
Topological Insulators from Group Cohomology

A. Alexandradinata,1,2,* Zhijun Wang,1 and B. Andrei Bernevig1
1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
2Department of Physics, Yale University, New Haven, Connecticut 06520, USA

(Received 24 November 2015; revised manuscript received 4 April 2016; published 15 April 2016)

We classify insulators by generalized symmetries that combine space-time transformations with
quasimomentum translations. Our group-cohomological classification generalizes the nonsymmorphic
space groups, which extend point groups by real-space translations; i.e., nonsymmorphic symmetries
unavoidably translate the spatial origin by a fraction of the lattice period. Here, we further extend
nonsymmorphic groups by reciprocal translations, thus placing real and quasimomentum space on equal
footing. We propose that group cohomology provides a symmetry-based classification of quasimomentum
manifolds, which in turn determines the band topology. In this sense, cohomology underlies band topology.
Our claim is exemplified by the first theory of time-reversal-invariant insulators with nonsymmorphic spatial
symmetries. These insulators may be described as “piecewise topological,” in the sense that subtopologies
describe the different high-symmetry submanifolds of the Brillouin zone, and the various subtopologies
must be pieced together to form a globally consistent topology. The subtopologies that we discover include a
glide-symmetric analog of the quantum spin Hall effect, an hourglass-flow topology (exemplified by our
recently proposed KHgSb material class), and quantized non-Abelian polarizations. Our cohomological
classification results in an atypical bulk-boundary correspondence for our topological insulators.
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I. INTRODUCTION

Spatial symmetries have enriched the topological classi-
fication of insulators and superconductors [1–10]. A basic
geometric property that distinguishes spatial symmetries
regards their transformation of the spatial origin: symmor-
phic symmetries preserve the origin, while nonsymmorphic
symmetries unavoidably translate the origin by a fraction of
the lattice period [11]. This fractional translation is respon-
sible for band topologies that have no analog in symmorphic
crystals. Thus far, all experimentally tested topological
insulators have relied on symmorphic space groups
[12–17]. Here, we propose the first nonsymmorphic theory
of time-reversal-invariant insulators, which complements
previous theoretical proposals with magnetic, nonsymmor-
phic space groups [4,5,18–20]. Motivated by our recently
proposed KHgX material class (X ¼ Sb, Bi, As) [21], we
present here a complete classification of spin-orbit-coupled
insulators with the space group (D4

6h) of KHgX.
The point group (D6h) of KHgX, defined as the quotient

of its space group by translations, is generated by four
spatial transformations—this typifies the complexity of
most space groups. This work describes a systematic

method to topologically classify space groups with
similar complexity; in contrast, previous classifications
[1,2,4–7,14] (with one exception by us [8]) have expanded
the Altland-Zirnbauer symmetry classes [22,23] to include
only a single point-group generator. For point groups with
multiple generators, different submanifolds of the Brillouin
torus are invariant under different symmetries; e.g., mirror
and glide planes are respectively mapped to themselves
by a symmorphic reflection and a glide reflection, as

(a) (b) (c) (d)

FIG. 1. (a) Mirror (red, blue) and glide (green, brown) planes in
the 3D Brillouin torus of KHgX. These planes project to the high-
symmetry line ~X ~U ~Z ~Γ ~X in the 2D Brillouin torus of the 010
surface. (b)–(d) Examples of possible piecewise topologies in the
space group of KHgX, as illustrated by their surface band
structures along ~X ~U ~Z ~Γ ~X. Panel (b) describes a “quantum glide
Hall effect” (along ~Z ~Γ) and an odd mirror-Chern number (along
~Γ ~X); these two subtopologies must be pieced together at their
intersection point ~Γ. Panel (c) describes an hourglass-flow top-
ology ( ~X ~U ~Z ~Γ) and an even mirror-Chern number ( ~Γ ~X). (d) A
trivial topology is shown for comparison.
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illustrated in Fig. 1(a) for D4
6h. Wave functions in each

submanifold are characterized by a lower-dimensional
topological invariant that depends on the symmetries of
that submanifold; e.g., mirror planes are characterized by a
mirror-Chern number [24] and glide planes by a glide-
symmetric analog [7,21] of the quantum spin Hall (QSH)
effect [25] [in short, a quantum glide Hall effect (QGHE)].
The various invariants are dependent because wave func-
tions must be continuous where the submanifolds overlap;
e.g., the intersection of planes in Fig. 1(a) are lines that
project to ~Γ, ~X, ~U, and ~Z. We refer to such insulators as
“piecewise topological,” in the sense that various subto-
pologies (topologies defined on different submanifolds)
must be pieced together consistently to form a 3D topology.
This work addresses two related themes: (i) a group-

cohomological classification of quasimomentum submani-
folds and (ii) the connection between this cohomological
classification and the topological classification of band
insulators. In (i), we ask how a mirror plane differs from a
glide plane. Are two glide planes in the same Brillouin
torus always equal? This equality does not hold for D4

6h: in
one glide plane, the symmetries are represented ordinarily,
while in the other we encounter generalized “symmetries”
that combine space-time transformations with quasimo-
mentum translations (W). Specifically, W denotes a dis-
crete quasimomentum translation in the reciprocal lattice.
These symmetries then generate an extension of the point
group by W; i.e., W becomes an element in a projective
representation of the point group. The various representa-
tions (corresponding to different glide planes) are classified
by group cohomology, and they result in different sub-
topologies (e.g., one glide plane in D4

6h may manifest a
quantum glide Hall effect, while the other cannot). In this
sense, cohomology underlies band topology.
To determine the possible subtopologies within each

submanifold and then combine them into a 3D topology,
we propose a general methodology through Wilson loops
of the Berry gauge field [26,27]; these loops represent
quasimomentum transport in the space of filled bands [28].
As exemplified for the space group D4

6h, our method is
shown to be efficient and geometrically intuitive—piecing
together subtopologies reduces to a problem of interpolat-
ing and matching curves. The novel subtopologies that
we discover include (i) the quantum glide Hall effect in
Fig. 1(a), (ii) an hourglass-flow topology, as illustrated in
Fig. 1(b) and exemplified [21] by KHgX, and (iii) quan-
tized, non-Abelian polarizations that generalize the Abelian
theory of polarization [29].
Our topological classification of D4

6h is the first physical
application of group extensions by quasimomentum trans-
lations. It generalizes the construction of nonsymmorphic
space groups, which extend point groups by real-space
translations [30–34]. Here, we further extend nonsymmor-
phic groups by reciprocal translations, thus placing real and
quasimomentum space on equal footing. A consequence of
this projective representation is an atypical bulk-boundary

correspondence for our topological insulators. This corre-
spondence describes a mapping between topological
numbers that describe bulk wave functions and surface
topological numbers [35]—such a mapping exists if the
bulk and surface have in common certain “edge sym-
metries” that form a subgroup of the full bulk symmetry.
This edge subgroup is responsible for quantizing both bulk
and surface topological numbers; i.e., these numbers are
robust against gap- and edge-symmetry-preserving defor-
mations of the Hamiltonian. In our case study, the edge
symmetry is projectively represented in the bulk, where
quasimomentum provides the parameter space for parallel
transport; on a surface with reduced translational symmetry,
the same symmetry is represented ordinarily. In contrast, all
known symmetry-protected correspondences [27] are one
to one and rely on the identity between bulk and surface
representations; our work explains how a partial corre-
spondence arises where such identity is absent.
We summarize our main results in Sec. II, which also

serves as a guide to the whole paper. We then preliminarily
review the tight-binding method in Sec. III A, as well as
introduce the spatial symmetries of our case study. Next, in
Sec. IV, we review the Wilson loop and the bulk-boundary
correspondence of topological insulators; the notion of a
partial correspondence is introduced and exemplified with
our case study of D4

6h. We then use the method of Wilson
loops to construct and classify a piecewise topological
insulator in Sec. V; here, we also introduce the quantum
glide Hall effect. Our topological classification relies on
extending the symmetry group by quasimomentum trans-
lations, as we elaborate in Sec. VI; the application of group
cohomology in band theory is introduced here. We offer an
alternative perspective of our main results in Sec. VII, and
end with an outlook.

II. SUMMARY OF RESULTS

A topological insulator in d spatial dimensions may
manifest robust edge states on a (d − 1)-dimensional
boundary. Letting k parametrize the d-dimensional
Brillouin torus, we then split the quasimomentum coor-
dinate as k ¼ ðk⊥; k∥Þ, such that k⊥ corresponds to the
coordinate orthogonal to the surface, and k∥ is a wave
vector in a (d − 1)-dimensional surface-Brillouin torus. We
then consider a family of noncontractible circles cðk∥Þ,
where for each circle k∥ is fixed, while k⊥ is varied over a
reciprocal period; e.g., consider the brown line in Fig. 1(a).
We propose to classify each quasimomentum circle by the
symmetries that leave that circle invariant. For example, in
centrosymmetric crystals, spatial inversion is a symmetry
of cðk∥Þ for inversion-invariant k∥ satisfying k∥ ¼ −k∥
modulo a surface reciprocal vector. The symmetries of the
circle are classified by the second group cohomology:

H2ðG∘;Z2 × Zd × ZÞ: ð1Þ
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As further elaborated in Sec. VI and Appendix D, H2

classifies the possible group extensions of G∘ by
Z2 × Zd × Z, and each extension describes how the sym-
metries of the circle are represented. The arguments in H2

are defined as follows.
(a) The first argument, G∘, is a magnetic point group [36]

consisting of those space-time symmetries that (i) pre-
serve a spatial point and (ii) map the circle cðk∥Þ to
itself. For d ¼ 3, the possible magnetic point groups
comprise the 32 classical point groups [37] without
time reversal (T), 32 classic point groups with T, and
58 groups in which T occurs only in combination
with other operations and not by itself. However, we
consider only subgroups of the 3D magnetic point
groups (numbering 32þ 32þ 58 ¼ 122) that satisfy
(ii); these subgroups might also include spatial sym-
metries that are spoilt by the surface, with the just-
mentioned spatial inversion a case in point.

(b) The second argument of H2 is the direct product of
three Abelian groups that we explain in turn. The Z2

group is generated by a 2π spin rotation; its inclusion
in the second argument implies that we also consider
half-integer-spin representations; e.g., at inversion-
invariant k∥ of fermionic insulators, time reversal is
represented by T2 ¼ −I.

(c) The second Abelian group (Zd) is generated by
discrete real-space translations in d dimensions: by
extending a magnetic point group (G∘) by Zd, we
obtain a magnetic space group; nontrivial extensions
are referred to as nonsymmorphic.

(d) The final Abelian group (Z) is generated by the
discrete quasimomentum translation in the surface-
normal direction, i.e., a translation along cðk∥Þ and
covering cðk∥Þ once. A nontrivial extension by qua-
simomentum translations is exemplified by one of two
glide planes in the space group D4

6h [cf. Sec. VI].
Having classified quasimomentum circles through

Eq. (1), we outline a systematic methodology to topologi-
cally classify band insulators. The key observation is that
quasimomentum translations in the space of filled bands is
represented by Wilson loops of the Berry gauge field; the
various group extensions, as classified by Eq. (1), corre-
spond to the various ways in which symmetry may
constrain the Wilson loop. Studying the Wilson-loop
spectrum then determines the topological classification.
A more detailed summary is as follows.

(i) We consider translations along cðk∥Þ with a certain
orientation that we might arbitrarily choose, e.g., the
triple arrows in Fig. 1(a). These translations are
represented by the Wilson loop Wðk∥Þ, and the
phase (θ) of each Wilson-loop eigenvalue traces out
a “curve” over k∥. In analogy with Hamiltonian-
energy bands, we refer to each curve as the energy of
a Wilson band in a surface-Brillouin torus. The

advantage of this analogy is that the Wilson bands
may be interpolated [35,38] to Hamiltonian-energy
bands in a semi-infinite geometry with a surface
orthogonal to k⊥. Some topological properties of the
Hamiltonian and Wilson bands are preserved in this
interpolation, resulting in a bulk-boundary corre-
spondence that we describe in Sec. IV B. There, we
also introduce two complementary notions of a total
and a partial correspondence; the latter is exempli-
fied by the space group D4

6h.
(ii) The symmetries of cðk∥Þ are formally defined as the

group of the Wilson loop in Sec. VI; any group of
the Wilson loop corresponds to a group extension
classified by Eq. (1). That is, our cohomological
classification of quasimomentum circles determines
the representation of point-group symmetries that
constrain the Wilson loop, whether linear or pro-
jective. The particular representation determines the
rules that govern the connectivity of Wilson energies
(curves), as we elaborate in Sec. VA; we then
connect the curves in all possible legal ways, as
in Sec. V B—distinct connectivities of the Wilson
energies correspond to topologically inequivalent
ground states. This program of interpolating and
matching curves, when carried out for the space
group D4

6h, produces the classification summarized
in Table I.

Beyond D4
6h, we note that Eq. (1) and the Wilson-loop

method provide a unifying framework to classify chiral
topological insulators [39], and all topological insulators
with robust edge states protected by space-time sym-
metries. Here, we refer to topological insulators with either
symmorphic [1,2,8] or nonsymmorphic spatial symmetries
[4,7,19,40], the time-reversal-invariant quantum spin Hall
phase [25], and magnetic topological insulators [18,41–43].
These case studies are characterized by extensions ofG∘ by

TABLE I. Classification of time-reversal-invariant insulators
with the space groupD4

6h. A quantized polarization invariant (Pη
~Γ
)

distinguishes between two families of insulators: modulo the
electron charge e, Pη

~Γ
¼ e=2 (¼ 0) characterizes the quantum

glide Hall effect (its absence). Specifically, Pη
~Γ
is the polarization

of one of two glide subspaces (as labeled by η ¼ �1), but time-
reversal symmetry ensures there is only one independent polari-
zation: Pþ

~Γ
¼ P−

~Γ
modulo e. The Pη

~Γ
¼ 0 family is further

subclassified by two non-Abelian polarizations, Q ~Γ ~Z ∈ Z2 and
Q ~X ~U ∈ Z2, and a mirror-Chern number (Ce) that is constrained to
be even; where Q ~Γ ~Z ≠ Q ~X ~U , the insulator manifests an hour-
glass-flow topology. The Pη

~Γ
¼ e=2 family is subclassified by

Q ~X ~U ∈ Z2 and odd Ce.

Q ~Γ ~Z Q ~X ~U Ce

Pη
~Γ
¼ 0 Z2 Z2 2Z

Pη
~Γ
¼ e=2 � � � Z2 2Zþ 1
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Z2 × Zd; on the other hand, extensions by quasimomentum
translations are necessary to describe the space group D4

6h,
but have not been considered in the literature. In particular,
D4

6h falls outside the K-theoretic classification of non-
symmorphic topological insulators in Ref. [7].
Finally, we remark that the method of Wilson loops

(synonymous [26] with the method of Wannier centers
[27]) is actively being used in topologically classifying
band insulators [26,27,44–46]. The present work advances
the Wilson-loop methodology by (i) relating it to group
cohomology through Eq. (1), (ii) providing a systematic
summary of the method (in this section), and (iii) demon-
strating how to classify a piecewise-topological insulator
for the case study D4

6h (cf. Sec. V).

III. PRELIMINARIES

A. Review of the tight-binding method

In the tight-binding method, the Hilbert space is reduced
to a finite number of Löwdin orbitals φR;α, for each unit cell
labeled by the Bravais-lattice (BL) vector R [47–49]. In
Hamiltonians with discrete translational symmetry, our
basis vectors are

ϕk;αðrÞ ¼
1ffiffiffiffi
N

p
X
R

eik·ðRþrαÞφR;αðr − R − rαÞ; ð2Þ

where α ¼ 1;…; ntot, k is a crystal momentum, N is the
number of unit cells, α labels the Löwdin orbital, and rα
denotes the position of the orbital α relative to the origin in
each unit cell. The tight-binding Hamiltonian is defined as

HðkÞαβ ¼
Z

ddrϕk;αðrÞ�Ĥϕk;βðrÞ; ð3Þ

where Ĥ is the single-particle Hamiltonian. The energy
eigenstates are labeled by a band index n and defined as
ψn;kðrÞ ¼

Pntot
α¼1 un;kðαÞϕk;αðrÞ, where
Xntot
β¼1

HðkÞαβun;kðβÞ ¼ εn;kun;kðαÞ: ð4Þ

We employ the bra-ket notation:

HðkÞjun;ki ¼ εn;kjun;ki: ð5Þ

Because of the spatial embedding of the orbitals, the basis
vectors ϕk;α are generally not periodic under k → kþ G for
a reciprocal vector G. This implies that the tight-binding
Hamiltonian satisfies

Hðkþ GÞ ¼ VðGÞ−1HðkÞVðGÞ; ð6Þ

where VðGÞ is a unitary matrix with elements ½VðGÞ�αβ ¼
δαβeiG·rα . We are interested in Hamiltonians with a spectral

gap that is finite for all k, such that we can distinguish
occupied from empty bands; the former are projected by

PðkÞ ¼
Xnocc
n¼1

jun;kihun;kj

¼ VðGÞPðkþ GÞVðGÞ−1; ð7Þ

where the last equality follows directly from Eq. (6).

B. Crystal structure and spatial symmetries

The crystal structure KHgX is chosen to exemplify the
spatial symmetries we study. As illustrated in Fig. 2, the Hg
and X ions form honeycomb layers with AB stacking along
~z; here, ~x, ~y, ~z denote unit basis vectors for the Cartesian
coordinate system drawn in the same figure. Between each
AB bilayer sits a triangular lattice of K ions. The space
group (D4

6h ≡ P63=mmc) of KHgX includes the following
symmetries: (i) an inversion (I) centered around a K ion
(which we henceforth take as our spatial origin), the
reflections (ii) M̄z ¼ tðc~z=2ÞMz, and (iii) M̄x ¼ tðc~z=2ÞMx,
where Mj inverts the coordinate j ∈ fx; y; zg. In (ii) and
(iii) and the remainder of the paper, we denote, for any
transformation g, ḡ ¼ tðc~z=2Þg as a product of g with a
translation (t) by half a lattice vector (c~z=2). Among (ii) and
(iii), only M̄x is a glide reflection, wherefore the fractional
translation is unremovable [11] by a different choice
of origin. While we primarily focus on the symmetries
(i)–(iii), they do not generate the full group of D4

6h; e.g.,
there also exists a sixfold screw symmetry whose impli-
cations have been explored in our companion paper [21].
We are interested in symmetry-protected topologies that

manifest on surfaces. Given a surface termination, we refer

kx

kz

ky

y

(b)

a

010

a1 a2 a

x
y

K
Hg

HgX

X

c/2 x

(a) (c)
z

K

FIG. 2. (a) 3D view of atomic structure. The Hg (red) and X
(blue) ions form a honeycomb layers with AB stacking. The K ion
(cyan) is located at an inversion center, which we also choose to
be our spatial origin. (b) Top-down view of atomic structure that
is truncated in the 010 direction; two of three Bravais-lattice
vectors are indicated by ~a1 and ~a2. (c) Center: bulk Brillouin zone
(BZ) of KHgX, with two mirror planes of M̄z colored red and
blue. Top: 100-surface BZ. Right: 010-surface BZ.
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to the subset of bulk symmetries that are preserved by that
surface as edge symmetries. The edge symmetries of the
100 and 001 surfaces are symmorphic, and they have been
previously addressed in the context of KHgX [21]. Our
paper instead focuses on the 010 surface, whose edge group
(nonsymmorphic Pma2) is generated by two reflections:
glideless M̄z and glide M̄x.

IV. WILSON LOOPS AND THE BULK-BOUNDARY
CORRESPONDENCE

We review the Wilson loop in Sec. IVA and introduce
the loop geometry that is assumed throughout this paper.
The relation between Wilson loops and the geometric
theory of polarization is summarized in Sec. IV B.
There, we also introduce the notion of a partial bulk-
boundary correspondence, which our nonsymmorphic
insulator exemplifies.

A. Review of Wilson loops

The matrix representation of parallel transport along
Brillouin-zone loops is known as the Wilson loop of the
Berry gauge field. It may be expressed as the path-ordered
exponential (denoted by ¯exp ) of the Berry-Wilczek-Zee
connection [50,51] AðkÞij ¼ hui;kj∇kuj;ki:

W½l� ¼ ¯exp

�
−
Z
l
dl · AðkÞ

�
: ð8Þ

Here, recall from Eq. (5) that juj;ki is an occupied
eigenstate of the tight-binding Hamiltonian; l denotes a
loop and A is a matrix with dimension equal to the
number (nocc) of occupied bands. The gauge-invariant
spectrum of W½l� is the non-Abelian generalization of
the Berry phase factors (Zak phase factors [28]) if l is
contractible (noncontractible) [26,27]. In this paper, we
consider only a family of loops parametrized by k∥ ¼
ðkx ∈ ½−π= ffiffiffi

3
p

a;þπ=
ffiffiffi
3

p
a�; kz ∈ ½−π=c;þπ=c�Þ, where

for each loop k∥ is fixed while ky is varied over a
noncontractible circle ½−2π=a;þ2π=a� [oriented line with
three arrowheads in Fig. 3(a)]. We then label each Wilson
loop as Wðk∥Þ and denote its eigenvalues by exp½iθn;k∥ �,
with n ¼ 1;…; nocc. Note that k∥ also parametrizes the
010-surface bands; hence, we refer to k∥ as a surface wave
vector. Here and henceforth, we take the unconventional
ordering k ¼ ðky; kx; kzÞ ¼ ðky; k∥Þ. To simplify the nota-
tion in the rest of the paper, we reparametrize the rec-
tangular primitive cell of Fig. 3 as a cube of dimension 2π;
i.e., kx ¼ �π=

ffiffiffi
3

p
a → kx ¼ �π, ky ¼ �2π=a → ky ¼ �π,

and kz ¼ �π=c → kz ¼ �π. The time-reversal-invariant k∥
are then labeled as ~Γ ¼ ð0; 0Þ, ~X ¼ ðπ; 0Þ, ~Z ¼ ð0; πÞ, and
~U ¼ ðπ; πÞ. For example, Wð ~ΓÞ would correspond to a
loop parametrized by ðky; 0; 0Þ.

