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Quantum fluctuations of the gravitational field in the early Universe, amplified by inflation, produce
a primordial gravitational-wave background across a broad frequency band. We derive constraints on
the spectrum of this gravitational radiation, and hence on theories of the early Universe, by combining
experiments that cover 29 orders of magnitude in frequency. These include Planck observations of cosmic
microwave background temperature and polarization power spectra and lensing, together with baryon
acoustic oscillations and big bang nucleosynthesis measurements, as well as new pulsar timing array and
ground-based interferometer limits. While individual experiments constrain the gravitational-wave energy
density in specific frequency bands, the combination of experiments allows us to constrain cosmological
parameters, including the inflationary spectral index nt and the tensor-to-scalar ratio r. Results from
individual experiments include the most stringent nanohertz limit of the primordial background to date
from the Parkes Pulsar Timing Array, ΩGWðfÞ < 2.3 × 10−10. Observations of the cosmic microwave
background alone limit the gravitational-wave spectral index at 95% confidence to nt ≲ 5 for a tensor-to-
scalar ratio of r ¼ 0.11. However, the combination of all the above experiments limits nt < 0.36. Future
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Advanced LIGO observations are expected to further constrain nt < 0.34 by 2020. When cosmic
microwave background experiments detect a nonzero r, our results will imply even more stringent
constraints on nt and, hence, theories of the early Universe.

DOI: 10.1103/PhysRevX.6.011035 Subject Areas: Cosmology, Gravitation

I. INTRODUCTION

Gravitational-wave astronomy is now a reality. The
LIGO Scientific Collaboration has recently announced
the first direct detection of gravitational waves (GWs)
coming from the merger of a binary black hole [1]. Other
experiments worldwide are ready to measure gravitational
radiation across a wide range of frequencies. From the
cosmic microwave background (CMB) to ground-based
GW interferometers, these experiments cover more than 21
orders of magnitude in frequency—29 with complementary
but indirect bounds from big bang nucleosynthesis (BBN),
CMB temperature and polarization power spectra and
lensing, and baryon acoustic oscillation (BAO) measure-
ments. Each of these experiments is sensitive to a primor-
dial stochastic GW background, originating from quantum
fluctuations in the early Universe, and amplified by an
inflationary phase [2–5]. Standard inflationary models
predict a primordial GW background whose amplitude is
proportional to the energy scale of inflation [6].
Observations of primordial GWs therefore provide unique
insights into poorly understood processes in the very early
Universe and its evolution from 10−32 s after the big bang
through to today.
In standard inflationary theories, the GW energy spec-

trum is expected to be nearly scale invariant—above a
certain frequency, the GW energy density decreases mono-
tonically with increasing frequency [6]. The gravitational
field has quantum mechanical fluctuations, which are
dynamic at wavelengths smaller than the cosmological
horizon, H−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3c2=ð8πGρÞ

p
, and static due to causality

at wavelengths larger than the horizon. During inflation,
modes are redshifted and pulled outside the horizon, where
their power is frozen in with an amplitude that corresponds
to the size of the cosmological horizon, and, hence, to the
energy density of the Universe at that time. As inflation
progresses, the energy scale of the Universe decreases, and
the cosmological horizon grows. This is a consequence of
the null energy condition, which posits that the energy
density of the Universe cannot increase as a function of
time. Modes that freeze out at larger physical wavelength
have less power in them. Therefore, the slowly and
monotonically decreasing energy density of the Universe
during inflation is responsible for the monotonically
decreasing shape of the primordial power spectrum of all
fields. Spectra that decrease with increasing frequency
are referred to as “red” spectra, and those that grow with
increasing frequency are “blue.”

A red spectrum, combined with observational constraints
on the amplitude of GWs from the CMB, imply that GW
detectors such as pulsar timing arrays (PTAs) and ground-
based interferometers such as the Laser Interferometer
Gravitational-wave Observatory (LIGO) [7] and Virgo
[8] are not sufficiently sensitive to detect primordial
GWs predicted by the simplest model of inflation (see,
e.g., Ref. [9]). Detection at frequencies at or above PTAs
may require extremely ambitious detectors such as the Big
Bang Observer [10] or DECIGO [11]. However, some
nonstandard models for the early Universe predict blue GW
spectra, which could be detected by PTAs and/or LIGO
(see below).
A blue spectrum can be generated from inflation depend-

ing on what happens when GW modes exit the horizon,
either by nonstandard evolution of the Universe during
inflation or if there is nonstandard power in these modes
when they exit. This idea gained recent popularity in the
wake of some early interpretations of the BICEP2 obser-
vations [12], where a flat GW spectrum was unable to
simultaneously explain both the lower-frequency Planck
observations [13] and the higher-frequency BICEP2 results
(see, e.g., Refs. [14–16]).
Standard models of inflation suggest that the slope of

