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Imaging Photon Lattice States by Scanning Defect Microscopy
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Microwave photons inside lattices of coupled resonators and superconducting qubits can exhibit
surprising matterlike behavior. Realizing such open-system quantum simulators presents an experimental
challenge and requires new tools and measurement techniques. Here, we introduce scanning defect
microscopy as one such tool and illustrate its use in mapping the normal-mode structure of microwave
photons inside a 49-site kagome lattice of coplanar waveguide resonators. Scanning is accomplished by
moving a probe equipped with a sapphire tip across the lattice. This locally perturbs resonator frequencies
and induces shifts of the lattice resonance frequencies, which we determine by measuring the transmission
spectrum. From the magnitude of mode shifts, we can reconstruct photon field amplitudes at each lattice
site and thus create spatial images of the photon-lattice normal modes.
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I. INTRODUCTION

Impressive experimental advances over the last two
decades have turned the idea of quantum simulation [1]
into a reality [2-8]. The use of minutely controlled
quantum systems with systematic tunability of parameters
such as interaction strength and particle density has opened
the door for the experimental study of complex many-body
problems. Today, a variety of physical implementations of
analog quantum simulators exist, and their primary focus
has been the realization of models in equilibrium, often
close to zero temperature—the paradigmatic example being
the study of the Bose-Hubbard model with ultracold atoms
inside an optical lattice [2,3].

Proposals for photon-based quantum simulation [9-11]
have recently received a flurry of interest and stimulated a
host of theoretical studies (see Refs. [12—14] for reviews).
The lack of number conservation distinguishes photons from
other bosonic systems and renders photonic quantum sim-
ulators ideal candidates for studying many-body physics
under well-controlled nonequilibrium conditions. One sug-
gested physical realization of photon-based quantum simu-
lation consists of microwave photons inside large networks
of superconducting resonators and circuits. This architecture
is particularly promising because of the significant
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experimental progress in the field of circuit quantum
electrodynamics (cQED) in which superconducting qubits
are coupled to superconducting resonators [15—-17].

The success of cQED systems stems from multiple
factors, including the ability to readily reach the strong-
coupling regime [15,18], as well as the fact that cQED
devices can be fabricated using standard lithography
techniques. Most cQED research has primarily been
motivated by the quest to implement a quantum computer.
Some theoretical studies in the recent past have focused,
instead, on quantum simulation, and they predict that
photons within large lattices of coupled cQED systems
can exhibit striking matterlike behavior [19-21].

Very recently, the first experiment with a cQED-based
quantum simulator has demonstrated a photon-number-
dependent crossover from a delocalized regime to a
localized regime [22]. Despite the small lattice size of
only two sites in that case, the exponential proliferation of
Hilbert space dimension with increasing photon number
quickly approaches the computational limits of a classical
computer, rendering the system a quantum simulator in the
rigorous sense [23].

Our work presented here focuses on the understanding
and experimental study of larger photon-based lattices for
quantum simulation. Earlier efforts have already shown that
microwave resonator lattices with very low disorder can be
fabricated reliably [24]. However, measuring and probing
many-body states in such lattices still remains a significant
experimental challenge. Large lattices form a complex
network of planar microwave circuitry but could, in a
strict 2D setting, only be accessed via drives and detection
probing the edge of the lattice at predetermined sites. While
providing information about modes with nonzero ampli-
tudes on edge sites, such measurements only give limited
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and indirect information about the bulk of interior lat-
tice sites.