B. Bulk-boundary correspondence
of topological insulators

The bulk-boundary correspondence describes topo-
logical similarities between the Wilson loop and the surface
band structure. To sharpen this analogy, we refer to the
eigenvectors of Wðk∥Þ as forming Wilson bands with
energies θn;k∥ . The correspondence may be understood in
two steps.

(i) The first is a spectral equivalence between
ð−i=2πÞ logWðk∥Þ and the projected-position oper-
ator P⊥ðk∥ÞŷP⊥ðk∥Þ, where

P⊥ðk∥Þ ¼
Xnocc
n¼1

Z
π

−π
dky
2π

jψn;ky;k∥ihψn;ky;k∥ j ð9Þ

projects to all occupied bands with surface wave
vector k∥, and ψn;kðrÞ ¼ expðik · rÞun;kðrÞ are the
Bloch-wave eigenfunctions of Ĥ. For the position
operator ŷ, we have chosen natural units of the lattice
where 1≡ a=2 ¼ ~a1 · ~y, and ~a1=a ¼ − ffiffiffi

3
p

~x=2þ
~y=2 is the lattice vector indicated in Fig. 2(b).
Denoting the eigenvalues of P⊥ðk∥ÞŷP⊥ðk∥Þ as
yn;k∥ , the two spectra are related as yn;k∥ ¼
θn;k∥=2π modulo one [26]. Some intuition about
the projected-position operator may be gained
from studying its eigenfunctions; they form a set
of hybrid functions fjk∥; nijn ∈ f1; 2;…; noccgg

b2

b1

4 π
/a

2π/ 3a

kx

ky (b)

b2
kx

ky

2 π
/a

2π/ 3a

(a) (c)

b2
kx

ky

FIG. 3. (a) A constant-kz slice of quasimomentum space, with
two of three reciprocal-lattice vectors indicated by ~b1 and ~b2.
While each hexagon corresponds to a Wigner-Seitz primitive cell,
it is convenient to pick the rectangular primitive cell that is shaded
in cyan. A close-up of this cell is shown in (b). Here, we illustrate
how the glide reflection (M̄x) maps ðky; π=

ffiffiffi
3

p
a; kzÞ →

ðky;−π=
ffiffiffi
3

p
a; kzÞ (red dot to brown), which connects to ð2π=aþ

ky; π=
ffiffiffi
3

p
a; kzÞ (blue) through ~b2. Panel (c) serves two interpre-

tations. In the first, TM̄z maps ðky; π=
ffiffiffi
3

p
a; kzÞ →

ð−ky;−π=
ffiffiffi
3

p
a; kzÞ (red dot to brown), which connects to

ð2π=a − ky; π=
ffiffiffi
3

p
a; kzÞ (blue) through ~b2. If we interpret

(c) as the kz ¼ 0 cross section, the same vectors illustrate the
effect of time reversal.
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that maximally localize in ~y (as a Wannier function)
but extend in ~x and ~z [as a Bloch wave with
momentum k∥ ¼ ðkx; kzÞ]. In this Bloch-Wannier
(BW) representation [27], the eigenvalue (yn;k∥)
under P⊥ŷP⊥ is merely the center-of-mass
coordinate of the BW function (jn; k∥i) [26,45].
Since P⊥ is symmetric under translation [tð~a1Þ] by
~a1, while tð~a1Þŷtð~a1Þ−1 ¼ ŷ − I, each of [yn;k∥ jn ∈
f1; 2;…; noccg] represents a family of BW functions
related by integer translations. The Abelian polari-
zation (P=e) is defined as the net displacement of
BW functions [29,52,53]:

Pk∥

e
¼ 1

2π

Xnocc
j¼1

θj;k∥ ¼
i
2π

Z
π

−π
TrAyðky; k∥Þdky; ð10Þ

where all equalities are defined modulo integers, and
TrAyðkÞ ¼

Pnocc
i¼1hui;kj∇yui;ki is the Abelian Berry

connection.
(ii) The next step is an interpolation [35,38] between

P⊥ŷP⊥ and an open-boundary Hamiltonian (Hs)
with a boundary termination. Presently, we assume
for simplicity that each of fP⊥; ŷ; Hsg is invariant
under space-time transformations of the edge group.
A simple example is the 2D quantum spin Hall
insulator, where time reversal (T) is the sole edge
symmetry: by assumption, T is a symmetry of the
periodic-boundary Hamiltonian (hence also of P⊥);
furthermore, since T acts locally in space, it is also a
symmetry of ŷ andHs. It has been shown in Ref. [35]
that the discrete subset of the Hs spectrum (corre-
sponding to edge-localized states) is deformable into
a subset of the fully discrete P⊥ŷP⊥ spectrum. More
physically, a subset of the BW functions mutually
and continuously hybridizes into edge-localized
states when a boundary is slowly introduced, and
the edge symmetry is preserved throughout this
hybridization. Consequently, P⊥ŷP⊥ (equivalently,
log[W]) andHs share certain traits that are only well
defined in the discrete part of the spectrum, and,
moreover, these traits are robust in the continued
presence of said symmetries. The trait that identifies
the QSH phase (in both the Zak phases and the edge-
mode dispersion) is a zigzag connectivity where the
spectrum is discrete; here, eigenvalues are well
defined, and they are Kramers degenerate at time-
reversal-invariant momenta but otherwise singly
degenerate, and, furthermore, all Kramers subspaces
are connected in a zigzag pattern [26,44,45]. In the
QSH example, it might be taken for granted that the
representation (T2 ¼ −I) of the edge symmetry is
identical for both Hs and W; the invariance of
T2 ¼ −I throughout the interpolation accounts for
the persistence of Kramers degeneracies, and

consequently for the entire zigzag topology. The
QSH phase thus exemplifies a total bulk-boundary
correspondence, where the entire set of boundary
topologies (i.e., topologies that are consistent with
the edge symmetries of Hs) is in one-to-one corre-
spondence with the entire set of W topologies (i.e.,
topologies that are consistent with symmetries ofW,
of which the edge symmetries form a subset). One is
then justified in inferring the topological classifica-
tion purely from the representation theory of surface
wave functions—this surface-centric methodology
has been successfully applied to many space
groups [4,8,54].

While this surface-centric approach is technically easier
than the representation theory of Wilson loops, it ignores
the bulk symmetries that are spoiled by the boundary. On
the other hand, W topologies encode these bulk sym-
metries, and are therefore more reliable in a topological
classification. In some cases [26,46,55,56], these bulk
symmetries enable W topologies that have no boundary
analog. Simply put, some topological phases do not have
robust boundary states, a case in point being theZ topology
of 2D inversion-symmetric insulators [26]. In our non-
symmorphic case study, it is an out-of-surface translational
symmetry [tð~a1Þ] that disables a W topology, and con-
sequently a naive surface-centric approach would over-
predict the topological classification—this exemplifies a
partial bulk-boundary correspondence. As we clarify, the
tð~a1Þ symmetry distinguishes between two representations
of the same edge symmetries: an ordinary representation
with the open-boundary Hamiltonian (Hs) and a projective
one with the Wilson loop (W). To state the conclusion up
front, the projective representation rules out a quantum
glide Hall topology that would otherwise be allowed in the
ordinary representation. This discussion motivates a careful
determination of the W topologies in Sec. V.

V. CONSTRUCTING A PIECEWISE-
TOPOLOGICAL INSULATOR BY

WILSON LOOPS

We would like to classify time-reversal-invariant insula-
tors with the space group D4

6h; our result should more
broadly apply to hexagonal crystal systems with the edge
symmetry Pma2 (generated by glide M̄x and glideless M̄z)
and a bulk spatial-inversion symmetry. Our final result in
Table I relies on topological invariants that we briefly
introduce here, deferring a detailed explanation to the
sections below. The invariants are (i) the mirror-Chern
number (Ce) in the kz ¼ 0 plane, (ii) the quadruplet
polarization Q ~Γ ~Z (Q ~X ~U) in the kx ¼ 0 glide plane
(kx ¼ π), wherefor Q ~Γ ~Z ≠ Q ~X ~U implies an hourglass flow,
and (iii) the glide polarization Pη

~Γ
¼ 0 (e=2) indicates the

absence (presence) of the quantum glide Hall effect in the
kx ¼ 0 plane.
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Our strategy for classification is simple: we first derive
the symmetry constraints on the Wilson-loop spectrum,
then enumerate all topologically distinct spectra that are
consistent with these constraints. Pictorially, this amounts
to understanding the rules obeyed by curves (the Wilson
bands) and connecting curves in all possible legal ways; we
do these in Secs. VA and V B, respectively.

A. Local rules of the curves

We consider how the bulk symmetries constrain the
Wilson loop Wðk∥Þ, with k∥ lying on the high-symmetry

line ~Γ ~X ~U ~Z ~Γ; note that ~Γ ~Z and ~X ~U are glide lines that are
invariant under M̄x, while ~Γ ~X and ~Z ~U are mirror lines
invariant under M̄z. The relevant symmetries that constrain
Wðk∥Þ necessarily preserve the circle ðky ∈ ½−π; π�; k∥Þ,
modulo translation by a reciprocal vector; such symmetries
comprise the little group of the circle [8]. For example,
(a) TI would constrainWðk∥Þ for all k∥, (b) TM̄x and M̄z is
constraining only for k∥ along ~Γ ~X, and (c) T matters only at

the time-reversal-invariant k∥. Along ~Γ ~X, we omit dis-
cussion of other symmetries (e.g., TC2y) in the group of the
circle, because they do not additionally constrain the
Wilson-loop spectrum. For each symmetry, only three
properties influence the connectivity of curves, which
we first state succinctly.

(i) Does the symmetry map each Wilson energy as θ →
θ or θ → −θ? Note here we omit the constant
argument of θk∥ .

(ii) If the symmetry maps θ → θ, does it also result in
Kramers-like degeneracy? By “Kramers-like,” we
mean a doublet degeneracy arising from an anti-
unitary symmetry that representatively squares to
−1, much like time-reversal symmetry in half-
integer-spin representations.

(iii) How does the symmetry transform the mirror
eigenvalues of the Wilson bands? Here, we refer
to the eigenvalues of mirror M̄z and glide M̄x along
their respective invariant lines.

To elaborate, (i) and (ii) are determined by how the
symmetry constrains the Wilson loop. We say that a
symmetry represented by T � is time-reversal-like at k∥,
if for that k∥

T �Wðk∥ÞT −1
� ¼ Wðk∥Þ−1;

with T �iT −1
� ¼ −i; and T 2

� ¼ �I: ð11Þ

Both T � map the Wilson energy as θ → θ, but
only T − symmetries guarantee a Kramers-like degeneracy.
Similarly, a symmetry represented by U is particle-hole-like
at k∥, if for that k∥

UWðk∥ÞU−1 ¼ Wðk∥Þ; with UiU−1 ¼ −i; ð12Þ

i.e., U maps the Wilson energy as θ → −θ. Here, we
caution that T and U are symmetries of the circle ðky ∈
½−π; π�; k∥Þ and preserve the momentum parameter k∥; this
differs from the conventional [23] time-reversal and par-
ticle-hole symmetries that typically invert momentum.
To precisely state (iii), we first elaborate on how Wilson

bands may be labeled by mirror eigenvalues, which we
define as λj for the reflection M̄j (j ∈ fx; zg). First consider
the glideless M̄z, which is a symmetry of any bulk wave
vector that projects to ~Γ ~X (kz ¼ 0) and ~Z ~U (kz ¼ π) in ~y.
Being glideless, M̄2

z ¼ Ē (2π rotation of a half-integer spin)
implies two momentum-independent branches for the
eigenvalues of M̄z: λz ¼ �i; this eigenvalue is an invariant
of any parallel transport within either M̄z-invariant plane.
That is, if ψ1 is a mirror eigenstate, any state related to ψ1

by parallel transport must have the same mirror eigenvalue.
Consequently, the Wilson loop block diagonalizes with
respect to λz ¼ �i, and any Wilson band may be labeled
by λz.
A similar story occurs for the glide M̄x, which is a

symmetry of any bulk wave vector that projects to ~Γ ~Z
(kx ¼ 0). The only difference from M̄z is that the two
branches of λx are momentum dependent, which follows
from M̄2

x ¼ tð~zÞĒ, with t denoting a lattice translation.
Explicitly, the Bloch representation of M̄x squares to
− expð−ikzÞ, which implies for the glide eigenval-
ues λxðkzÞ ¼ �i expð−ikz=2Þ.
To wrap up our discussion of the mirror eigenvalues, we

consider the subtler effect of M̄x along ~X ~U. Despite being a
symmetry of any surface wave vector along ~X ~U,

M̄x∶ ðπ; kzÞ → ð−π; kzÞ ¼ ðπ; kzÞ − 2π~x; ð13Þ

with 2π~x a surface reciprocal vector, M̄x is not a symmetry
of any bulk wave vector that projects to ~X ~U, but instead
relates two bulk momenta that are separated by half a bulk
reciprocal vector; i.e.,

M̄x∶ ðky; π; kzÞ → ðky;−π; kzÞ ¼ ðky þ π; π; kzÞ − ~b2;

as illustrated in Fig. 3(b). This reference to Fig. 3(b) must
be made with our reparametrization (kx ¼ �π=

ffiffiffi
3

p
a →

kx ¼ �π, ky ¼ �2π=a → ky ¼ �π) in mind. We refer to
such a glide plane as a projective glide plane, to distinguish
it from the ordinary glide plane at kx ¼ 0. The absence of
M̄x symmetry at each bulk wave vector implies that the
Wilson loop cannot be block diagonalized with respect to
the eigenvalues of M̄x. However, quantum numbers exist
for a generalized symmetry (M̄x) that combines the glide
reflection with parallel transport over half a reciprocal
period. To be precise, let us define the Wilson line W−π←0

to represent the parallel transport from ð0; π; kzÞ to
ð−π; π; kzÞ. We demonstrate in Sec. VI that all Wilson
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bands may be labeled by quantum numbers under
M̄x ≡W−π←0M̄x, and that these quantum numbers fall
into two energy-dependent branches as

λxðθ þ kzÞ ¼ ηi exp½−iðθ þ kzÞ=2�; with η ¼ �1:

ð14Þ

That is, λxðθ þ kzÞ is the M̄x eigenvalue of a Wilson band
at surface momentum ðπ; kzÞ and Wilson energy θ.
For the purpose of topological classification, all we need

are the existence of these symmetry eigenvalues (ordinary
and generalized) that fall into two branches [recall λz ¼
�i; λx ¼ �i expð−ikz=2Þ along ~Γ ~Z, and also Eq. (14)], and
(iii) asks whether the T �- and U-type symmetries preserve
(λj → λj) or interchange (λj → −λj) the branch. To clarify a
possible confusion, both T �- and U-type symmetries are
antiunitary and therefore have no eigenvalues, while the
reflections [M̄z; M̄x (along ~Γ ~Z) and M̄x (along ~X ~U)] are
unitary. The answer to (iii) is determined by the commu-
tation relation between the symmetry in question (whether
T � or U type) and the relevant reflection. To exemplify
(i)–(iii), let us evaluate the effect of TI symmetry along
~Γ ~Z. This may be derived in the polarization perspective,
due to the spectral equivalence of ð−i=2πÞ logWðk∥Þ
and P⊥ðk∥ÞŷP⊥ðk∥Þ. Since TI inverts all spatial coordi-
nates but transforms any momentum to itself (yn;k∥ ¼
θn;k∥=2π → −yn;k∥), we identify TI as a U-type symmetry
[cf. Eq. (12)]. Indeed, while TI is known to produce
Kramers degeneracy in the Hamiltonian spectrum, TI
emerges as an unconventional particle-hole-type symmetry
in the Wilson loop. Since M̄x commutes individually with
P⊥ð0; kzÞ and ŷ, all eigenstates of P⊥ð0; kzÞŷP⊥ð0; kzÞmay

simultaneously be labeled by λx. That TI maps λx → −λx
then follows from M̄xTI ¼ tð~zÞTIM̄x, where tð~zÞ origi-
nates simply from the noncommutivity of I with the
fractional translation [tð~z=2Þ] in M̄x:

M̄xI ¼ tð~zÞIM̄x: ð15Þ

To show TI : λx → −λx in more detail, suppose for a Bloch-
Wannier function jn; kzi that

P⊥ŷP⊥jn; kzi ¼ yn;kz jn; kzi and

M̄xjn; kzi ¼ λxðkzÞjn; kzi; ð16Þ

with λxðkzÞ ¼ �i expð−ikz=2Þ and suppression of the label
kx ¼ 0. ½TI ; P⊥� ¼ fTI ; ŷg ¼ 0 then leads to

P⊥ŷP⊥TI jn; kzi ¼ −yn;kz jn; kzi and

M̄xTI jn; kzi ¼ tð~zÞTIM̄xjn; kzi
¼ e−ikzλ�xTI jn; kzi; ð17Þ

with expð−ikzÞλ�x ¼ −λx following from λ2x ¼− expð−ikzÞ. To recapitulate, (a) TI imposes a particle-
hole-symmetric spectrum and (b) two states related by TI
have opposite eigenvalues under M̄x. (a) and (b) are
summarized by the notation U: λx → −λx in the top left-
hand entry of Table II. The complete symmetry analysis is
derived in Sec. VI and Appendix B and tabulated in
Tables II and III. These relations constrain the possible
topologies of the Wilson bands, as we show in the next
section.

TABLE II. Symmetry constraints of the Wilson bands at generic points along the mirror lines. T � and U are
possible characterizations of the symmetries (TI , TM̄z, TM̄x) in the leftmost column: a T �-type (U-type) symmetry
is time-reversal-like (particle-hole-like) symmetry, as defined in Eqs. (11) and (12). For j ∈ fx; zg, λj is a symmetry
eigenvalue that falls into one of two branches: λz ¼ �i or λxðαÞ ¼ �i expð−iα=2Þ. Along kx ¼ 0, λx is momentum
dependent, and along kx ¼ π, it is energy dependent as well; that is, λxðkz þ θÞ is the glide eigenvalue of a Wilson
band at momentum kz and energy θ.

kx ¼ 0ð ~Γ ~ZÞ kx ¼ πð ~X ~UÞ kz ¼ 0ð ~Γ ~XÞ kz ¼ πð ~Z ~UÞ
TI U: λxðkzÞ → −λxðkzÞ U: λxðkz þ θÞ → −λxðkz − θÞ U: λz → −λz U: λz → þλz
TM̄z T þ: λxðkzÞ → þλxðkzÞ T þ: λxðkz þ θÞ → þλxðkz þ θÞ � � � � � �
TM̄x � � � � � � T þ: λz → þλz T −: λz → −λz

TABLE III. Time-reversal constraint of the Wilson bands at surface wave vectors satisfying k∥ ¼ ðkx; kzÞ ¼ −k∥ modulo a reciprocal
vector. To clarify a possible source of confusion, the actual time-reversal symmetry (T) is, by our definition of T � in Eq. (11), only
“time-reversal-like” at k∥ ¼ −k∥, since T∶k∥ → −k∥ is not a symmetry of the circle ðky ∈ ½−π; π�; k∥Þ for generic k∥.

~Γ ¼ ð0; 0Þ ~X ¼ ðπ; 0Þ ~Z ¼ ð0; πÞ ~U ¼ ðπ; πÞ
T T −: λz → −λz,

λxðkzÞ → −λxðkzÞ
T −: λz → −λz,

λxðkz þ θÞ → −λxðkz þ θÞ
T −: λz → −λz,
λxðkzÞ → þλxðkzÞ

T −: λz → −λz,
λxðkz þ θÞ → þλxðkz þ θÞ
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B. Connecting curves in all possible legal ways

Our goal here is to determine the possible topologies of
curves (Wilson bands), which are piecewise smooth on the
high-symmetry line ~Γ ~X ~U ~Z ~Γ. We first analyze each
momentum interval separately, by evaluating the available
subtopologies within each of ~Γ ~Z, ~Z ~U, etc. The various
subtopologies are then combined to a full topology, by a
program of matching curves at the intersection points (e.g.,
~Z) between momentum intervals.
Since our program here is to interpolate and match

curves (Wilson bands), it is important to establish just how
many Wilson bands must be connected. A combination of
symmetry, band continuity, and topology dictates this
answer to be a multiple of four. Since the number (nocc)
of occupied Hamiltonian bands is also the dimension of the
Wilson loop, it suffices to show that nocc is a multiple of
four. Indeed, this follows from our assumption that the
ground state is insulating, and a property of connectedness
between sets of Hamiltonian bands. For spin systems with
minimally time-reversal and glide-reflection symmetries,
we prove in Appendix C that Hamiltonian bands divide into
sets of four that are individually connected; i.e., in each set
there are enough contact points to travel continuously
through all four branches. The lack of gapless excitations
in an insulator then implies that a connected quadruplet is
either completely occupied or unoccupied.

1. Interpolating curves along the glide line ~Γ ~Z

Along kx ¼ 0 ( ~Γ ~Z), the rules are as follows.
(a) There are two flavors of curves (illustrated as solid and

blue dashed lines in Fig. 4), corresponding to two
branches of the glide eigenvalue λx¼�iexpð−ikz=2Þ.
Only crossings between solid and dashed curves are
robust, in the sense of being movable but unremovable.

(b) At any point along ~Γ ~Z, there is an unconventional
particle-hole symmetry (due to TI) with conjugate
bands (related by θ → −θ) belonging in opposite glide
branches; cf. first column of Table II. Pictorially, [θ,
blue solid curve] ↔ [−θ, blue dashed curve].

(c) At ~Γ, each solid curve is degenerate with a dashed
curve, while at ~Z the degeneracies are solid-solid and
dashed-dashed; cf. Table III. These end-point con-
straints are boundary conditions for the interpolation
along ~Γ ~Z.