the GW spectrum should be approximately equal to the
slope of the power spectrum of density perturbations. This
prediction can be modified by having more than just a
simple scalar field driving inflation. These nonminimal
models can predict either red GW spectra whose spectral
index varies from that of standard inflation [17] or blue
spectra (see, e.g., Refs. [18,19]). The latter modification is
so dramatic that the system violates the null-energy con-
dition, a desirable, but by no means compulsory, property
of the stress-energy tensor. Alternatively, blue spectra can
be generated if the propagation speed of primordial GWs
varies during inflation [20], or by introducing new inter-
actions between the scalar field and gravity, where these
interactions are low-energy remnants of some (unknown)
modification of general relativity at much higher energy
scales, such as the Planck scale. Couplings of this form do
not change any of the standard predictions of general
relativity, but the theories that predict them allow us to treat
the (unknown) high-energy theory of gravity in an effective
low-energy limit for some energy scales. The simplest of
such effective field theories produce a blue spectrum [21].
It is also possible to abandon inflation altogether and

replace it with a scenario that preserves the observed
spectrum of density perturbations. Two classic examples
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are string-gas [22] and ekpyrotic cosmologies [23]. In the
former, an ensemble of fundamental strings has thermo-
dynamic properties that produce a high-temperature, qua-
sistatic state, which produces a blue GW spectrum, whose
size is comparable in magnitude to the standard red
spectrum [24,25]. Ekpyrosis posits that the primordial
spectrum of perturbations is a result of a pre-big-bang
contracting phase. Such a phase has an increasing
energy density and would create a blue power GW
spectrum [23,26].
Importantly, a blue primordial GW spectrum may yield a

primordial background immediately below present-day
limits, which may be detectable in the near future.
While CMB experiments are likely to make direct mea-
surements of the tensor-to-scalar ratio r, they will poorly
constrain the tensor index nt. In this paper, we show how
the combination of constraints on the primordial GW
background from CMB, PTA, BBN, BAO, and ground-
based interferometer GW experiments can place stringent
constraints on nt, yielding insights into the physics of the
early Universe not accessible by any other means.

II. GRAVITATIONAL WAVE EXPERIMENTS

Current results from experiments trying to measure the
primordial GW background do little to constrain the
possible tilt of the spectrum. However, combining GW
experiments over all frequencies allows us to constrain
cosmological parameters from nonstandard inflationary
cosmologies [27–30]. Combined CMB observations
from the Planck satellite and the BICEP2 experiment
constrain the stochastic GW background at frequencies
of ∼10−20–10−16 Hz, while PTAs are sensitive to GW
frequencies of ∼10−9–10−7 Hz and ground-based interfer-
ometers are sensitive at ∼10–103 Hz [31]. As we show
below, constraints on the total energy density of GWs from
BBN, gravitational lensing, CMB power spectra, and BAO
are sensitive to GWs as high as 109 Hz. Therefore, even a
small blue tilt in the GW spectrum may be detectable in the
GW frequency band covered from the CMB to LIGO and
Virgo and provide more stringent constraints on the overall
shape of the GW background [30].
A first step in our effort to apply experimental constraints

to the GW energy-density spectrum is to assume that it can
be well approximated by a power law:

PtðfÞ ¼ At

�
f

fCMB

�
nt
; ð1Þ

where the pivot frequency fCMB is taken to be the standard
value fCMB ¼ ðc=2πÞ0.05 Mpc−1 (see, e.g., Ref. [32]). It is
conventional to reexpress the amplitude of the primordial
GW spectrum in terms of the tensor-to-scalar ratio,
r≡ At=As, where As is the amplitude of the primordial
power spectrum of density perturbations, and both are
evaluated at the pivot scale.

Equation (1) is the simplest approximation one can make
about the primordial GW spectrum. Most early-Universe
theories predict only a small deviation from pure power-law
behavior. The next level of complexity is to replace nt with
nt þ αt lnðf=fCMBÞ=2 in Eq. (1), where αt is known as the
running of the spectral index. For example, single-field,
slow-roll inflationary models predict αt ≃ ð1 − nsÞ2 (see,
e.g., Ref. [6]), where ns ¼ 0.9645� 0.0049 is the mea-
sured value of the scalar spectral index [13]. Therefore,
within this class of theories, we expect a correction to the
total GW power-law index of ≃10−2. Over 29 decades in
frequency, this can have a marginal effect on the results
presented here, a point we discuss in more detail below.
Because of the expansion of the Universe, the primordial

