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Tensor network algorithms provide a suitable route for tackling real-time-dependent problems in lattice
gauge theories, enabling the investigation of out-of-equilibrium dynamics. We analyze a U(1) lattice gauge
theory in (1þ 1) dimensions in the presence of dynamical matter for different mass and electric-field
couplings, a theory akin to quantum electrodynamics in one dimension, which displays string breaking:
The confining string between charges can spontaneously break during quench experiments, giving rise to
charge-anticharge pairs according to the Schwinger mechanism. We study the real-time spreading of
excitations in the system by means of electric-field and particle fluctuations. We determine a dynamical
state diagram for string breaking and quantitatively evaluate the time scales for mass production. We also
show that the time evolution of the quantum correlations can be detected via bipartite von Neumann
entropies, thus demonstrating that the Schwinger mechanism is tightly linked to entanglement spreading.
To present a variety of possible applications of this simulation platform, we show how one could follow the
real-time scattering processes between mesons and the creation of entanglement during scattering
processes. Finally, we test the quality of quantum simulations of these dynamics, quantifying the role
of possible imperfections in cold atoms, trapped ions, and superconducting circuit systems. Our results
demonstrate how entanglement properties can be used to deepen our understanding of basic phenomena in
the real-time dynamics of gauge theories such as string breaking and collisions.

DOI: 10.1103/PhysRevX.6.011023 Subject Areas: Particles and Fields,
Quantum Physics, Quantum Information

I. INTRODUCTION

The mechanism of quark confinement stands as a key
concept in our understanding of the fundamental inter-
actions in high-energy physics [1–4]. As a quark and an
antiquark are pulled apart, the energy stored in the gluon
string connecting them grows linearly with distance
because of the confining nature of strong nuclear forces
described by quantum chromodynamics (QCD). In gauge
theories hosting dynamical charges, there exists a critical
length scale at which the confining string breaks, creating
particle-antiparticle pairs that reduce the energy density in
the string and give rise to the hadrons at the string edges [5].
The static properties of string breaking have been widely

explored using a variety of lattice methods, wherein the

effective string potential separating static charges can be
extracted by the Polyakov or Wilson loops [6–8]. However,
the real-time dynamics of gauge theories is usually biased
by a severe sign problem and, as such, cannot be accessed
using lattice Monte Carlo (MC) simulations [9–11]. In this
paper, we apply tensor network (TN) methods in order to
study the real-time dynamics of a lattice gauge theory
(LGT) with dynamical charges and quantum gauge degrees
of freedom in one-dimensional systems. In particular, we
investigate the real-time string-breaking dynamics in
Abelian U(1) LGTs in (1þ 1)d, which share with QCD
the basic feature of confinement.
In recent years, efficient numerical methods based on

TNs have found widespread applications to the real-time
dynamics of strongly correlated low-dimensional systems
[12]. They are nowadays routinely used to tackle a variety
of condensed-matter and atomic physics problems, such as
the evaluation of spectral functions of low-dimensional
magnets and the quench or controlled dynamics of ultra-
cold quantum gases in optical lattices [13–26]. While TN
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methods have been extensively applied to spin and
Hubbard-type models, it has only recently been shown
how TNs can provide an ideal platform for the investigation
of gauge theories, for example, in the study of the static
properties of the Schwinger model, the low-energy mass
excitation spectrum, and the dynamics of deconfinement in
2DZ2 LGTs [27–37]. In particular, the quantum link model
(QLM) formulation of LGT [38–40]—gauge theories
whose link Hilbert space is finite dimensional—has been
used to develop efficient general-purpose TN algorithms to
describe static and real-time dynamical properties of
Abelian and non-Abelian LGTs, including generic forms
of matter fields, and to present different possible quantum
simulator implementations on different platforms: trapped
ions, cold atoms in optical lattices, and circuit quantum
electrodynamics (QED) [41–55] (see also Refs. [56,57],
and references therein, for recent reviews).
TN methods are based on variational tensor-structure

ansatze for the many-body wave function of the quantum
system of interest: The tensor structure is chosen to best
accommodate some general system properties, e.g., dimen-
sionality, boundary conditions, and symmetries, while a
controlled approximation is introduced in such a way that
one can interpolate between a mean field and an exact
representation of the system. Since it is a wave-function-
based method, one has direct access to all relevant
information of the system itself, including quantum corre-
lations, i.e., entanglement [58]. In one-dimensional sys-
tems, an efficient tensor structure is given by the matrix
product state (MPS) ansatz [12,14], defined as