Given these rules, there are three distinct connectivities
along ~Γ ~Z, which we describe in turn: (i) a zigzag
connectivity [Figs. 4(a)–4(e)] defines the quantum glide
Hall effect, and (ii) two configurations of hourglasses [e.g.,
Fig. 4(f) versus Fig. 4(h), and also Fig. 4(g) versus Fig. 4(i)]
are distinguished by a connected-quadruplet polarization.
(i) As illustrated in Figs. 4(a)–4(e), the QGHE describes

a zigzag connectivity over ~Γ ~Z, where each cusp of the
zigzag corresponds to a Kramers-degenerate subspace.

While Figs. 4(c) and 4(d) are not obviously zigzag, they
are smoothly deformable to Fig. 4(a), which clearly is. A
unifying property of all five figures [Figs. 4(a)–4(e)] is
spectral flow: the QGHE is characterized by Wilson bands
that robustly interpolate across the maximal energy range
of 2π. What distinguishes the QGHE from the usual
quantum spin Hall effect [25]? Despite describing the band
topology over all of ~Γ ~Z, the QGHE is solely determined by
a polarization invariant (Pη

~Γ
) at a single point ( ~Γ), which we

now describe.
Definition of Pη

~Γ
.—Consider the ðky ∈ ½−π; πÞ; k∥ ¼ 0Þ

circle in the 3D Brillouin zone. Each point here has the
glide symmetry M̄x, and the Bloch waves divide into two
glide subspaces labeled by λx=i≡ η ¼ �1. This allows us
to define an Abelian polarization (Pη

~Γ
=e) as the net

displacement of Bloch-Wannier functions in either η sub-
space:

Pη
~Γ
e

¼ 1

2π

Xnocc=2
j¼1

θη
j; ~Γ

mod 1: ð18Þ

Here, the superscript η indicates a restriction to the λx ¼ ηi,
occupied subspace, fexpðiθηÞg are the eigenvalues of the
Wilson loop Wηð ~ΓÞ, and the second equality follows from
the spectral equivalence introduced in Sec. IV. We have
previously determined in this section that nocc is a multiple
of four, and therefore there is always an even number
(nocc=2) of Wilson bands in either η subspace. Furthermore,
Pþ

~Γ
¼ P−

~Γ
modulo e follows from time reversal relating

θη~Γ → θ−η~Γ ; cf. Table III.
We claim that the effect of spatial inversion (I) sym-

metry is to quantize Pη
~Γ
to 0 and e=2, which, respectively,

correspond to the absence and presence of the QGHE.
Restated, the set of occupied Bloch states along a high-
symmetry line (projecting to ~Γ) holographically determines
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FIG. 4. Possible Wilson spectra along ~Γ ~Z.
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the topology in a high-symmetry plane (projecting to ~Γ ~Z).
To demonstrate this, (a) we first relate the Wilson spectrum
at ~Γ to the invariant Pη

~Γ
, then (b) determine the possible

Wilson spectra at ~Z. (c) These end-point spectra may be
interpreted as boundary conditions for curves interpolating
across ~Γ ~Z—we find there are only two classes of inter-
polating curves that are distinguished by spectral flow.
(a) To prove the quantization of Pη

~Γ
, consider how each

glide subspace is individually invariant under I. This
invariance follows from Eq. (15), leading to the
representative commutivity of I and M̄x, where
kz ¼ 0. We need further that I maps θη~Γ → −θη~Γ
mod 2π. This may be deduced from the polarization
perspective, where θη~Γ=2π is an eigenvalue of the
position operator ŷ (projected to the occupied sub-
space at surface wave vector ~Γ and with λx ¼ ηi); our
claim then follows simply from I inverting the
position operator ŷ. θη~Γ and −θη~Γ may correspond either
to two distinct Wilson bands (an inversion doublet) or
to the same Wilson band (an inversion singlet at θη~Γ ¼
0 or π). Since there are an even number of Wilson
bands in each η subspace, a 0 singlet is always
accompanied by a π singlet—such a singlet pair
produces the only nonintegral contribution to
Pη

~Γ
ð¼ e=2Þ; the absence of singlets corresponds to

Pη
~Γ
¼ 0. These two cases correspond to two classes of

boundary conditions at ~Γ. We remark briefly on fine-
tuned scenarios where an inversion doublet may
accidentally lie at 0 (or π) without affecting the value
of Pη

~Γ
. In complete generality, Pη

~Γ
¼ e=2 (0) corre-

sponds to an odd (even) number of bands at both 0 and
π, in one η subspace.

(b) What is left is to determine the possible boundary
conditions at ~Z. We find here only one class of
boundary conditions, i.e., any one boundary condition
may be smoothly deformed into another, indicating the
absence of a nontrivial topological invariant at ~Z.
Indeed, the same nonsymmorphic algebra [Eq. (15)]
has different implications where kz ¼ π: now I relates
Wilson bands in opposite glide subspaces; i.e.,
I∶θη~Z → θ−η~Z ¼ −θη~Z. Consequently, the total polariza-
tion (P ~Z) vanishes modulo e, and the analogous Pη

~Z
is

well defined but not quantized. With the additional
constraint by T (see Table III), any Kramers pair
belongs to the same glide subspace due to the reality of
the glide eigenvalues; on the other hand, each Kramers
pair at θ is mapped by I to another Kramers pair at−θ,
and I-related pairs belong to different glide subspaces.

(c) Having determined all boundary conditions, we pro-
ceed to the interpolation. For simplicity, this is first
performed for the minimal number (four) of Wilson
bands; the two Wilson-energy functions in each η

subspace are defined as θη1;k∥ and θη2;k∥ . If P
η
~Γ
¼ e=2,

the boundary conditions are

θη
1; ~Γ

¼ 0; θη
2; ~Γ

¼ �π

and θη
1; ~Z

¼ θη
2; ~Z

¼ −θ−η
1; ~Z

¼ −θ−η
2; ~Z

:

In one of the glide subspaces (say, η), the two Wilson-
energy functions are degenerate at ~Z, but are at
everywhere else along ~Γ ~Z nondegenerate; particularly
at ~Γ, one Wilson energy is fixed to 0 and the other to
�π. Consequently, the two energy functions sweep
out an energy interval that contains at least ½0; π�
[see, e.g., Fig. 4(a)], but may contain more [see, e.g.,
Fig. 4(c)]. The particle-hole symmetry (due to TI ;
cf. Table II) further imposes that the other two energy
functions (in −η) sweep out at least ½−π; 0�—the net
result is that the entire energy range is swept; this
spectral flow is identified with the QGHE.

If Pη
~Γ
¼ 0, the boundary conditions at ~Γ are instead

θη
1; ~Γ

¼ θ−η
1; ~Γ

¼ −θη
2; ~Γ

¼ −θ−η
2; ~Γ
; ð19Þ

leading to spectrally isolated quadruplets, e.g., in
Figs. 4(f), 4(h), and 4(i). Since Kramers partners at ~Γ
( ~Z) belong in opposite η subspaces (the same η subspace),
the interpolation describes an internal partner switching
within each quadruplet, resulting in an hourglasslike
dispersion. The center of the hourglass is an unavoidable
crossing [57] between opposite-η bands—this degeneracy
is movable but unremovable. Finally, we remark that the
interpolations distinguished by Pη

~Γ
easily generalize

beyond the minimal number of Wilson bands; e.g., com-
pare Fig. 4(e) to Fig. 4(g). ▪
Given that the Abelian polarization depends on the

choice of spatial origin [26], it may seem surprising that
a single polarization invariant (Pη

~Γ
) sufficiently indicates

the QGHE; indeed, each of the inequivalent inversion
centers is a reasonable choice for the spatial origin. In
contrast, many other topologies are diagnosed by gauge-
invariant differences in polarizations of different 1D sub-
manifolds in the same Brillouin zone [26,58]. Unlike
generic polarizations, Pη

~Γ
is invariant when a different

inversion center is picked as the origin, i.e., this globally
shifts all θ → θ þ π [see, e.g., Figs. 4(a) and 4(b)], which
leads to Pη

~Γ
=e → Pη

~Γ
=e modulo Z, since each glide sub-

space is even dimensional. We caution that Pη
~Γ
will not

remain quantized if the spatial origin lies away from an
inversion center, due to the well-known U(1) ambiguity of
the Wilson loop [26].
That the QGHE is determined solely by Pη

~Γ
makes

diagnosis especially easy: we propose to multiply the
spatial-inversion (I) eigenvalues of occupied bands in a
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single η subspace, at the two inversion-invariant k that
project to ~Γ. This product being þ1 (−1) then implies that
Pη

~Γ
¼ 0 (¼ e=2). In contrast, the usual quantum spin Hall

effect (without glide symmetry) cannot [26,44,45] be
formulated as an Abelian polarization, and a diagnosis
would require the I eigenvalues at all four inversion-
invariant momenta of a two-torus [59].
(ii) With trivial Pη

~Γ
, the spectrally isolated interpolations

further subdivide into two distinct classes, which are dis-
tinguished by an hourglass centered at θ ¼ π; e.g., contrast
Figs. 4(h) and 4(i) with Figs. 4(f), 4(g), and 4(j). This
difference may be formalized by a Z2 topological invariant
(Q ~Γ ~Z), which we introduced in our companion work [21]
and presently describe in the polarization perspective.Q ~Γ ~Z
characterizes a coarse-grained polarization of quadruplets
along ~Γ ~Z, as we illustrate in Fig. 5(b). Here, the center-of-
mass position of this quadruplet may tentatively be defined
by averaging four Bloch-Wannier positions: Y1ðk∥Þ ¼
ð1=4ÞP4

n¼1 yn;k∥ , with k∥ ∈ ~Γ ~Z. Any polarization quantity
should bewell defined modulo 1, which reflects the discrete
translational symmetry of the crystal. However, we caution
that Y is only well defined mod 1=4 for quadruplet bands
without symmetry, due to the integer ambiguity of each
of fynjn ∈ Zg. To illustrate this ambiguity, consider in
Fig. 5(a) the spectrumofP⊥ŷP⊥ for an asymmetric insulator
with four occupied bands. Only the spectrum for two spatial
unit cells (with unit period) are shown, and the discrete
translational symmetry ensures yj;k∥ ¼ yjþ4l;k∥ − l for j,
l ∈ Z. Clearly, the centers of mass of fy1; y2; y3; y4g and
fy2; y3; y4; y5g differ by 1=4 at each k∥, but both choices are
equally natural given level repulsion across ~Z ~Γ ~Z.
However, a natural choice presents itself if the Bloch-

Wannier bands may be grouped in sets of four, such that
within each set there are enough contact points along ~Γ ~Z to

continuously travel between the four bands. Such a
property, which we call fourfold connectivity, is illustrated
in Fig. 5(b) over two spatial unit cells. Here, both
quadruplets fy1; y2; y3; y4g and fy5; y6; y7; y8g are con-
nected, and their centers of mass differ by unity; on the
other hand, fy2; y3; y4; y5g is not connected. The following
discussion then hinges on this fourfold connectivity, which
characterizes insulators with glide and time-reversal sym-
metries. Having defined a mod 1 center-of-mass coordinate
for one connected quadruplet, we extend our discussion to
insulators with multiple quadruplets per unit cell; i.e., since
there are nocc number of Bloch-Wannier bands, where nocc
is the number of occupied bands, we now discuss the most
general case where integral nocc=4 ≥ 1. Let us define the
net displacement of all nocc=4 number of connected-
quadruplet centers: Qðk∥Þ=e ¼ Pnocc=4

j¼1 Yjðk∥Þ mod 1. A
combination of time-reversal (T) and spatial-inversion (I)
symmetry quantizes Qðk∥Þ to 0 or e=2, as we now show.
We have previously described how TI inverts the spatial
coordinate but leaves momentum untouched; i.e., we have
an unconventional particle-hole symmetry at each k∥:
TI jk∥; ni ¼ jk∥; mi, with m ≠ n and yn;k∥ ¼ −ym;k∥

mod 1. Consequently, TI : Yjðk∥Þ → Yj0 ðk∥Þ ¼ −Yjðk∥Þ
mod 1, and the only noninteger contribution to Q=e
(¼ 1=2) arises if there exists a particle-hole-invariant
quadruplet (j̄) that is centered at Y j̄ ¼ 1=2 ¼ −Y j̄ mod
1, as we exemplify in Figs. 4(h) and 4(i); moreover, since
each yn;k∥ is a continuous function of k∥, Qk∥ is constant

(≡Q ~Γ ~Z) over ~Γ ~Z. Alternatively stated, Q ~Γ ~Z is a quantized
polarization invariant that characterizes the entire glide
plane that projects to ~Γ ~Z.

2. Connecting curves along the glide line ~X ~U

As we discuss in Sec. VA, the relevant symmetries that
constrain Wðk∥Þ comprise the little group of the circle
ðky ∈ ½−π; π�; k∥Þ [8]. For any k∥ ∈ ~X ~U, the corresponding
group has the symmetries M̄x, TI , and TM̄z; these are
exactly the same symmetries of the group for k∥ ∈ ~Γ ~Z. In
spite of this similarity, the available subtopologies on ~X ~U
and ~Γ ~Z differ: while the two hourglass configurations
(distinguished by a connected-quadruplet polarization) are
available subtopologies on each line, the QGHE is only
available along ~Γ ~Z. This difference arises because the same
symmetries are represented differently on each line—the
different projective representations are classified by the
second cohomology group, as we discuss in Sec. VI. For
the purpose of topological classification, we need only
extract one salient result from that section: anyWilson band
at k∥ ¼ ðπ; kzÞ and Wilson energy θ has simultaneously a
“glide” eigenvalue: λxðkz þ θÞ in Eq. (14); here, glide refers
to the generalized symmetry M̄x ≡W−π←0M̄x, which
combines the ordinary glide reflection (M̄x) with parallel
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FIG. 5. Comparison of the spectrum of P⊥ŷP⊥ for a system
without any symmetry (a) and one with time-reversal, spatial-
inversion, and glide symmetries (b). Only the spectrum for two
spatial unit cells is shown.
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transport (W−π←0). We might ask if η ¼ �1 in λx labels a
meaningful division of the Wilson bands; i.e., do we once
again have two noninteracting flavors of curves, as we had
for ~Γ ~Z? The answer is affirmative if the Wilson bands are
spectrally isolated, i.e., if all nocc Wilson bands lie strictly
within an energy interval ½θi; θf�with jθf − θij < 2π, for all
kz ∈ ½0; 2πÞ. For example, the isolated bands of Fig. 6(a) lie
within a window of ½−π=2; π=2�, whereas no similar
window exists in the hypothetical scenario of Fig. 6(c).
If isolated, then at each kz the energy difference (θi − θj)
between any two bands is strictly less than 2π—therefore,
there is no ambiguity in labeling each band by η from
Eq. (14). Conversely, this potential ambiguity is sufficient
to rule out bands with spectral flow, as we now
demonstrate.
Let us consider a hypothetical scenario with spectral flow

[Fig. 6(c)], as would describe a QGHE. There is then a
smooth interpolation between bands in one energy period
to any band in the next, as illustrated by connecting black
arrows in Fig. 6(c). As we interpolate θ → θ þ 2π and
kz → kz þ 4π, we of course return to the same eigenvector
ofW, and therefore the glide eigenvalue must also return to
itself. However, the energy dependence leads to λx → −λx.
More generally, for 4u number of occupied bands,
θ → θ þ 2π, while kz → kz þ 4uπ, leading to the same
contradiction. We remark that the essential properties that
jointly lead to a contradiction are that (i) Wilson bands
come in multiples of four, as we discuss in the introduction
to Sec. V B, (ii) the Kramers partners at ~X ( ~U) belong to
opposite flavors (the same flavor) (cf. Table III),
and (iii) bands connect in a zigzag. Certain details of
Fig. 6(c) (e.g., that θ is quantized to special values at ~X) are
superfluous to our argument. Besides this argument, we
furnish an alternative proof to rule out the QGHE in our
companion paper [21]. We remark that the QGHE is
perfectly consistent with the surface symmetries [21],
and it is only ruled out by a proper account of the bulk
symmetries. ▪
Returning to our classification, Tables II and III inform

us of the constraints due to time-reversal and spatial-
inversion symmetries. The summary of this symmetry
analysis is that our rules for the curves along ~X ~U are
completely identical to that along ~Γ ~Z, assuming that bands
are spectrally isolated. We thus conclude that the only

subtopologies are two hourglass-type interpolations
[Figs. 6(a) and 6(b)], which are distinguished by a second
connected-quadruplet polarization (Q ~X ~U).

3. Connecting curves along the mirror line ~Γ ~X

(a) Curves divide into two noninteracting flavors (solid
and red dashed lines in Fig. 7), corresponding to λz ¼
�i subspaces.

(b) At both boundaries ( ~Γ and ~X), each red solid curve is
degenerate with a red dashed curve; cf. Table III.

(c) At any point along ~Γ ~X [θ, red solid] ↔ [−θ, red
dashed], due to the TI symmetry of Table II.
These rules allow for mirror-Chern [24] subtopol-

ogies in the torus that projects to ~X ~Γ ~X, where λz ¼ �i
subspaces have opposite chirality due to time-reversal
symmetry; Fig. 7(a) exemplifies a Chern number (Ce)
of −1 in the λz ¼ þi subspace, and Fig. 7(b) exem-
plifies Ce ¼ −2. The allowed mirror-Chern numbers
(Ce) depend on our last rule:

(d) Curves must match continuously at ~Γ and ~X.
This last rule imposes a consistency condition with the

subtopologies at ~Γ ~Z and ~X ~U: Ce is odd (even) if and only if
Pη

~Γ
¼ e=2 [Pη

~Γ
¼ 0], as illustrated in Figs. 8(a)–8(c)

[Figs. 8(d)–8(f)].
To demonstrate our claim, we rely on a single-energy

criterion to determine the parity of Ce: count the number
(Nþi) of λz ¼ þi states at an arbitrarily chosen energy and
along the full circle ~X ~Γ ~X, then applyNþi mod 2 ¼ Ce mod
2. Supposing we choose θ ¼ π=2 in Fig. 7(a), there is a
single intersection (encircled in the figure) with a λz ¼ þi
band, as is consistent with Ce ¼ −1 being odd. For the
purpose of connecting Ce with Pη

~Γ
, we need a slightly

modified counting rule that applies to the half-circle ~Γ ~X
instead of the full circle. Since time reversal relates λz ¼ �i
bands at opposite momentum, we would instead count the
total number of bands in both M̄z subspaces, at our chosen
energy and along the half-circle; one additional rule regards
the counting of the Kramers doublet, which comprise time-
reversed partners at either ~Γ or ~X. If such a doublet lies at
our chosen energy, it counts not as two but as one; every
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FIG. 6. (a),(b) Possible Wilson spectra along ~X ~U. (c) A
hypothetical spectrum that is ruled out by a continuity argument.
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FIG. 7. Illustrating the single-energy criterion to determine the
parity of the mirror-Chern number (Ce): Ce ¼ −1 in (a) and −2 in
(b). Red solid (dashed) lines correspond to a Wilson band with
mirror eigenvalue λz ¼ þi (−i).
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other singlet state counts as one. With these rules, the parity
of this weighted count ( ~N) equals that of Ce. Returning to
Fig. 7(a) for illustration, we would still count the single
λz ¼ þi crossing (encircled) at θ ¼ π=2, but if we instead
pick θ ¼ 0, we could count the Kramers doublet at ~Γ as
unity; for both choices of θ, ~N ¼ þ1. In comparison, the
two θ ¼ 0 states in Fig. 7(b) are both singlets and count
collectively as two, which is consistent with this figure
describing a Ce ¼ −2 phase.
Though our single-energy criterion applies at any θ, it is

useful to particularize to θ ¼ 0, where in counting ~N we
wouldhave to determine the number of zero-energyKramers
doublets at ~Γ; e.g., this would be one in Fig. 7(a) and zero in
Fig. 7(b). This number may be identified, mod 2, with the
number of zero-energy inversion singlets, which we estab-
lish in Sec.V B 1 to be unity ifPη

~Γ
¼ e=2 and zero ifPη

~Γ
¼ 0.

Moreover, the parity of zero-energy doublets at ~Γ may
immediately be identified with the parity of ~N (and thus also
that of Ce), because every other contribution to ~N has even
parity, as we now show.We first consider the contribution at
~X. Given that the only subtopologies at ~X ~U are hourglasses,
there are generically no zero-energy Kramers doublets
at ~X [Figs. 8(a), 8(c)–8(f)], though in fine-tuned situations
[Fig. 8(b)] there might be an even number. Away from
the end points, any intersection comes in particle-hole-
symmetric pairs [see, e.g., Figs. 8(c), 8(e) and 8(f)].

4. Connecting curves along the mirror line ~Z ~U

(a) As illustrated in Fig. 9, each red solid curve (M̄z ¼ þi)
is degenerate with a red dashed curve (M̄z ¼ −i).
Doublet curves cannot cross due to level repulsion,
and must be symmetric under θ → −θ.

(b) The curve-matching conditions at ~Z and ~U again
impose consistency requirements.