GW spectrum that we observe today has evolved since it
was created. This evolution is expressed in terms of a
transfer function, T ðfÞ, which encodes information about
how GWs change as a function of frequency [33]. The
energy density of GWs today is given by

ρGW ¼
Z

dff4ð2πÞ3
c5

PtðfÞT ðfÞ2: ð2Þ

The PTA and LIGO communities commonly present the
GW spectrum in terms of the energy density in GWs as a
fraction of the closure energy density per logarithmic
frequency interval [31,34],

ΩGWðfÞ≡ 1

ρc

dρGW
d ln f

; ð3Þ

where ρc ≡ 3c2H2
0=ð8πGÞ, H0 ¼ 100h km s−1 Mpc−1 is

the Hubble expansion rate, and h ¼ 0.67 is the dimension-
less Hubble parameter [13]. Indirect constraints on the
GW background are typically “integral bounds” on ΩGW≡R
d ln fΩGWðfÞ.
Assuming a standard expansion history that includes

nonrelativistic matter and radiation, the GW spectrum
today is given by [33,35–37]

ΩGWðfÞ ¼ ΩCMB
GW

�
f

fCMB

�
nt
�
1

2

�
feq
f

�
2

þ 16

9

�
; ð4Þ

where feq is the frequency of the mode whose correspond-
ing wavelength is equal to the size of the Universe at the
time of matter-radiation equality with frequency feq ¼ffiffiffi
2

p
cH0Ωm=2π

ffiffiffiffiffiffi
Ωr

p
. Here, Ωm and Ωr are, respectively, the

total matter and radiation energy density evaluated today,
and

ΩCMB
GW ≡ 3rAsΩr=128: ð5Þ

Equation (4) is key in our analysis since it allows us to
combine constraints on r and nt from the CMB with
constraints toΩGWðfÞ and nt from PTAs and LIGO.We use
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cosmological parameters obtained from the latest Planck
satellite data release [13].
In the following sections, we combine observational

constraints spanning 29 orders of magnitude in frequency
to derive stringent constraints on backgrounds with a
nonzero spectral index nt. Figure 1 highlights the key
idea: we show the current best upper limits onΩGWðfÞ, and
a series of curves given by Eq. (4) that are constrained by
these limits. Starting from the lowest frequency limits, we
summarize current upper limits before combining them to
derive joint constraints.
Note that, in evaluating the observed GW spectrum, we

neglect the effects of neutrino free streaming [38] and phase
transitions occurring in the early Universe [35]. As shown
in Refs. [35,38,39], the free streaming of neutrinos and
phase transitions during the very early Universe lead to a
suppression of ΩGW by a factor of ∼1=2–1=3 for PTA and
LIGO frequencies. However, because of the large lever arm
between the frequencies probed by these detection methods
and the CMB, including this suppression in the analysis
changes our constraints on nt by only a few percent. We
therefore neglect these effects in our analysis.
Three recent papers have presented combined constraints

on nt and r using some combination of CMB, LIGO, and
PTA data [30,39,40]. Huang and Wang [40] presented
their analysis soon after the original BICEP2 results were
reported [41,42] and, as such, focused on the fact that those

data preferred a slightly positive blue tilt for the tensor
power spectrum, which resulted from the inconsistency
between the original BICEP2 data and Planck observations.
On the other hand, Liu et al. [39] presented constraints
from only CMB and PTA data, but focused on what a
positive detection could do for our understanding of the
early-Universe equation of state, cosmic phase transitions,
and relativistic free streaming.
Our analysis improves on those of Refs. [30,39,40] in a

number of significant ways. First, we include the indirect
GW constraints in a self-consistent way, which allows us to
compare integral and nonintegral constraints with varying
spectral indices (see Sec. II D). Second, we present a new
analysis of Parkes Pulsar Timing Array (PPTA) data [43]
that give the best limit on ΩGWðfÞ in the PTA band by a
factor of 4 over previous published results. Finally, we
provide our own analysis of the raw PPTA time-of-arrival
data to allow for varying spectral indices, instead of
assuming a constant nt for PTA observations taken from
older PPTA analyses as is done in Refs. [30,39].