jψMPSi ¼
X
~α

Aβ1
α1A

β1;β2
α2 …AβN−1

αN j~αi; ð1Þ

where the tensor A contains the variational parameters
needed to describe the system wave function, αi ¼
1;…; d characterize the local Hilbert space, and βi ¼
1;…; m account for quantum correlations or entanglement
(Schmidt rank) between different bipartitions of the lattice.
Indeed, setting m ¼ 1 results in a mean-field description,
while any m > 1 allows for the description of correlated
many-body states. Given the tensor structure, the tensor
dimensions and coefficients are then optimized to efficiently
and accurately describe the system properties by means of
algorithms that scale polynomially in the system size andm.
Usually, these algorithms exploit the system Hamiltonian
tensor structure, naturally arising from the few-body and
local nature of the interactions, to efficiently describe the
system ground state or low-lying eigenstates, or to follow the
real- or imaginary-time evolution of the system itself. Indeed,
in the TN approach, real- and imaginary-time evolution have
no fundamental differences at the computational level as
there is no sign problem, and limitations arise—only in some
scenarios depending on the specific dynamics of interest as
witnessed by the fast increasing literature appearing based on
this approach [12]—from the amount of quantum correla-
tions present in the system wave function.
Here, we show how TN algorithms allow for the study of

the real-time dynamics of LGTs, focusing on the string
breaking in a paradigmatic confining theory—the Schwinger
model [59–61] in a quantum link formulation. We character-
ize the real-time dynamics of the primary and secondary
string breaking and show that string breaking is intimately
related to entanglement production in the system. A quali-
tative picture for string breaking in our models, together with
a typical result for our time-dependent simulations on a
system of L ¼ 100 lattice sites, is illustrated in Fig. 1.

FIG. 1. Left panel: Hilbert space and gauge-invariant states of the QLM. (i) In the quantum link formulation, the gauge fields defined
on the links are described by spins (in our case, S ¼ 1). (ii) Staggered fermions represent matter and antimatter fields on a lattice
bipartition: On the even (odd) bipartition, a full (empty) site represents a particle (antiparticle). (iii) Hilbert space and gauge-invariant
states of the QLM. The Gauss law, Eq. (3), constrains the number of possible states at each lattice site. Notice that the Gauss law depends
on the lattice site because of the staggered fermions. Middle panel: Cartoon states for the different stages of the string-breaking dynamics
(see text). Here, the leftmost site is an odd one. Right panel: Sample simulation for the electric-field dynamics when quenching an initial
string state (B region) connecting two charges, and surrounded by the vacuum (A regions) form ¼ 0 ¼ g. Primary string breaking takes
place in four stages (C–F), until an antistring is created in place of the original string. The latter also decays during the secondary string
breaking. The shaded areas represent the wave fronts estimated from entanglement entropies (see Sec. IV), which are directly related to
the electric-field evolution.
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Even more importantly, our simulations allow us to track
the entanglement evolution during string breaking: As we
show below, string breaking and the so-called Schwinger
mechanism are intimately connected to entanglement
propagation, which we address by evaluating the so-called
von Neumann entanglement entropy. Finally, we show
that TN methods can be used to study scattering processes
between bound states of LGTs: We develop a scheme to
engineer meson collisions [62], and we show how, very
surprisingly, the scattering not only reveals an enhanced
rate of particle-antiparticle creation, but it also drastically
affects the entanglement properties of the system, which
stay significantly correlated well beyond the scattering
time window.
The paper is structured as follows: In Sec. II, we

present the system Hamiltonian and recall the TN
algorithm we are using throughout this work. In Sec. III,
we present the results on string breaking and mass
production dynamics, including a discussion on how this
phenomenon can be observed using a quantum simulation
platform. In Sec. IV, we show how entanglement follows
the string-breaking dynamics, providing a quantitative
picture that underlines how entanglement entropies are
directly tied to string breaking. Finally, we present our
result on scattering in Sec. V and draw a summary of our
results in Sec. VI.

