
Emergence, Coalescence, and Topological Properties of Multiple Exceptional Points
and Their Experimental Realization

Kun Ding, Guancong Ma, Meng Xiao, Z. Q. Zhang, and C. T. Chan*

Department of Physics and Institute for Advanced Study, Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong

(Received 31 December 2015; revised manuscript received 5 March 2016; published 12 April 2016)

Non-Hermitian systems distinguish themselves from Hermitian systems by exhibiting a phase transition
point called an exceptional point (EP), at which two eigenstates coalesce under a system parameter
variation. Many interesting EP phenomena, such as level crossings in nuclear and condensed matter
physics, and unusual phenomena in optics, such as loss-induced lasing and unidirectional transmission, can
be understood by considering a simple 2 × 2 non-Hermitian matrix. At a higher dimension, more complex
EP physics not found in two-state systems arises. We consider the emergence and interaction of multiple
EPs in a four-state system theoretically and realize the system experimentally using four coupled acoustic
cavities with asymmetric losses. We find that multiple EPs can emerge, and as the system parameters vary,
these EPs can collide and merge, leading to higher-order singularities and topological characteristics much
richer than those seen in two-state systems. The new physics obtained is not limited to the acoustic systems
demonstrated here. It also applies to other systems as well, such as coupled photonic cavities and
waveguides.
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I. INTRODUCTION

Non-Hermitian systems [1–3] such as open and/or lossy
systems are ubiquitous in nature. Systems with parity-time
(PT) symmetry [4], as a subset of non-Hermitian systems,
have generated great interest recently due to a rich array of
novel phenomena including a divergent Petermann factor
[5,6], loss-induced revival of lasing [7], single-mode lasers
[8,9], reversed pump dependence of lasers [10], Bloch
oscillation [11], coherent absorption [12], optical isolation
[13], unidirectional light propagation [14–16], and others
[17–23]. Many of these novel phenomena can be traced to
the existence of an “exceptional point” (EP) when two
quasibound states coalesce, which is perhaps the single
most important characteristic of non-Hermitian physics.
The EP can be described locally by a nondiagonalizable
2 × 2 matrix in which the eigenvalues have a square-root
singularity and the eigenstates exhibit peculiar topological
properties [24,25]. Recently, exceptional points have also
been reported in some quantum systems such as Bose-
Einstein condensates trapped in a PT-symmetric double-
well potential [26,27] and nontopological superconductors
[28]. Periodic systems can support more complex phenom-
ena such as a ring of EPs, but even these complex

configurations can still be considered using a 2 × 2 matrix
[29]. However, for multistate systems, the interesting
physics arising from non-Hermiticity is not limited to those
EPs that can be described by a 2 × 2 matrix. For example,
the PT symmetry recovery behaviors have been found in
multiple optical waveguide system [30,31] and photonic
crystals [32]. In general, multiple EPs can form [32–36] in a
multistate system, and their interactions may lead to the
coalescence of two or more EPs, which in turn gives rise to
new physics including new singularities with different
topological properties, which cannot be described by a
2 × 2 matrix [32–36].
In this work, we investigate a four-state system both

theoretically and experimentally. The emergence of multi-
ple EPs, their topological properties, and their coalescence
can be best summarized in a phase diagram featuring an
exceptional point formation pattern (EPFP). The coales-
cence of two EPs and that of three EPs forms two curves in
the parameter space, partitioning the phase space into three
regions each with a unique EPFP. Together with a two-state
inversion line, the phase space is further divided into five
regions, each with distinct topological properties. By using
coupled acoustic resonant cavities with tunable eigenfre-
quencies, coupling strengths, and dissipative loss, these
EPFPs were observed experimentally. The coalescence of
three EPs produces a higher-order singularity, and the
coalescence of a pair of EPs with the same chirality
produces a linear crossing that is qualitatively different
from the linear crossing at a diabolic point of Hermitian
Hamiltonians [37]. It is worth mentioning that the acoustic
system with multiple EPs considered here can be used for
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mode selection, similar to the modal demultiplexing found
in PT-symmetric multiple optical waveguides [31], which,
in fact, are also ideal optical platforms to realize the
physical phenomena found in our work.

II. TWO COUPLED ACOUSTIC CAVITY
RESONATORS

We begin with a two-state system containing two
coupled cavities A and B having the same resonant
frequency ω2 as shown in the inset of Fig. 1(a). The
Hamiltonian of the system can be written as

H ¼
�
ω2 − iΓ0 κ

κ ω2 − iΓ

�
; ð1Þ

where κ denotes the strength of the coupling, Γ0 denotes the
intrinsic loss of each cavity, and Γ ¼ Γ0 þ ΔΓ, with ΔΓ
representing an additional tunable loss introduced at cavity
B. The eigenfrequencies of Eq. (1) take the form

~ω1;2 ¼ ω2 − i
Γþ Γ0

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ2 − ðΔΓÞ2

q
: ð2Þ

When ΔΓ is increased and becomes 2jκj, this two-cavity
system will exhibit an EP at the square-root branch point.
At this point, the two eigenstates coalesce and one becomes
defective. Beyond this point, the imaginary part of the
frequency (the “width”) of the two states bifurcates.
The above Hamiltonian [Eq. (1)] can be realized with

acoustic resonant cavities, as shown in Fig. 1(a). We begin
by studying the behavior of a single acoustic cavity. We
fabricate cylindrical metallic (stainless-steel) cavities by
precision machining. The cavity’s fundamental mode has

an eigenfrequency ω2, which can be tuned by varying its
depth h through the relation ω2 ¼ πv=h, where v is the
speed of sound in air. All the cavities have the same radius
of 15.0 mm. The cavities are filled with air at one
atmospheric pressure, with temperature kept at 295 K.
Small ports of 2.5 mm in diameter are opened on the top of
the cavities for external pumping, which also introduce
radiation loss that contributes to Γ0. Microphones (PCB
Piezotronics Model-378C10) are inserted into the sidewalls
of the cavities near the bottom for pressure measurement.
Lock-in amplifiers (Stanford Research SR-830) are used to
drive a loudspeaker, as well as to record the signals from the
microphones. The measured pressure of a single acoustic
cavity with h ¼ 50.6 mm is shown by red open squares in
Fig. 1(b), which clearly shows the resonant peak. The
resonant frequency ω2 and intrinsic loss Γ0 of the single
cavity can be obtained by fitting the measured spectrum of
pressure amplitude according to jPðωÞj ∝ jf1=½ω − ðω2 −
iΓ0Þ�gj after a steady-state excitation, and the fitting results
are shown by the red line in Fig. 1(b). Experimentally, the
main source of uncertainty is due to the temperature
fluctuation of air. We carefully monitor the temperature
and are able to maintain the fluctuation within�0.5 K. The
temperature uncertainty propagates to an uncertainty that is
no larger than�0.6 Hz in the cavity’s resonance peaks (see
Supplemental Material, Sec. VII, for detailed analysis of
experimental uncertainties [38]). The size of the symbols
for the experimental data points already takes into account
the measurement uncertainties.
To introduce additional loss, we insert small pieces of

sponge into the top or bottom of a cavity symmetrically.
However, these sponges slightly redshift the resonant
frequency. To compensate for this shift, we further add a