A. CMB intensity and polarization

Primordial GWs imprint a characteristic signal onto the
intensity and polarization of the CMB that can be measured
by ground-based and space-borne observatories. A joint
analysis [13,42] of Planck satellite and BICEP2 and Keck

FIG. 1. Experimental constraints on ΩGWðfÞ. The black star is the current Parkes Pulsar Timing Array (PPTA) upper limit and all
black curves and data points are current 95% confidence upper limits. The gray curve and triangle are, respectively, the predicted aLIGO
sensitivity and PPTA sensitivity with 5 more years of data. The indirect GW limits are from CMB temperature and polarization power
spectra, lensing, BAOs, and BBN. Models predicting a power-law spectrum that intersect with an observational constraint are ruled out
at > 95% confidence. We show five predictions for the GW background, each with r ¼ 0.11, and with nt ¼ 0.68 (orange curve),
nt ¼ 0.54 (blue curve), nt ¼ 0.36 (red curve), nt ¼ 0.34 (magenta curve), and the consistency relation, nt ¼ −r=8 (green curve),
corresponding to minimal inflation.
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array data found that r < 0.12 at 95% confidence level
(C.L.) under the assumption that nt ¼ 0. The solid black
curve in Fig. 1 labeled “CMB” shows the estimated
sensitivity of the Planck satellite. The CMB sensitivity
curve is calculated by determining the value of the spectral
density ΩGWðfÞ that yields a marginally detectable signal
given a model of the Planck satellite noise properties [44].
Observations of the CMB intensity and polarization are

analyzed by reexpressing the real-space data in a spherical
harmonic expansion. The intensity measurements can be
expanded in the standard (scalar) spherical harmonics,
whereas the polarization data must be expanded in spin-
weighted spherical harmonics [45]. We can further separate
various physical processes by dividing the polarization data
into a curl-free (E-mode) and curl (B-mode) basis. In order
to compare these data to a theoretical model, the measured
spherical harmonic coefficients are further analyzed to
estimate their statistical correlations. The presence of a
primordial GW spectrum fundamentally alters the expected
correlations leading to an enhanced correlation for the
intensity of the CMB on the largest angular scales as well as
a nonzero correlation for the B-mode polarization [46,47].
The expected effect of a nonzero primordial GW

spectrum on the CMB is calculated by solving the
Boltzmann equation for the various components of matter
that fill the Universe. The Boltzmann equation for the
photons encodes all of the information about correlations in
the intensity and polarization of the CMB. In particular, for
each spherical harmonic multipole, the expected correla-
tions can be expressed as an integral over cosmic time and
frequency [48]. Therefore, the total expected CMB signal
due to primordial GWs can be expressed as an integral over
its spectrum, ΩGWðfÞ.
The CMB sensitivity curve shown in Fig. 1 is calculated

by setting the total CMB signal-to-noise ratio equal to 2
(corresponding to a 95% C.L. bound). The squared signal-
to-noise ratio is calculated from a sum in quadrature of
CMB B-mode multipoles divided by the estimated polari-
zation noise for each multipole from the Planck satellite’s
143-GHz detector [44,49]. Since, as discussed above, each
B-mode multipole is an integral over the GW spectrum, we
express the integral over frequency as a sum so that we can
evaluate the contribution at each frequency interval. We
relate the primordial amplitude to the present-day spectral
density using Eq. (21) of Ref. [35]. The noise is calculated
under the hypothesis of no primordial GWs, although weak
gravitational lensing also induces a nonzero B-mode
correlation, which we treat as an additional source of
noise. Finally, the limit is converted into a “power-law-
integrated” curve using the formalism from Thrane and
Romano [50]. Any model intersecting this curve is ruled
out at 95% C.L.
Current CMB constraints to r and nt come from

measurements made by Planck [51], the BICEP2 and
Keck array [42], and SPTpol [52]. Constraints from these

data sets were determined using the Boltzmann solver
CAMB and a modified version of the Monte Carlo stepper
cosmoMC [53–55].

B. Pulsar timing arrays

The incoherent superposition of primordial GWs is
expected to imprint on the arrival time of pulses from
the most stable millisecond pulsars. A number of PTAs
around the world are engaged in the hunt for GWs,
including the Parkes Pulsar Timing Array [56], the
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav) [57], and the European Pulsar
Timing Array (EPTA) [58]. Here, we use recent data from
the PPTA [43] to provide the strongest constraints
to date on ΩGWðfÞ from a primordial background in the
PTA band.
The PPTA monitors 24 pulsars with the 64-m Parkes

radio telescope in a bid to directly detect GWs, and
currently has the most stringent upper limits on the GW
background from supermassive black hole binaries [43].
We derive our limit on the primordial GW background by
performing a similar Bayesian analysis to that in Ref. [43],
with the exception that we utilize the Bayesian pulsar
timing data analysis suite PAL2 [59], and allow for an
arbitrary strain spectral index.
The GW spectrum in the PTA band can be approximated

as a power law, with

ΩGWðfÞ ¼
2π2

3H2
0

A2
GWf

2
yr

�
f
fyr

�
nt
; ð6Þ

where AGW is the amplitude of the characteristic strain at a
reference frequency of fyr ≡ yr−1. The star in Fig. 1,
labeled “PTA” is the 95% C.L. upper limit assuming a
spectral index of nt ¼ 0.5 (approximately the middle of
the range we are trying to constrain—see below), with
Ω95%