These rules are stringent enough to uniquely specify the
interpolation along ~Z ~U, given the subtopologies at ~Γ ~Z
(specified by Pη

~Γ
, Q ~Γ ~Z) and at ~X ~U (Q ~X ~U). Alternatively

stated, there are no additional invariants in this already-
complete classification. To justify our claim, first consider
Pη

~Γ
¼ e=2, such that doublets at ~U are matched with cusps

of hourglasses (along ~U ~X), while doublets at ~Z connect to
cusps of a zigzag (along ~Z ~Γ). There is then only one type of
interpolation illustrated in Figs. 9(a)–9(c). If Pη

~Γ
¼ 0, we

have hourglasses on both glide lines ~Γ ~Z and ~X ~U. If on one
glide line an hourglass is centered at θ ¼ π, while on the
other line there is no π hourglass (i.e., Q ~Γ ~Z ≠ Q ~X ~U), the
unique interpolation is shown in Figs. 9(d) and 9(e): red
doublets connect the upper cusp of one hourglass to the
lower cusp of another, in a generalized zigzag pattern with
spectral flow. A brief remark here is in order: when viewed
individually along any straight line (e.g., ~Γ ~Z or ~Z ~U), bands
are clearly spectrally isolated; however, when viewed along
a bent line ( ~Γ ~Z ~U ~X), the bands exhibit spectral flow. In all
other cases for Pη

~Γ
;Q ~Γ ~Z, and Q ~X ~U, bands along ~Γ ~Z ~U ~X

separate into spectrally isolated quadruplets, as in Fig. 9(f).

VI. QUASIMOMENTUM EXTENSIONS AND
GROUP COHOMOLOGY IN BAND INSULATORS

Symmetry operations normally describe space-time
transformations; such symmetries and their groups are
referred to as ordinary. Here, we encounter certain “sym-
metries” of the Wilson loop that additionally induce
quasimomentum transport in the space of filled bands;
we call them W symmetries to distinguish them from the
ordinary symmetries. In this section, we identify the
relevantW symmetries and show their corresponding group
(Gπ;kz) to be an extension of the ordinary group (G∘) by
quasimomentum translations, whereG∘ corresponds purely
to space-time transformations; the inequivalent extensions
are classified by the second cohomology group, which we
also introduce here. In crystals, G∘ would be a magnetic
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FIG. 8. Possible Wilson spectra along ~Γ ~X. (a)–(c) With non-
trivial glide polarization (Pη
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), the mirror-Chern numbers (Ce) are,

respectively, −1,þ1, and −3. (d)–(f) With trivial Pη
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FIG. 9. Possible Wilson spectra along ~Z ~U.
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point group [36] for a spinless particle; i.e.,G∘ comprise the
space-time transformations (possibly including time rever-
sal) that preserve at least one real-space point. It is well
known how G∘ may be extended by phase factors to
describe half-integer-spin particles, and also by discrete
spatial translations to describe nonsymmorphic crystals
[30–34]. One lesson learned here is that G∘ may be further
extended by quasimomentum translations (as represented
by the Wilson loop), thus placing real and quasimomentum
space on equal footing.
W symmetries are a special type of constraints on the

Wilson loop at high-symmetry momenta (k∥). As exem-
plified in Eqs. (11) and (12), constraints (ĝ) on a Wilson
loop (W) map W to itself, up to a reversal in orientation:

ĝWĝ−1 ¼ W�1; ð20Þ

where W−1 is the inverse of W; all ĝ satisfying this
equation are defined as elements in the group (Gk∥) of the
Wilson loop. A trivial example of ĝ would be the Wilson
loop itself; ĝ may also represent a space-time transforma-
tion, as exemplified by a 2π real-space rotation (Ē).
Particularizing to our context, we let ky ∈ ½−π; πÞ para-
metrize the noncontractible momentum loop, and choose
the convention that W (W−1) effects parallel transport in
the positive orientation: þ2π~y (in the reversed orientation:
−2π~y), as further elaborated in Appendix B 1.
W symmetries arise as constraints if a space-time trans-

formation exists that maps ky → �ky þ π. Our first exam-
ple of a W symmetry was introduced in Sec. VA, namely,
that the glide reflection (M̄x) maps ðky; k∥Þ → ðky þ π; k∥Þ
for any k∥ along kx ¼ π ( ~X ~U), as illustrated in Fig. 10(a).
Consequently, the Wilson loop is mapped as

M̄xW−πðπ; kzÞM̄−1
x ¼ W0ðπ; kzÞ; ð21Þ

where we indicate the base point of the parameter loop as a
subscript of W; i.e., W k̄y induces parallel transport from

ðk̄y; π; kzÞ to ðk̄y þ 2π; π; kzÞ in the positive orientation.
This mapping from W−π [vertical arrow in Fig. 10(a)] to
W0 [arrow in Fig. 10(b)] is also illustrated. As it stands,
Eq. (21) is not a constraint as defined in Eq. (20). Progress
is made by further parallel transporting the occupied space
by −π~y, such that we return to the initial momentum:
ðky; π; kzÞ. This motivates the definition of a W-glide
symmetry (M̄x), which combines the glide reflection
(M̄x) with parallel transport across half a reciprocal
period—then by our construction, M̄x is an element in
the group (Gπ;kz) ofW−πðπ; kzÞ. To be precise, let us define
the Wilson line W−π←0 to represent a parallel transport
from ð0; π; kzÞ to ð−π; π; kzÞ, then
M̄xW−πM̄−1

x ¼W−π; with M̄x ¼W−π←0M̄x: ð22Þ

The W glide (M̄x) squares as

M̄2
x ¼ Ētð~zÞW−1−π; ð23Þ

which may be understood loosely as follows: the glide
component of theW glide squares as a 2π rotation (Ē) with
a lattice translation [tð~zÞ], while the transport component
squares as a full-period transport (W−1); we defer the
detailed derivations of Eqs. (21)–(23) to Appendix B 4. For
a Wilson band with energy θðkzÞ, Eq. (23) implies that the
corresponding W-glide eigenvalue depends on the sum of
energy and momentum, as in Eq. (14). Our construction of
M̄x is a quasimomentum analog of the nonsymmorphic
extension of point groups [30–34]. For example, the glide
reflection (M̄x) combines a reflection with half a real-
lattice translation—M̄2

x thus squares to a full lattice trans-
lation, which necessitates extending the point group by the
group of translations. Here, we further combine M̄x with
half a reciprocal-lattice translation, thus necessitating a
further extension by Wilson loops.
Our second example of a W symmetry (T ) combines

time reversal (T) with parallel transport over a half-period,
and belongs in the groups of Wð ~XÞ and Wð ~UÞ, which
correspond to the two time-reversal-invariant k∥ along kx ¼
π (recall Fig. 2); since both groups are isomorphic, we use a
common label: G ~X. Under time reversal,

T∶ ðky; π; k̄zÞ →ð−ky;−π;−k̄zÞ
¼ð−ky þ π; π; k̄zÞ − ~b2 − 2k̄z~z; ð24Þ

for k̄z ∈ f0; πg and 2k̄z~z a reciprocal vector (possibly zero),
as illustrated in Fig. 10(c). Consequently,

TW−πT−1¼k̄zWr;2π; ð25Þ
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FIG. 10. Origin of W-glide and W-time-reversal symmetries.
(a)–(d) Constant-kz slices of the bulk Brillouin zone. Panel
(a) illustrates how the glide (M̄x) maps momenta from the glide
plane kx ¼ π. Under M̄x, the Wilson loop is mapped from the red
vertical arrow in (a) to the red vertical arrow in (b). Panels (c) and
(d) describe the kz ¼ 0 plane and illustrate a similar story for the
time reversal T.
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whereWr;2π denotes the reverse-oriented Wilson loop with

base point 2π [see arrow in Fig. 10(d)], and¼k̄z indicates that
this equality holds for k∥ ∈ f ~X; ~Ug. Equation (B62) moti-
vates combining T with a half-period transport, such that
the combined operation T effects

T W−πT −1¼k̄zW−1−π; with T ¼k̄zW−π←0T: ð26Þ

To complete the Wilsonian algebra, we derive in
Appendix B 4 that

T 2¼k̄z Ē; M̄xT M̄−1
x T −1¼k̄zW−1−π: ð27Þ

This result, together with Eq. (23), may be compared with
the ordinary algebra of space-time transformations:

M̄2
x ¼ Ētð~zÞ; T2¼k̄z Ē; M̄xTM̄−1

x T−1¼k̄z I; ð28Þ

as would apply to the surface bands at any time-reversal-
invariant k∥. Both algebras are identical modulo factors of
W and its inverse; from here on, Wðk∥Þ−π ¼ W. We
emphasize that the same edge symmetries are represented
differently in the surface Hamiltonian (Hs) and inW—this
difference originates from the out-of-surface translational
symmetry [tð~a1Þ], which is broken for Hs but not for W;
recall here that ~a1 is the out-of-surface Bravais-lattice
vector drawn in Fig. 2(b). Where tð~a1Þ symmetry is
preserved, we can distinguish the bulk wave vectors ky
from ky þ π, and therefore define W-symmetry operators
that include the Wilson line W−π←0.
To further describe this difference group theoretically, let

us define G∘ ≅ Z2 × Z2 as the symmetry group of a
spinless particle with glideless-reflection (Mx) and time-
reversal (T) symmetries:

G∘ ¼ fMa
xTbja; b ∈ Z2g; ð29Þ

with the algebra

M2
x ¼ I; T2 ¼ I; ½Mx; T� ¼ 0: ð30Þ

The algebra of Eq. (28) describes a well-known, non-
symmorphic extension of G∘ for spinful particles [11]; we
propose that Eqs. (23) and (27) describe a further extension
of Eq. (28) by reciprocal translations. That is, G ~X is a
nontrivial extension of G∘ byN , whereN ≅ Z2 × Z2 is an
Abelian group generated by Ē, W, and tð~zÞ:

N ¼ fĒatð~zÞbWcja ∈ Z2; b; c ∈ Zg: ð31Þ

For an introduction to group extensions and their applica-
tion to our problem, we refer the interested reader to
Appendix D 1. There exists another extension (G ~Γ, as

further elaborated later in this section), which is inequiva-
lent to G ~X and applies to a different momentum submani-
fold of our crystal; in Sec. V B, we further show that
inequivalent extensions lead to different subtopologies for
the Wilson bands.
From the cohomological perspective, two extensions (of

G∘ by N ) are equivalent if they correspond to the same
element in the second cohomology group H2ðG∘;N Þ. The
identity element in this group corresponds to a linear
representation of G∘, which we now define. Let the group
element gi ∈ G∘ be represented by ĝi in the extension of G∘
by N , and further define gij ≡ gigj ∈ G∘ by ĝij. We insist
that fĝig satisfy the associativity condition:

ðĝiĝjÞĝk ¼ ĝiðĝjĝkÞ: ð32Þ

In a linear representation,

ĝiĝj ¼ ĝij for all gi; gi; gij ∈ G∘; ð33Þ

while in a projective representation,

ĝiĝj ¼ Ci;jĝij; where Ci;j ∈ N ; ð34Þ

at least one of fCi;jg (defined as the factor system [60]) is
not trivially identity. Equation (23) exemplifies Eq. (34) for
gi ¼ gj ¼ Mx, satisfying M2

x ¼ I, ĝi ¼ M̄x, and Ci;j ¼
Ētð~zÞW−1. We say that two representations are equivalent
if they are related by the transformation

ĝi → ĝi0 ¼ Diĝi; with Di ∈ N : ð35Þ

In either representation, the same constraint is imposed on
W [cf. Eq. (20)]:

ĝi0Wĝi0−1 ¼ W�1 ⇔ ĝiWĝ−1i ¼ W�1; ð36Þ

since any element of N commutes with W. This state of
affairs is reminiscent of the U(1) gauge ambiguity in
representing symmetries of the Hamiltonian (Ĥ) [61],
where if ½ĝ; Ĥ� ¼ 0, so would ½ĝ0; Ĥ� ¼ 0 for any
ĝ0 ¼ exp½iϕðgÞ�ĝ. By this analogy, we also call ĝi and ĝi0
from Eq. (35) two gauge-equivalent representations of
the same element gi, though it should be understood in
this paper that the relevant gauge group is N and not U(1).
To recapitulate, each element in H2ðG∘;N Þ corresponds to
an equivalence class of associative representations; in
Appendix D 2, we further connect our theory to group
cohomology through the geometrical perspective of
coboundaries and cocycles.
To exemplify an extension or representation that is

inequivalent to G ~X, let us consider the group (G ~Γ) of
Wð ~ΓÞ; G ~Γ is isomorphic to the group of Wð ~ZÞ. Recall that
both ~Γ and ~Z are time-reversal-invariant k∥ along kx ¼ 0.
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kx ¼ 0 labels a glide line in the 010-surface BZ, which
guarantees the kx ¼ 0 plane (in the bulk BZ) is mapped to
itself under the glide M̄x; the same could be said for kx ¼ π.
However, unlike kx ¼ π, M̄x also belongs to the group of
any bulk wave vector in the kx ¼ 0 plane, and, therefore,

M̄xWð ~ΓÞM̄−1
x ¼ Wð ~ΓÞ; ð37Þ

with M̄x an ordinary space-time symmetry; i.e., unlikeM̄x in
Eq. (22), M̄x does not encode parallel transport.
Consequently, this element of G ~Γ satisfies the ordinary
algebra in Eq. (28); by an analogous derivation, the time-
reversal element in G ~Γ is also ordinary. It is now apparent
why G ~X and G ~Γ are inequivalent extensions: there exists no
gauge transformation, of the form inEq. (35), that relates their
factor systems. For example, the following elements of G∘,

g1 ≡ M̄xT; g2 ≡ M̄−1
x T−1; g1g2 ≡ g12 ¼ I; ð38Þ

may be represented in G ~X by

ĝ1 ≡ M̄xT ; ĝ2 ≡ M̄−1
x T −1; ĝ12 ≡ I; ð39Þ

such that the second relation in Eq. (27) translates to

ĝ1ĝ2 ¼ C1;2ĝ12; with C1;2 ≡W−1: ð40Þ

Under the gauge transformation, M̄x → M̄0
x ¼ WaM̄x,

T → T 0 ¼ WbT , and a; b ∈ Z, Eq. (40) transforms as

M̄xT M̄−1
x T −1 ¼ W−1

→ M̄0
xT 0M̄0−1

x T 0−1 ¼ W2a−1; ð41Þ

which ensures that the factor C1;2 is always an odd product
of W. This must be compared with the analogous
algebraic relation in G ~Γ, where with M̄x → M̄x

0 ¼ WcM̄x,
T → T 0 ¼ WdT, and c, d ∈ Z,

M̄xTM̄−1
x T−1 ¼ I → M̄x

0T 0M̄x
0−1T 0−1 ¼ W2c; ð42Þ

here, the analogous factor C1;2 is always an even product of
W—there exists no gauge transformation that relates the two
factor systems inG ~X andG ~Γ.Wesay that the factor systemofa
projective representation can be lifted if, by some choice of
gauge, all of fCi;jg from Eq. (34) may be reduced to the
identity element inN ; Eq. (41) demonstrates thatC1;2 forG ~X
can never be transformed to identity. G ~X thus exemplifies an
intrinsically projective representation, wherefor its nontrivial
factor system can never be lifted.
Finally, we remark that this section does not exhaust all

elements in G ~X or G ~Γ; our treatment here minimally
conveys their group structures. A complete treatment of
G ~X is offered in Appendix B 4, where we also derive the
above algebraic relations in greater detail.

VII. DISCUSSION AND OUTLOOK

In the topological classification of band insulators, one
may sometimes infer the classification purely from the
representation theory [4,8,54] of surface wave functions. In
our companion work [21], we have identified a criterion
on the surface group that characterizes all robust surface
states that are protected by space-time symmetries
[1,2,4,7,8,18,19,25,40–43,54]. Our criterion introduces
the notion of connectivity within a submanifold (M) of
the surface-Brillouin torus and generalizes the theory of
elementary band representations [57,62]. To restate the
criterion briefly, we say there is a D-fold connectivity
within M if bands there divide into sets of D, such that
within each set there are enough contact points in M to
continuously travel through allD branches. IfM is a single
wave vector (k∥), D coincides with the minimal dimension
of the irreducible representation at k∥; D generalizes this
notion of symmetry-enforced degeneracy where M is
larger than a wave vector (e.g., a glide line). We are ready
to state our criterion: (a) there exist two separated sub-
manifolds M1 and M2, with corresponding D1 ¼ D2 ¼
fd (f ≥ 2 and d ≥ 1 are integers), and (b) a third
submanifold M3 that connects M1 and M2, with corre-
sponding D3 ¼ d. This surface-centric criterion is techni-
cally simple, and has proven to be predictive of the
topological classification. However, we also found it is
sometimes overpredictive [21], in the sense of allowing
some surface topologies that are inconsistent with the full
set of bulk symmetries.
An alternative and, as far as we know, faithful approach

would apply our connectivity criterion [21] to the Wilson
“bands,” which properly encode bulk symmetries that are
absent on the surface; since Wilson bands also live on the
surface-Brillouin torus, we could replace the original
meaning of surface bands in the above criterion by
Wilson bands. To determine the possible Wilson “band
structures,” one has to determine how symmetries are
represented in the Wilson loop; one lesson learned from
classifying D4

6h is that this representation can be projective,
requiring an extension of the point group by the Wilson
loop itself. Such an extended group forces us to generalize
the traditional notion of symmetry as a space-time trans-
formation—we instead encounter symmetry operators that
combine both space-time transformations and quasimo-
mentum translations, thus putting real and quasimomentum
space on equal footing. While our case study involves a
nonsymmorphic space group, the nonsymmorphicity (i.e.,
nontrivial extensions by spatial translations) is not a
prerequisite for nontrivial quasimomentum extensions;
e.g., there are projective mirror planes (e.g., in symmorphic
rocksalt structures) where the reflection also relates Bloch
waves separated by half a reciprocal period. The implica-
tions are left for future study.
To restate our finding from a broader perspective, group

cohomology specifies how symmetries are represented in
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the quasimomentum submanifold, which in turn determines
the band topology. A case in point is time-reversal
symmetry (T), which may be extended by 2π-spin rotations
(which distinguishes half-integer from integer-spin repre-
sentations) and also by real-space translations (which
distinguishes paramagnetic and antiferromagnetic insula-
tors); only the projective representation (T2 ¼ −I) has a
well-known Z2 topology [18,25]. By our cohomological
classification of quasimomentum submanifolds through
Eq. (1), we provide a unifying framework to classify chiral
topological insulators [39] and topological insulators with
robust edge states protected by space-time symmetries
[1,2,4,7,8,18,19,25,40–43]. Our framework is also useful
in classifying some topological insulators without edge
states [26,55,56]; one counterexample that eludes this
framework may nevertheless by classified by bent Wilson
loops [46] rather than the straight Wilson loops of this
work. With the recent emergence of Floquet topological
phases, an interesting direction would be to consider further
extending Eq. (1) by discrete time translations [63].
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APPENDIX A: REVIEW OF SYMMETRIES
IN THE TIGHT-BINDING METHOD

The appendixes are organized as follows: In Appendix A,
we review how space-time symmetries affect the tight-
binding Hamiltonian. We introduce notations that are
employed in the remaining appendixes. In Appendix B,
we derive how symmetries of the Wilson loop are repre-
sented and their constraints on the Wilson bands, as
summarized in Tables II and III. The first few sections deal
with ordinary symmetry representations along ~X ~Γ ~Z ~U,
while the last section derives the projective representations
along ~X ~U. In Appendix C, we prove the fourfold
connectivity of Hamiltonian bands, in spin systems
with minimally time-reversal and glide-reflection sym-
metries. This proof is used in the topological classification
of Sec. V B. In Appendix D, we introduce group extensions
byWilson loops, as well as rederive the extended algebra in
Sec. VI from a group-theoretic perspective.

We begin by reviewing the effects of spatial symmetries,
then generalize our discussion to include time-reversal
symmetry.

