
fðxÞ is given in terms of a local Hamiltonian. For example,
if Hð1Þ ¼ P

i;jJijσ
z
iσ

z
j, then

VSCðfθig; fφig; 1Þ ¼
X
i;j

Jij cos θi cos θj; ðD15Þ
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which is easy to compute as it is a sum over polyðnÞ
number of terms.
Let us now derive the symmetric SVD equations of

motion Eq. (D13). Without any restriction to symmetric
spin-coherent states, the SVD equations of motion, for the
pair θi, φi, read

1

2
sin θiðsÞθi0ðsÞ − tf∂φiðsÞVSCðfθig; fφig; sÞ ¼ 0;

ðD16aÞ

−
1

2
sin θiðsÞφi

0ðsÞ − tf∂θiðsÞVSCðfθig; fφig; sÞ ¼ 0:

ðD16bÞ

As can be seen by comparing Eqs. (D13) and (D16), it is
sufficient to show that

∂
∂θi VSCjθj¼θ;φj¼φ∀j ¼

1

n
∂
∂θV

sym
SC ; ðD17Þ

and an analogous statement holds for derivatives with
respect to φ. This claim is easily seen to hold true for
the term multiplying (1 − s) in Eq. (D10):

∂
∂θi

Xn
i¼1

1

2
½1 − cosφiðsÞ sin θiðsÞ�jθj¼θ;φj¼φ∀j

¼ ∂
∂θ

1

2
½1 − cosφðsÞ sin θðsÞ�

¼ 1

n
∂
∂θV

sym
SC ðθ;ϕ; s ¼ 0Þ; ðD18Þ

where in the last line we use Eq. (D14). Next, we focus on
the term multiplying s in Eq. (D10). This term has no φ
dependence and thus we consider only the θ derivatives.
First note that

∂
∂θi VSCðfθig; fφig; s ¼ 1Þ

¼
X

x∈f0;1gn
fðxÞ

Y
j∶xj¼0

cos2
�
θj
2

� Y
j∶xj¼1

sin2
�
θj
2

�

×

�
−δxi;0sec

2

�
θi
2

�
þ δxi;1csc

2

�
θi
2

��
sin θi
2

: ðD19Þ

Now, we set all the θi’s equal. Let us define pðθÞ≡
sin2ðθ=2Þ. Using this and the fact that f is only a function
of the Hamming weight (which is equivalent to the qubit
permutation symmetry), we can rewrite the last expression,
after a few steps of algebra, as

Xn
w¼0

fðwÞpw−1ð1 − pÞn−w−1∂θp

×

�
ð1 − pÞ

�
n − 1

w − 1

�
− p

�
n − 1

w

��

¼
Xn
w¼0

fðwÞpw−1ð1 − pÞn−w−1∂θp

�
1

n

�
n
w

�
ðw − npÞ

�

¼ 1

n
∂
∂θV

sym
SC ðθ;φ; s ¼ 1Þ: ðD20Þ

Similar to the quantum case, we can perform SVD
without explicitly imposing the permutation symmetry and
obtain the same results. Here, too, we are forced to
explicitly exploit the symmetry due to the nonlocal nature
of the problem under consideration, which makes directly
implementing the SVD oracle (without the symmetry)
exponentially hard. For local problems, we can efficiently
implement the SVD oracle.
In the results presented in the main text, it is the

implementation of SA that does not share this symmetry.
However, while the quantum algorithms and SVD can be
implemented without knowledge of the symmetry and still
retain their advantage, an implementation of SA that uses
the symmetry would require intimate knowledge of the
problem. This would be an unfair advantage for SA, not for
the quantum evolution.

4. Simulated quantum annealing

An alternative method to simulated annealing, simulated
quantum annealing (or path-integral Monte Carlo along
the quantum annealing schedule) [28,29], is an annealing
algorithm based on discrete-time path-integral quantum
Monte Carlo simulations of the transverse field Ising model
using Monte Carlo dynamics. At a given time t along the
anneal, the Monte Carlo dynamics samples from the Gibbs
distribution defined by the action

S½μ� ¼ ΔðtÞ
X
τ

HPðμ∶;τÞ − J⊥ðtÞ
X
i;τ

μi;τμi;τþ1; ðD21Þ

where ΔðtÞ ¼ βBðtÞ=Nτ is the spacing along the timelike
direction, J⊥ ¼ − lnftanh½AðtÞ=2�g=2 is the ferromagnetic
spin-spin coupling along the timelike direction, and μ
denotes a spin configuration with a spacelike direction
(the original problem direction, indexed by i) and a timelike
direction (indexed by τ). μ∶;τ denotes all spins along the τth
slice. For our spin updates, we perform Wolff cluster
updates [57] along the imaginary-time direction only.
For each spacelike slice, a random spin along the timelike
direction is picked. The neighbors of this spin are added to
the cluster (assuming they are parallel) with probability

P ¼ 1 − expð−2J⊥Þ: ðD22Þ
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When all neighbors of the spin have been checked, the
newly added spins are checked. When all spins in the
cluster have had their neighbors along the timelike
direction tested, the cluster is flipped according to the
Metropolis probability using the spacelike change in
energy associated with flipping the cluster. A single sweep
involves attempting to update a single cluster on each
spacelike slice.
As in SA, we can use SQA both as an annealer and as a

solver [52]. In the former, we randomly pick one of the
states on the Trotter slices at the end of the evolution as
the output of the algorithm, while for the latter, we pick the
state with the lowest energy found along the entire anneal
as the output of the algorithm. We use the latter to
maximize the performance of the algorithm.

APPENDIX E: BEHAVIOR OF pGS
VERSUS tf CURVES

We find that for many of the PHWO problems studied,
the optimal tf lies around tf ¼ 10. This is because there is a
peak in the probability of finding the ground state pGS at
this tf. Moreover, we find that this peak becomes increas-
ingly higher as the problem size n grows. This is what
allows the problem to have anOð1Þ scaling. Since this peak
becomes increasingly sharper with growing n, there may be
the worry that one might need an arbitrarily high precision
in setting tf ≈ toptf . We address this concern by showing
that, in fact, the width of the pGS versus tf curve decreases
as O½1=polylogðnÞ� for the fixed plateau. This shows that
we require only a polylogarithmically increasing precision
in our ability to set tf at the optimal value in order to obtain
the speedup.
The evidence is summarized in Fig. 12. The first plot,

Fig. 12(a), shows pGS versus tf curves for several values

of n. The second plot, Fig. 12(b), shows the scaling of
the standard deviation of Gaussian fit to the peak at toptf .
This scaling is well matched by polylogarithmic fit.
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