GW ðfÞ < 2.3 × 10−10. The black dots above the PPTA
limit are the upper limits from the EPTA [60] and
NANOGrav [61]. Both the EPTA and NANOGrav present
limits on the GW energy density from inflationary relics
assuming nt ¼ 0; our new limit for nt ¼ 0 [cf. our limit on
ΩGWðfÞ for nt ¼ 0.5, which differs only in the second
decimal place] is a factor of 4.1 better than the previous best
limit from Ref. [61].
The gray triangle below the star in Fig. 1 is a predicted

GWupper limit derived by simulating an additional 5 years
of PPTA data. We take the maximum likelihood red noise
parameters in the existing data sets, estimate the white
noise level using the most recent data that represents
current observation quality, and assume a two-week
observing cadence to derive the 95% C.L. upper limit of
Ω95%

GW ðfÞ ≲ 5 × 10−11. However, the PPTA limit will be
superseded before 2020 with limits placed from collating
data sets from the three existing PTAs as part of the
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International Pulsar Timing Array (IPTA) [62]. From
Fig. 1, it becomes clear that PTAs may not play a significant
role in constraining inflationary models where the GW
spectrum is described by Eq. (3) when aLIGO reaches
design sensitivity, given the significant improvements in
the latter experiment. However, PTAs can still play an
important role for cosmological models with a varying
spectral index, that is, with a non-negligible running of the
spectral index αt.
Giblin and Thrane [63] recently proposed a “rule of

thumb” for the maximum GW energy density for cosmo-
logical backgrounds based only on arguments of the energy
budget of the Universe at early times. They presented
optimistic, realistic, and pessimistic upper limits for
ΩGWðfÞ, with the optimistic limit representing the largest
value of ΩGWðfÞ possible given a reasonable set of
conditions. The new PPTA limit reported here is the first
time a GW limit in either the PTA or LIGO band has gone
under this optimistic threshold, thus marking the first time
the detection of cosmological GWs could actually have
been possible according to arguments in Ref. [63].
Conventional models of early-Universe particle physics
do not predict such a large GW background in the PTA
frequency band. The temperature of the Universe at the
time when such GWs are produced is ∼1 GeV (see top axis
of Fig. 1), a temperature at which physics of the early
Universe is relatively well known. We note that the
possibility of first-order phase transitions that generate a
strong GW background in the PTA frequency band is not
completely ruled out (see, e.g., Refs. [64–67]). Of course, it
is possible that there is unknown physics that influences
gravity without coupling strongly to the standard model of
particle physics that could produce a strong GW back-
ground in the PTA frequency band.

C. Ground-based interferometers

LIGO [7] and Virgo [8] are long-baseline, ground-based
GW interferometers with best sensitivity at frequencies of
102–103 Hz. Data collected during the initial phases of
these instruments have been used to place upper limits on a
stochastic background of GWs from astrophysical and
cosmological sources [9,68,69]. We utilize data from the
initial LIGO and Virgo observatories. These data were
collected in 2009–2010 as part of the fifth LIGO science
run. Two limits were originally obtained using these
combined observations: a lower-frequency limit from
combined LIGO-Virgo observations that assumed a flat,
i.e., nt ¼ 0, spectrum [68], and a higher-frequency limit
from an analysis of the two colocated LIGO detectors at
Hanford, which assumed nt ¼ 3 [69].
We implement a new way to analyze LIGO and Virgo

limits on the primordial background that allows for a
varying spectral index. The analysis goes beyond
Meerburg et al. [30] and Huang and Wang [40], which
both assume nt ¼ 0 for their LIGO and Virgo constraints.

We combine published data from Refs. [68,69] to generate
a power-law-integrated curve [50], shown in Fig. 1. Any
power-lawmodel intersecting a power-law-integrated curve
is ruled out at 95% C.L. Then, utilizing the formalism from
Mandic et al. [70], we obtain constraints on ΩGWðfÞ for
arbitrary spectral indices. The limits on ΩGWðfÞ are
converted into constraints on nt and r.
At the time of writing, the LIGO experiment has begun

taking data for the first observing run of the advanced
detector era, with the Virgo experiment to follow in 2016.
At design sensitivity, advanced detectors are forecast to
achieve nearly 4 orders of magnitude of improvement in
ΩGWðfÞ; see the curve marked “aLIGO” in Fig. 1, which is
the projected sensitivity given two LIGO detectors operat-
ing for 1 year at design sensitivity.