To overcome these limitations, here we introduce scan-
ning defect microscopy—a novel scanning-probe imaging
technique applicable to coupled resonator and cQED arrays
(Fig. 1). Scanning defect microscopy makes it possible to
gather local information about photon occupancies in such
lattices. For instance, it allows us to locally image the
normal modes in a microwave resonator array. In our
experiment, we acquire these images by monitoring var-
iations in microwave transmission when selectively altering
the photon occupancy in one resonator. This is accom-
plished by positioning a small piece of dielectric precisely
above the surface of a targeted resonator inside the lattice.
The close proximity of the dielectric shifts the local
resonator frequency and, thus, creates a lattice defect
whose size can be tuned by controlling the vertical distance
between the dielectric and the surface of the resonator.
Scanning the dielectric probe across the lattice and analyz-
ing the systematic changes in the transmission spectrum
due to the lattice defect reveal local information which is
used, in our example, to image the normal-mode photon
occupancies across the resonator lattice.

We note that similar methods, referred to as bead-pull
experiments, are commonly used to characterize higher-
order modes in large RF cavities for accelerators [25,26].
The conceptual idea underlying our scanning-probe scheme
is also quite similar to scanning gate microscopy [27-29],
which images the electron flow in 2D electron-gas nano-
structures. In scanning gate microscopy, image construction
is based on monitoring the electric conductance when
selectively depleting a small region of the electron gas by
a scanning electrostatic gate.

In the following, we present the fundamental basics
of scanning defect microscopy and illustrate its use in

FIG. 1. Scanning defect microscopy of a photon lattice. A
dielectric probe is scanned across a photon lattice of coplanar
waveguide resonators. The dielectric locally perturbs the electric
field and shifts the frequency of a target resonator, creating a
lattice defect. The transmission of photons through the lattice
systematically depends on the defect strength and can be used to
image the photon occupancy on individual lattice sites.

obtaining images of the normal modes inside a photonic
kagome lattice of microwave resonators.

II. NORMAL-MODE IMAGING: MODEL

To explain the underpinning for imaging of normal
modes with scanning defect microscopy, we consider the
heterodyne transmission through a driven-damped resona-
tor lattice as described by the Lindblad master equation or
input-output theory formalism [30]. The lattice is coher-
ently driven through one input port, attached to a particular
edge site n;, of the lattice. The transmission amplitude
is measured through an output port and is directly
proportional to the coherent-state amplitude (a,,) at the
corresponding edge site n,,. The equation relating the
coherent-state amplitude a, = (a,,) at any lattice site n to
the drive amplitude € is [31]

1
(w, —wy— i§K> a, + t(%l:)am =—€by, . (1)

where @, and w; denote the bare resonator and drive
frequency, ¢ the strength of photon hopping between
neighboring resonators, and x the photon loss rate.

The above equation is solved easily by matrix inversion,

la) = — [(a) —wy— i%K)]] + IT]_1|€), 2)

where the real-symmetric matrix T is the adjacency matrix
of the lattice. For mere convenience, we use vector notation
where |a) collects the coherent-state amplitudes on each
lattice site, (n|a) = a,, and |e) encodes the drive on each
site—here acting only on the input port, (n|e) = €5, .
Transmission resonances naturally occur at the normal-
mode frequencies €, of the lattice, obtained from the usual
normal-mode eigenvalue equation (@, 1 + T)|u) = Q,|u).
As a result, the coherent-state amplitude at the output site
takes the simple form

1
Qout = _zﬂ:(noutW) (Qw — a)d) + i%K (/"lnin)e- (3)

Accordingly, each normal mode with nonzero-mode ampli-
tude at both input and output ports will produce a trans-
mission peak when the drive frequency coincides with the
normal-mode frequency. (This assumes frequency spacing
between modes to be larger than «, which is appropriate for
the lattice investigated here.)