FIG. 1. (a) A photograph of two acoustic cavity resonators (labeled A and B in the inset) coupled by side tubes. Cavity B is opened and
disconnected to show its interior and the coupling tubes. The inset is a schematic picture of the system. (b) Measured pressure responses
as functions of frequency (symbols) of a single cavity (h ¼ 50.6 mm) with increasing loss. The inset in (b) shows the arrangement of
sponge and putty which is stuck to the bottom of the metallic cavity, and the amount of them is controlled by their mass. (c) Measured
pressure response spectra (symbols) of the two coupled cavities. Cavities A and B have the same depth, h ¼ 50.6 mm. Coupling κ is
achieved using two side tubes with radii of 2.0 and 0.8 mm, respectively. Asymmetric loss is introduced in cavity B, whereas both
pumping and measurements are performed at cavity A. Solid curves in (b) and (c) are numerical fittings using a Green function method
[Eq. (3)]. The inset in (c) shows fitted results of real parts of eigenfrequencies as a function of asymmetric loss ΔΓ. The vertical dashed
lines in the inset correspond to the four ΔΓ shown in (c). The formation of an exceptional point at which the two states coalesce can be
clearly seen.
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small amount of Blu-Tack putty, which decreases the
volume and consequently blueshifts the resonant fre-
quency. Therefore, the assembly of sponge and putty as
shown in the inset of Fig. 1(b) yields a total effect that
ideally reproduces ΔΓ, as shown by blue, magenta, and
dark cyan symbols in Fig. 1(b) for different amounts of the
assembly in the single cavity. To determine the value ofΔΓ,
we again fit jPðωÞj to the Lorentz pole with Γ0 replaced by
Γ0 þ ΔΓ, as shown by the solid lines in Fig. 1(b). The good
agreement with experimental results and fitted ones clearly
demonstrates that this metallic acoustic cavity with addi-
tional assembly of sponge and putty could realize the
desired on-site resonant state in the Hamiltonian.
We could use two connected acoustics cavities to achieve

experimental realization of the Hamiltonian Eq. (1), as
shown in Fig. 1(a). A set of small tubes having the same
length of 15.0 mm but various radii are also machined out
of stainless steel. Side ports in the cavity are fabricated to
accommodate coupling tubes. The couplings can be
adjusted by choosing the tube’s cross-sectional area. For
this configuration, we choose two side tubes with radii of
2.0 and 0.8 mm, respectively, to produce the coupling κ.
The open symbols in Fig. 1(c) show the measured pressure
responses at cavity A (with pumping also at cavity A) for
increasing additional loss at cavity B.
To retrieve the eigenmodes from these experimental data,

we build the Green function of our system with N states by
using the eigenvalues and right or left eigenvectors of the
Hamiltonian as

G
↔ðωÞ ¼

XN
j¼1

j ~ϕR
j ih ~ϕL

j j
ω − ~ωj

; ð3Þ

where j ~ϕR
j i and h ~ϕL

j j are thenormalizedbiorthogonal right and
left eigenvectors, and ~ωj are eigenvalues (see also
Supplemental Material, Sec. I [38]). It should be pointed
out that Eq. (3) has higher-order terms when the system is
exactly at the EP [39], but experimentally we can never be
exactly at the EP, so all the higher-order terms are ignored in
thismethod.Then theanalytical response function is jPðωÞj ¼
AjhpjG↔ðωÞjsij, where jsi and jpi are two column vectors
describing the source and probe information. For example, in
this two-cavity case [N ¼ 2, cavities A andB in Fig. 1(a)] the
two basis vectors are ð1; 0ÞT for A and ð0; 1ÞT for B.
The first step in the fitting process is to obtain the values

of the system parameters ω2, Γ0, and κ in the Hamiltonian.
In the fitting process, the system parameters are iteratively
improved until the difference of the calculated pressure
function jPðωÞj calculated according to Eq. (3) and the
measured pressure response data for the sample without the
putty and sponge [red squares in Fig. 1(c)] are minimized in
the least-square sense. A convergent and good fitting
implies that the two-level model captures the essence of
the physics. The results fitted to the red squares in Fig. 1(c)
are plotted by the red solid line, which indeed shows good

agreement, indicating that our model is good enough to
produce the experimental results. The second step of the
fitting is to obtain the asymmetric loss parameter ΔΓ using
the values of ω2, Γ0, and κ obtained in the first step. The
procedure is similar to the previous step; namely, we do the
least-square fitting of the measured pressure response with
the putty and sponge included [blue circles, magenta stars,
and cyan triangles in Fig. 1(c)] to the response function
jPðωÞj of Eq. (3). The fitted results, represented by the blue,
magenta, and cyan solid lines in Fig. 1(c), also agree well
with the measured data, confirming the validity of our
Green function method. In the inset of Fig. 1(c), we use the
values of ω2, Γ0, and κ obtained in the first fitting step in
Eq. (2) and plot the EPFP as a function of ΔΓ in solid
curves. The fitted results of ΔΓ obtained in the second step
for different amounts of sponge and putty are marked by
dashed vertical lines in the inset. The intercepts of the solid
curves and vertical lines denoted by circles indicate the
eigenfrequencies of the different samples measured. Other
circles in the inset are also obtained from the fittings using
samples not included explicitly in Fig. 1(c). In other words,
the evolution of eigenfrequencies versus ΔΓ is constrained
on the mathematical curve shown in the inset of Fig. 1(c) by
having set the first three parameters with an accurate fit.
The fourth parameter, ΔΓ, when adjusted for each exper-
imental case, gives responses that fit with a comparable
accuracy of the experimental ones. From this inset, we see
clearly that two eigenmodes coalesce at an EP when
ΔΓ ¼ 2jκj. Hence, we experimentally demonstrate an
acoustic realization of the physics of exceptional points.