D. Indirect constraints

Indirect constraints on GW backgrounds have been
obtained using a variety of data including CMB temper-
ature and polarization power spectra, lensing, BAOs, and
BBN (see, e.g., Refs. [71–73]). Indirect bounds are
“integral bounds,” which apply to ΩGW and not to
ΩGWðfÞ; see Eq. (3). Recently, Pagano et al. [74] combined
the latest Planck observations of CMB temperature and
polarization power spectra and lensing with BAO and BBN
measurements (specifically, observations of the primordial
deuterium abundance) to put an integral constraint on the
primordial GW background of ΩGW < 3.8 × 10−6.
While there is a long history in the literature of plotting

ΩGW integral bounds alongside ΩGWðfÞ, they are not
directly comparable. However, the two quantities can be
related if we assume that ΩGWðfÞ is described by a power-
law spectrum with a known cutoff frequency, which we
choose to be fmax ¼ 1 GHz, corresponding to an energy
scale typical of inflation, T ¼ 1017 GeV. Given this plau-
sible assumption, we plot the indirect constraints in Fig. 1
as power-law-integrated curves using the formalism from
Ref. [50]. Any power-law model intersecting a power-law-
integrated curve is ruled out at 95% C.L.
Inspecting Fig. 1, it is apparent that the current best

constraints on nt come from observations of the CMB
combined with indirect bounds.
The strength of the indirect bounds depends in part on

our choice of fmax ¼ 1 GHz; however, changing the cutoff
frequency by several orders of magnitude would not the
change qualitative picture. For example, in alternative
theories of inflation, it is possible to posit an energy scale
as low as 106 GeV, corresponding to a cutoff frequency of
fmax ¼ 10 mHz. This choice of cutoff frequency shifts the
minimum of the indirect bound curve from ∼100 mHz to
∼1 μHz, while the minimum value of ΩGWðfÞ increases by
a factor of ∼2. When aLIGO reaches design sensitivity, it
will surpass indirect constraints on primordial backgrounds
with nonrunning spectral indices.
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III. COMBINED CONSTRAINTS ON THE
PRIMORDIAL TILT

A. Combined experimental constraints

Here, we combine the current limits onΩGWðfÞ from the
individual experiments mentioned above to constrain the
tensor-to-scalar ratio r and the tensor index nt. In Fig. 2,
we plot these two-dimensional posterior distributions for r
and nt. In both panels, we plot two theory points and a
theory curve. The green, dashed curve corresponds to the
consistency relation from standard inflationary models
(nt ¼ −r=8), and the red and blue triangles have the same
values of nt and r as the red and blue curves in Fig. 1.
Figure 2 combines the constraints from each experiment

in a heuristic manner. The left-hand panel shows all of the
CMB constraints from direct detection experiments starting
with Planck (gray shaded region), adding BICEP2 (green),
and finally adding SPTpol (red) to get the overall con-
straints on the CMB from direct GW observations. Also
plotted in the left-hand panel is the PPTA posterior (blue).
The PPTA search algorithm described in Sec. II B derives a
posterior distribution in terms of nt and ΩGWðfÞ, which is

converted to nt and r using Eqs. (4) and (5). Finally, in
the left-hand panel of Fig. 2, we plot the combined
CMBþ PPTA posterior (black). This distribution repre-
sents the state-of-the-art constraints one can derive from
CMB and PTA experiments alone. At a reference value of
r ¼ 0.11, this limits nt < 0.68 with 95% confidence. In
general, the 95% C.L. upper limit on nt as a function of r
derived from these constraints is well approximated by the
simple relation

nt ¼ Alog10

�
r

0.11

�
þ B; ð7Þ

where A ¼ −0.13 and B ¼ 0.68. Equation (7) allows one to
extrapolate the constraints on nt to arbitrary small values of
r. With the addition of each experimental constraint, we get
tighter limits on A and B; the 95% C.L. upper limits for
each experiment are collated in Table I.
In the right-hand panel of Fig. 2, we retain the CMB (red,

labeled “Planckþ BICEP2þ SPTpol”) and CMBþ PPTA
(black) posterior distributions from the left-hand panel. As
with the PPTA analysis, the LIGO and Virgo data analysis
algorithm described in Sec. II C constrains nt and ΩGW,
which we convert to nt and r using Eqs. (4) and (5). This
distribution is shown in yellow, and the combined
CMBþ PPTAþ LIGO and Virgo constraints are shown
in pink. This pink contour represents the current best
constraint from the direct GW experiments covering 21
decades in frequency. At a reference value of r ¼ 0.11, the
CMBþ PPTAþ LIGO and Virgo constraints yield an
upper limit of nt < 0.54. For smaller values of r, the
theoretical curves at the CMB frequency take on lower
values ofΩGW, which implies that higher-frequency experi-
ments play even more of a role in constraining nt than