Once a certain normal mode y is on resonance, its
normal-mode weight W,,, = |(n|u)|* on each lattice site n
can be extracted by introducing a small shift of the bare
cavity frequency Aw,. This lattice defect induces a fre-
quency shift AQ,, in the normal-mode frequency. The
connection between the small normal-mode frequency
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shifts and the mode weights is established by simple
perturbation theory. We write the new normal-mode matrix
including the defect as H, = w,1 + Aw,D,, + 1T, where
D, = |n)(n| selects the site of the defect. Applying
perturbation theory with respect to the defect Aw,D,,
we immediately obtain the leading-order frequency shift
for normal mode u caused by a defect on site n:

AQ;An = Aa)n(ﬂan |.u) = A(‘)nW/m' (4)

The weight of the (undisturbed) normal mode y on site n is
thus obtained as the ratio of mode frequency shift and
defect size in the limit of small shifts,

_ AL A . (5)

un
Aw, dw, |, o

To image the normal modes experimentally, we thus
need to insert a lattice defect of known size Aw, at the
location of any given site n, and to measure the shift A,
in the normal-mode frequency resulting from the defect
insertion. This is achieved as follows. We create the defect
with a dielectric probe consisting of a 2.2 x 2.2 mm? piece
of sapphire. The dielectric is mounted to a cryogenic three-
axis positioning stage inside the dilution refrigerator, so we
can scan the probe in situ across the lattice and bring it into
close proximity with each targeted resonator. The presence
of the dielectric probe locally increases the resonator’s
capacitance per unit length ¢ and thus reduces its frequency
w,/2r = 1/2L\/Ic (I denotes the inductance per unit
length and L the length of the resonator). The magnitude
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of the defect is easily tuned by varying the height of the
probe above the surface of the resonator.

ITI. SCANNING THE DEFECT PROBE ACROSS
A SINGLE RESONATOR

To validate the imaging performance of the scanning
defect microscope, we first employ the method to a single
straight coplanar-waveguide resonator. We scan the dielec-
tric probe in the lateral direction along the length of the
resonator as well as in the vertical direction, changing the
probe height above the resonator center. Experimental
results for the two types of scans are presented in
Fig. 2. We obtain the frequency shift Aw,/2x via homo-
dyne transmission measurements for the 1/2 mode and find
very good agreement between the observed frequency
shifts and those predicted by finite-element simulations
using the HFSS package.

Data and simulation for the lateral scan [Fig. 2(a)] match
the intuitive expectation that positioning the dielectric
probe in a region of a small (large) electric field produces
a small (large) frequency shift. We observe a maximum
shift of 663 MHz at the field antinodes. The residual shift of
50 MHz at the node is explained by the finite probe size,
naturally causing the dielectric to cover field regions to the
left and right of the zero-field resonator midpoint. Overall,
we conclude that the simple picture of locally increasing
the effective dielectric constant of the resonator and, hence,
downshifting the resonator frequency serves as a good
model to understand the data.

For the purpose of imaging photon occupancy inside
the lattice, it is crucial to calibrate the scanning defect
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FIG. 2. Verification of probe performance and calibration for a single resonator. (a) Measurement data of the resonator frequency shift
as a function of probe position along the resonator agree well with predictions from finite-element simulation (using a 2 ym probe
height). In the experiment, the probe is centered over and placed into mechanical contact with the resonator for each data point. The
frequency shifts follow the field distribution of the 1/2 mode, with shift maxima for probe positions close to the resonator ends where the
field is strongest and a shift minimum at the resonator midpoint. (b) The calibration of the resonator frequency shift (defect size) with
respect to vertical distance of the probe from the resonator is performed at the lateral position of maximum shift. After adjusting for an
offset in the z direction, finite-element simulation and measurement data agree over most of the vertical distance range. Deviations
observed at the smallest probe heights may be due to a small tilt of the dielectric probe with a misalignment angle as small as 0.02°, as

indicated by simulations shown in the inset.
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microscope and determine the dependence of defect size
(i.e., resonator frequency shift) on probe height z above the
resonator, Aw, = Aw,(z). Our calibration data are shown
in Fig. 2(b) along with the prediction from numerical HFSS
simulations. Here, the only noteworthy deviations observed
are restricted to the range below probe heights of 25 ym
where small tilts in the orientation of the probe dielectric as
well as small offsets in measured vs actual probe height z
can affect the data. We have verified with HFSS simulations
that probe tilts as small as 0.02° can lead to deviations of
the same magnitude as those observed for our data [see
inset of Fig. 2(b)]. Since imaging a larger photon lattice by
scanning defect microscopy only requires accurate calibra-
tion for small frequency shifts at large z, we remain
relatively impervious to small tilts and height offsets.