1. Effect of spatial symmetries on the
tight-binding Hamiltonian

Let us denote a spatial transformation by gδ, which
transforms real-space coordinates as r → Dgrþ δ, where
Dg is the orthogonal matrix representation of the point-
group transformation g in Rd. Nonsymmorphic space
groups contain symmetry elements where δ is a rational
fraction [11] of the lattice period; in a symmorphic space
group, an origin can be found where δ ¼ 0 for all symmetry
elements. The purpose of this section is to derive the
constraints of gδ on the tight-binding Hamiltonian. First, we
clarify how gδ transforms the creation and annihilation
operators. We define the creation operator for a Löwdin
function [47–49] (φα) at Bravais-lattice (BL) vector R as
c†αðRþ rαÞ. From Eq. (2), the creation operator for a Bloch-
wave-transformed Löwdin orbital ϕk;α is

c†k;α ¼
1ffiffiffiffi
N

p
X
R

eik·ðRþrαÞc†αðRþ rαÞ; α ¼ 1;…; ntot:

ðA1Þ

A BL that is symmetric under gδ satisfies two conditions.
(i) For any BL vector R, DgR is also a BL vector:

∀ R ∈ BL; DgR ∈ BL: ðA2Þ

(ii) If gδ transforms an orbital of type α to another of type β,
then DgðRþ rαÞ þ δ must be the spatial coordinate of an
orbital of type β. To restate this formally, we define a matrix
Ugδ such that the creation operators transform as

gδ∶ c†αðRþ rαÞ → c†βðDgRþ Rgδ
βα þ rβÞ½Ugδ�βα; ðA3Þ

with Rgδ
βα ≡Dgrα þ δ − rβ. Then,

½Ugδ�βα ≠ 0 ⇒ Rgδ
βα ∈ BL: ðA4Þ

Explicitly, the nonzero matrix elements are given by

½Ugδ�βα ¼
X
s;s0

Z
ddrφ�

βðr; s0Þ½Dð1=2Þ
g �s0sφαðD−1

g r; sÞ; ðA5Þ

where φα is a spinor with spin index s, andD
ð1=2Þ
g represents

gδ in the spinor representation.
For fixed gδ, α, and β, the mapping T gδ

βα: R → Rgδ
βα is

bijective. Applying Eqs. (A1), (A2), (A4), the orthogon-
ality of Dg, and the bijectivity of T gδ

βα, the Bloch basis
vectors transform as
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gδ∶ c†k;α →
1ffiffiffiffi
N

p
X
R

eik·ðRþrαÞc†βðDgRþ Rgδ
βα þ rβÞ½Ugδ�βα

¼ e−iðDgkÞ·δ 1ffiffiffiffi
N

p
X
R

ei½Dgk�·½DgðRþrαÞþδ�c†βðDgRþ Rgδ
βα þ rβÞ½Ugδ�βα

¼ e−iðDgkÞ·δ 1ffiffiffiffi
N

p
X
R

ei½Dgk�·½DgRþRgδ
βαþrβ�c†βðDgRþ Rgδ

βα þ rβÞ½Ugδ�βα

¼ e−iðDgkÞ·δ 1ffiffiffiffi
N

p
X
R0

ei½Dgk�·½R0þrβ�c†βðR0 þ rβÞ½Ugδ�βα

¼ e−iðDgkÞ·δc†Dgk;β
½Ugδ�βα: ðA6Þ

This motivates a definition of the operator

ĝδðkÞ≡ e−iðDgkÞ·δUgδ; ðA7Þ

which acts on Bloch wave functions (jun;ki) as

gδ∶ jun;ki → ĝδðkÞjun;ki: ðA8Þ

The operators fĝδðkÞg form a representation of the space-
group algebra [11] in a basis of Bloch-wave-transformed
Löwdin orbitals; we call this the Löwdin representation. If
the space group is nonsymmorphic, the nontrivial phase
factor expð−iDgk · δÞ in ĝδðkÞ encodes the effect of the
fractional translation; i.e., the momentum-independent
matrices fUgδg by themselves form a representation of a
point group.
To exemplify this abstract discussion, we analyze a

simple 2D nonsymmorphic crystal in Fig. 11. As delineated
by a square, the unit cell comprises two atoms labeled by
subcell coordinates A and B, and the spatial origin is chosen
at their midpoint, such that rA ¼ a~x=

ffiffiffi
3

p
− c~z=2 ¼ −rB, as

shown in Fig. 11(a). The symmetry group (Pma2) of this
lattice is generated by the elements M̄x and M̄z, where in
the former we first reflect across ~x (g ¼ Mx) and then
translate by δ ¼ c~z=2. Similarly, M̄z is shorthand for a
z → −z reflection followed by a translation by δ ¼ c~z=2.
Let us represent these symmetries with spin-doubled
s orbitals on each atom. Choosing our basis to diago-
nalize Sz,

M̄x∶

(
c†A;SzðRþ rAÞ → −ic†B;−SzðDxRþ rBÞ
c†B;SzðRþ rBÞ → −ic†A;−SzðDxRþ c~zþ rAÞ;

ðA9Þ

where Dxðx; zÞt ¼ ð−x; zÞt, and in the second mapping, we

apply Rx;c~z=2
AB ¼ DxrB þ c~z=2 − rA ¼ c~z. It is useful to

recall here that a reflection is the product of an inversion
with a twofold rotation about the reflection axis:

Mj ¼ IC2j for j ∈ fx; zg. Consequently, M̄x ∝ C2x flips
Sz → −Sz. In the basis of Bloch waves,

M̄x∶ c†k;α → e−ikzc=2c†Dxk;β
½UM̄x

�βα; ðA10Þ

with UM̄x
¼ −iτ1σ1. Here, we employ τ3 ¼ þ1 (−1) for

subcell A (B) and σ3 ¼ þ1 for spin-up in ~z. A similar
analysis for the other reflection (M̄z ∝ C2z ∝ exp½−iSzπ�)
leads to

c/2

c

3a

a/ 3
x

z

rB
rA

MX t(cz/2)

(a)

(b) (c) (d)

FIG. 11. (a) Simple example of a 2D nonsymmorphic crystal.
The two sublattices are colored, respectively, dark blue and cyan.
Panels (b)–(d) illustrate the effect of a glide reflection.
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M̄z∶

8>>>>><
>>>>>:

c†A;SzðRþ rAÞ →
−isgn½Sz�c†A;SzðDzRþ c~zþ rAÞ

c†B;SzðRþ rBÞ →
−isgn½Sz�c†B;SzðDzRþ rBÞ;

ðA11Þ

with Dzðx; zÞt ¼ ðx;−zÞt, and in the basis of Bloch-wave-
transformed Löwdin orbitals,

M̄z∶ c†k;α → e−ikzc=2c†Dzk;β
½UM̄z

�βα; ðA12Þ

with UM̄z
¼ −iσ3. To recapitulate, we derive fĝδg as

ˆ̄MxðkÞ ¼ −ie−ikzc=2τ1σ1 and

ˆ̄MzðkÞ ¼ −ie−ikzc=2σ3; ðA13Þ

which should satisfy the space-group algebra for Pma2,
namely, that

M̄2
x ¼ Ētðc~zÞ; M̄2

z ¼ Ē and

M̄zM̄x ¼ Ētð−c~zÞM̄xM̄z; ðA14Þ

where Ē denotes a 2π rotation and tðc~zÞ a translation.
Indeed, when acting on Bloch waves with momentum k,

ˆ̄MxðDxkÞ ˆ̄MxðkÞ ¼ −e−ikzc; ˆ̄MzðDzkÞ ˆ̄MzðkÞ ¼ −I;
ˆ̄MzðDxkÞ ˆ̄MxðkÞ ¼ −e−ikzc ˆ̄MxðDzkÞ ˆ̄MzðkÞ: ðA15Þ

Finally, we verify that the momentum-independent matri-
ces fUgδg form a representation of the double point group
C2v, whose algebra is simply

M2
x ¼ M2

z ¼ Ē and MzMx ¼ ĒMxMz: ðA16Þ

A simple exercise leads to

U2
M̄x

¼ U2
M̄z

¼ −I and fUM̄x
; UM̄z

g ¼ 0: ðA17Þ

The algebras of C2v and Pma2 differ only in the additional
elements tð�c~zÞ, which in the Löwdin representation
(fĝδðkÞg) is accounted for by the phase factors
expð−ikzc=2Þ.
Returning to a general discussion, if the Hamiltonian is

symmetric under gδ,

gδ∶ Ĥ ¼
X
k

c†k;αHðkÞαβck;β → Ĥ; ðA18Þ

then Eq. (A6) implies

ĝδðkÞHðkÞĝδðkÞ−1 ¼ HðDgkÞ: ðA19Þ

By assumption of an insulating gap, ĝδðkÞjun;ki belongs in
the occupied-band subspace for any occupied band jun;ki.
This implies a unitary matrix representation (sometimes
called the “sewing matrix”) of gδ in the occupied-band
subspace:

½ğδðDgkþ G; kÞ�mn

¼ hum;DgkþGjVð−GÞĝδðkÞjun;ki; ðA20Þ

with m; n ¼ 1;…; nocc. Here, G is any reciprocal vector
(including zero), and we apply Eq. (7), which may be
rewritten as

Xnocc
n¼1

jun;kihun;kj ¼ VðGÞ
Xnocc
n¼1

jun;kþGihun;kþGjVðGÞ−1:

ðA21Þ

To motivate Eq. (A20), we are often interested in high-
symmetry k which are invariant under gδ; i.e., Dgkþ G ¼
k for someG (possibly zero). At these special momenta, the
sewing matrix is unitarily equivalent to a diagonal matrix,
whose diagonal elements are the gδ eigenvalues of the
occupied bands. When we are not at these high-symmetry
momenta, we will sometimes use the shorthand

½ğδðkÞ�mn ≡ ½ğδðDgk; kÞ�mn ¼ hum;DgkjĝδðkÞjun;ki; ðA22Þ

since the second argument is self-evident. We emphasize
that ĝδ and ğδ are different matrix representations of the
same symmetry element (gδ), and, moreover, the matrix
dimensions differ: (i) ĝδ acts on Bloch combinations of
Löwdin orbitals (fϕk;αjα ¼ 1;…; ntotg) defined in Eq. (2),
while (ii) ğδ acts on the occupied eigenfunctions
(fun;kjn ¼ 1;…; noccg) of HðkÞ.
It is also useful to understand the commutative relation

between ĝδðkÞ and the diagonal matrix VðGÞ which
encodes the spatial embedding; as defined in Eq. (6), the
diagonal elements are ½VðGÞ�αβ ¼ δαβ expðiG · rαÞ. From
Eqs. (A2) and (A4),

½Ugδ�αβ ≠ 0 ⇒ D−1
g Rgδ

αβ ∈ BL

⇒ eiG·ðrβþD−1
g δ−D−1

g rαÞ ¼ 1; ðA23Þ

for a reciprocal-lattice (RL) vector G. Applying this
equation in

0 ≠ ½ĝδðkÞVðGÞ�αβ ¼ e−iðDgkÞ·δ½Ugδ�αβeiG·rβ
¼ e−iðDgkÞ·δ½Ugδ�αβeiðDgGÞ·ðrα−δÞ

¼ e−iðDgGÞ·δ½VðDgGÞĝδðkÞ�αβ;

we then derive
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ĝδðkÞVðGÞ ¼ e−iðDgGÞ·δVðDgGÞĝδðkÞ: ðA24Þ

This equality applies only if the argument of V is a
reciprocal vector.

2. Effect of space-time symmetry
on the tight-binding Hamiltonian

Consider a general space-time transformation Tgδ, where
now we include the time reversal T. The following
discussion also applies if gδ is the trivial transformation.

Tgδ∶ c†αðRþ rαÞ → c†βðDgRþ RTgδ
βα þ rβÞ½UTgδ�βα;

where UTgδ is the matrix representation of Tgδ in the

Löwdin orbital basis, RTgδ
βα ¼ Dgrα þ δ − rβ,

½UTgδ�βα ≠ 0 ⇒ RTgδ
βα ∈ BL; ðA25Þ

and the Bravais-lattice mapping of R to DgRþ RTgδ
βα is

bijective. It follows that the Bloch-wave-transformed
Löwdin orbitals transform as

Tgδ∶ c†k;α → eiDgk·δc†−Dgk;β
½UTgδ�βα: ðA26Þ

This motivates the following definition for the Löwdin
representation of Tgδ:

T̂gδðkÞ≡ eiðDgkÞ·δUTgδK; ðA27Þ

where K implements complex conjugation, such that a
symmetric Hamiltonian (Tgδ: Ĥ → Ĥ) satisfies

T̂gδðkÞHðkÞT̂gδðkÞ−1 ¼ Hð−DgkÞ: ðA28Þ

For a simple illustration, we return to the lattice of Fig. 11,
where time-reversal symmetry is represented by T̂ðkÞ ¼
−iσ2K in a basis where σ3 ¼ þ1 corresponds to spin-up in
~z. Observe that time reversal commutes with any spatial
transformation:

for j ∈ fx; zg; T̂ðDjkÞ ˆ̄MjðkÞ ¼ ˆ̄Mjð−kÞT̂ðkÞ:

If the Hamiltonian is gapped, there exists an antiunitary
representation of Tgδ in the occupied-band subspace:

½T̆gδðG −Dgk; kÞ�mn

¼ hum;G−DgkjVð−GÞT̂gδðkÞjun;ki; ðA29Þ

wherem; n ¼ 1;…; nocc,G is any reciprocal vector, and we
apply Eq. (A21). Once again, we introduce the shorthand

½T̆gδðkÞ�mn ≡ ½T̆gδð−Dgk; kÞ�mn

¼ hum;−DgkjT̂gδðkÞjun;ki: ðA30Þ

Equations (A25) and (A2) further imply that

½UTgδ�αβ ≠ 0 ⇒ D−1
g Rgδ

αβ ∈ BL

⇒ eiG·ðrβþD−1
g δ−D−1

g rαÞ ¼ 1; ðA31Þ

which when applied to

0 ≠ ½T̂gδðkÞVðGÞK�αβ
¼ eiðDgkÞ·δ½UTgδ�αβe−iG·rβ
¼ eiðDgkÞ·δ½UTgδ�αβe−iðDgGÞ·ðrα−δÞ

¼ eþiðDgGÞ·δ½Vð−DgGÞT̂gδðkÞK�αβ ðA32Þ

leads finally to

T̂gδðkÞVðGÞ ¼ eiðDgGÞ·δVð−DgGÞT̂gδðkÞ: ðA33Þ

APPENDIX B: SYMMETRIES
OF THE WILSON LOOP

The goal of this Appendix is to derive how symmetries of
the Wilson loop are represented and their implications for
the “rules of the curves,” as summarized in Tables II and III.
After introducing the notations and basic analytic proper-
ties of Wilson loops in Appendix B 1, we consider in
Appendix B 2 the effect of spatial symmetries, with
particular emphasis on glide symmetry. We then generalize
our discussion to space-time symmetries in Appendix B 3.
These first sections apply only to symmetries of the Wilson
loops along ~X ~Γ, ~Γ ~Z, and ~Z ~U. These symmetry represen-
tations are shown to be ordinary; i.e., they do not encode
quasimomentum transport. Their well-known algebra
includes

M̄2
x ¼ Ētðc~zÞ; ðTM̄zÞ2 ¼ I;

M̄xTM̄z ¼ Ētðc~zÞTM̄zM̄x; T2 ¼ ðITÞ2 ¼ Ē;

M̄xIT ¼ tðc~zÞITM̄x; M̄xT ¼ TM̄x: ðB1Þ

In Appendix B 4, we move on to derive the projective
representations that apply along ~X ~U.

1. Notations and analytic properties of the Wilson loop

Consider the parallel transport of occupied bands along
the noncontractible loops of Sec. IVA. In the Löwdin
orbital basis, such transport is represented by the Wilson-
loop operator [26]:
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Ŵðk∥Þ ¼ Vð2π~yÞ
Yπ←−π

ky

Pðky; k∥Þ: ðB2Þ

Recall here our unconventional ordering: k ¼ ðky; kx;
kzÞ ¼ ðky; k∥Þ. We discretize the momentum as ky ¼
2πm=Ny for integerm ¼ 1;…; Ny, and ðπ← − πÞ indicates
that the product of projections is path ordered. The role of
the path-ordered product is to map a state in the occupied
subspace [Hð−π; k∥Þ] at ð−π; k∥Þ to one (j ~ui) in the
occupied subspace at ðπ; k∥Þ; the effect of Vð2π~yÞ is to
subsequently map j ~ui back to Hð−π; k∥Þ, thus closing the
parameter loop; cf. Eq. (A21). Equivalently stated, we may
represent this same parallel transport in the basis of nocc
occupied bands:

½Wðk∥Þ�ij ¼ hui;ð−π;k∥ÞjŴðk∥Þjuj;ð−π;k∥Þi: ðB3Þ

While W depends on the choice of gauge for juj;−π;k∥i,
its eigenspectrum does not. Indeed, under the gauge
transformation

juj;ð−π;k∥Þi →
Xnocc
i¼1

jui;ð−π;k∥ÞiSij; with S ∈ UðnoccÞ;

W → S†WS ¼ S−1WS: ðB4Þ

The eigenspectrum is also independent of the base point of
the loop [26]; our choice of ð−π; k∥Þ as the base point
merely renders certain symmetries transparent. In the limit
of large Ny, W becomes unitary and its full eigenspectrum
comprises the unimodular eigenvalues of Ŵ, which we
label by exp½iθn;k∥ �, with n ¼ 1;…; nocc. Denoting the
eigenvalues of P⊥ŷP⊥ as yn;k∥ , the two spectra are related
as yn;k∥ ¼ θn;k∥=2π modulo one [26].
On occasion, we also need the reverse-oriented Wilson

loop (Ŵr), which transports a state from base point
ðπ; k∥Þ → ð−π; k∥Þ:

Ŵrðk∥Þ ¼ Vð−2π~yÞ
Y−π←π

ky

Pðky; k∥Þ: ðB5Þ

In the occupied-band basis, Wilson loops of opposite
orientations are mutual inverses:

½Wðk∥Þ−1�ij ¼ ½Wðk∥Þ��ji ¼ hui;ðπ;k∥ÞjŴrðk∥Þjuj;ðπ;k∥Þi;
ðB6Þ

with the gauge choice

juj;ðπ;k∥Þi ¼ Vð−2π~yÞjuj;ð−π;k∥Þi; for j ¼ 1;…; nocc:

ðB7Þ

The second equality in Eq. (B6) follows from

W�
ji ¼ huj;−πjVð2π~yÞ

Yπ←−π

ky

PðkyÞjui;−πi�

¼ hui;−πj
Y−π←π

ky

PðkyÞVð−2π~yÞjuj;−πi

¼ hui;πjVð−2π~yÞ
Y−π←π

ky

PðkyÞjuj;πi

¼ hui;πjŴrjuj;πi; ðB8Þ

where we drop the constant argument k∥ for notational
simplicity.

2. Effect of spatial symmetries of the 010 surface

Let us describe the effect of symmetry on the spectrum of
W. First, we consider a generic spatial symmetry gδ, which
transforms real-space coordinates as r → Dgrþ δ. From
Eq. (A19), we obtain the constraints on the projections as

ĝδðkÞPðkÞĝδðkÞ−1 ¼ PðDgkÞ: ðB9Þ

The constraints on W arise only from a subset of the
symmetries that either (i) map one loop parametrized by k∥
to another loop at a different k∥ or (ii) map a loop to itself at
a high-symmetry k∥. We say that two loops are mapped to
each other even if the mapping reverses the loop orientation
[i.e., W → W−1; cf. Eqs. (B5) and (B6)] or translates the
base point of the loop. For illustration, we consider spatial
symmetries of the 010 surface that necessarily preserve the
spatial y coordinate; for these symmetries we add an
additional subscript to gδ ≡ gδ∥, Dg ≡Dg∥, and δ≡ δ∥,
such that Dg∥~y ¼ ~y and δ∥ · ~y ¼ 0. We now demonstrate
that the Wilson loop is constrained as

ğδ∥ð−π; k∥ÞWðk∥Þğδ∥ð−π; k∥Þ−1 ¼ WðDg∥k∥Þ; ðB10Þ

where the argument of ğδ∥ is the base point of Wðk∥Þ.
Proof.—We note that the Löwdin representation

of gδ only depends on momentum through a multiplicative
phase factor: exp½−iðDgkÞ · δ½, and for gδ∥ that this same
phase factor is independent of ky; hence, the Löwdin
representation of gδ may be written as ĝδ∥ðkÞ≡ ĝδ∥ðk∥Þ.
Equation (B9) then particularizes to

ĝδ∥ðk∥ÞPðky; k∥Þĝδ∥ðk∥Þ−1 ¼ Pðky; Dg∥k∥Þ; ðB11Þ

and Eq. (A24) to

ĝδ∥ðk∥ÞVð2π~yÞ
¼ e−i2π~y·δ∥Vð2π~yÞĝδ∥ðk∥Þ ¼ Vð2π~yÞĝδ∥ðk∥Þ: ðB12Þ
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Applying Eqs. (B2), (B11), and (B12),

ĝδ∥ðk∥ÞŴðk∥Þĝδ∥ðk∥Þ−1 ¼ ŴðDg∥k∥Þ: ðB13Þ

Into this equation, we then insert complete sets of states
[ÎðkÞ]:

Îð−π; Dg∥k∥Þĝδ∥ðk∥ÞÎð−π; k∥ÞŴðk∥ÞÎ
× ð−π; k∥Þĝδ∥ðk∥Þ−1Îð−π; Dg∥k∥Þ

¼ Îð−π; Dg∥k∥ÞŴðDg∥k∥ÞÎð−π; Dg∥k∥Þ; ðB14Þ

where ÎðkÞ is resolved by the energy eigenbasis at k:

ÎðkÞ ¼
Xntot
n¼1

jun;kihun;kj: ðB15Þ

Since all symmetry representations are block diagonal with
respect to occupied and empty subspaces, Eq. (B14) is
equivalent to

Pð−π; Dg∥k∥Þĝδ∥ðk∥ÞPð−π; k∥ÞŴðk∥ÞP
× ð−π; k∥Þĝδ∥ðk∥Þ−1Pð−π; Dg∥k∥Þ

¼ Pð−π; Dg∥k∥ÞŴðDg∥k∥ÞPð−π; Dg∥k∥Þ:

Finally, we apply Eqs. (A20) and (B3) to obtain Eq. (B10),
as desired. ▪
Let us exemplify this discussion with the glide reflection

which transforms spatial coordinates as ðx; y; zÞ →
ð−x; y; zþ 1=2Þ. This symmetry acts on Bloch waves as
ˆ̄MxðkÞ ¼ e−ikz=2UM̄x

[from Eq. (A7)], with U2
M̄x

¼ −I
representing a 2π rotation. Equation (B10) assumes the
form

˘̄Mxð−π;k∥ÞWðkx;kzÞ ˘̄Mxð−π;k∥Þ−1 ¼Wð−kx;kzÞ: ðB16Þ

Since M̄x transforms momentum as k → ðky;−kx; kzÞ, it
belongs in the little group of any wave vector with kx ¼ 0.

Indeed, ½ ˘̄Mxð−π; 0; kzÞ;Wð0; kzÞ� ¼ 0, and each Wilson

band may be labeled by an eigenvalue of ˘̄Mx, which again
falls into either branch of �i expð−ikz=2Þ, as we now
show:

½ ˘̄Mxðk1Þ�2mn

¼ e−ikz
Xnocc
a¼1

hum;k1 jUM̄x
jua;k1ihua;k1 jUM̄x

jun;k1i

¼ e−ikz
Xntot
a¼1

hum;k1 jUM̄x
jua;k1ihua;k1 jUM̄x

jun;k1i

¼ e−ikzhum;k1 jðUM̄x
Þ2jun;k1i ¼ −e−ikzδmn: ðB17Þ

Here, k1 ≡ ð−π; 0; kzÞ; in the second equality, we denote
ntot as the total number of bands, and apply that the
symmetry representations are block diagonal with
respect to the occupied and empty subspaces [i.e.,
hua;k1 jUM̄x

jun;k1i ¼ 0 if the bra (ket) state is occupied
(empty)]; the completeness relation is used in the third
equality, and ðUM̄x

Þ2 ¼ −I represents a 2π rotation.