III. FOUR-STATE NON-HERMITIAN
HAMILTONIAN WITH COUPLING

Using the above two-state system as the building block,
we now construct a four-state system as shown in the inset
of Fig. 2(a). The system consists of two pairs of coupled
cavities with the same values of κ, Γ0, and Γ but different
resonant frequencies. Cavities A and B form one pair with
resonant frequency ω2, and cavities C and D form another
pair with resonant frequency ω1. Coupling between these
two pairs is introduced by connecting cavities A andDwith
a small tube and cavities B and C with another small tube,
as shown in the inset of Fig. 2(a). The Hamiltonian of the
system can be written as

H ¼

0
BBB@

ω2 − iΓ0 κ 0 t

κ ω2 − iΓ t 0

0 t ω1 − iΓ0 κ

t 0 κ ω1 − iΓ

1
CCCA; ð4Þ

where t denotes the strength of interpair coupling, and
additional losses are introduced in cavity B and D.
The eigenfrequencies of Eq. (4) take the following form
(see Appendix A):
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~ωj ¼ ω0 − i
Γþ Γ0

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ1 � 4

ffiffiffiffiffiffi
Δ2

pq
;

j ¼ 1; 2; 3; 4; ð5Þ

where ω0 ¼ ðω1 þ ω2Þ=2 and

Δ1 ¼ −ðΔΓÞ2 þ 4κ2 þ 4t2 þ ðΔωÞ2; ð6Þ

Δ2 ¼ 4κ2t2 þ κ2ðΔωÞ2 − ðΔΓÞ2 ðΔωÞ
2

4
; ð7Þ

with Δω ¼ ω1 − ω2. For the convenience of discussion,
we put the four states in Eq. (5) in the following
order: j ¼ 1∶ð−;þÞ, j ¼ 2∶ð−;−Þ, j ¼ 3∶ðþ;−Þ, and
j ¼ 4∶ðþ;þÞ, where the first (second) sign in the brackets
denotes the choice of the first (second) sign in Eq. (5)
outside (inside) the first square root and j ¼ 1 is the state
with the lowest real frequency. Equation (5) shows that
coalescence of states (CS) could occur under three con-
ditions, which we refer to as CS-1�: Δ1 � 4

ffiffiffiffiffiffi
Δ2

p ¼ 0,
Δ2 ≠ 0, Δ1 ≠ 0, CS-2: Δ2 ¼ 0, Δ1 ≠ 0, and CS-3:
Δ1 ¼ Δ2 ¼ 0, respectively. CS-1� corresponds to a normal
EP with one state defective. At CS-2, two different EPs
occur simultaneously and each has one state defective.
CS-3 corresponds to the coalescence of fours states with
three states defective. We analyze the rich topological
properties of these singularities later by examining the
eigenvectors.

IV. EIGENFREQUENCY PHASE DIAGRAM AND
EXPERIMENT REALIZATIONS

From Eqs. (6) and (7), we see that, depending on the
parameters ðΔωÞ2, κ2, and t2, different combinations of
CS-1�, CS-2, and CS-3 may appear in the EPFP when ΔΓ
is increased continuously. Figure 2(b) shows a phase
diagram in the space of two dimensionless parameters

ðΔω=2κÞ2 and ðt=κÞ2. Three regions exist, designated as
classes I, II, and III, with their boundaries marked by a solid
yellow line and a solid red line. Each class represents a
distinct EPFP, in which the EPs can have different singularity
types. In addition, class II and class III can each be further
divided into two topologically distinct regions, designated a
and b and separated by a white dashed line. We show later
that while regions a and b share the same EPFP, they exhibit
different topological characteristics.
To experimentally investigate the three classes of EPFP,

we need a system to reproduce Eq. (4). To accomplish this,
eight cavities with four different depths, 50.0, 50.2, 50.4,
and 50.6 mm, are fabricated. The eigenfrequency can be
further fine-tuned by adding a small amount of Blu-Tack
putty inside the cavity, which slightly decreases the
volume. Combining these two, we are able to cover the
frequency range of Δω experimentally. Two cavities with
the same depth (and same amount of putty) are connected
by the aforementioned side tubes to form a pair coupled by
κ. Two different pairs are further connected together by
another two small side tubes whose cross-sectional area
determines the interpair coupling t. A photograph of the
experimental realization is shown in Fig. 2(a).

A. Class I

To show the EPFP in each region, we choose a value of
ðt=κÞ2 ¼ 0.7744 and then decrease ðΔω=2κÞ2 continuously
from 1.004 (point P1), as marked by the vertical red arrow
line in Fig. 2(b). The point P1 lies in class I, which
occupies the top area of the phase diagram. Here, owing to
the large Δω, the two pairs of cavities are well separated in
frequency and therefore can be regarded as nearly inde-
pendent, even though coupling does exist. A typical EPFP
is shown in Fig. 3(a). We find two CS-2 singularities in
the spectrum; namely, one EP exists for each pair of the
cavities.