For a single resonator, the induced defect size can thus
be calibrated to the vertical distance of the scanning
probe from the resonator, and the scanning defect micro-
scope matches the predictions from detailed numerical
simulations.

IV. SCANNING DEFECT MICROSCOPY
OF PHOTONIC LATTICE

After the successful validation of the defect probe perfor-
mance for a single resonator, we now employ scanning defect
microscopy to a larger photon lattice and image its normal
modes. Our experimental sample consists of an array of
superconducting microwave resonators on a 32 x 32 mm?
chip, forming a photonic kagome lattice.

Figure 3(a) shows a picture of the 49 coupled resonators
along with drive and measurement ports. The lattice bulk
consists of resonators coupled via three-way capacitors
[Fig. 3(b)]. At the edges of the lattice, we capacitively
couple four resonators to input and output ports [Fig. 3(c)].

The input port [yellow triangle in Fig. 3(a)] is used to feed a
coherent microwave signal with tunable drive frequency
into the lattice. Three different output ports [red triangles in
Fig. 3(a)] are used, one at a time, for transmission mea-
surements. All remaining edge resonators are terminated by
capacitive coupling to high-frequency resonators [Fig. 3(d)].
In order to keep all edge resonators at the same frequency as
the resonators in the bulk and not affect the normal modes of
the lattice, the edge resonators are designed to have slightly
altered lengths which aim to compensate for frequency
offsets (see Appendix A for details).

In the interior of the lattice, we ensure proper grounding
of metal planes by interconnecting all planes via aluminum
bridges evaporated onto a bisbenzocyclobutene (BCB)
spin-on glass [Fig. 3(e)]. For future realizations of
Jaynes-Cummings lattices, our resonator design also
includes a small cutout where a superconducting qubit
can be inserted, visible in Fig. 3(b) as black rectangles close
to one end of each resonator. All cutouts between resonator
center pins and ground planes are at the same relative
distance from the nearest coupling capacitor and have the
same orientation to allow future fabrication of the necessary
Josephson junctions by double-angle evaporation.

The transmission spectrum for a fully withdrawn scan-
ning probe, measured across a select pair of input and
output ports, shows the characteristic resonances associated
with the unperturbed normal modes of the Ilattice
[Fig. 4(a)]. The visibility of individual resonances with
spacings exceeding the linewidths indicates that a descrip-
tion in terms of continuous bands is not appropriate for this
finite-size lattice. Similar to previous findings for a 12-site
kagome lattice [24], we note the presence of a faint
resonance at the lowest end of the frequency spectrum.
We attribute this resonance to the presence of the localized
states characteristic of the kagome lattice. Each of these

() 500um

FIG. 3.

Device picture of photon lattice, consisting of 49 coupled coplanar-waveguide resonators. (a) The resonators are arranged to

form a kagome lattice for photons (the dual of the honeycomb geometry visible when viewing the physical resonators). The device is
equipped with a port used to drive the lattice with a coherent microwave tone (yellow triangle), and three possible ports to detect the
transmitted signal (red triangles). (b) Resonators have a meandering section (to save space on the chip) and are coupled by three-way
capacitors. Small capacitors (c) connect four of the edge resonators to ports and (d) terminate the remaining edge resonators by coupling
to a high-frequency resonator stub. (e) Isolated ground planes within the lattice are connected with aluminum bridges evaporated on top

of insulating pads.
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degenerate states has alternating amplitudes limited to one
hexagon of the kagome lattice. (In the thermodynamic
limit, it is these states that form the well-known flat band
of the kagome lattice.) While localization would ideally
render these modes undetectable when driving and probing
edge resonators, slight amounts of disorder in resonance
frequencies or hopping strengths weaken the localization
and make these modes visible in transmission.

