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Power-law dwell times have been observed for molecular motors in living cells, but the origins of these
trapped states are not known. We introduce a minimal model of motors moving on a two-dimensional
network of filaments, and simulations of its dynamics exhibit statistics comparable to those observed
experimentally. Analysis of the model trajectories, as well as experimental particle tracking data, reveals a
state in which motors cycle unproductively at junctions of three or more filaments. We formulate a master
equation for these junction dynamics and show that the time required to escape from this vortexlike state
can account for the power-law dwell times. We identify trends in the dynamics with the motor valency for
further experimental validation. We demonstrate that these trends exist in individual trajectories of myosin
II on an actin network. We discuss how cells could regulate intracellular transport and, in turn, biological

function by controlling their cytoskeletal network structures locally.
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I. INTRODUCTION

Individual microscopic particles (beads [1,2] or fluores-
cently labeled molecules [3-5]) can now be tracked in cells.
These studies reveal complex dynamics [6—8]. The resulting
trajectories can be treated as random walks, and quantitative
analysis of their statistics can provide insights into under-
lying mechanisms [9,10]. Often, the mean-square displace-
ment (MSD) exhibits a power-law (typically sublinear)
dependence on the separation in time between two obser-
vations, known as the lag time (A) [9—15]. In certain cases
[9,14], the MSD also decays as the amount of data included
in averages (the measurement time 7') increases; this trend
indicates a power-law distribution of dwell times and is
known as “aging” in theories of glassy dynamics [16].

These power-law statistics can have important biological
implications [9,17]. For example, a recent study shows that
the anomalous dynamics observed for insulin secretory
vesicles (granules) can account for the biphasic kinetics of
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insulin release [9] without the need to invoke separate pools
of granules, as previously [18]. In particular, the sustained
release relies on the glassy dynamics. Glassy dynamics are
often interpreted in terms of trapping in local minima of an
energy landscape with an exponential or power-law dis-
tribution of depths [19,20]. However, how such a landscape
could arise from typical biomolecular interactions is
unclear. Crowding is insufficient, as it results in standard
Brownian motion but with a reduced diffusion coefficient
[21]. Because the moving vesicles are associated with
molecular motors, which consume cellular energy stores
(nucleotide triphosphates) for directed motion along cytos-
keletal filaments, other, intrinsically nonequilibrium mech-
anisms of generating these statistics may exist.

In the case of insulin release, the vesicles have both
kinesin and dynein associated with them [22], which walk in
opposite directions on microtubules [23]. More generally,
many cytoskeletal assemblies in cells have multiple motors
associated with them (Fig. 1). Thus, it is natural to ask if
glassy dynamics could arise from a tug of war. Mathematical
models of competing motors have been formulated and
show that, depending on the number of motors, their
properties, and their binding affinities, different regimes
of transport kinetics can be accessed [24,25]. While the tug-
of-war model can explain bidirectional transport in a diverse
set of biological systems [26-29], standard formulations
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FIG. 1. Schematic of a cytoskeletal assembly composed of
multiple molecular motors. Drawing is to scale for actin filaments
(red) and myosin motors (blue).

cannot account for aging because exponential dwell times
are assumed. Moreover, the tug of war is essentially a
single-filament mechanism. Cytoskeletal networks contain
geometric structures that involve multiple filaments (e.g.,
junctions), and these could support other dynamics.

In this paper, we investigate the dynamics of a minimal
model of a motor that can make multiple attachments to a
two-dimensional network of filaments. Using simulations,
we show that such a model can exhibit glassy dynamics,
and we discover that the long-time correlations in this
model result from vortexlike trajectories that motors follow
when three or more filaments cross to form a circuit. This
represents a new mechanism for trapping that does not
require individual motor heads stalling, and we term it the
“cycling state.” We obtain average flows for idealized
junction geometries from a master equation analysis and
show that trapping in vortexlike cycling states can give rise
to glassy, nonergodic dynamics like those observed in
experiments. We analyze experimental particle tracking
data to demonstrate the presence of the cycling state in
measured trajectories and show that it relates to exponents
that quantify aging. Broader implications for biological
function are discussed.

II. MOLECULAR SIMULATIONS

We model filaments as randomly oriented line segments
in a plane. The length of each filament is drawn from a
normal distribution with a maximum length # and standard
deviation o,. We associate the polarity of filament i with a
fixed unit vector 51'- The filaments are static, and thus
represent experimental situations in which cytoskeletal
rearrangements are slow in comparison with the period
over which motor transport is measured. For simplicity, we
also neglect heterogeneities in the composition of the
filaments and the solution environment, which can lead
to complex dynamics [25].