3. Effect of space-time symmetries

Suppose our Hamiltonian is symmetric under a space-
time transformation Tgδ, where gδ is any of the following:
(a) a symmorphic spatial transformation (i.e., the fractional
translation δ ¼ 0) that is not necessarily a symmetry of the
010 surface or (b) a nonsymmorphic transformation that is
a symmetry of the 010 surface. In the group we study
(space group D4

6h with time-reversal symmetry), if one
considers the subset of space-time symmetries that map the
Wilson loop to itself (recall what “to itself” means in
Appendix B 2), elements of this subset are either of (a) or
(b) type.
Since the Löwdin representation [recall T̂gδðkÞ in

Eq. (A27)] of Tgδ depends on momentum only through
the phase factor exp½iðDgkÞ · δ�, we deduce that T̂gδðkÞ is
independent of ky. In case (a), this follows trivially from
δ ¼ 0, while in case (b) we apply that Dg~y ¼ ~y and
δ · ~y ¼ 0. Consequently, we write T̂gδðkÞ≡ T̂gδðk∥Þ with
possible k∥ dependence through a phase factor.
Following Eq. (A28), the occupied-band projection is

constrained as

T̂gδðk∥ÞPðkÞT̂gδðk∥Þ−1 ¼ Pð−DgkÞ: ðB18Þ

This, in combination with Eqs. (A33) and (B2), implies

T̂gδðk∥ÞŴðk∥ÞT̂gδðk∥Þ−1

¼ T̂gδðk∥ÞVð2π~yÞ
Yπ←−π

ky

PðkÞT̂gδðk∥Þ−1

¼ T̂gδðk∥ÞVð2π~yÞT̂gδðk∥Þ−1
Yπ←−π

ky

Pð−DgkÞ

¼ eiDgð2π~yÞ·δVð−Dgð2π~yÞÞ
Yπ←−π

ky

Pð−DgkÞ: ðB19Þ

In the next few sections, we particularize to a few
examples of Tgδ that are relevant to the topology of our
space group.

a. Effect of space-time inversion symmetry

The space-time inversion symmetry (TI) maps
ðx; y; z; tÞ → −ðx; y; z; tÞ. Let us show how this results in
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the eigenvalues ofWðk∥Þ forming complex-conjugate pairs
at each k∥. If we interpret the phase (θ) of each eigenvalue
as an “energy,” then the spectrum has a θ → −θ symmetry;
this may be likened to a particle-hole symmetry that
unconventionally preserves the momentum coordinate (k∥).
Proof.—Inserting Dg ¼ −I and δ ¼ 0 in Eq. (B19),

T̂Iðk∥ÞŴðk∥ÞT̂Iðk∥Þ−1 ¼ Ŵðk∥Þ: ðB20Þ

Then by inserting in Eq. (B20) a complete set of states at
momentum k ¼ ð−π; k∥Þ, and applying the definitions
Eqs. (B3) and (A29),

T̆Ið−π; k∥ÞWðk∥ÞT̆Ið−π; k∥Þ−1 ¼ Wðk∥Þ: ðB21Þ

Thus, if an eigensolution exists with eigenvalue
exp½iθðk∥Þ�, there exists a partner solution with the com-
plex-conjugate eigenvalue exp½−iθðk∥Þ�. These two solu-
tions are always mutually orthogonal, even in cases where
the eigenvalues are real. The orthogonality follows from
T̆2
I ¼ −I, as we now show:

½T̆IðkÞ2�mn ¼
Xnocc
a¼1

hum;kjT̂IðkÞjua;kihua;kjT̂IðkÞjun;ki

¼
Xntot
a¼1

hum;kjT̂IðkÞjua;kihua;kjT̂IðkÞjun;ki

¼ hum;kj½T̂IðkÞ�2jun;ki
¼ hum;kjUITU�

IT jun;ki
¼ −hum;kjun;ki ¼ −δmn: ðB22Þ

In the second equality, we denote ntot as the total number of
bands, and apply that the symmetry representations are
block diagonal with respect to the occupied and empty
subspaces; the completeness relation is used in the third
equality, and UITU�

IT ¼ −I follows because ðTIÞ2 is a 2π
rotation.

b. Effect of time reversal with a spatial glide
reflection

The symmetry TM̄x maps space-time coordinates as
ðx; y; z; tÞ → ð−x; y; zþ c=2;−tÞ; i.e.,

DMx
¼ diag½−1; 1; 1� and δ ¼ c~z=2: ðB23Þ

The momentum coordinates are mapped as

ðky; kx; kzÞt → −DMx
ðky; kx; kzÞt

¼ ð−ky; kx;−kzÞt;

which implies that a Wilson loop at fixed ðkx; kzÞ is mapped
to a loop at ðkx;−kzÞ, with a reversal in orientation since
ky → −ky. In more detail, we insert Eq. (B23) into
Eq. (B19),

T̂M̄x
ðkx; kzÞŴðkx; kzÞT̂M̄x

ðkx; kzÞ−1 ¼ Ŵrðkx;−kzÞ;

where the reversed Wilson-loop operator (Ŵr) is defined in
Eq. (B5). An equivalent expression in the occupied-band
basis is

T̆M̄x
ð−π; kx; kzÞWðkx; kzÞT̆M̄x

ð−π; kx; kzÞ−1
¼ Wðkx;−kzÞ−1; ðB24Þ

where the inverse Wilson loop is defined in Eq. (B6); it is
worth clarifying that T̆M̄x

particularizes Eq. (A30) as

T̆M̄x
ð−π; kx; kzÞmn ¼ hum;ðπ;kx;−kzÞjT̂M̄x

ðkx; kzÞjun;ð−π;kx;kzÞi;
with

jum;ðπ;kx;−kzÞi ¼ Vð−2π~yÞjum;ð−π;kx;−kzÞi: ðB25Þ

We now focus on kz ¼ k̄z satisfying k̄z ¼ −k̄z modulo 2π,
such that Eq. (B24) particularizes to

T̆M̄x
ð−π; kx; k̄zÞWðkx; k̄zÞT̆M̄x

ð−π; kx; k̄zÞ−1
¼ Wðkx;−k̄zÞ−1 ¼ Wðkx; k̄zÞ−1; ðB26Þ

in the gauge

juj;ðπ;kx;−k̄zÞi ¼ Vð2k̄z~zÞjuj;ðπ;kx;k̄zÞi; ðB27Þ

for j ∈ f1; 2;…; noccg, and 2k̄z~z a reciprocal vector
(possibly zero). Equation (B26) shows that the symmetry
maps the Wilson loop to itself, with a reversal of
orientation.
Let us prove that

T̆M̄x
ð−π; kx; k̄zÞ2 ¼

�þI; k̄z ¼ 0

−I; k̄z ¼ π;
ðB28Þ

from which we may deduce a Kramers-like degeneracy in
the spectrum of Wðkx; kz ¼ πÞ but not in Wðkx; kz ¼ 0Þ.
Employing the shorthand

k1 ¼ ð−π; kx; k̄zÞ; k2t ¼ −DMx
k1t ¼ ðπ; kx;−k̄zÞt;

ðB29Þ

and the gauge conditions assumed in Eqs. (B25) and (B27),
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½T̆M̄x
ðk1Þ2�mn ¼

Xnocc
a¼1

hum;k2 jT̂M̄x
ðk1Þjua;k1ihua;k2 jT̂M̄x

ðk1Þjun;k1i

¼
Xnocc
a¼1

hum;k1 jVð2π~y − 2k̄z~zÞT̂M̄x
ðk1Þjua;k1ihua;k1 jVð2π~y − 2k̄z~zÞT̂M̄x

ðk1Þjun;k1i

¼
Xntot
a¼1

hum;k1 jVð2π~y − 2k̄z~zÞT̂M̄x
ðk1Þjua;k1ihua;k1 jVð2π~y − 2k̄z~zÞT̂M̄x

ðk1Þjun;k1i

¼ hum;k1 jVð2π~y − 2k̄z~zÞT̂M̄x
ðk1ÞVð2π~y − 2k̄z~zÞT̂M̄x

ðk1Þjun;k1i
¼ e−ik̄zhum;k1 jVð2π~y − 2k̄z~zÞVð−2π~yþ 2k̄z~zÞT̂M̄x

ðk1ÞT̂M̄x
ðk1Þjun;k1i

¼ e−ik̄zhum;k1 jUTM̄x
U�

TM̄x
jun;k1i ¼ e−ik̄zhum;k1 jun;k1i ¼ e−ik̄zδmn: ðB30Þ

In the second equality, we apply that the symmetry
representations are block diagonal with respect to the
occupied and empty subspaces; the completeness relation
is used in the third equality, Eq. (A33) in the fourth
equality, and UTM̄x

U�
TM̄x

¼ þI represents the point-group
relation that ðTMxÞ2 is just the identity transformation;
cf. our discussion in Appendix A 1.

c. Effect of time-reversal symmetry

Let us particularize the discussion in Appendix A 2 by
letting gδ in Tgδ be the trivial transformation. In the Löwdin
representation, T̂ ¼ UTK, where UTU�

T ¼ −I corresponds
to a 2π rotation of a half-integer spin. We obtain from
Eq. (B19) that

T̂ Ŵðk∥ÞT̂−1 ¼ Vð−2π~yÞ
Yπ←−π

ky

Pð−kÞ

¼ Vð−2π~yÞ
Y−π←π

ky

Pðky;−k∥Þ ¼ Ŵrð−k∥Þ;

ðB31Þ

where in the last equality we identify the reverse-oriented
Wilson loop defined in Eq. (B5). Equivalently, in the
occupied-band basis,

T̆ð−π; k∥ÞWðk∥ÞT̆ð−π; k∥Þ−1 ¼ Wð−k∥Þ−1; ðB32Þ

with the inverse Wilson loop defined in Eq. (B6). Time
reversal thus maps exp½iθk∥ � → exp½iθ−k∥ �. Following an
exercise similar to the previous section (Appendix B 3 b),
one may derive a Kramers degeneracy where k∥ ¼ −k∥ (up
to a reciprocal vector).

4. Extended group algebra of the
W symmetries along ~X ~U

In Sec. VI we introduce the notion ofW symmetries and
that section should be read in advance of this section. Our

aim is to derive the algebra of the group (Gπ;kz) ofWðπ; kzÞ,
which we introduce in Sec. VI. kz ¼ 0 and π mark the time-
reversal invariant k∥ (namely, ~X and ~U). Here,G ~X ≡Gπ;0 ≅
G ~U ≡Gπ;π has the elements 2π rotation (Ē), the lattice
translation tð~zÞ, the Wilson loop (W), and analogs of time
reversal (T ), spatial inversion (I), and glide reflection
(M̄x) that additionally encode parallel transport; the latter
three are referred to as W symmetries. In addition to
deriving the algebraic relations in Eqs. (22) and (27), we
also show the following.
(a) The combination of time reversal, spatial glide, and

parallel transport is an element T M̄z
with the algebra

T M̄z
WT −1

M̄z
¼ W−1; with T 2

M̄z
¼ I;

and M̄xT M̄z
¼ Ētð~zÞT M̄z

M̄xW: ðB33Þ

(b) The space-time inversion symmetry acts in the ordi-
nary manner:

T IWT −1
I ¼ W; with

T 2
I ¼ Ē; M̄xT I ¼ tð~zÞT IM̄x: ðB34Þ

The algebra that we derive here extends the ordinary
algebra of space-time transformations, which we show in
Eq. (B1). For time-reversal-variant k∥ along the same glide
line, Gπ;kz (kz∉f0; πg) is a subgroup of G ~X ≡Gπ;0, and is
instead generated by Ē, tðR∥Þ, W, M̄x, T M̄z

, and T I .
Therefore, Eqs. (22), (B33), and (B34) [but not Eq. (27)]
apply toGπ;kz (kz∉f0; πg). Equations (22), (B33), (B34), and
(27) are, respectively, derived in Appendixes B 4 a–B 4 d.
One motivation for deriving the Wilsonian algebra is that

it determines the possible topologies of the Wilson bands
along ~X ~U. This determination is through “rules of the
curves” that we summarize in two tables: Table II is derived
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from the algebra of Gπ;kz and applies to any k∥ along ~X ~U,

Table III is derived from G ~X and applies only to ~X and ~U.

a. Wilsonian glide-reflection symmetry

Consider the glide reflection M̄x, which transforms
spatial coordinates as ðx; y; zÞ → ð−x; y; zþ 1=2Þ. In
Appendix B 2, we describe how M̄x constrains Wilson
loops in the kx ¼ 0 plane, where M̄x belongs in the little
group of each wave vector, and therefore the projections on
this plane separate into two mirror representations. This is
no longer true for the kx ¼ π plane, since M̄x maps between
two momenta that are separated by half a reciprocal period,
i.e., M̄x: ðky; π; kzÞ → ðky;−π; kzÞ ¼ ðky þ π; π; kzÞ − ~b2,
as illustrated in Fig. 3(b). Consequently, the Wilson-loop
operator is symmetric under a combination of a glide
reflection with parallel transport over half a reciprocal
period, as we now prove.
Proof.—A crucial observation is that the glide symmetry

relates projections at ðky; π; kzÞ and ðky þ π; π; kzÞ. That is,
by particularizing Eq. (A19) and (A21), we obtain the
symmetry constraint on the projections:

Vð~b2Þ−1UM̄x
Pðky; π; kzÞU−1

M̄x
Vð~b2Þ

¼ Pðky þ π; π; kzÞ: ðB35Þ

This relation allows us to define a unitary sewing matrix
between states at ð0; k∥Þ and ð−π; k∥Þ:

½ ˘̄Mxðð0; k∥Þ; ð−π; k∥ÞÞ�mn

¼ e−ikz=2hum;ð0;k∥ÞjVð−~b2ÞUM̄x
jun;ð−π;k∥Þi; ðB36Þ

which particularizes Eq. (A20) with G ¼ ~b2.
Presently, it becomes useful to distinguish the base point

of a Wilson loop, and also to define Wilson lines which do
not close into a loop. The remaining discussion in this
section occurs at fixed k∥ ¼ ðπ; kzÞ [for any kz ∈ ½−π; πÞ]
and variable ky; subsequently, we suppress the label k∥;
e.g.,

jum;ky;k∥i≡ jum;kyi;
˘̄Mxðð0; k∥Þ; ð−π; k∥ÞÞ≡ ˘̄Mxð0;−πÞ: ðB37Þ

We denote the base point (k̄y) of a Wilson loop by the
subscript inW k̄y and choose an orientation of increasing ky;

i.e., we parallel transport from k̄y → k̄y þ 2π, as exempli-
fied by Figs. 12(a) and 12(b). We denote a Wilson line
between two distinct momenta by

½Wk2←k1 �mn ¼ hum;k2 j
Yk2←k1

ky

PðkyÞjun;k1i; ðB38Þ

where
Qk2←k1

ky
PðkyÞ denotes a path-ordered product of

projections sandwiched by Pðk1Þ (rightmost) and Pðk2Þ
(leftmost); while k1 and k2 are more generally mod 2π
variables due to the periodicity of momentum space, we
always choose a branch that includes both k1 and k2 in our
definition of Wk2←k1 , such that if k2 > k1, we parallel
transport in the direction of increasing ky [e.g., Figs. 12(c)
and 12(d)], and vice versa [e.g., Fig. 12(e)]. Therefore, this
Wilson line reverts to the familiar Wilson loop if
k2 − k1 ¼ 2π, i.e., Wπ←−π ¼ W−π of Eq. (B3) with the
gauge condition of Eq. (B7). Since parallel transport is
unitary within the occupied subspace [26],

Wk2←k1
† ¼ Wk1←k2 ⇒ Wk2←k1Wk1←k2 ¼ I: ðB39Þ

With these definitions in hand, we return to the proof.
To proceed, we first show that the glide symmetry

translates the Wilson loop by half a reciprocal period in ~y:

˘̄Mxð0;−πÞW−π
˘̄Mxð0;−πÞ−1 ¼ W0: ðB40Þ

This is proven by applying Eqs. (B35) and (A24) to

Vð~b2Þ−1UM̄x
ŴU−1

M̄x
Vð~b2Þ

¼ Vð~b2Þ−1UM̄x
Vð2π~yÞ

Yπ←−π

ky

PðkyÞU−1
M̄x
Vð~b2Þ

¼ Vð~b2Þ−1UM̄x
Vð2π~yÞU−1

M̄x
Vð~b2Þ

Yπ←−π

ky

Pðky þ πÞ

¼ Vð2π~yÞ
Y2π←0

ky

PðkyÞ; ðB41Þ

0

π

-π

(a) (b) (c) (d)

-2π

(e)
2π

(f) (g)

FIG. 12. To clarify our notations for Wilson loops and lines, we
draw several examples, all of which occur at fixed k∥ and variable
ky (vertical axis). The arrow indicates the orientation for parallel
transport. (a) The Wilson loop at base point −π (encircled) is
labeled by W−π ≡Wπ←−π. (b) W−2π ≡W0←−2π . (c) Wπ←−π=2.
(d) Wπ←0. (e) Wπ←2π . Wr;k̄y denotes a Wilson loop with base

point k̄y and oriented in the direction of decreasing ky, e.g.,Wr;2π

in (f) and Wr;π in (g).
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which then implies Eq. (B40) in the occupied-band basis;
cf. Eqs. (B37) and (B50).
We now apply the following identity,

½W0�mn ¼ hum;0jVð2π~yÞ
Y2π←0

ky

PðkyÞjun;0i

¼ hum;0jVð2π~yÞ
Y2π←0

ky

Y0←−π

ry

PðryÞ
Y−π←0

qy

PðqyÞjun;0i

¼ hum;0j
Y0←−π

ky

PðkyÞVð2π~yÞ
Yπ←−π

ry

PðryÞ

×
Y−π←0

qy

PðqyÞjun;0i

¼ ½W0←−πW−πW−π←0�mn; ðB42Þ
which is pictorially represented in Fig. 13: Fig. 13(a)
represents W0, Fig. 13(b) an intermediate step in
Eq. (B42), and Fig. 13(c) the final result. The second
equality in Eq. (B42) follows from Eq. (B39) and the third
from Eq. (7). Combining Eqs. (B40) and (B42),

½M̄x;W−π� ¼ 0; with M̄x ¼ W−π←0
˘̄Mxð0;−πÞ:

ðB43Þ

To interpret this result, the Wilson-loop operator commutes

with a combination of glide reflection (encoded in ˘̄Mx) with

parallel transport over half a reciprocal period (encoded in
W−π←0); we call any such symmetry that combines a
space-time transformation with parallel transport a
Wilsonian symmetry, or just a W symmetry. ▪
It is worth mentioning that M̄x and W−π always

commute as in Eq. (B43), though the specific representa-
tions of M̄x andW−π depend on the gauge of jun;−πi. That
is, in a different gauge labeled by a tilde header,

j ~un;−πi≡
Xnocc
m¼1

jum;−πiSmn; S ∈ UðnoccÞ; ðB44Þ

wewould represent theW reflection and theWilson loop by

~̄Mx ¼ S−1M̄xS and ~W−π ¼ S−1W−πS; ðB45Þ

which would still commute.
Equation (B43) implies that we can simultaneously

diagonalize both Wilson-loop and W-symmetry operators;
for each simultaneous eigenstate, the two eigenvalues are
related in the following manner: if exp½iθ� is the Wilson-
loop eigenvalue, then theW-symmetry eigenvalue falls into
either branch of λxðkz þ θÞ≡�i exp½−iðkz þ θÞ=2�, as
claimed in Eq. (14) and as we proceed to prove.
Proof.—Up to a kz-dependent phase factor, this W-

symmetry operator squares to the reverse-oriented
Wilson loop:

½M̄2
x�mn ¼ ½W−π←0

˘̄Mxð0;−πÞW−π←0
˘̄Mxð0;−πÞ�mn

¼ e−ikzhum;−πj
Y−π←0

ky

PðkyÞVð~b2Þ−1UM̄x

Y−π←0

qy

PðqyÞVð~b2Þ−1UM̄x
jun;−πi

¼ e−ikzhum;−πj
Y−π←0

ky

PðkyÞ
Y−π←0

qy

Pðqy þ πÞVð~b2Þ−1UM̄x
Vð~b2Þ−1UM̄x

jun;−πi

¼ e−ikzhum;−πj
Y−π←π

ky

PðkyÞVð~b2Þ−1Vð~b2 − 2π~yÞðUM̄x
Þ2jun;−πi

¼ −e−ikzhum;−πj
Y−π←π

ky

PðkyÞVð−2π~yÞjun;−πi

¼ −e−ikzhum;πjVð−2π~yÞ
Y−π←π

ky

PðkyÞjun;πi

¼ −e−ikz ½ðW−πÞ−1�mn: ðB46Þ
Here, U2

M̄x
¼ −I represents a 2π rotation, and in the fourth equality we make use of

UM̄x
Vð−~b2Þ ¼ exp

�
iDM̄x

~b2 · ð~z=2Þ
�
Vð−DM̄x

~b2ÞUM̄x
¼ Vð~b2 − 2π~yÞUM̄x

; ðB47Þ
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which follows from Eq. (A24). ▪
The situation is analogous to that of the 010-surface

bands along both glide lines ( ~Γ ~Z and ~X ~U), where on each
line there are also two branches for the glide-mirror
eigenvalues; namely, λzðkzÞ≡�i expð−ikz=2Þ. A curious
difference is that the W-symmetry eigenvalue of a Wilson
band (only along ~X ~U) also depends on the energy (θ)
through Eq. (14).
We remark on how a W-reflection symmetry more

generally arises. While our nonsymmorphic case study is
a momentum plane with W-glide symmetry, the nonsym-
morphicity is not a prerequisite for W symmetries. Indeed,
certain momentum planes in symmorphic crystals (e.g.,
rocksalt structures) exhibit a glideless W-reflection sym-
metry. The rocksalt structure and our case study are each
characterized by a momentum plane (precisely, a torus
within a plane) that is (a) orthogonal to the reflection axis
and (b) reflected not directly to itself, but to itself translated
by half a reciprocal period (G=2), with G lying parallel to
the same plane; in our nonsymmorphic case study, the
plane is kx ¼ π and G ¼ 2π~y.

b. Wilsonian TM̄z symmetry

TM̄z transforms space-time coordinates as ðx; y; z; tÞ →
ðx; y;−zþ 1=2;−tÞ and momentum coordinates as
ðky; π; kzÞ → ð−ky;−π; kzÞ ¼ ðπ − ky; π; kzÞ − ~b2, as illus-
trated in Fig. 3(c). From Eqs. (A27) and (A28), we obtain
its action on Bloch waves,

T̂M̄z
ðkÞ ¼ e−ikz=2UTM̄z

K; ðB48Þ

and the constraint on the occupied-band projections,

Vð~b2Þ−1T̂M̄z
Pðky; π; kzÞT̂−1

M̄z
Vð~b2Þ ¼ Pðπ − ky; π; kzÞ;

ðB49Þ

following similar steps that we use to derive Eq. (B35).
This relation allows us to define a unitary sewing matrix
between states at ð2π; k∥Þ and ð−π; k∥Þ:

½T̆M̄z
ðð2π; k∥Þ; ð−π; k∥ÞÞ�mn

¼ hum;ð2π;k∥ÞjVð~b2Þ−1T̂M̄z
jun;ð−π;k∥Þi; ðB50Þ

which particularizes Eq. (A29) with G ¼ −~b2. Henceforth,
suppressing the k∥ labels, and by similar manipulations that
we use to derive Eq. (B40), we are led to

T̆M̄z
ð2π;−πÞW−πT̆M̄z

ð2π;−πÞ−1 ¼ Wr;2π; ðB51Þ

and Wr;2π denotes the reverse-oriented Wilson loop with
base point 2π, as illustrated in Fig. 12(f).
We use the following two identities: as pictorially

represented in Figs. 13(d)–13(f), the first identity,

ðiÞ Wr;2π ¼ W2π←πWr;πWπ←2π; ðB52Þ

follows from a generalization of Eq. (B42), and

ðiiÞ ½Wπ←2πT̆M̄z
ð2π;−πÞ�mn

¼ hum;πj
Yπ←2π

ky

PðkyÞVð~b2Þ−1T̂M̄z
jun;−πi

¼ hum;−πj
Y−π←0

ky

PðkyÞVð2π~y − ~b2ÞT̂M̄z
jun;−πi

¼
Xnocc
a¼1

hum;−πj
Y−π←0

ky

PðkyÞjua;0i

× hua;0jVð2π~y − ~b2ÞT̂M̄z
jun;−πi

≡Xnocc
a¼1

½W−π←0�ma½T̆M̄z
ð0;−πÞ�an: ðB53Þ

Inserting (i) and (ii) into Eq. (B51), we arrive at

T M̄z
W−πT M̄z

−1 ¼ ½W−π�−1; with

T M̄z
¼ W−π←0T̆M̄z

ð0;−πÞ: ðB54Þ

The Wilson-loop operator is thus W symmetric under T M̄z
,

which combines a space-time transformation (encoded in
T̆M̄z

) with parallel transport over half a reciprocal period
(encoded in W−π←0). This constraint does not produce any
degeneracy, since (i) T 2

M̄z
¼ þI and furthermore (ii) the

eigenvalues of M̄x [cf. Eq. (14)] are preserved under T M̄z
.