To construct a complete map of mode weights for the
lattice with scanning defect microscopy, we follow the
procedure from Sec. II and measure the mode frequency
shifts induced by a small defect size on each lattice site.
A single step in scanning the lattice consists of lateral
positioning of the probe above one lattice site of the array,
followed by a series of transmission measurements for
varying probe heights. The necessary movements of the
defect probe are performed in situ, i.e., within the dilution
unit. However, since our probe positioners have a limited
motion range of 20 mm in both the x and y directions, a
single scan could not traverse the whole chip.
Consequently, several cooldowns were necessary to span
the larger range of the full lattice.

At each lattice site, we first center the probe over the
resonator, then move it vertically down until contact is
reached, and finally retract the probe vertically away from
the surface. (Details of the calibration for lateral positioning
are discussed in Appendix B.) When in contact, the probe is
approximately at the height of the BCB supported bridges,
i.e., about 4 um above the resonator. (We refer to this probe
position as probe height z =0.) We retract the probe
stepwise from contact, increasing z up to a height of
approximately 300 pm, and perform transmission measure-
ments for each probe position. Representative data from our
measurements with the probe above one particular site are
shown in Fig. 4(b) for the case of relatively small probe
heights. When in such close proximity to the surface, the
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probe induces frequency shifts of normal modes that can
exceed 100 MHz. For probe heights z > 200 gm, mode
shifts are much smaller and, as expected, asymptotically
approach zero.

To obtain the frequency shift A€, of normal mode p
due to a defect of size Aw,, on site n, we track the resonance
frequency by fitting Lorentzians to the relevant part of the
transmission spectra. In addition, we must convert the
chosen vertical probe position z into the corresponding
defect size Aw,,(z). This conversion task is nontrivial since
the calibration from Sec. III for a straight resonator does not
carry over quantitatively: Resonators in our lattice sample
include a meandering portion and feature multiple distinct
orientations with respect to the square dielectric probe.
From the simple picture of a piece of dielectric above a
resonator, one expects that the defect size asymptotically
obeys a simple scaling law Aw, = y,®,/z> for large probe
distance z. However, the proportionality constant y, may
depend on the specific geometry and orientation of the
resonator relative to the probe. For the conversion from
vertical probe distance z to defect size Aw,, we have
therefore performed finite-element simulations for the
different types of lattice sites (see Appendix C for details
of the defect calibration).

For the resulting defect sizes Aw,, /27 with magnitude
below 10 MHz, we observe that normal-mode shifts depend
linearly on the defect size [Fig. 4(c)]. We attribute the
observed offsets for modes 36 and 49, which would
indicate a vanishing mode shift for nonzero defect size,
to deviations of the experimental data from a strict 1/z>
scaling of defect size with probe height and resulting
imperfections in defect-size calibration for large z.

Recalling that the normal-mode weight of mode y on site
n is given by W, = dQ,,/dw, evaluated in the limit of
Aw, =0 [Eq. (5)], we see that the imaging of normal

mode 49

Mode shift (MHz)
<}

| | | |
-7 -6 -5 -4 -3 -2 -1 0
Defect size (MHz)

FIG. 4. Transmission and mode-shift data from scanning defect microscopy. (a) The transmission spectrum of the kagome lattice
exhibits a multitude of resonances corresponding to normal modes that can be excited and detected through the selected input and output
ports. (b) Positioning the scanning probe above one resonator and changing the vertical probe distance z produces shifts in mode
frequencies, here seen as “bending” of maxima in the measured transmission S21 (color-coded), especially for small probe distances.
(c) Calibration allows conversion of the probe height z into the corresponding defect size Aw,, of site n. For small defect size, the

normal-mode shifts AQ,, are linear in the Aw,. Normal-mode weights are directly determined from the slope of each curve.
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modes only relies on the data in the linear regime, i.e., the
limit of small defect sizes. The normal-mode weights are
directly obtained from the slopes of linear fits to the
normal-mode shift data, such as shown for one particular
resonator in Fig. 4(c).