FIG. 2. (a) A photograph of four coupled acoustic cavity resonators (labeled A −D in the inset, which shows a schematic drawing of
the system). Here, A and B (C and D) form a pair with resonant frequency ω2 (ω1), with κ and t being the coupling between these
resonators. Phase diagram in the Δω ∼ t space is shown in (b), with Δω ¼ ω1 − ω2. In (b), the gray, blue, and green regions represent
classes I, II, and III EPFPs, respectively. The solid red curve marks the coalescence of three EPs, the solid yellow line marks the
coalescence of two EPs, and the white dashed line marks the state inversion line that separates subclasses “a” and “b” with different
topological characteristics. The vertical red arrow line and the nine points (labeled from P1 to P9) are drawn to show the EPFP in Fig. 3.
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To realize class I by using acoustic cavity system, we
choose h ¼ 50.6 mm for cavities A and B, with 150 mg of
putty inside, and the depth for cavities C andD is 50.0 mm.
Intrapair coupling κ is provided by two side tubes with the
same radius of 1.2 mm, connecting A to B and C toD. Two
tubes with radius of 0.8 and 0.4 mm connect A to D and B
to C to provide interpair coupling t. To excite all possible
modes, measurements are performed 4 times with the
loudspeaker driving each cavity individually. The arith-
metic mean of these four results yields a spectrum under
incoherent pumping. Additional loss ΔΓ is gradually
increased only in cavities B and D by adding an assembly
of sponge and putty. Microphones are used to measure the
pressure at cavity B (filled symbols) and cavity D (open
symbols). The measured results are shown in Fig. 4(a). It
can be seen that initially there are two peaks in both cavity
pairs (configuration M and N). As ΔΓ increases, the states
belonging to the same pair of cavities coalesce (configu-
ration O and P). This generates two EPs (at 3436.2 and
3471.0 Hz). Because of the large Δω, the two pairs are well
separated in the frequency spectrum, so they may be
considered as forming their own EPs nearly independently.
To obtain the EPFP, similar to the case of two cavities, the

first step is to obtain the values of the system parameters
ω1;2, Γ0, κ, and t. We fit the measured pressure response
for the sample without sponge and putty [red squares in
Fig. 4(a)] to the response function calculated by Eq. (3),
from which we obtain the following system parameters:
ðΔω=2κÞ2 ¼ 3.665 and ðt=κÞ2 ¼ 0.094, which lie in class I
in the phase diagram shown in Fig. 2(b). In Fig. 4(b), we
use these fitted values in Eq. (5) and plot the EPFP as a
function of ΔΓ in solid curves. Then to identify the
experimental asymmetric loss ΔΓ for each sample, similar
to the second fitting step used in the two-cavity case, we fit
the measured pressure response for the samples with the
putty and sponge included [blue circles, magenta stars, and
cyan triangles in Fig. 4(a)] to the response function
calculated by Eq. (3). The agreement between measured
data and Eq. (3) is still good, as shown by the blue,
magenta, and cyan solid lines in Fig. 4(a). The fitted results
ofΔΓ for different amounts of sponge and putty are marked
by dashed vertical lines in Fig. 4(b). The intercepts of the
solid curves and vertical lines denoted by circles indicate
the eigenfrequencies of the different samples measured.
Other circles in the inset are also obtained from the fittings
using samples not included explicitly in Fig. 4(a). Two EPs

FIG. 3. Real and imaginary parts of eigenfrequencies as functions of asymmetric loss ΔΓ=Γ0 for points P1 to P8 in the phase diagram
shown in Fig. 2(b) are plotted from (a) to (h) accordingly. The system parameters are ω0 ¼ 3427.59 rad=s, κ ¼ −2.5 rad=s,
t ¼ −2.2 rad=s, and Γ0 ¼ 10 rad=s. Each exceptional point is labeled to show its types according to the main text.
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are clearly identified, a clear signature of a class-I EPFP
[gray area in Fig. 2(b)].

B. Class II and coalescence of two EPs

Decreasing ðΔω=2κÞ2 will bring the system to the
yellow solid line in Fig. 2(b), which is given by
α ¼ ½ðΔωÞ2=4κ2� − 1 ¼ 0. This line separates class II from
class I. When this line is approached from above (class I),

the gap near ΔΓ=Γ0 ≅ 0.45 in Fig. 3(a) will close when
α ¼ 0, and the typical EPFP at α ¼ 0 (point P2) is shown in
Fig. 3(b). It should be pointed out that the crossing point is
linear, and theoretical proof is given in Appendix B (see
also Supplemental Material, Sec. II [38]). Further decreas-
ing ðΔω=2κÞ2, this linear crossing point will split into two
CS-1− singularities, and this gives a typical EPFP of
class II (point P3), as shown in Fig. 3(c). The two
CS-1−-type singularities are given by the two roots of
F≡ Δ1 − 4

ffiffiffiffiffiffi
Δ2

p ¼ 0. In other words, when the α ¼ 0 line
is approached from below (class II), the two CS-1−
singularities coalesce to form a linear crossing. This line
is obtained from two conditions: F ¼ Δ1 − 4

ffiffiffiffiffiffi
Δ2

p ¼ 0 and
½ð∂FÞ=∂ðΔΓÞ� ¼ 0 (also see Appendix A). We emphasize
here that one state is defective at the linear crossing point
induced by the coalescence of two EPs of the same
chirality, and, as such, this linear crossing point is different
from the diabolic point in a Hermitian Hamiltonian [37].
We discuss this in the next section.
To experimentally demonstrate a class-II EPFP, we

decrease the eigenfrequency difference Δω by reducing
the depth difference between interpair cavities: h ¼
50.6 mm for cavities A and B, h ¼ 50.2 mm for cavities
C and D. In addition, intrapair coupling κ is increased by
using two side tubes 2.0 and 0.8 mm in their radii. Interpair
coupling is provided by side tubes 0.4 mm in radii, and the
smaller side tubes provide a smaller interpair coupling t
compared with the coupling in the experimental setting
shown in Fig. 4(a). By using the first fitting step described
for class I, we obtain the system parameters ðΔω=2κÞ2 ¼
0.79 and ðt=κÞ2 ¼ 0.017, which indicate that the system is
in class II in the phase diagram shown in Fig. 2(b).
As shown in Fig. 4(c), we can observe four peaks when

ΔΓ ¼ 0 (configuration M). Comparing these with configu-
ration M in Fig. 4(a), we can see that the resonance
frequency of the lower-frequency peak of cavity D (open
squares) is lower in frequency than that of the higher-
frequency peak of cavity B (filled squares). This order is
opposite of that in Fig. 4(a), in which the resonance
frequency of the lower-frequency peak of cavity D (open
squares) is higher than that of the higher-frequency peak at
cavity B (filled squares). Such a change of order occurs
only for the two middle peaks, and we call such a switching
“state inversion,” which can also be seen in the eigenfre-
quency spectrum [blue and red curves in Fig. 4(d)]. We will
explain the physical consequences of this inversion in detail
in Secs. IV D and V. The increase in ΔΓ first brings these
two middle states to coalescence, with an EP occurring
and the system enters a regime with three different Re½f�
(configuration N). The values of ΔΓ are also determined by
the second fitting step described in Secs. II and IVA.
However, further increases in ΔΓ cause the eigenfrequen-
cies of the upper state [green curves in Fig. 4(d)] and lower
state [black curves in Fig. 4(d)] to move towards the central
coalesced state at 3450 Hz. Eventually, the intrapair