The proof of (i) follows as

0

π

-π

2π
(a) (b) (c) (d) (e)
V

V

V

V

(f)

V

V

+ +

+

- -

-

FIG. 13. (a)–(c) Pictorial representation of Eq. (B42), with
solid line indicating a product of projections that is path
ordered according to the arrow on the same line, and Vþ
indicating an insertion of the spatial-embedding matrix Vð2π~yÞ.
Panels (d)–(f) represent Eq. (B52), withVþ indicating an insertion
of Vð−2π~yÞ.
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½T 2
M̄z
�mn ¼ hum;−πj

Y−π←0

ky

PðkyÞVð2π~y − ~b2ÞT̂M̄z

Y−π←0

qy

PðqyÞVð2π~y − ~b2ÞT̂M̄z
jun;−πi

¼ hum;−πj
Y−π←0

ky

PðkyÞ
Y−π←0

qy

Pð−π − qyÞVð2π~y − ~b2ÞT̂M̄z
Vð2π~y − ~b2ÞT̂M̄z

jun;−πi

¼ hum;−πj
Y−π←0

ky

PðkyÞ
Y0←−π

qy

PðqyÞVð2π~y − ~b2ÞVð−2π~yþ ~b2ÞðT̂M̄z
Þ2jun;−πi

¼ hum;−πj
Y−π←0

ky

PðkyÞ
Y0←−π

qy

PðqyÞjun;−πi ¼ ½W−π←0W0←−π�mn ¼ δmn; ðB55Þ

where in the second equality we use Eqs. (7) and (B49), in the third equality, Eq. (A33), and in the fourth,
ðT̂M̄z

Þ2 ¼ UTM̄z
U�

TM̄z
¼ I. To prove (ii), we first demonstrate that UM̄x

and UTM̄z
K anticommute, which follows from

UM̄x
and UTM̄z

K forming a symmorphic representation of Mx and TMz [where Mj are glideless reflections; see discussion
of Eq. (A16)]. Indeed, MxMz ¼ ĒMzMx in the half-integer-spin representation, and time reversal commutes with any
spatial transformation, leading to fUM̄x

; UTM̄z
Kg ¼ 0. This anticommutation is applied in the fourth equality of

½M̄xT M̄z
�mn ¼ e−ikzhum;−πj

Y−π←0

ky

PðkyÞVð−~b2ÞUM̄x

Y−π←0

qy

PðqyÞVð2π~y − ~b2ÞUTM̄z
Kjun;−πi

¼ e−ikzhum;−πj
Y−π←0

ky

PðkyÞ
Y−π←0

qy

Pðqy þ πÞVð−~b2ÞUM̄x
Vð2π~y − ~b2ÞUTM̄z

Kjun;−πi

¼ e−ikzhum;−πj
Y−π←0

ky

PðkyÞ
Y0←π

qy

PðqyÞVð−~b2ÞVð~b2ÞUM̄x
UTM̄z

Kjun;−πi

¼ −e−ikzhum;−πj
Y−π←0

ky

PðkyÞ
Y0←π

qy

PðqyÞUTM̄z
KUM̄x

jun;−πi

¼ −e−ikzhum;−πj
Y−π←0

ky

PðkyÞ
Y0←π

qy

PðqyÞVð2π~y − ~b2ÞVð−2π~yþ ~b2ÞðT̂M̄z
e−ikz=2ÞUM̄x

jun;−πi

¼ −e−ikzhum;−πj
Y−π←0

ky

PðkyÞ
Y0←π

qy

PðqyÞVð2π~y − ~b2ÞT̂M̄z
Vð2π~yÞe−ikz=2Vð−~b2ÞUM̄x

jun;−πi

¼ −e−ikzhum;−πj
Y−π←0

ky

PðkyÞVð2π~y − ~b2ÞT̂M̄z
Vð2π~yÞ

Y0←π

qy

Pðπ − qyÞe−ikz=2Vð−~b2ÞUM̄x
jun;−πi

¼ −e−ikzhum;−πj
Y−π←0

ky

PðkyÞVð2π~y − ~b2ÞT̂M̄z
Vð2π~yÞ

Yπ←−π

qy

PðqyÞ
Y−π←0

ly

PðlyÞe−ikz=2Vð−~b2ÞUM̄x
jun;−πi

¼ −e−ikz ½T M̄z
W−πM̄x�mn ¼ −e−ikz ½T M̄z

M̄xW−π�mn; ðB56Þ

where we also apply Eqs. (B35) and Eq. (A24) in multiple instances. Then we define simultaneous eigenstates ofW−π and
M̄x such that

W−πjeiθ; λx; kzi ¼ eiθjeiθ; λx; kzi and M̄xjeiθ; λx; kzi ¼ λxjeiθ; λx; kzi: ðB57Þ

Once again, all operators and eigenvalues here depend on kz. Finally,
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M̄xT M̄z
jeiθ; λx; kzi ¼ −e−ikzT M̄z

M̄xW−πjeiθ; λx; kzi ¼ −e−iðkzþθÞλ�xT M̄z
jeiθ; λx; kzi ¼ λxT M̄z

jeiθ; λx; kzi:

In the last equality, we apply λ2x ¼ − exp½−iðθ þ kzÞ� from Eq. (14).

c. Effect of space-time inversion symmetry

The first two relations of Eq. (B34) may be carried over from Appendix B 3 a, if we identify T I ≡ T̆I. What remains is to
show M̄xT I ¼ tð~zÞT IM̄x:

½M̄xT I �mn ¼ e−ikz=2hum;−πj
Y−π←0

ky

PðkyÞVð−~b2ÞUM̄x
T̂I jun;−πi

¼ e−ikzhum;−πjT̂Ie−ikz=2
Y−π←0

ky

PðkyÞVð−~b2ÞUM̄x
jun;−πi

¼ e−ikz ½T IM̄x�mn: ðB58Þ

Recalling our definitions in Eq. (B57), we now show that jeiθ; λx; kzi and T I jeiθ; λx; kzi belong in opposite mirror branches.
To be precise, since λxðkz þ θÞ≡�i exp½−iðkz þ θÞ=2� is both momentum and energy dependent, and TI maps
θ → −θ; kz → kz, we would show that two space-time-inverted partners have M̄x eigenvalues λxðkz þ θÞ and −λxðkz − θÞ:

M̄xT I jeiθ; λx; kzi ¼ e−ikzλ�xT I jeiθ; λx; kzi
¼ ∓ie−iðkz−θÞ=2T I jeiθ; λx; kzi: ðB59Þ

d. Wilsonian time-reversal operator

In the remaining discussion, we particularize to twoWilson loops at fixed k∥ ¼ ðπ; k̄zÞ, with k̄z ¼ 0 or π only. Under time

reversal, ðky; π; k̄zÞ → ð−ky;−π;−k̄zÞ ¼ ðπ − ky; π; k̄zÞ − ~b2 − 2k̄z~z, as illustrated in Fig. 3(d). This implies that the
occupied-band projections along these lines are constrained as

Vð~b2 þ 2k̄z~zÞ−1T̂Pðky; π; k̄zÞT̂−1Vð~b2 þ 2k̄z~zÞ ¼ Pðπ − ky; π; k̄zÞ; ðB60Þ

where T̂ ¼ UTK is the antiunitary representation of time reversal. This relation allows us to define a unitary sewing matrix
between states at ð2π; k∥Þ and ð−π; k∥Þ:

½T̆ðð2π; k∥Þ; ð−π; k∥ÞÞ�mn ¼ hum;ð2π;k∥ÞjVð−~b2 − 2k̄z~zÞT̂jun;ð−π;k∥Þi; ðB61Þ

which particularizes Eq. (A29) with G ¼ −~b2 − 2k̄z~z. Henceforth, suppressing the k∥ labels, we are led to

T̆ð2π;−πÞW−πT̆ð2π;−πÞ−1¼Wr;2π; where

½T̆ð2π;−πÞ�mn¼hum;2πjVð−~b2−2k̄z~zÞT̂jun;−πi; ðB62Þ

and Wr;2π denotes the reverse-oriented Wilson loop with base point 2π, as drawn in Fig. 12(f). Combining this result with
Eq. (B52) and the identity
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½Wπ←2πT̆ð2π;−πÞ�mn ¼ hum;πj
Yπ←2π

ky

PðkyÞVð−~b2 − 2k̄z~zÞT̂jun;−πi

¼ hum;−πjVð2π~yÞ
Yπ←2π

ky

PðkyÞVð−~b2 − 2k̄z~zÞT̂jun;−πi

¼ hum;−πj
Y−π←0

ky

PðkyÞVð2π~y − ~b2 − 2k̄z~zÞT̂jun;−πi

≡ ½W−π←0T̆ð0;−πÞ�mn; ðB63Þ

we arrive at

T W−πT −1 ¼ ½W−π�−1; with T ¼ W−π←0T̆ð0;−πÞ: ðB64Þ

The Wilson-loop operator is thus W symmetric under T , which combines time reversal (encoded in T̆) with parallel
transport over half a reciprocal period (encoded in W−π←0). While many properties of the ordinary time reversal are well
known (e.g., Kramers degeneracy, the commutivity of time reversal with spatial transformations), it is not a priori obvious
that these properties are applicable to theW symmetry (T ). We find that T indeed enforces a Kramers degeneracy in theW
spectrum, but it only commutes with theW glide (M̄x) modulo a Wilson loop. The Kramers degeneracy follows from (a) T
relating two eigenstates of W−π with the same eigenvalue, as follows from Eq. (B64), and (b) T 2 ¼ −I, as we now show:

½T 2�mn ¼ hum;−πj
Y−π←0

ky

PðkyÞVð2π~y − ~b2 − 2k̄z~zÞT̂
Y−π←0

qy

PðqyÞVð2π~y − ~b2 − 2k̄z~zÞT̂jun;−πi

¼ hum;−πj
Y−π←0

ky

PðkyÞ
Y0←−π

qy

PðqyÞVð2π~y − ~b2 − 2k̄z~zÞVð−2π~yþ ~b2 þ 2k̄z~zÞðT̂Þ2jun;−πi

¼ −hum;−πj
Y−π←0

ky

PðkyÞ
Y0←−π

qy

PðqyÞjun;−πi ¼ −½W−π←0W0←−π�mn ¼ −δmn; ðB65Þ

where T̂2 ¼ −I represents a 2π rotation. We further investigate if Kramers partners share identical or opposite eigenvalues
under M̄x. We find at kz ¼ 0 that T : λx → −λx, while at kz ¼ π, T : λx → λx, as we now prove.
Proof.—Applying ½T̂; UM̄x

� ¼ 0,

½M̄xT �mn ¼ e−ik̄z=2hum;−πj
Y−π←0

ky

PðkyÞVð−~b2ÞUM̄x

Y−π←0

qy

PðqyÞVð2π~y − ~b2 − 2k̄z~zÞT̂jun;−πi

¼ e−ik̄z=2hum;−πj
Y−π←0

ky

PðkyÞ
Y0←π

qy

PðqyÞVð−~b2Þeik̄zVð~b2 − 2k̄z~zÞT̂UM̄x
jun;−πi

¼ hum;−πj
Y−π←0

ky

PðkyÞVð2π~y − ~b2 − 2k̄z~zÞT̂Vð2π~yÞ
Yπ←−π

qy

PðqyÞ
Y−π←0

ly

PðlyÞe−ik̄z=2Vð−~b2ÞUM̄x
jun;−πi

¼ ½T W−πM̄x�mn ¼ ½T M̄xW−π�mn: ðB66Þ

This confirms our previous claim that T commutes with M̄x modulo a Wilson loop, unlike the algebra of ordinary space-
time symmetries. Recalling Eq. (B57),

M̄xT jeiθ; λx; k̄zi ¼ T M̄xW−πjeiθ; λx; k̄zi ¼ e−iθλ�xT jeiθ; λx; k̄zi ¼ −eik̄zλxT jeiθ; λx; k̄zi: ðB67Þ

In the last equality, we apply λxðθ þ kzÞ2 ¼ − exp½−iðθ þ kzÞ�. ▪
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An analog of this result occurs for the surface bands,
where the eigenvalues of M̄x are imaginary (real) at kz ¼ 0
(π), and time reversal pairs up complex-conjugate
eigenvalues.

APPENDIX C: CONNECTIVITY OF BULK
HAMILTONIAN BANDS IN SPIN SYSTEMS

WITH GLIDE AND TIME-REVERSAL
SYMMETRIES

In spin systems with minimally time-reversal (T) and
glide-reflection (M̄x) symmetries, we prove that bulk
Hamiltonian bands divide into quadruplet sets of hour-
glasses, along the momentum circle parametrized by
ð0; 0; kzÞ. Each quadruplet is connected, in the sense that
there are enough contact points to continuously travel
through all four branches. With the addition of other spatial
symmetries in our space group, we further describe how
degeneracies within each hourglass may be further
enhanced. Our proof of connectivity generalizes a previous
proof [62] for integer-spin representations of nonsymmor-
phic space groups.
The outline of our proof is as follows. We first consider a

spin system with vanishing spin-orbit coupling, such that it
has a spin SU(2) symmetry. In this limit, we prove that
bands divide into doubly degenerate quadruplets with a
fourfold intersection at ð0; 0; πÞ, as illustrated in Fig. 14(a).
Then, by introducing spin-orbit coupling and assuming no

other spatial symmetries, we show that each quadruplet
splits into a connected hourglass [Fig. 14(b)].
With vanishing spin-orbit coupling, the system is addi-

tionally symmetric under the spin flip ðFxÞ that rotates spin
by π about ~x. The double group (G) relations include

T2 ¼ F2
x ¼ Ē; M̄2

x ¼ Ētðc~zÞ;
½T; Fx� ¼ ½T; M̄x� ¼ ½Fx; M̄x� ¼ 0; ðC1Þ

with Ē a 2π rotation and t a lattice translation. It follows
from this relations that we can define two operators that act
like time reversal and glide reflection in a spinless system:

Tx ≡ TFx; m̄x ≡ M̄xFx;

½Tx; m̄x� ¼ 0; T2
x ¼ I; m̄2

x ¼ tðc~zÞ: ðC2Þ

These operations preserve the spin component in ~z—the
group ( ~G) of a single spin species (aligned in �~z) is
generated by Tx, m̄x, and the lattice translations. It is known
from Ref. [62] that the elementary band representation [57]
of ~G is two dimensional; i.e., single-spin bands divide into
sets of two that cannot be decomposed as direct sums, and
in each set there are enough contact points (to be found
anywhere in the Brillouin zone) to continuously travel
through both branches. This latter property they call
“connectivity.” We reproduce here their proof of connec-
tivity by monodromy:
Let us consider the single-spin Bloch representation

( ~Dkz) of ~G along the circle ð0; 0; kzÞ; kz ∈ ½0; 2πÞ. For
kz ≠ π, there are two irreducible representations (labeled by
ρ) that are each one dimensional:

~Dρ
kz
ðtðc~zÞÞ ¼ e−ikz

⇒ ~Dρ
kz
ðm̄xÞ ¼ e−iðkzþ2πρÞ=2; kz ≠ π; ρ ∈ f0; 1g;

as follows from Eq. (C2). Making one full turn in this
momentum circle (kz → kz þ 2π) effectively permutes the
representations as ρ → ρþ 1. This implies that if we follow
continuously an energy function of one of the two
branches, we would evolve to the next branch after making
one circle, and finally return to the starting point after
making two circles—both branches form a connected
graph. The contact point between the two branches is
determined by the time-reversal symmetry (Tx), which
pinches together complex-conjugate representations of m̄x
at kz ¼ π; on the other hand, real representations at kz ¼ 0
are not degenerate, as illustrated in Fig. 14(c). We apply
here that ½Tx; m̄x� ¼ 0, and the eigenvalues of m̄x are
imaginary (real) at kz ¼ π (0). ▪
Because of the spin SU(2) symmetry, we double all

irreducible representations of ~G to obtain representations of
G; i.e., in the absence of spin-orbit coupling but accounting
for both spin species, bands are everywhere spin

(a) (b)

+i exp(-ikz/2)

-i exp(-ikz/2)

+1,+1

-1

+i

+i
-i

-i

+exp(-ikz/2)

-exp(-ikz/2)

(c)

  +1
-1,-1

-i

+i

FIG. 14. Bulk band structures with glide and time-reversal
symmetries, for systems with spin (a),(b) and without (c).
Γ≡ ð0; 0; kz ¼ 0Þ and Z≡ ð0; 0; kz ¼ πÞ are high-symmetry
points that are selected because the fractional translation (in the
glide) is parallel to ~z. Panel (a) either has no spin-orbit coupling or
has spin-orbit coupling with an additional spatial-inversion sym-
metry. Panel (b) has spin-orbit coupling but breaks spatial-
inversion symmetry. The crossings between orthogonal mirror
branches (indicated by arrows) are movable along ΓZ but
unremovable so long as glide and time-reversal symmetries are
preserved. The glide eigenvalues are indicated atΓ andZ for one of
the two hourglasses. Panel (c) could apply to an intrinsically
spinless system (e.g., bosonic cold atoms and photonic crystals),
and also to an effectively spinless system (e.g., a single-spin
species in an electronic system without spin-orbit coupling).
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degenerate, and especially fourfold degenerate at kz ¼ π.
For illustration, Fig. 14(a) may be interpreted as a spin-
doubled copy of Fig. 14(c). Recall that the eigenvalues of
M̄x fall into two branches labeled by η ¼ �1 in
λxðkzÞ ¼ ηi expð−ikz=2Þ. For each spin-degenerate dou-
blet, the two spin species fall into opposite branches of M̄x,
as distinguished by solid and dashed curves in Fig. 14(a).
This result follows from continuity to kz ¼ 0, where
Kramers partners have opposite, imaginary eigenvalues
under M̄x.
Without additional spatial symmetries, the effect of spin-

orbit coupling is to split the spin degeneracy for generic kz,
while preserving the Kramers degeneracy at kz ¼ 0 and
π—the final result is the hourglass illustrated in Fig. 14(b).
To demonstrate this, we note at kz ¼ π that each four-
dimensional subspace (without the coupling) splits into two
Kramers subspaces, where Kramers partners have identical,
real eigenvalues under M̄x; pictorially, two solid curves
emerge from one of the two Kramers subspaces, and for
the other subspace both curves are dashed, as shown in
Fig. 14(b). Furthermore, we know from the previous
paragraph that each Kramers pair at kz ¼ 0 combines a
solid and dashed curve. These constraints may be inter-
preted as curve boundary conditions at 0 and π, which
impose a solid-dashed crossing between the boundaries, as
indicated by arrows in Fig. 14(b). There is then an
“unavoidable degeneracy” [57] that can move along the
half-circle, but cannot be removed. This contact point, in
addition to the unmovable Kramers degeneracies at 0 and π,
guarantees that each quadruplet is connected.
Let us consider how other spatial symmetries (beyond

M̄x) may enhance degeneracies within each hourglass. For
illustration, we consider the spatial inversion (I) symmetry,
which applies to the space group of KHgX. Since TI
belongs in the group of every bulk wave vector, the spin
degeneracy along ð0; 0; kzÞ does not split, and kz ¼ π
remains a point of fourfold degeneracy, as illustrated in
Fig. 14(a).
One final remark is that the notion of “connectivity” over

the entire Brillouin zone, as originally formulated in
Ref. [62], can fruitfully be particularized to “connectivity
of a submanifold,” which we introduced in our companion
work [21] as a criterion for topological surface bands; our
notion differs from the original formulation in that contact
points must be found only within the submanifold in
question, rather than the entire Brillouin zone.