V. NORMAL-MODE IMAGES

We present the results from scanning defect microscopy of
our sample in Fig. 5. For the normal-mode imaging, we have
selected three modes which are well separated and easily
identifiable: The modes x = 35 and 36 fall into a sparse
region of the spectrum, in the frequency range that would
contain the Dirac point in the case of an infinite kagome
lattice; the third imaged mode, u = 49, is the highest-
frequency mode in our spectrum [Figs. 4(a) and 4(b)].

For each of the three modes, we perform an overall
normalization step and then visualize the normal-mode
weights W,, as color-coded disks centered on the 49
individual sites of the lattice [Fig. 5, top panels]. For easy
comparison with theory, each disk is overlaid by a second
disk of reduced size, displaying the theory prediction for
the corresponding weight. Our theory calculation of mode
weights accounts for a small amount of systematic disorder
in frequencies among the different categories of resonators,
as revealed by HFSS simulations. The mode images readily
reveal that weights respect, to a good approximation, the
mirror symmetry along the vertical and horizontal axes
crossing through the center site n = 1. (The Dy symmetry

of the full kagome lattice is reduced to D, because of the
finite size and geometry of our sample.) Overall, our mode
images show good qualitative agreement with the normal-
mode weights predicted by theory.

A quantity that is fairly insensitive to deviations in
normal-mode weights from isolated outliers, but appropri-
ately captures the overall qualitative agreement, is the fidelity

f}l = Z(WZZPWSL)]/Z' (6)

Assuming that the experimental mode amplitudes (7|pey,) =
+(Wr)!/? carry the sign expected from theory (here just
signs because mode amplitudes can be chosen as real
valued), the fidelity reduces to the ordinary state overlap:

Fu=> (Hexpln) (n|tin) = (Hexplbtar)- (7)

Table I presents the fidelities achieved in our experiment. For
all three modes, the fidelities are close to 1, confirming good
overall agreement.

For more detailed quantitative comparison between
experimental data and theory not relying on perception
of small color differences, we provide an alternative
representation of the same normal-mode data in the bottom
panels of Fig. 5. In these graphs, vertical line segments
connect the predicted weights (blue circles) with the
experimental weights (black circles), such that deviations
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FIG. 5. Normal-mode weights for three select modes, u = 35, 36, and 49. For each lattice site n, the mode weight W, = |(n|u)|? is
depicted as an overlay of two color-coded disks. Inner disks represent the theory prediction for the weights, the outer disks the weights
determined experimentally by scanning defect microscopy. The bottom panels show deviations in normal-mode weights as lines
connecting experimental data (black dots) and theory prediction (blue dots). Comparison shows good agreement with noticeable

deviations in only a few sites in each case.
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TABLE 1. Quantitative comparison between theoretical pre-
dictions and experimental results for normal-mode weights as
obtained from scanning probe microscopy of the 49-site kagome
lattice.

Mode Fidelity Normalized rms
H F u = (ﬂexp |ﬂth) n-rms, (see text)
35 0.990 12%
36 0.989 10%
49 0.993 9%

between theory and experiment are easily read off as the
lengths of the vertical line segments. The plots readily show
that larger deviations are not specific to particular lattice
sites. While we cannot rigorously rule out lattice disorder as
a factor contributing to the observed deviations, previous
experience indicates that such lattice disorder may be
expected to be small [24]. It is more likely that deviations
are primarily owed to the difficulty of precise calibration
of defect sizes for the large lattice, a procedure that relies
on a simple scaling model and HFSS simulations within a
restricted range of probe heights.

To condense the deviations AW,, = W’ — Wh|
between experimental and theoretical normal-mode
weights into a single figure of merit for each mode, we
employ the normalized root-mean-square deviation (n-rms)

(v 2_nAWE)'2
n-rms,, = th : th
max,, (W,;,) — min, (W};,)

(8)

As shown in Table I, n-rms values indicate that averaged
deviations obtained in this way are of the order of 10%.
While not a high-precision measurement, scanning defect
microscopy thus provides us with a detailed and quanti-
tative image of normal-mode weights of the resonator
lattice.