FIG. 4. Measured pressure response spectra at cavity B (filled
symbols) and D (open symbols) for some certain point in class I
(a), class II (c), and class III (e) separately. The coupled cavities
are pumped incoherently. Results labeled M to P or Q show
increasing amounts of asymmetric loss. The corresponding solid
curves are fitted using a Green function method [Eq. (3)]. Real
and imaginary parts of eigenfrequencies as functions of asym-
metric loss ΔΓ for experimental results in (a), (c), and (e) are
plotted in (b), (d), and (f) accordingly, in which open symbols are
obtained by using parameters fitted from experimental results and
solid lines are from analytical models by using fitted parameters
without sponge and putty. The colors (black, red, blue, dark cyan)
represent different eigenfrequencies of our model.
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interaction t is strong enough to pull the central state apart.
This gives rise to the second EP, and the system reverts to
the previous configuration with four different Re½f� (con-
figuration O). If we focus on the evolution of the two
middle states, it appears that these two states coalesce as
ΔΓ increases but bifurcate again as ΔΓ increases further.
This cannot occur in a 2 × 2 system, but is allowed in
higher dimensions. Eventually, ΔΓ is sufficiently large for
the intrapair states to coalesce. Two more EPs are gen-
erated, and the system reaches its terminal stage with states
of two different Re½f� (configuration P).

C. Class III and coalescence of three EPs

Upon a further decrease in ðΔω=2κÞ2, the EPFP will
transit from class II-b [point P3, Fig. 3(c)] to class III-b
[point P5, Fig. 3(e)] as the system parameters cross the
solid red line in Fig. 2(b), which has the form

ðΔωÞ2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ 4κ2t2

p
− 2t2: ð8Þ

Equation (8) is obtained by eliminating ΔΓ in equations
Δ1 ¼ 0 and Δ2 ¼ 0 [see Eqs. (6) and (7) and also
Appendix A]. As shown in Fig. 3(d) (point P4), the
configurations on this red line always carry a CS-3-type
singularity for some particular values ofΔΓ and three states
are defective at the CS-3 points (see also Supplemental
Material, Sec. III [38]). Such a singularity is a higher-order
EP [32,33]. The red solid line hence represents a line of
high-order singularities. In addition to the CS-3 singularity,
there exists another CS-1− singularity at a smaller value of
ΔΓ. Above the red line (in the class-II region), the CS-3
singularity splits into three singularities: one CS-1− on the
left and two CS-2’s on the right. Below this red line (in the
class-III region), the CS-3 singularity also splits into three
singularities, but in a different manner: one CS-1þ on the
left and two CS-2’s on the right having the same Reð ~ωjÞ but
different Imð ~ωjÞ. A typical EPFP of class III is shown in
Fig. 3(e) (point P5). Interestingly, the yellow and red solid
lines converge in the limit of large t2=κ2, which can be seen
from Eq. (8).
To experimentally demonstrate a class-III EPFP, we

further decrease Δω and modify κ, t. Experimental param-
eters used in Fig. 4(e) are as follows: The depth of cavities
A and B is 50.2 mm with 150 mg of putty inside; the depth
of cavities C and D is 50.0 mm; the two κ tubes have radii
of 2.0 and 0.8 mm; the two t tubes have radii of 0.4 and
0.8 mm. These system parameters we obtain from the first
fitting step are ðΔω=2κÞ2 ¼ 0.048 and ðt=κÞ2 ¼ 0.025,
which belong to class III in the phase diagram shown in
Fig. 2(b). The results of experiments and theoretical fittings
are shown in Figs. 4(e) and 4(f) in a similar manner. The
values of ΔΓ are also obtained from the second fitting step.
Following the increase in ΔΓ, at the beginning, the system
behaves similarly to class II in the configuration with no
additional loss: the number of peaks starts at four

(configurations M and N), and then the two middle states
coalesce producing the first EP, which indicates the system
has entered a stage with three different Re½f� (configuration
O). Subsequently, the upper and lower two states also
coalesce (the second EP). The system enters a regime with
only one real frequency (configuration P). Eventually, with
a sufficiently large ΔΓ, the system generates another two
EPs and reaches the final stage with states of two different
Re½f� (configuration Q).

D. State inversion line

When ðΔω=2κÞ2 is further decreased, we cross the white
dashed line expressed by 4κ2 ¼ 4t2 þ ðΔωÞ2, which cor-
responds to the degeneracy condition of the two middle
states in the absence of ΔΓ (also see Appendix A). So this
white dashed line is the state inversion line. When
ðΔω=2κÞ2 ¼ 0.226 [point P6, Fig. 3(f)], the system con-
figuration resides at the boundary of classes III-a and III-b,
which is marked by the white dashed line as shown in
Fig. 2(b). On this line, the first EP (CS-1−) disappears. An
EP of opposite chirality reemerges when ðΔω=2κÞ2 is
further decreased and the eigenfrequencies of the two middle
states are inverted [point P7, Fig. 3(g)]. Although the EPFPs
in Figs. 3(e) and 3(g) appear to be the same when the system
parameters cross the white dashed line (and hence they are
called class III-a and class III-b, respectively), they have
different chiralities associated with the CS-1− singularity, as
we discuss in the next section.
When ðΔω=2κÞ2 is decreased further and gradually

approaches zero, the two CS-2 singularities in Fig. 3(g)
will approach infinity as Δω approaches zero. The value of
ΔΓCS-2 can be obtained from Eq. (7) (see Supplemental
Material, Sec. IV [38]); i.e.,

ΔΓ2
CS-2 ¼ 4κ2

�
1þ 4t2

ðΔωÞ2
�
: ð9Þ

Equation (9) shows that ΔΓCS-2 approaches infinity as
Δω approaches zero and appears at a larger ΔΓCS-2 for a
nonzeroΔω. On the other side, these two CS-2 singularities
gradually approach the CS-1þ singularity as ðΔω=2κÞ2
increases. At ðΔω=2κÞ2 ¼ 0 (point P8), two EPs (CS-1−
and CS-1þ corresponding, respectively, to Δ1 − 4

ffiffiffiffiffiffi
Δ2

p ¼ 0
and Δ1 þ 4

ffiffiffiffiffiffi
Δ2

p ¼ 0) form with increasing ΔΓ, as shown
in Fig. 3(h).