Planck

... + BICEP2

... + SPTpol

PPTA

... + PPTA

Planck + 
BICEP2 + SPTpol

... + PPTA

... + LIGO and Virgo

... + aLIGO

 + PPTA(2020)

LIGO and Virgo

... + indirect

FIG. 2. Combined, two-dimensional posterior distribution for the tensor-to-scalar ratio r, and the blue tilt of the GW spectrum nt,
using CMB, PPTA, indirect, and LIGO observations. The contours are the 95% and 99% limits. The green, dashed curve shows the
consistency relation, nt ¼ −r=8, while the red and blue triangles correspond, respectively, to the red and blue curves in Fig 1. For clarity,
the right-hand panel is a zoomed-in version of the left-hand panel, with additional posterior distributions shown. See Sec. III A for a
description of each posterior distribution.

TABLE I. 95% C.L. upper limits on A and B as in Eq. (7). The
value of B is therefore the 95% upper limit of nt at a reference
value of r ¼ 0.11.

Experiment A B

CMBþ PPTA −0.13 0.68
CMBþ PPTAþ LIGO −0.06 0.54
CMBþ PPTAþ LIGOþ indirect −0.04 0.36
CMBþ PPTAð2020Þ þ aLIGO −0.06 0.34

GRAVITATIONAL-WAVE COSMOLOGY ACROSS 29 … PHYS. REV. X 6, 011035 (2016)

011035-7



comparatively lower-frequency experiments. For example,
at r ¼ 0.01, CMBþ PPTA constraints imply nt < 0.82,
while CMBþ LIGO and Virgo constraints imply
nt < 0.60. The 95% C.L. from the CMBþ LIGO con-
straint is well approximated by Eq. (7), where values for A
and B can be found in Table I.
Also in the right-hand panel of Fig. 2, we add the indirect

constraints described in Sec. II D to the direct constraints
(turquoise). This contour represents our total knowledge of
nt and r using all experimental constraints. In this case, at
r ¼ 0.11 we find nt < 0.36 at 95% C.L., and the upper
limit as a function of r is well approximated by Eq. (7),
where the values for A and B can be found in Table I.
From Fig. 2, it is clear that only direct observations of the

CMB constrain nt < 0. This makes sense in the context of
Fig. 1: given that the lever arm for the GW theory curves,
i.e., Eq. (4), are hinged at fCMB, a negative spectral index is
not constrained by experiments that are only sensitive to
values of ΩGWðfÞ higher than at the CMB.
Finally, in Fig. 2 we show the projected constraints that

one can expect by the year 2020 [dark blue, labeled
“� � � þ aLIGOþ PPTAð2020Þ”] assuming 5 more years
of PPTA observations and aLIGO at design sensitivity
(see Secs. II B and II C). These contours show that the
constraint for the spectral index improves to nt ≲ 0.34 at
r ¼ 0.11, and is well approximated by Eq. (7) with A and B
given in Table I. As is evident from Fig. 1, the constraint at
high nt will be dominated by aLIGO. Similar constraints
in the PTA band are not expected until the era of the
Square Kilometre Array and Five hundred meter Aperture
Spherical Telescope (FAST) (see, e.g., Refs. [39,75]).

B. Comparison with theory

In the previous section, we present stringent constraints
on the blue tilt of the primordial GW background from
experiments spanning 29 decades in frequency. These
results can be used to comment on early-Universe models.
Those models, whose spectral indices are near zero—or of
comparable magnitude to standard inflationary models—
are consistent with the data. String-gas cosmologies and
modified inflationary scenarios with nonminimal couplings
to gravity seem to be the least constrained, since these
models predict relatively small values of nt and are
unconstrained for even relatively large tensor-to-scalar
ratios.
Ekpyrosis has a tendency to predict large values of the

spectral tilt including nt ≈ 2 [23] that come from modes
freezing out of the horizon during the contracting phase of the
Universe. More modern incarnations of ekpyrosis produce
blue tilts, but with relatively low values of tensor-to-scalar
ratio r [26]. Here, our derivation of fitting formulas for nt as a
function of r (see Table I) allow specific ekpyrotic predictions
to be tested to arbitrary small values of r.
Our results will have important implications following