VI. CONCLUSIONS AND OUTLOOK

We have introduced scanning defect microscopy, a new
tool for acquiring local information in photon lattices
driven and measured at the lattice edge. Transmission
through a cavity lattice is measured as a dielectric probe
is positioned over each cavity, with changes in transmission
revealing the local weight of the normal mode. Spatial
maps of a single lattice resonator are used to validate the
performance of the tool and to calibrate defect size. In this
paper, we have used scanning defect microscopy to
experimentally determine the normal-mode weights for
chosen modes in a 49-site kagome resonator lattice and
observed good agreement with theory. This technique will
provide key insight into local properties of these lattices
when interactions are strong, and an important tool for the

study of nonequilibrium quantum phase transitions and
quantum simulation.

The imaging method demonstrated has a natural gener-
alization to interacting photon lattices. In that case, mon-
itoring of mode frequency shifts is replaced by tracking
energy shifts of lattice eigenstates |y,). The defect-size
dependence of these shifts then allows one to determine the
local photon occupation (y,, |a,1;an\l//”> of the eigenstate on
each lattice site n. The photon occupation is a valuable
piece of information which will help elucidate many-body
phenomena arising from induced photon-photon interac-
tion. Probing photon transmission under local insertion of
lattice defects may also provide a test for localization
phenomena and serve as a diagnostic for on-site disorder by
locally enhancing or eliminating frequency shifts of reso-
nators or qubits. Another possibility would include using a
nonlinear dielectric to probe local photon number; indeed,
it is possible to couple a scanned transmon qubit to
resonators in the lattice, providing an exceptionally strong
scanned nonlinearity [32].

While correlation functions between port sites are
accessible even without a probe, we expect that access
to two-point correlation functions for bulk lattice sites
would generally require two scanning probes. Given the
size of the devices measured here, this is not entirely
infeasible, though it is quite challenging. One could also
use a single probe to measure correlation as a function of
distance in the lattice by using a single probe to cover two
lattice sites. Because the lattice can be folded on chip,
this could enable great flexibility in which pairs of lattice
sites are accessible, especially in one-dimensional lattices,
enabling measurements of correlation as a function of
distance between a pair of lattice sites rather than meas-
uring population at a lattice site. This tool could also be
applied to novel approaches to quantum simulation using
band-gap materials, where a scanned probe could be used
to image localized photon states that mediate interactions
between qubits.
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APPENDIX A: ELIMINATION OF DIFFERENCES
BETWEEN BULK AND EDGE FREQUENCIES

In the bulk of the kagome lattice, resonators are coupled
to four nearest neighbors (two on each side). By contrast,
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edge resonators are coupled to two bulk resonators on one
end, and either a port (transmission line) or a far-detuned
quarter-wavelength resonator on the other end. Without
any compensatory measures, this would lead to a system-
atic frequency difference between bulk and edge resona-
tors. In the design of our resonator lattice, we aim to
eliminate this frequency difference by adjusting the length
of edge resonators appropriately. To do so, we note that the
mode frequencies of a transmission-line resonator with
coupling capacitances C, (a = L, R) at its two ends are
determined by the transcendental equation [33]

b tar)o

tan(@) = e’

(A1)

Here, @ = w\/¢cL and y, = C,/(cL) express the fre-
quency and coupling capacitance in dimensionless form; c,
¢, and L denote the capacitance per unit length, inductance
per unit length, and total length of the resonator. According
to Eq. (Al), changes in coupling capacitors indeed lead
to a change in mode frequencies. We now determine the
appropriate change in resonator length to compensate for
this change, keeping in mind that both w and y,, depend on
this length.