We are interested in cases in which many molecular
motors act in concert—e.g., a vesicle with several protein
motors attached or a myosin minifilament. We refer to our
model of such an assembly as “a motor.” A motor is a point
particle that can bind up to M filaments at once and move
along them as follows. We separate the binding process into
two steps (Figs. 2(a) and 2(b); see Supplemental Material
and Fig. S1 therein for an alternative scheme [30]). First,
we distribute the M possible attachments for a motor
among filaments with probability proportional to
b; = exp[—(3d;/2s)?], where d; is the shortest distance
between the motor and filament i, and s is a parameter that
sets the interaction length scale. This probability is nor-
malized by the sum ) .b; over all filaments within a
distance 3s of the motor. Then, we determine if each such
interaction exerts force to move the motor (henceforth,
“active”) with probability b; or not (“inactive”) with
probability 1 — b;. We denote the number of active attach-
ments to filament i by k;. To determine the change in
position of the motor, we compute the vector v = Y _;k;¢;
[orange in Fig. 2(b)]. This choice is consistent with
measurements that show that motor velocities increase
with head numbers [31]. We project v onto all the filaments
with at least one active attachment and add to the motor
position the projection with the maximum magnitude
scaled by the time step [Figs. 2(c) and 2(d)]. This projection
rule ensures that the motor moves along rather than off

(b) Binding to filaments with
distance-dependent
probabilities

(a) Identify filaments in
binding radius

(d) Movement along maximal
projection

FIG. 2. Schematic of the molecular simulation procedure.
(a) The motor (blue dot) can associate with filaments (red
vectors) within a defined binding radius. (b) Active attachments
are assigned stochastically in a distance-dependent fashion. The
velocity vector that results from each active attachment moving a
step along its filament is computed. (c) The velocity vector is
projected onto the filaments. (d) The motor takes a step with size
proportional to the magnitude of the largest velocity projection,
along the associated filament.
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TABLE I. Simulation parameters.

Parameter Value
Filament density per unit area 1
Filament length, 7 5
Filament standard deviation, o, 5
Binding radius, s 0.01
Total number of binding sites, M 50-100
Time step, dt 0.001
Total number of steps, T 10°
Trials 2000

filaments. It also gives rise to an effective force-velocity
dependence, with opposing parallel velocities canceling
each other. We assume that forces that are directed
orthogonally do not create a load on the motor. For the
simple scenario of orthogonal filaments, this scheme
simplifies to a step in the direction of the filament with
the highest number of active binding interactions (i.e., a
majority rule). The projection rule implies that binding sites
do not detach under load; rather, they stay bound and
contribute to the overall velocity vector. Simulations
relaxing the projection rule to a simple net velocity
calculation show only minor differences (Fig. S2 in
Supplemental Material [30]). Simulations with stochastic
selection between projections with probabilities propor-
tional to their magnitudes also yielded similar results.

The values of the simulation parameters are given in
Table I. While the model is general, we choose the values to
be roughly consistent with actin and myosin to ensure that
we study a physically reasonable regime. To this end, we
assume a myosin speed of 1 ym/s, which is in the range of
speeds reported from in vitro and in vivo studies of various
classes of myosin [32-34]. We associate our unit length
with 1 pum, such that the average filament length is 5 pm.
The binding radius of the motor is then about 10 nm, and a
single time step of the simulation is 0.1 s. Although the
properties of actual molecular motors vary substantially,
our conclusions are robust to parameter choices that range
over an order of magnitude (Fig. 3).

We simulate the model according to the rules above
and calculate the time-averaged MSD for the resulting
trajectories:

— T-A
R AP =ty [ G+ ) =30Par (1)
T—-A )
where X(7) is the position of a motor at time 7. We plot the
time-averaged MSD as a function of lag time (A) in Fig. 3(a).
We use the time-averaged MSD to make connection with
biological experiments that typically have a limited number
of trajectories [35]. It is important to note that the time- and
ensemble-averaged MSDs can exhibit different scalings
when the process of interest is nonergodic [36—40].

o
N—

A )