the detection of nonzero tensor-to-scalar ratio by a future

CMB experiment (see Ref. [76] and references therein).
(One should be cautious of the projected constraints from
Huang et al. [76]. Their Fisher matrix analysis necessarily
assumes the posterior distribution is Gaussian and, hence,
symmetric about some fiducial model. This is not the case
for nt, which allows for significantly larger positive values
than it does negative.) Such a detection, together with the
data from PTAs and ground-based interferometers, will put
very tight limits on nt, with larger values of r being the
most constraining. For example, a confirmed detection of
r ≈ 0.1 would put very tight bounds on nt with a strong
preference for small and positive values. Such tight con-
straints are truly a result of CMB bounds on the low-
frequency end and PTA, LIGO, and indirect bounds on the
upper end.
When a detection is made in any of the frequency bands

studied herein, it becomes even more pertinent to analyze
all experimental data, consistently taking into account the
spectral running αt. Indeed, in the case of a detection, upper
limits in each frequency band can be used to simulta-
neously constrain nt and αt; three or more experiments are
required to constrain both parameters. In a future work, we
will present three-dimensional posterior constraints that
include r, nt, and αt, and also incorporate predictions for
future CMB experiments. Distinguishing primordial back-
grounds from astrophysical foregrounds may be a daunting
task, though multiwavelength measurements could prove
useful toward this end.

IV. CONCLUSION

By combining limits from many different GW experi-
ments probing 29 decades in frequency, we present new
constraints on cosmological parameters nt and r, which are
intimately related to the evolution of the earlyUniverse. This
interdisciplinary research alsomakes significant advances in
PTA and LIGO and VIRGO and indirect GW limit analysis
techniques. Specifically, we present new PPTA data that
provide the most stringent limit on the primordial gravita-
tional-wave background, ΩGWðfÞ < 2.3 × 10−10, more
than a factor of 4 tighter than the previous best limit from
Ref. [61].Moreover, we develop and implement a method to
give the best limits on the primordial background from
ground-based interferometers—a method we anticipate
will become standard in future LIGO and Virgo primordial
background analyses. Furthermore, we provide a new
interpretation of indirect GW constraints from CMB tem-
perature and polarization measurements, lensing, BBN, and
BAO observations that allow for a varying primordial
spectral index, allowing us to directly compare these
“integral” constraints on ΩGW with the usual frequency-
dependent ΩGWðfÞ constraints. Our technique for compar-
ing direct and indirect limits can be widely adopted within
the GW community to avoid the confusion created from
“apples-to-oranges” comparisons.
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While Refs. [30,39,40] present constraints on nt and r
using combinations of CMB, LIGO, and PTA data, the
focus of their work was significantly different. Indeed, the
work of Meerburg et al. [30] and Huang and Wang [40]
were originally in response to the now defunct BICEP2
results [41,42], while Liu et al. [39] presented constraints
from only CMB and PTA data, but focused on what a
positive detection could do for our understanding of the
early-Universe equation of state, cosmic phase transitions,
and relativistic free streaming.
A direct comparison between our results and that of

Meerburg et al. [30] is not possible for a number of reasons.
Notably, they use a linear prior on r, which, together with
the use of the original BICEP2 results, ends in constraints
that are not bounded below. Figure 1, together with Eqs. (4)
and (5), shows that r should be unbounded below given
that there are no lower limits on the amplitude of ΩGWðfÞ
from any experiments. Moreover, Meerburg et al. [30] use
an unconventional pivot scale for the theoretical GW
spectrum (see, e.g., Ref. [32] for a discussion of the
optimal pivot scale).
Our results are significantly more constraining than those

of Liu et al. [39] (see their Fig. 7), most notably due to
the inclusion of indirect GW constraints. Our analysis
quantifies how large the spectral index of the primordial
spectrum nt can grow as a function of the tensor-to-scalar
ratio r; see Fig. 2 and Table I for a summary of the results.
Various theories of the early Universe predict a blue

primordial gravitational-wave spectrum [19,21,23,26], and,
indeed, some versions of ekpyrosis predict large values
of nt, which we can now rule out by our analysis—see
Sec. III B. Observations of the CMB alone only limit the
inflationary GW spectrum to nt ≲ 5 at a reference value of
the tensor-to-scalar ratio of r ¼ 0.11. Current observations
by the PPTA and initial LIGO and Virgo reduce this limit to
nt < 0.54 with 95% confidence, and including limits from
indirect GW observations reduces this to nt < 0.36. We
predict that observations by aLIGO at design sensitivity
(circa 2020) will reduce this constraint to nt < 0.34. All
upper limits on nt are applicable at a reference value of
r ¼ 0.11, but can be extrapolated to other values of r using
Eq. (7) and Table I.
Of course, it is a future direct detection of r that will

have the most important implications. Such a detection will
allow us to slice through the parameter space presented in
Fig. 2, providing significant constraints on parameters
governing theories of the early Universe.
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