APPENDIX D: PROJECTIVE
REPRESENTATIONS, GROUP EXTENSIONS,

AND GROUP COHOMOLOGY

Wilsonian symmetries describe the extension of a point
group by quasimomentum translations; such extensions
are also called projective representations. In this appendix,
we elaborate on the connection between projective

representations and group extensions in Appendix D 1,
then proceed in Appendix D 2 to describe projective
representations from the more abstract perspective of
cochains, which emphasizes the connection with group
cohomology. Finally, in Appendix D 3, we exemplify a
simple calculation of the second group cohomology.

1. Connection between projective representations
and group extensions

In Sec. VI, we introduce three groups.
(i) As defined in Eq. (29), G∘ ≅ Z2 × Z2 is a symmor-

phic, spinless group generated by time reversal (T)
and a glideless reflection (Mx), with an algebra
summarized in Eq. (30).

(ii) The group (G ~X) of the Wilson loop is generated by
2π rotation (Ē), a lattice translation [tðc~zÞ], the
Wilson loop (W), and analogs of time reversal
(T ) and glide reflection (M̄x) additionally encode
parallel transport. With regard to our KHgX material
class, this appendix does not exhaust all elements in
G ~X or G∘; our treatment here minimally conveys
their group structures. A more complete treatment of
the material class is described in Appendix B 4 for
the different purpose of topological classification.

(iii) As defined in Eq. (31), N ≅ Z2 × Z2 is an Abelian
group generated by 2π rotations (Ē), momentum
translations (W), and real-space translations [tð~zÞ].
G∘ induces an automorphism on N , which we
proceed to define. Letting the group element gi ∈
G∘ be represented inG ~X by ĝi, we say that gi induces
the automorphism a → σiðaÞ, where

σiðĒatð~zÞbWcÞ≡ ĝiĒatð~zÞbWcĝ−1i
¼ Ēatð~zÞκðĝiÞbWγðĝiÞc; with κðĝiÞ;

γðĝiÞ∈ f�1g: ðD1Þ

γðĝiÞ ¼ þ1 if ĝi preserves the Wilson loop [e.g.,
ĝi ¼ M̄x in Eq. (22)], and γðĝiÞ ¼ −1 if ĝi is
orientation reversing [e.g., ĝi ¼ T in Eq. (26)].
Similarly, κðĝiÞ ¼ þ1 (−1) if ĝi preserves (inverts)
the spatial translation tð~zÞ; in our example,
κðM̄xÞ ¼ κðT Þ ¼ þ1. Equivalently, we may say
that N is a normal subgroup of G ~X.

To show that G ~X is an extension of G∘ by N , it is
sufficient to demonstrate that G∘ is isomorphic to the factor
group G ~X=N [37]. This factor group has as elements the
left cosets gN , with g ∈ G ~X; by the normality of N ,
gN ¼ N g. This isomorphism respectively maps the ele-
mentsN , T N , M̄xN (in G ~X=N ) to identity ðIÞ, T,Mx (in
G∘); this is a group isomorphism in the sense that their
multiplication rules are identical. For example, M2

x ¼ I is
isomorphic to
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ðM̄xN Þ2 ¼ M̄xðNM̄xÞN ¼ M̄2
xN 2

¼ Ētðc~zÞW−1N ¼ N ; ðD2Þ

where we apply thatN is a normal subgroup ofG ~X, and the
third equality relies on Eq. (23). Two extensions are
equivalent if there exists a group isomorphism between
them; the second group cohomology [H2ðG∘;N Þ, as
further elaborated in Appendix D 2] classifies the isomor-
phism classes of all extensions of G∘ byN , of which G ~X is
one example. We also describe an inequivalent extension
(G ~Γ) toward the end of Sec. VI, which is nontrivially
extended in tð~zÞ (i.e., we are dealing with a glide instead of
a glideless reflection symmetry) and also in Ē (i.e., this is a
half-integer-spin representation), but not in W. More
generally, we could have either an integer-spin or a half-
integer-spin representation, with either a glide or glideless
reflection symmetry, and we could be describing a reflec-
tion plane (glide or glideless) in which the reflection either
preserves every wave vector or translates each wave vector
by half a reciprocal period.

2. Connection between projective representations
and the second cohomology group

For a group G∘, we define a G∘ module (denoted N ) as
an Abelian group on which G∘ acts compatibly with the
multiplication operation in N [64]. In our application, G∘
of Eq. (29) is the point group of a spinless particle, and N
of Eq. (31) is the group generated by real- and quasimo-
mentum-space translations, as well as 2π rotations. Let the
ith element (gi) of G∘ act on a ∈ N by the automorphism:
a → σiðaÞ ∈ N ; we say this action is compatible if

σiðabÞ ¼ σiðaÞσiðbÞ for every a; b ∈ N : ðD3Þ

We show in Eq. (D1) that gi acts on a by conjugation, i.e.,
σiðaÞ ¼ ĝiaĝ−1i , which guarantees that the action is
compatible.

To every factor (Ci;j ∈ N ) of a projective representation,
defined again by

ĝiĝj ¼ Ci;jĝij; ðD4Þ

where gij ≡ gigj and ĝi is the representation of gi, there
corresponds a 2-cochain (ν2):

Ci;j ¼ ν2ðI; gi; gijÞ ∈ N ; ðD5Þ

with the first argument in ν2 set as the identity element in
G∘. ν2 more generally is a map: G3∘ → N—besides
informing of the factor system through Eq. (D5), it also
encodes how each factor transforms under G∘, through

ν2ðgig0; gig1; gig2Þ≡ ĝiν2ðg0; g1; g2Þĝ−1i
≡ σiðν2ðg0; g1; g2ÞÞ ∈ N : ðD6Þ

Presently, we review group cohomology from the perspec-
tive of cochains before establishing its connection with
projective representations. Our review closely follows that
of Ref. [60], which described only U(1) modules; our
review demonstrates that the structure of cochains exists for
more general modules (e.g., N ). Moreover, we are moti-
vated by possible generalizations of our ideas to higher-
than-two cohomology groups, though presently we do not
know if such exist. We adopt the convention of Ref. [60] in
defining cochains and the coboundary operator, which they
have shown to be equivalent to standard [64] definitions;
the advantage gained is a more compact definition of the
coboundary operator. Generalizing Eq. (D6), an n-cochain
is a map νn: Gnþ1∘ → N satisfying

νnðgig0;gig1;…;gignÞ≡σiðνnðg0;g1;…;gnÞÞ∈N : ðD7Þ

Given any νn−1, we can construct a special type of n-
cochain, which we call an n-coboundary, by applying the
coboundary operator dn−1, defined as

½dn−1νn−1�ðg0; g1;…; gnÞ ¼
Yn
j¼0

νn−1ðg0; g1;…; gj−1; gjþ1;…; gnÞð−1Þj ;

e:g:; ½d1ν1�ðg0; g1; g2Þ ¼ ν1ðg1; g2Þν1ðg0; g2Þ−1ν1ðg0; g1Þ: ðD8Þ

Formally, let CnðN Þ ¼ fνng be the space of all n-cochains, and the space of all n-coboundaries is an Abelian subgroup of
Cn defined by

Bn ¼ fνnjνn ¼ dn−1νn−1; νn−1 ∈ Cn−1g: ðD9Þ

Applying dn to an n-coboundary always gives the identity element in N :

½dndn−1νn−1�ðg0; g1;…; gnþ1Þ ¼
Ynþ1

j¼0

½dn−1νn−1�ðg0;…; gj−1; gjþ1;…; gnþ1Þð−1Þj ¼ I: ðD10Þ
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Succinctly, a coboundary has no coboundary. Though this conclusion is well known, it might interest the reader how this
result is derived with our nonstandard definition of dn. First, express Eq. (D10) as a product of ν�1

n−1 by inserting Eq. (D8),
e.g.,

½d2d1ν1�ðg0; g1; g2; g3Þ ¼ fν1ðg2; g3Þν1ðg1; g3Þ−1ν1ðg1; g2Þgfν1ðg2; g3Þν1ðg0; g3Þ−1ν1ðg0; g2Þg−1
× fν1ðg1; g3Þν1ðg0; g3Þ−1ν1ðg0; g1Þgfν1ðg1; g2Þν1ðg0; g2Þ−1ν1ðg0; g1Þg−1 ¼ I: ðD11Þ

Each of ν�1
n−1 has n distinct arguments drawn from the set fg0; g1;…; gnþ1g of nþ 2 elements. Equivalently, we may label

ν�1
n−1 by the two elements (gi and gj; i; j ∈ f0; 1;…; nþ 1g; i < j) which have been deleted from this cardinality-(nþ 2)
set; there are always two such ν�1

n−1 arising from two different ways to delete fgi; gjg: either (a) gi was deleted by dn and gj
by dn−1 or (b) vice versa. For example, fg0; g1g corresponds to

½d2d1ν1�ðg0; g1; g2; g3Þ ∝ fν1ðg2; g3Þ…gfν1ðg2; g3Þ…g−1f� � �gf� � �g−1; ðD12Þ

where (a) ν1ðg2; g3Þ originates from d2 deleting g0 and d1 deleting g1, while (b) ν1ðg2; g3Þ−1 arises from d2 deleting g1 and
d1 deleting g0. These two factors, from (a) and (b), multiply to identity, as is more generally true for any fgi; gjg (recall
i < j) and dndn−1νn−1, since

½dndn−1νn−1�ðg0;…; gnþ1Þ
∝ νn−1ð…; gi−1; giþ1;…; gj−1; gjþ1;…Þð−1Þið−1Þj−1νn−1ð…; gi−1; giþ1;…; gj−1; gjþ1;…Þð−1Þjð−1Þi ¼ I; ðD13Þ

where νð−1Þ
jð−1Þi

n−1 originates from dn deleting gj, and νð−1Þ
ið−1Þj−1

n−1 from dn deleting gi. We have thus shown
that dndn−1νn−1 ¼ I.
An n-coboundary is an example of an n-cocycle, which is more generally defined as any n-cochain with a trivial

coboundary. The space of all n-cocycles is an Abelian subgroup of Cn defined as

Zn ¼ fνnjdnνn ¼ I; νn ∈ Cng: ðD14Þ

The nth cohomology group is defined by the quotient group

HnðG∘;N Þ ¼ ZnðG∘;N Þ
BnðG∘;N Þ ; ðD15Þ

its elements are equivalence classes of n-cocycles, in which we identify any two n-cocycles that differ by an n-coboundary.
The rest of this section establishes how H2ðG∘;N Þ classifies the different projective representations of G∘, as extended by
N . Indeed, we have already identified the factor system of a projective representation with a 2-cochain through Eq. (D5),
and the associativity condition on the factor system will shortly be derived as

C−1
ij;kC

−1
i;j σiðCj;kÞCi;jk ¼ I; ðD16Þ

which translates to a constraint that the 2-cochain is a 2-cocycle. Indeed, from inserting Eqs. (D4)–(D6) into
ĝ1ðĝ2ĝ3Þ ¼ ðĝ1ĝ2Þĝ3, we find that

σ1ðC2;3ÞC1;23ĝ123 ¼ C12;3C1;2ĝ123

⇒ I ¼ σ1ðC2;3ÞC−1
12;3C1;23C−1

1;2

⇒ I ¼ ν2ðg1; g12; g123Þν2ðI; g12; g123Þ−1ν2ðI; g1; g123Þν2ðI; g1; g12Þ−1
⇒ I ¼ ĝ0Iĝ−10 ¼ ĝ0ν2ðg1; g12; g123Þν2ðI; g12; g123Þ−1ν2ðI; g1; g123Þν2ðI; g1; g12Þ−1ĝ−10
⇒ I ¼ ν2ðg01; g012; g0123Þν2ðg0; g012; g0123Þ−1ν2ðg0; g01; g0123Þν2ðg0; g01; g012Þ−1
⇒ I ¼ ν2ðg1; g2; g3Þν2ðg0; g2; g3Þ−1ν2ðg0; g1; g3Þν2ðg0; g1; g2Þ−1 ≡ ½d2ν2�ðg0; g1; g2; g3Þ; ðD17Þ
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where in the last ⇒ we relabel g01…k → gk and g0 → g0. Furthermore, we recall from Eq. (35) that two projective
representations are equivalent if they are related by the gauge transformation ĝi → ĝi0 ¼ Diĝi, with Di ∈ N . This may be
reexpressed as

ĝi → ĝi0 ¼ ν1ðI; giÞ−1ĝi; ðD18Þ

by relabeling Di ≡ ν1ðI; giÞ−1 ∈ N . The motivation for calling ĝi and ĝi0 gauge equivalent is that both representations
induce the same automorphism on the Abelian group N ; i.e.,

ĝiaĝ−1i ≡ σiðaÞ for any a ∈ N ⇒ ĝi0aĝi0−1 ≡ σiðaÞ: ðD19Þ

Let us demonstrate that this gauge-equivalence condition may be expressed as an equivalence of 2-cochains modulo 1-
coboundaries. By inserting Eqs. (D18) and (D19) into Eq. (D4), with i ¼ 1 and j ¼ 2,

ĝ1ĝ2 ¼ C1;2ĝ12 ⇒ ðν1ðI; g1Þĝ01Þðν1ðI; g2Þĝ02Þ ¼ C1;2ν1ðI; g12Þĝ012 ≡ ν2ðI; g1; g12Þν1ðI; g12Þĝ012
⇒ ν1ðI; g1Þσ1ðν1ðI; g2ÞÞĝ01ĝ02 ¼ ν2ðI; g1; g12Þν1ðI; g12Þĝ012
⇒ ĝ01ĝ

0
2 ¼ ν2ðI; g1; g12Þν1ðI; g1Þ−1ν1ðI; g12Þν1ðg1; g12Þ−1ĝ012 ≡ ν2ðI; g1; g12Þ0ĝ012: ðD20Þ

To reiterate, the ν02 and ν2 are two gauge-equivalent 2-cochains differing only by multiplication with a 1-coboundary:

ν2ð1; g1; g12Þ ¼ ν2ð1; g1; g12Þ0ν1ðI; g1Þν1ðI; g12Þ−1ν1ðg1; g12Þ
⇒ ĝ0ν2ð1; g1; g12Þĝ−10 ¼ ν2ðg0; g01; g012Þ ¼ ν2ðg0; g01; g012Þ0ν1ðg0; g01Þν1ðg0; g012Þ−1ν1ðg01; g012Þ

⇒ ν2ðg0; g1; g2Þ ¼ ν2ðg0; g1; g2Þ0ν1ðg1; g2Þν1ðg0; g2Þ−1ν1ðg0; g1Þ≡ ν2ðg0; g1; g2Þ0½d1ν1�ðg0; g1; g2Þ; ðD21Þ

where in the last ⇒ we relabel g01…k → gk and g0 → g0.
We thus demonstrate that different equivalence classes of
projective representations correspond to equivalence
classes of 2-cocycles, where equivalence is defined modulo
1-coboundaries; i.e., different projective representations are
elements of the second cohomology group [recall
H2ðG∘;N Þ from Eq. (D15)].

3. Simple example

For a simple example of H2, consider a reduced problem
where we extendG∘ ≅ Z2 × Z2 (as generated byMx and T)
by the group of Wilson loops,

N ¼ fWnjn ∈ Zg ≅ Z; ðD22Þ

which differs from N in lacking the generators tð~zÞ and Ē;
nontrivial extensions by tð~zÞ and Ē, respectively, describe
nonsymmorphic and half-integer-spin representations, and
are already well known [11]. Here, we focus on extensions
purely by momentum translations. G∘ acts on N as

TWT−1 ¼ W−1 and MxWM−1
x ¼ W: ðD23Þ

Let us follow the procedure outlined in Ref. [65] to
determine the possible extensions of G∘. First, we collect
all nonequivalent products of generators that multiply to

identity according to the multiplication rules of G∘: from
Eq. (30), these are

M2
x ¼ I; T2 ¼ I and MxTM−1

x T−1 ¼ I: ðD24Þ

A projective representation is obtained by replacing I on
the right-hand side with an element in the G∘ module N:

M2
x ¼ Wa; T2 ¼ Wb and MxTM−1

x T−1 ¼ Wc:

That a, b, c are integers does not imply Z3 inequivalent
extensions; rather, we will see that not all three integers are
independent, some integers are only gauge-invariant mod-
ulo two, and moreover one of them vanishes so that the
representation is associative. Indeed, from the associativity
of T3,

TWb ¼ TðTTÞ ¼ ðTTÞT ¼ WbT ¼ TW−b

⇒ W2b ¼ I: ðD25Þ

Lacking spatial-inversion symmetry, the eigenvalues of W
are generically not quantized to any special value, and the
only integral solution toW2b ¼ I is b ¼ 0; we comment on
the effect of spatial-inversion symmetry at the end of this
example. Similarly, a ¼ c follows from
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WaT ¼ M2
xT ¼ W2cTM2

x ¼ W2cTWa ¼ W2c−aT:

Moreover, we clarify that only the parity of a labels the
inequivalent classes. This follows from Mx and M0

x ¼
WnxMx (nx ∈ Z) inducing the same automorphism on N:

MxWM−1
x ¼ W ⇔ Mx

0WMx
0−1 ¼ W: ðD26Þ

We say that Mx and Mx
0 are gauge-equivalent representa-

tions; consequently, only the parity of the exponent (a) of
W in M2

x ¼ Wa is gauge invariant, as we see from

M2
x ¼ Wa ⇒ ðW−nxMx

0Þ2 ¼ Wa

⇒ Mx
02 ¼ Waþ2nx ≡Wa0 : ðD27Þ

One may verify that the relation a ¼ c is gauge invariant,
since if a → a0 ¼ aþ 2nx (as we have just shown), like-
wise c → c0 ¼ cþ 2nx (as we now show). To determine
the gauge-transformed c0, we consider two gauge-
equivalent representations of time reversal related by
T 0 ¼ WnTT, with nT ∈ Z. By application of Eq. (D23),
we derive

Wc ¼ MxTM−1
x T−1

¼ ðW−nxM0
xÞðW−nTT 0ÞðMx

0−1WnxÞðT 0−1WnT Þ;
⇒ W−nx−nT−nxþnTM0

xT 0M0
x
−1T 0−1 ¼ Wc

⇒ M0
xT 0M0

x
−1T 0−1 ¼ Wcþ2nx ≡Wc0 ; ðD28Þ

as desired. We conclude that there are only two elements of
H2ðG∘; NÞ. (i) The first is gauge equivalent to a ¼ 0,

M2
x ¼ I; T2 ¼ I; ½T;Mx� ¼ 0; ðD29Þ

as expected from the algebra of G∘, and (ii) the second
element of H2ðG∘; NÞ is gauge equivalent to a ¼ −1,
M2

x ¼ W−1; T2 ¼ I; TMx ¼ W−1MxT: ðD30Þ

The first extension is split (i.e., it is isomorphic to a
semidirect product of G∘ with N), and corresponds to the
identity element of H2ðG∘; NÞ ≅ Z2. Multiplication of two
elements corresponds to multiplying the factor systems;
e.g., the two nonsplit elements multiply as

M2
x ¼ W−2; T2 ¼ I; TMx ¼ W−2MxT; ðD31Þ

which is gauge equivalent to Eq. (D29) by the trans-
formation of Eq. (D27) with nx ¼ 1.
To realize the nontrivial algebra in Eq. (D30), we need

that Mx is a Wilsonian symmetry; i.e., it describes not
purely a spatial reflection, but also induces parallel trans-
port. As elaborated in Sec. VI, this Wilsonian symmetry is
realized in mirror planes where any wave vector is mapped

to itself by a combination of spatial reflection and quasi-
momentum translation across half a reciprocal period. To
clarify a possible confusion, Sec. VI describes a non-
symmorphic, half-integer-spin representation of a space
group where M̄2

x is a product of a spatial translation [tð~zÞ]
and a 2π rotation (Ē), as is relevant to the KHgX material
class [21]; this appendix describes a symmorphic, integer-
spin case study where M2

x ¼ I. Indeed, we rederive
Eqs. (23) and (27) in Sec. VI, modulo factors of Ē and
tð~zÞ. Despite this difference, all Wilsonian reflections,
whether glide or glideless, have the same physical origin:
some crystal structures host mirror planes (of glide type for
KHgX, but glideless in this appendix) where the group of
any wave vector includes the product of spatial glide or
reflection with a fractional reciprocal translation.
Finally, we address a different example where G∘

includes a spatial-inversion (I) symmetry. We have shown
in Ref. [26] that a subset of the W eigenvalues may be
quantized to �1 depending on the I eigenvalues of the
occupied bands. Indeed, if we focus only on this quantized
eigenvalue subset, we might conclude thatW2b ¼ I [whose
derivation in Eq. (D25) carries through in the presence of I
symmetry] could be solved for any b ∈ Z. However, our
perspective is that Wilson-loop extensions classify different
momentum submanifolds in the Brillouin zone; this clas-
sification should therefore be independent of specific I
representations of the occupied bands. Thus, assuming that
a finite subset of W eigenvalues are generically not
quantized, we conclude that b ¼ 0 even with I symmetry.
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