V. TOPOLOGICAL CHARACTERISTICS
AROUND SINGULARITIES

It is well known that there is one defective state at the EP,
so the chirality of EP could be defined analogous to the
polarization of electromagnetic waves; for instance, the
chirality of EP is “right” if the eigenvector is ð−i; 1Þ= ffiffiffi

2
p

and “left” if the vector at EP is ði; 1Þ= ffiffiffi
2

p
, because there is

only one independent eigenvector at the EP. It is also well
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known that a parameter variation encircling an EP will
cause the two states to switch position after one cycle and
acquire a geometric phase �π after two cycles [24,25].
Thus, four cycles in parameter space are needed to restore
the original eigenvectors. The origin of such behaviors
comes from square-root singularity, as the singularity order
is 1=2. Here, we are particularly interested in both
the topological difference between domains a and b in
the phase diagram and topological characteristics of the

singularities on the two solid lines in Fig. 2(b) on which
two or three EPs coalesce.
To illustrate the difference between domains a and b in

the phase diagram, we plot real parts of eigenfrequencies
for point P9 and point P3 near the two CS-1− singularities
by dashed lines in Figs. 5(a) and 5(b), respectively. In
Fig. 5(b), we also plot real parts of eigenfrequencies for
point P1 and point P2 by dotted and solid lines. It has been
stated before that the crossing of solid lines is linear.

FIG. 5. Real parts of eigenfrequencies as functions of asymmetric loss for the point P9 in the phase diagram shown in Fig. 2(b) near
the two CS-1− are shown in (a) by dashed lines with system parameters ω0 ¼ 3427.59 rad=s, κ ¼ −2.5 rad=s, t ¼ −0.5 rad=s, and
Γ0 ¼ 10 rad=s. For comparison, the solid lines in (a) are for t ¼ 0 rad=s while keeping all the other parameters the same with point P9.
Real parts of eigenfrequencies as functions of asymmetric loss for the points P1, P2, and P3 in the phase diagram shown in Fig. 2(b)
near the two CS-1− are shown in (b) by dotted lines, solid lines, and dashed lines, respectively. The letters in the bracket following
CS-1− indicate the relative chirality of this EP.

FIG. 6. (a) Phase rigidity of all the eigenstates as functions of asymmetric loss ΔΓ=Γ0 for the point P2 in the phase diagram shown in
Fig. 2(b). (b) Log-log plot of phase rigidity jrjj versus jΔΓ − ΔΓCSj for the coalescence point of two CS-1− singularities (filled squares).
The fitting result is shown by the solid line, from which the exponent “s” of the power law is obtained. The inset shows the looping path
in the complex-ΔΓ plane, in which the singularity locates inside the loop. (c) Eigenfrequency trajectories for looping around the
coalescence point of two CS-1− singularities in the counterclockwise direction (U → V → W → X → U) as shown in the inset.

DING, MA, XIAO, ZHANG, and CHAN PHYS. REV. X 6, 021007 (2016)

021007-8



For comparison, real parts of eigenfrequencies for the same
parameters with point P9, except t ¼ 0, are also shown in
Fig. 5(a) by solid lines. The crossing of these solid lines is
linear crossing, too (see Appendix C). So class II-a and
class II-b share the same EPFP. But if we see the chirality of
these EPs, domains a and b will be different. We can prove
that the two CS-1− singularities in Fig. 5(a) (class II-a) have
opposite chirality (see Appendix C and Supplemental
Material, Sec. V [38]). So these two EPs do cancel each
other when they coalesce, producing a diabolic point [37].
Afterwards, no defective states exist at the coalescence
point, which could be seen from theoretical results (see
Appendix C). However, the first CS-1− singularity in
Fig. 5(a) changes chirality when the system passes through
the state inversion line [white dashed line in Fig. 2(b)],
namely transiting from point P9 to point P3 as shown in
Fig. 5(b). Because of this change, the two CS-1− singular-
ities in Fig. 5(b) (class II-b) have the same chirality, so the
coalescence of these two CS-1− singularities could not
cancel each other, but produces a higher-order singularity at
the crossing point.
To identify the singularity order, we plot in Fig. 6(a) the

absolute value of phase rigidity [2], defined as rj ¼
h ~ϕR

j j ~ϕR
j i−1 for each state j as a function of ΔΓ for the

point P2 in the phase diagram. Phase rigidity is a measure
of the mixing of different states. In the absence of ΔΓ, all
four states are distinct and their phase rigidity is close to
unity. As ΔΓ is increased, phase rigidities are reduced as
some states start to mix. Two states are completely mixed at

the EP where the phase rigidity vanishes. It is clear that jrjj
vanishes for states j ¼ 2 and 3 at the linear crossing point at
ΔΓ=Γ0 ≅ 0.45, indicating a defective state. The log-log
plot of jrjj shown by the red curve in Fig. 6(b) gives an
exponent of 1. This is different from the exponent of 1=2
for an ordinary EP, and is also different from a diabolic
point in a Hermitian Hamiltonian where no singularity is
found. Thus, the yellow line represents a line consisting of
EPs with a singularity different from that of an isolated EP.
To understand the exponent 1 physically, we have per-
formed an adiabatic process encircling the singularity in the
complex ΔΓ plane in a counterclockwise direction, as
shown in the inset of Fig. 6. The imaginary part of ΔΓ
represents a shift in the resonant frequency of the cavity.
The trajectories of states 2 and 3 encircling the crossing
point at ΔΓ=Γ0 ≅ 0.45 are shown in Fig. 6(c), from which
we find that only one cycle is required to bring the two
states back to their original positions. The calculation of
geometric phase by using the parallel transport method [40]
gives a geometric phase of �π after one cycle, consistent
with the exponent of 1 found in Fig. 6(b). We have hence
confirmed that the yellow solid line in the phase diagram is
indeed a high-order singularity line.
To further identify the singularity order in the solid red

line of the phase diagram, in Fig. 7(a), we plot the absolute
value of phase rigidity of point P4 in the phase diagram. In
CS-3 (ΔΓ=Γ0 ≅ 0.77), all four states have zero rigidity,
which indicates they are all linearly dependent with three
defective states. In Fig. 7(b), we also plot jrjj as a function