10°

(R(T=

(©) 16
T 14 -
2 -
g 1.2 S ,
3
® 10 #{&"“—‘—'r
£ os ]
(o)
% 0.6
0.4 L4 o6 i
0 100 200 300 400 0 100 200 300 400
binding sites M binding sites M
FIG. 3. Scaling in molecular simulations. (a) Time-averaged

MSD as a function of lag time for binding radii s = 0.001 (gray),
0.01 (blue), 0.1 (orange), and 1(red). (b) Mean-squared displace-
ment as a function of measurement time for a range of binding
radii [colors are the same as in (a)]. Each curve is rescaled to start
at 1 for easier visualization. (c),(d) Dependence of the indicated
exponents on the maximum number of possible attachments,
M. The dashed lines show the outcome for a tug-of-war
scenario, which can be obtained from our model by simulating
the dynamics on two antiparallel filaments. The full lines
show the exponents for the molecular simulations on a two-
dimensional random network. Lag-time exponents are calculated
for T = 10°.

By varying the binding radius s by factors of 10 from
0.001 to 1, we can tune the transport from superdiffusive to
subdiffusive. When the range of interaction is very small,
the motor attaches only to the closest filament. As a result,
the motion is superdiffusive but slow [note the intercept for
the gray line in Fig. 3(a)] because the number of active
attachments is low. For intermediate interaction ranges, the
motor can simultaneously bind multiple filaments, and a
tug-of-war-like mechanism gives rise to subdiffusive or
diffusive motion.

We plot the MSD as a function of the measurement time
(T) in Fig. 3(b). For an ergodic system, the MSD should be
constant as 7" varies—the properties of the motion are the
same independent of the length of recording. In contrast, a
decrease in the MSD with T suggests that there are long-
lived traps. The essential idea is that the traps increasingly
dominate the statistics as more data are included in the
averages. We observe a power-law decay (i.e., aging),
consistent with prior analysis of myosin II on an in vitro
actin network [10] and the motion of insulin granules
in vivo [9,10].

The observed aging exponent depends on the size of the
binding radius s, but we obtain exponents comparable to
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experimental values as this parameter varies over 2 orders
of magnitude. The molecular simulations of the model also
predict more trapping for increased numbers of binding
sites: both the lag-time and the aging exponents decrease
with larger M [Figs. 3(c) and 3(d)]. However, due to the
nonergodic nature of this transport process, the lag-time
exponent depends on the length of the recording 7. We
show the T dependence of the exponents in Fig. S3 (see
also Fig. S4) in Supplemental Material [30]. In contrast to
the results that we obtain for motion on a random filament
network, a simple tug-of-war scenario with a motor
between two antiparallel filaments yields no glassy dynam-
ics, independent of the number of binding sites. Also, the
scaling of the MSD becomes increasingly superdiffusive
with increased numbers of binding sites [Fig. 3(c)], and the
diffusion constant increases (data not shown).

Having thus captured the statistics of experiments, we
seek to use the model to elucidate the microscopic motions
that underlie the statistics. In this regard, we notice
that motors frequently exhibit vortexlike motions in which
they steadily cycle from one filament to another at a
junction [Fig. 4]. These motions persist for long times in
comparison with the duration of the simulations. Cycling
motions are of particular interest given that passive
particles in a vortex flow in a fluid are known to exhibit
power-law-distributed trapping times [41]. Analogous
observations exist for trapped ions [42] and Bose-
Einstein condensates [43].

An approximate length scale for the vortices responsible
for the glassy dynamics can be inferred from the crossover
in the MSD curves. When the MSD as a function of lag
time switches from superlinear to linear or sublinear
scaling, A is sufficiently large for the MSD to include
contributions from the vortices (Figs. S1 and S2 in
Supplemental Material [30]). In other words, the MSD
exponent decreases when the dynamics include bounded
trajectories. In our conditions, the crossover occurs at
A = 100, which corresponds to about 10 s based on the
numbers for actin and myosin given above. In turn, for a

FIG. 4. Single-particle trajectories reveal a cycling state.
(a) Representative simulation trajectories (blue and red) projected
onto the filament network (gray). (b) A magnified view of a
cycling trajectory (red).

myosin II motor and the parameters in Table I, the length
scale of vortices would be approximately 100 nm.