To distinguish between bulk and edge resonators, we
apply labels s = b, e to frequencies, lengths, and coupling
capacitances (¢ and ¢ remain the same for bulk and edge).
The desired elimination of frequency differences, @® = @?,
implies @° = @" - L¢/L". Plugging this into Eq. (A1) for
the edge resonators,

(L +xe)®

tan(@°) = — ,
O T ey

(A2)

one finds that the modified edge-resonator length can be
written in closed form as

1 Ce Ce =b Lb
L¢ = —L" — arctan (G + R)_OZ /Cb2
@ 1+ C§C4(@"/cL”)
wenadj
u
= Lb 7 s (AS)
where wy,,q; is the frequency of edge resonators if their

length remains unadjusted. In the last step, we have
discarded terms beyond the leading-order term in an
expansion in AL/L”.

APPENDIX B: PROBE MOVEMENT
AND POSITION CALIBRATION

We calibrate the lateral probe position on each lattice site
by monitoring changes in the frequency spectrum as the
probe is shifted in the x and y directions. Moving the probe
laterally across the lattice is implemented by retracting the
probe from the surface to a height of 100 ym, moving

Probe position (mm)
N

Probe position (mm)
N

7.2 7.4 7.6
Frequency (GHz)

7 72 74 76 78

Frequency (GHz)

FIG. 6. Transmission spectra for different lateral probe posi-
tions. (a) Starting on a ground plane, the probe is moved across
one lattice resonator, traverses the ground plane, and stops when
it is centered on a second lattice resonator. Significant shifts of the
lowest-frequency mode result when the probe is centered on one
resonator; no shifts occur when it is in contact with a ground
plane. (b) Starting at the edge of a three-way coupling capacitor,
the probe is moved across the capacitor, then off the capacitor and
onto a lattice resonator. When the probe covers a three-way
capacitor, three lattice sites are perturbed simultaneously, result-
ing in multiple modes shifting down in frequency.

it parallel to the surface by 100 ym and then lowering it
again until good mechanical contact is reached. Each step
therefore ends with the probe in mechanical contact with
the surface of the lattice. We perform a transmission
measurement after each step and record changes in the
spectrum. The resonances presumably associated with
quasilocalized modes are the most sensitive to the probe
position and sustain shifts as large as 200 MHz when the
probe is centered over a lattice site. For this reason,
frequency shifts of these particular modes are convenient
for inferring the probe position. (Position readings via
potentiometric measurements of the integrated position
encoders were not sufficient to directly obtain lattice
coordinates. The encoders were used for coarse positioning
and measurement of z coordinates.)

The probe’s x and y coordinates relative to a specific
resonator are obtained by moving the probe off of the
resonator onto the ground plane, and also by moving
the probe onto a three-way coupler (Fig. 6). Whenever
the probe is positioned above the ground plane, no
frequency shifts are observed; when the probe is positioned
over a three-way coupler, multiple sites are perturbed and
the frequency spectrum changes significantly. Together,
this information is sufficient to achieve the needed lateral
position calibration.

APPENDIX C: DEFECT CALIBRATION

By adjusting the vertical separation between a resonator
and the probe, the defect size (i.e., the shift in resonance
frequency of this particular resonator) can be tuned in a
controlled manner. In the lattice geometry, this shift cannot
be determined directly by transmission measurements and
must hence be inferred by other means.

To calibrate the defect size to the probe height,
Aw, = Aw,(z), we have performed HFSS simulations
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for the bulk and edge resonators in the three occurring
orientations and for multiple probe heights ranging from
40 to 100 pm. The full resonator structure is simulated in a
9mm x 12 mm x 18 mm box, with a9 mm x 12 mm section
of substrate, with automatic meshing. These data allow us
to fix the proportionality constants in the scaling law
Aw, = Aw,(z) for the different categories of resonators.
Both the smallness of defect sizes at large probe heights
and deviations from the simple 1/z? scaling make the
calibration challenging and are the dominant limiting
factors of the precision in mode weight determination.
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