FIG. 7. (a) Phase rigidity of all the eigenstates as functions of asymmetric loss ΔΓ=Γ0 for the point P4 in the phase diagram shown in
Fig. 2(b). (b) Log-log plot of phase rigidity jrjj versus jΔΓ − ΔΓCSj for the CS-3 singularities (filled squares), and the fitting result is
shown by the solid line. The inset shows the looping path in the complex-ΔΓ plane, in which the CS-3 singularity locates inside the loop.
(c) Eigenfrequency trajectories for looping around the CS-3 singularities in the counterclockwise direction (U → V → W → X → U) as
shown in the inset.
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of jΔΓ − ΔΓCS-3j in the log-log scale. A linear line with a
slope of 3=4 is found [32,33]. This corresponds to a higher-
order singularity resulting from the coalescence of four
states with three of them defective. To understand the
exponent 3=4 physically, we also perform an adiabatic
process encircling the CS-3 singularity in the complex ΔΓ
plane in a counterclockwise direction, as shown in the inset
of Fig. 7. The trajectories of the four eigenfrequencies (real
part) along the path are shown in Fig. 7(c), from which we
see that it requires four cycles to bring an eigenstate back to
its original position. We also calculate the geometric phase
using the parallel transport method [40] and obtain a phase
of�3π after four cycles. This indicates that eight cycles are
required to restore the initial eigenvector.
Before concluding, we point out that the looping of

singularities in the complex parameter plane can be consid-
ered as fractional winding numbers. For example, a winding
number of �1=2 means the geometric phase is �π after 2
cycles around the singularity, and the sign � is determined
by the chirality of this EP. And then the cancellation of two
EPs in Fig. 5(a) could be understood by 1=2 − 1=2 ¼ 0, and
those in Fig. 5(b) are 1=2þ 1=2 ¼ 1. This highlights the
difference between a and b in the phase diagram. To recap,
we observe the higher-order wave function singularities of
exponents 1 and 3=4 due, respectively, to the coalescence
of two EPs having the same chirality and the coalescence of
three EPs.

VI. CONCLUSIONS

The experimental system, as shown in Fig. 2(a), can
be viewed as a connected network of lossy cavities.
The EP-related physics are expected to be even richer
when the number of connected cavities is further increased
where the symmetry of the network and the topology of
the connectivity can serve as extra degrees of freedom. The
new physics we obtain here should also apply to electro-
magnetic and matter waves. As singularities underlie the
essence of EPs, the new singularities found in higher
dimensions and their associated topological properties
can serve as new platforms for realizing new phenomena.
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APPENDIX A: EIGENFREQUENCIES AND
BOUNDARY LINES IN THE

PHASE DIAGRAM

The Hamiltonian [Eq. (4)] used to describe an acoustic
system composed of two pairs of acoustic cavities (for
simplification, we assume ω1 ≥ ω2) is

H ¼

0
BBB@

ω2 − iΓ0 κ 0 t

κ ω2 − iΓ t 0

0 t ω1 − iΓ0 κ

t 0 κ ω1 − iΓ

1
CCCA

¼ H0 þ V; ðA1Þ

in which ΔΓ ¼ Γ − Γ0,

H0 ¼

0
BB@

ω2 − iΓ0 κ 0 t

κ ω2 − iΓ0 t 0

0 t ω1 − iΓ0 κ

t 0 κ ω1 − iΓ0

1
CCA;

ðA2Þ

V ¼

0
BBB@

0 0 0 0

0 −iΔΓ 0 0

0 0 0 0

0 0 0 −iΔΓ

1
CCCA: ðA3Þ

We note that the even mode has a lower frequency
because of κ < 0 and t < 0. To see the physics, we could
rotate H to the diagonal representation of H0,

H¼
�
ω0− i

ΓþΓ0

2

�
I
↔

þ

0
BBBBBB@

−jκj− 1
2

ffiffiffiffi
Θ

p −iΔΓ
2

Δωffiffiffi
Θ

p 0 −iΔΓ jtjffiffiffi
Θ

p

−iΔΓ
2

Δωffiffiffi
Θ

p jκj− 1
2

ffiffiffiffi
Θ

p −iΔΓ jtjffiffiffi
Θ

p 0

0 −iΔΓ jtjffiffiffi
Θ

p −jκjþ 1
2

ffiffiffiffi
Θ

p
iΔΓ
2

Δωffiffiffi
Θ

p

−iΔΓ jtjffiffiffi
Θ

p 0 iΔΓ
2

Δωffiffiffi
Θ

p jκjþ 1
2

ffiffiffiffi
Θ

p

1
CCCCCCA
;

ðA4Þ

in which ω0 ¼ ðω1 þ ω2Þ=2, Δω ¼ ω1 − ω2, and Θ ¼
4t2 þ ðΔωÞ2. Diagonalization of Eq. (A4) gives the eigen-
frequencies as

~ωj ¼ ω0 − i
Γþ Γ0

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ1 � 4

ffiffiffiffiffiffi
Δ2

pq
;

j ¼ 1; 2; 3; 4; ðA5Þ

in which the order of eigenfrequencies follows as (in
increasing values of real frequency) j ¼ 1∶ð−;þÞ,
j ¼ 2∶ð−;−Þ, j ¼ 3∶ðþ;−Þ, j ¼ 4∶ðþ;þÞ, and two ker-
nel elements are

Δ1 ¼ −ðΔΓÞ2 þ 4κ2 þ 4t2 þ ðΔωÞ2; ðA6Þ
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Δ2 ¼ 4κ2t2 þ κ2ðΔωÞ2 − ðΔΓÞ2 ðΔωÞ
2

4
: ðA7Þ

It is easy to see that what determine the properties
of Eq. (A5) are intrapair loss difference ΔΓ, intrapair
coupling κ, interpair coupling t, and interpair frequency
difference Δω.
For the special case with ΔΓ ¼ 0, the gap between

state 2 and state 3 closes and reopens when H22 ¼ H33

in Eq. (A4), which defines this state inversion line, i.e.,

4κ2 ¼ 4t2 þ ðΔωÞ2: ðA8Þ

This is plotted by the white dashed line in Fig. 2(b).
As mentioned in the main text, Eq. (A5) gives four

cases when coalescence of states (CS) can occur; i.e.,
(CS-1�):Δ1 � 4

ffiffiffiffiffiffi
Δ2

p ¼ 0, Δ1 ≠ 0, Δ2 ≠ 0, (CS-2):
Δ2 ¼ 0, Δ1 ≠ 0, and (CS-3): Δ1 ¼ Δ2 ¼ 0. If we
denote F≡ Δ1 − 4

ffiffiffiffiffiffi
Δ2

p
, the mathematical conditions

under which the coalescence of two CS-1− singularities
could happen are F ¼ 0 and ð∂F=∂ΔΓÞ ¼ 0; namely,