III. CYCLING STATE GIVES RISE TO
POWER-LAW DWELL TIMES

To investigate whether the observed vortexlike motion
can account for the anomalous statistics, we now consider
an idealized geometry. Specifically, we consider filaments
that meet at right angles to form a square because it
simplifies the mathematics (Fig. 5). However, we empha-
size that the conclusions that we draw from this analysis are
general: cycling can occur whenever the unit vectors of a
group of crossing filaments sum to zero. In a square loop,
the motor interacts with only one or two filaments at a time,
and, due to the projection rule (Fig. 2), the motor always
moves along the filament with the majority of sites bound.
The average resulting motion can be described by

FIG. 5. Vortex model. (a) Streamlines (blue) for motion in the
vicinity of an idealized square circuit of filaments (gray).
(b) Survival probability in a vortex for M =1 (red) or M =5
(blue) in a vortex of size 40. The probability is initialized to a
nonzero value at 3/4 of the diagonal and zero elsewhere. The
binding radius is set to 1/5, 1/7.5, or 1/10 of the vortex length
(dotted, dashed, or full lines). The probability has three phases:
constant, power law, and exponential. The length of the power-
law decay decreases with increasing binding radius. (¢) Numerical
solution of the master equation in a square vortex. In the example
shown, the initial condition is a localized probability at a single
location similar to (b). Here, the vortex size is 40, M =5, the
binding radius is 1/10 of the side length, and the motor step size
is unit length. The colors correspond to the logarithm of the
probability density of observing the motor at each location (red is
highest) and is normalized in each subplot. The three panels show
the master equation after 5, 25, and 750 iterations, respectively.
The probability density spreads over time and the maximum
rotates. The final image shows a pattern of localization that is
stable as the integrated density continues to decrease.
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streamlines, which form a nested set of closed loops that do
not cross [Fig. 5(a)]. If the dynamics were deterministic, the
streamlines would describe the motion entirely, and the
motor would stay in the vortex forever. However, due to
the stochastic nature of binding and unbinding, individual
trajectories deviate from the streamlines, and the motor
eventually leaves the vortex.

To characterize this behavior quantitatively, we derive
the master equation that governs this escape. For this
purpose, we need to determine how the active binding
sites distribute between the two accessible filaments via the
two-step procedure described in Sec. II. The probability P,
that /; out of M possible attachment sites are assigned to
filament 1 and that the remaining are assigned to filament 2
is binomial:

M\ bbY
P:l.1,) = 12
s lo) (ll)(b1+b2)M
(2)

The probability P, that k; out of /| possible attachments are
active is also binomial:

Putiln) = ()l

and similarly for k,. Since filament assignment and
selection of the active attachments are independent events,
we can now write for the overall probability P of having k;
and k, active binding sites on filaments 1 and 2:

Wlth ll +lz :M

—b)hh, (3)

Mk,

z Pp(l,. M —1))

klv k2

P, (ki|l))P,(ko|M —1y).

4)

The limits of the sum are set by [ >k, [, >k,
and [/ 1 + 12 =M

Associating filament 1 with the x direction and filament
2 with the y direction, the resulting master equation for
motion in a square vortex is

N M/2
W—_(l— Z P(kl,k2)>Pt—l<x’Y)

fy =k, =0
M/2-1 M-k,
+ Z > Pk ky)Pooy(x = Ky, y)
k=0 ki>k,
M/2-1 M-k
+ Z Z (ki ka)Proy(x.y —ky). (5)
k=0 ky>k

Here, P,(x,y) is the probability to be in a certain location
(x,y) in the vortex at time 7, and we assume a unit time step.
The first term accounts for motors that stay in place, while
the second and third terms account for taking steps along

filaments 1 and 2, respectively. Note that the polarity of the
filaments is fixed, so that motion along each filament is
unidirectional and no terms are needed to account for
motion in the other direction. The vortex has absorbing
boundaries where the velocity has a saddle point, forming a
diamond-shaped region.

We solve this master equation numerically [Fig. 5(c)].
The survival probability in the vortex decays in three
stages. At short times, the probability is close to unity,
since the probability distribution needs a finite number of
steps to reach the vortex boundaries. Then, we observe that
the probability density also rotates within the vortex,
similar to particles in the explicit simulations (see also
Movie 1 in Supplemental Material [30]). During that time,
the probability decays as a power law [see Fig. 5(b)]. The
probability distribution in the vortex ultimately reaches a
quasi-steady-state, when the shape of the distribution is no
longer changing, and the survival probability decays as an
exponential. The durations of these three stages are
determined by the starting conditions and the relative size
of the binding radius to the size of the vortex, as well as the
number of binding sites. The power-law decay of the
survival probability is longest for small binding radii
(significantly smaller than the vortex) since the binding
potential favors steps parallel to the filaments, and only
allows very small steps orthogonal to the filaments. This
relates to the results shown in Fig. 3(a) and 3(b), in that
there exist a range of vortex sizes in our chosen network,
which lead to characteristic trapping times. Binding radii
much smaller or larger than these sizes will show less aging
than midrange radii, due to the existing spatial scales in the
random network. Relatedly, increasing the density of
filaments in the network decreases the vortex size; this
leaves the scaling with A unchanged while decreasing the
extent of aging (Fig. S5 in Supplemental Material [30]).

The average motion in the vortex can be viewed as a
combination of drift along the streamlines and diffusion
orthogonal to the streamlines. From this perspective, the
cycling motion is similar to that of a particle in a Rayleigh-
Bénard convection cell [44]. However, the situation differs,
in that the diffusion is position dependent [i.e., P(k;, k»)
varies in space through b, and b,]. In other words, the
master equation limits to a drift diffusion (Langevin) form
with a multiplicative, rather than an additive, noise. This
form reflects the fact that, in the motor model, the number
of attachments is influenced by the position relative to the
filaments defining the vortex boundary.

IV. EXPERIMENTAL DEMONSTRATION OF
CYCLING-STATE CONTRIBUTIONS

A key prediction of the cycling-state model is that the
aging exponent decreases with the number of attachment
sites on each motor [Fig. 3(d)]. We can test this idea without
the confounding effects of cell signaling by studying
mixtures of purified actin filaments and myosin motors.
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The specific system that we consider comprises actin
filaments bundled by the passive cross-linker fimbrin.
The motors are minifilaments of skeletal muscle myosin
II, which polymerizes into large assemblies with on the
order of 100 motor proteins [45]. The actin and myosin
molecules are visualized through fluorescence microscopy,
as detailed in the Supplemental Material [30]. Single-
particle trajectories are obtained by tracking, and trajecto-
ries with fewer than 30 time points are discarded. There are
246 resulting trajectories with a mean length of 166 s, with
a standard deviation of 120 s. This length is long compared
with typical in vitro particle-tracking studies of isolated
motors on single filaments. Both the large number of heads
and the density of binding sites in the filament network
make it unlikely for motors to detach, which favors
processivity. The MSD as a function of measurement time
T shows aging, with an exponent comparable to previously
published data (compare Ref. [10] with Figs. S6A and S6B
in Supplemental Material [30]).

To test the prediction in Fig. 3(d), we exploit the fact that
the number of myosin molecules in each minifilament
varies naturally and use fluorescence intensity as a proxy
for the number of motor heads. We divide the trajectories
into two groups according to the median fluorescence of all
trajectories. There are 123 single-particle trajectories for
motors with relatively high intensity and an equal number
of trajectories for motors with relatively low intensity. We
expect motors with higher intensity to have more heads and
thus exhibit stronger aging. We observe that this is the case
[Fig. 6(a)]. Specifically, we use case resampling (a form of
bootstrapping) to get a distribution of exponents from each
fluorescence group. The means of these distributions are
—0.6125 £ 0.0035 and —0.5112 4+ 0.0086 (mean + SEM
high-fluorescence and low-fluorescence groups, respec-
tively). We test whether the means are significantly differ-
ent using the unequal variances t-test. The two-tailed p
value is less than 107*, indicating that the difference is
significant.

Additionally, we manually select trajectories that visibly
cycle (loop over the same multipixel region more than
once). Twenty-nine trajectories are found to cycle, and a
significant portion of these are also classified as high
fluorescence [N = 22, p value = 0.001 85, Fisher’s exact
test for cycling (noncycling) versus high (low) fluores-
cence]. Because the actin filaments do not move signifi-
cantly (Fig. S7 in Supplemental Material [30]), we can
project trajectories onto the network, and we see that the
trajectories that result in the most pronounced decay have
visible cycling that coincides with filament junctions
[arrows in Figs. 6(b)-6(d)].