F ¼ Δ1 − 4
ffiffiffiffiffiffi
Δ2

p
¼ 0;

∂F
∂Γ ¼ −2ΔΓ

�
1 − ðΔωÞ2

2
ffiffiffiffiffiffi
Δ2

p
�
¼ 0: ðA9Þ

Solving Eq. (A9) gives the following condition:

t2½ðΔωÞ2 − 4κ2� ¼ 0 ⇒ t ¼ 0 or ðΔωÞ2 ¼ 4κ2;

ðA10Þ

which is plotted by a solid yellow line in Fig. 2(b).
Solving the CS-3 singularity condition Δ1 ¼ Δ2 ¼ 0

gives the following equations:

ðΔωÞ2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ 4κ2t2

p
− 2t2; ðA11Þ

ΔΓ2 ¼ 2jtj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 4κ2

p
þ 4κ2 þ 2t2: ðA12Þ

If jtj → 0, then ðΔωÞ ¼ ffiffiffiffiffiffiffiffiffi
4jκtjp

. And if jtj → ∞, then
ðΔωÞ2 ¼ 4κ2. Equation (A11) is plotted by a solid red line
in Fig. 2(b).

APPENDIX B: LINEAR CROSSING AT THE
COALESCENCE LINE OF TWO

CS-1− SINGULARITIES

In this case, we expand our system as

ðΔωÞ2
4κ2

¼ 1þ α; jαj ≪ 1: ðB1Þ

When α ¼ 0, the eigenfrequencies of the system can be
written as

~ωj ¼ ω0 − i
Γþ Γ0

2
� 1

2

����2jκj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 þ 4κ2 − ðΔΓÞ2

q ����:
ðB2Þ

It is not difficult to see that when ðΔΓÞ2 ¼ 4t2,
~ω2 ¼ ~ω3. If we do a small δΓ expansion around the
point Γd ¼ 2jtj, i.e., ΔΓ ¼ Γd þ δΓ, Eq. (B2) reduces to

~ω2;3 ¼ ω0 − i
2
ð2Γ0 þ Γd þ δΓÞ � jtj

2jκj δΓ; ðB3Þ

which indicates that there indeed exists a linear cross at
Γd. If we do a small α expansion near α ¼ 0 while
keeping δΓ ¼ 0, Eq. (A5) gives

~ω2;3 ¼ ω0 − iðΓ0 þ jtjÞ � jtj ffiffiffiαp
: ðB4Þ

Equation (B4) shows the repulsion of two eigenfrequen-
cies when α > 0 and gives rise to two EPs when α < 0.

APPENDIX C: DIABOLIC POINT FOR SMALL
INTERPAIR COUPLINGS

Physically, this case means the interpair coupling is
much smaller than interpair frequency difference, i.e.,
ð2jtj=ΔωÞ ≪ 1, so we could expand t in Eq. (A4) to
leading order:

H ≈

0
BBBBB@

ω2 − jκj − i ΓþΓ0

2
−i ΔΓ

2
0 0

−i ΔΓ
2

ω2 þ jκj − i ΓþΓ0

2
0 0

0 0 ω1 − jκj − i ΓþΓ0

2
i ΔΓ

2

0 0 i ΔΓ
2

ω1 þ jκj − i ΓþΓ0

2

1
CCCCCA

þ
� jtj
Δω

�
I
↔

0
BBB@

0 0 0 −iΔΓ
0 0 −iΔΓ 0

0 −iΔΓ 0 0

−iΔΓ 0 0 0

1
CCCA: ðC1Þ
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It is not difficult to see from Eq. (C1) that if t ¼ 0, two
pairs become decoupled, so we can write down eigenfre-
quencies from Eq. (A5):

~ωj ¼ ω0 − i
Γþ Γ0

2
� 1

2

�
Δω�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ2 − ΔΓ2

p 	
: ðC2Þ

Eigenstates 2 and 3 could cross over each other at
particular ΔΓ as

ΔΓ≡ Γd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ2 − ðΔωÞ2

q
: ðC3Þ

Such a crossover exists when ðΔωÞ2 < 4κ2, which
means intrapair coupling is strong enough to create a
mode inversion. Under such conditions, we expand
Eq. (C1) using ΔΓ ¼ Γd þ δΓ to the first order in δΓ
and t, and then find a reduced 2 × 2 Hamilton for states 2
and 3:

Hred ¼
�
ω0 − i

2
ð2Γ0 þ Γd þ δΓÞ

�
I
↔

þ
�

Γd

2Δω

�
I
↔
�

δΓ i2jtj
i2jtj −δΓ

�

¼
�
ω0 − i

2
ð2Γ0 þ Γd þ δΓÞ

�
I
↔

þ
�

Γd

2Δω

�
I
↔ðδΓσz þ i2jtjσxÞ; ðC4Þ

where σz and σx are Pauli matrices. The kernel in the
second bracket determines the bifurcation. We can rotate
spin space and rewrite the kernel as

Heff ¼ −δΓσx þ i2jtjσz; ðC5Þ
from which it is easy to see that interpair coupling t plays
the role of an “imaginary mass.” From Eqs. (C4) and (C5),
we find the eigenfrequencies as

~ω2;3 ¼ ω0 − i
2
ð2Γ0 þ Γd þ δΓÞ �

�
Γd

2Δω

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδΓÞ2 − 4t2

q
:

ðC6Þ
The corresponding eigenvectors are

~a� ¼

0
B@ i

 
− δΓ

2jtj∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δΓ
2t

	
2 − 1

r !
1

1
CA: ðC7Þ

Thus, two EPs occur when δΓ ¼ �2jtj and the two
opposite signs correspond to a pair of EPs with opposite
chiralities. The coalescence of such a pair forms a diabolic
point, as shown in Fig. 5.
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