While the observations above demonstrate the existence
of cycling, we seek to exclude alternative mechanisms for
the statistical differences in exponents in Fig. 6(a).
Reasonable candidates are intrinsic differences in motor
speeds and detachment. With regard to the former, we note
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FIG. 6. Experimental trajectories show cycling. (a) Trajectories
are divided into two groups according to the total fluorescence
intensity of the motor. The group with higher fluorescence
intensity (green) shows a larger aging exponent than the low-
fluorescence group (yellow). (b)—(e) Representative trajectories
of individual myosin II minifilaments overlayed onto the actin
network. Arrows denote cycling events. Trajectories are obtained
from myosin II minifilaments on an actin network bundled with
fimbrin. Scale bar is 1.1 pum, trajectories shown are imaged at
1.5 s intervals; see Supplemental Material for details [30]. Single-
particle trajectories are obtained using the Python-based imple-
mentation of the Crocker-Grier algorithm TRACKPY [46].

that the average motor step size from frame to frame (i.e.,
the net speed for movement over the filament network)
does not differ for the high- and low-intensity groups: the
mean + SEM are 44.1 + 2.6 and 45.0 £+ 2.5 nm/s, respec-
tively. If detachment were instead responsible for the
anomalous dynamics, the particles should undergo simple
diffusion when apparently trapped. To test for this pos-
sibility, we divide the trajectories between trapped and
nontrapped periods and then analyze their dynamics using a
published measure for detecting complex dynamics at
resolutions of only a few frames [10]. We find that the
motion is not simple diffusion, as detailed in the
Supplemental Material (see also Fig. S9) [30].

Together, these results strongly support the idea that the
cycling state exists for motors with multiple attachments
and gives rise to power-law decay in the MSD as a function
of measurement time.
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V. DISCUSSION

Motor-driven processes in cells often exhibit anomalous
statistics [12,47-49], and these statistics can have important
functional consequences [9]. While existing random-walk
models of aging typically start by assuming trapped states
with power-law dwell times, we introduce a microscopic
mechanism for how simple biologically consistent inter-
actions can give rise to such long-lived traps. The glassy
dynamics result from a vortexlike state that emerges in
multiple dimensions—motors that can attach to multiple
filaments simultaneously cycle unproductively at filament
junctions, and the escape times from these flows are power-
law distributed over a time range set by the motor step size
and the filament spacing. We demonstrate that such cycling
events occur frequently in the motion of skeletal myosin II
assemblies on a dense, random network of bundles of actin
filaments in vitro, and we use this system to validate the
predictions of the model. To the best of our knowledge,
these cycling dynamics have not been appreciated previ-
ously, and we expect that their topological features will lead
to rich physics beyond idealized trap models.

Microtubule structures with many intersections are
observed above the basal membrane of epithelial cells,
where they function in endocytic vesicle transport [50]. A
study that reconstructed these epithelial microtubule net-
works in vitro observed a kinesin-coated bead cycling
through a vortex structure [51]. The same study (and others
[52]) also saw a slowdown or pausing states at intersec-
tions, which is also present in our model due to the motors
interacting with both filaments at the same time. While
these structures are macroscopic compared to the vortices
responsible for the observed glassy behavior, they show
that motor-associated cargo or multibinding complexes can
navigate intersections and cycles for certain geometries.

Tug-of-war models [24] contain similar molecular ele-
ments and exhibit pauses when motors are stalling or
opposing forces match exactly. However, such models are
essentially one dimensional and do not give rise to power-
law-distributed dwell times. Based on Figs. 3(c) and 3(d), we
expect the cycling state to be prevalent only when motor
assemblies comprise many protein motors and directed
motion dominates over thermal processes. Indeed, measured
exponents for the MSD could be used to infer the size of such
assemblies. However, care is needed because different
filament structures favor different amounts of directed,
tug-of-war, and vortexlike motions. Random networks in
three dimensions have few circuits that lead to cycling, while
cytoskeletal networks that are organized by specific filament
binding proteins (e.g., Arp2/3), as well as quasi-two-
dimensional networks that arise in cell cortices, have larger
numbers of suitable junctions. Thus, accurate estimates of the
numbers of active motor heads requires constructing a
calibration curve for the exponent for each network structure.

Understanding how motor assemblies behave on com-
plex filament networks in cells is an outstanding challenge

[53]. The degree to which the cycling state contributes to
dynamics in different contexts in vivo is an open question
deserving further study. Cells could potentially spatiotem-
porally control intracellular transport by rearranging their
cytoskeletal networks to favor or disfavor cycling.
Understanding how this control mechanism manifests in
different types of cells and tissue environments, as well as
its interplay with other regulatory processes and trapping
mechanisms [25], is a useful direction for future research. It
will also be interesting to understand the interplay of motor
transport, force transmission, and network rearrangement.
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