II. MODEL AND METHODS

A. Model Hamiltonian: QED in ð1þ 1Þd
QED in ð1þ 1Þd, also known as the Schwinger model

[59], represents an ideal testing ground for the benchmark-
ing and development of new computational methods.
Despite its relative simplicity, this model captures funda-
mental aspects of gauge theories such as, e.g., the presence
of a chiral symmetry undergoing spontaneous symmetry
breaking [59–61,63–70]. Even more importantly, this
theory, like QCD, displays confinement: Differently from
ð3þ 1Þd QED, in ð1þ 1Þd electrons and positrons are
confined and interact via a long-range potential that
increases linearly with distance. Because of the large
energy cost associated with the electric flux between
charges at large intercharge distances, the electric flux
string is unstable to particle-antiparticle creation, as in
QCD, and string breaking takes place [71]. While this
phenomenon, directly connected to the Schwinger
mechanism of mass production out of a vacuum, has long
been debated, and notable insights have been provided
using a variety of approximate methods, a full quantum-
mechanical understanding of the complex real-time dynam-
ics taking place during string breaking is lacking because of
the computationally complexity of the many-body problem
[71–74].
In the Hamiltonian formulation, its dynamics is defined

by the following form:

H ¼ −tX
x

½ψ†
xU

†
x;xþ1ψxþ1 þ ψ†

xþ1Ux;xþ1ψx�

þm
X
x

ð−1Þxψ†
xψx þ

g2

2

X
x

E2
x;xþ1; ð2Þ

where ψ†
x, ψx are fermionic creation or annihilation

operators describing Kogut-Susskind (staggered) fermions
(see Fig. 1), Ux;xþ1 are the gauge fields residing on the
ðx; xþ 1Þ link, and we denote the strength of fermion
hopping (the kinetic energy of electrons and positrons) with
t, the staggered mass of the fermions with m, and the
electric coupling strength with g, where Ex;xþ1 is the
electric-field operator. The gauge generator is given by

~Gx ¼ ψ†
xψx þ Ex;xþ1 − Ex−1;x þ

ð−1Þx − 1

2
; ð3Þ

so that ½H;Gx� ¼ 0 and all physical states jΨi satisfy the
Gauss law ~GxjΨi ¼ 0. While in the Wilson formulation
Ux;xþ1 are parallel transporters acting on an infinite-
dimensional Hilbert space, we focus here on a formulation
based on QLMs, where the gauge fields are represented by
spin-1 operators, Ux;xþ1 ¼ Sþx;xþ1, Ex;xþ1 ¼ Szx;xþ1 and, as
such, act on a finite-dimensional link Hilbert space [45]. In
particular, the electric-field operator allows three possible
states for the electric flux, constraining the physical states
per site as described in Fig. 1. A detailed discussion of the
quantum link formulation can be found in Refs. [38–40],
while in Ref. [31], it was shown how such quantum link
formulation reproduces the phase diagram and quantum
criticality of the continuum theory.

B. String breaking and classical cartoon states

String breaking is the process of cutting and shortening
the electric flux string that connects a particle-antiparticle
pair by creating a new charge-anticharge pair [45]. Within
our framework, a string consists of two charges creating
nonzero electric flux between them. The charges are
represented by appropriate boundary conditions (static
charges) or by excitations of the mass field at the site of
the fermion (dynamical charges). This is realized by an
effective jump of a fermion from the site of one charge to
the site of the second charge satisfying the Gauss law. The
string of electric flux then follows from Gauss’s law. The
charges force the links into a nonzero flux state, according
to the configuration of the charges in either one direction or
the other. Before embarking on a full quantum-mechanical
investigation of string breaking, we now discuss the
classical (t ¼ 0) static picture, which provides a simple
yet informative illustration of the different stages of the
string-breaking mechanism. A set of cartoons of the
classical states is provided in Fig. 1.
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Vacuum.—In the vacuum (A), neither mass nor electric-
field excitations are present. The vacuum energy is thus
E0 ¼ −ðL=2Þm.
String.—In the string state (B), two mass excitations are

present at the boundaries, and all electric fields connecting
the two are also in the j þ 1i state. The resulting string
energy then takes the form

Estring − E0 ¼
g2

2
ðL − 1Þ þ 2m: ð4Þ

Pairs.—In the pair state (C), all the masses are excited,
forming charge-anticharge pairs with an energy Epairs ¼
ðg2L=4Þ þmL.
Mesons.—In a confined phase, particle-antiparticle pair

production can favor the establishment of a vacuum state
between two static charges, with a pair of mesons at the
boundary of the string [see (D)]. The resulting energy is

Emesons − E0 ¼ g2 þ 4m: ð5Þ

At the static level, string breaking takes place at a critical
distance Lc, above which the meson state is energetically
favored over the string state [EstringðLcÞ ¼ Emesons]:

Lc ¼
4m
g2

þ 3: ð6Þ

Antipairs and antistring.—The antipair state (E) and the
antistring (F) denote the pair state and the string with the
electric flux having the opposite sign.
At a dynamical level, string breaking takes place as a

consequence of the Schwinger mechanism: In ð1þ 1Þd, the
vacuum between two charges of opposite sign is unstable
against particle-antiparticle creation [71–74], eventually
leading to the electric field in the system flipping sign
and to mass production. In real time, this process develops
following intermediate consecutive steps and is schemati-
cally illustrated in Fig. 1: At very short time scales, particle-
antiparticle creation takes place in the middle of the string,
creating the pair state depicted in (C). Subsequently, the
electric field in the center of the string relaxes to 0, and the
external charges get screened, effectively forming mesons
(D). At this point, the process reverses, first establishing a
state with antipairs (E), which finally decays into a string of
an oppositely signed electric field with respect to the initial
state, an antistring (F).
String breaking is a direct consequence of confinement:

While in a deconfined phase such as QED in (3þ 1)d it is
possible to separate opposite charges at large distances
because of Coulomb’s law, in a confined phase the
corresponding electric-field string breaks because of the
effective potential between charges increasing as a function
of distance. However, the exact real-time dynamics of
string breaking is inaccessible to classical simulations

based on Monte Carlo sampling because of a severe sign
problem. While classical-statistical approaches can provide
remarkable insights in some parameter regimes [71–74]
such as small masses, unbiased numerical simulations for
arbitrary parameter regimes have been lacking. In the
following, we present a systematic study of the string-
breaking dynamics using MPS techniques.

C. Tensor networks for lattice gauge theories

Tensor network algorithms are among the paradigms for
simulating quantum many-body systems in low dimen-
sions, both in and out of equilibrium, via a representation of
the quantum state with a variational ansatz for wave
functions and/or density matrices [12].
For one-dimensional pure states, on which we focus

here, the starting point is to consider a class of states of the
form given in Eq. (1) and depicted in Fig. 2 with some fixed
auxiliary dimension m and physical dimension d: For
example, for spin one-half systems, one has d ¼ 2, while
the dimension m depends on the states studied and on the
desired accuracy. For ground states of one-dimensional
gapped Hamiltonians, m is, in general, independent of the

FIG. 2. Tensor network representations of a many-body quan-
tum system. (a) Any quantum state can be described via a tensor
Ψ of exponential dimension dN , where d is the dimension of the
local Hilbert space and N the number of sites. (b) In a MPS
representation, the wave function is characterized by N local
tensors A, each one of dimensionsm2d, wherem is the maximum
Schmidt rank allowed between different bipartitions. (c) Gauge-
invariant tensor network: The gauge-invariant state can be
represented via a tensor network state where a MPO imposes
the gauge invariance while a variational MPS accommodates for
the detailed description of the wave function.
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system size N, while for critical systems, because of area-
law logarithmic violations, the auxiliary bond dimension
scales as m ∝ c logN, where c is the central charge of the
system (see Ref. [75] for a review). The case of out-of-
equilibrium dynamics as considered here is more challeng-
ing, and no general picture is known; thus, the bond
dimension m has to be adapted to each specific case,
and convergence has to be checked by comparing the
results at increasing bond dimension [76,77].
Global symmetries of the system of interest, such as

particle number or global magnetization and even more
complex non-Abelian global symmetries, can be embedded
in thewave-function ansatz given inEq. (1) in an elegantway

by promoting each tensor A
βj;βjþ1
αj to a symmetry-sector

preserving tensor; that is, every index of the tensor is dressed
with the corresponding symmetry charge number [78–81].
This symmetric formulationof tensor networks allowsone to
describe wave functions exactly and more efficiently with
the desired quantum numbers, addressing each symmetry
sector separately. Recently, it has also been shown that
local symmetries—namely, gauge symmetries—can be
embedded in such a description by generalizing the wave-
function ansatz to a gauge-invariant one [31,32,34–36].
We briefly recall such a construction in the rest of this
section and tailor it to the model we study in the rest of
the paper.
The Hilbert space of a gauge-invariant system is given by

the direct sum of every sector with different values of the
“Gauss law,” ~GxjΨQLMi ¼ gxjΨQLMi and H ¼ ⊕gxHgx .
Because of the gauge symmetry, there is no physical
(e.g., gauge-invariant) operator, including the
Hamiltonian, that connects any two different sectors.
Hence, starting with a quantum state partially defined by
the values of the Gauss law, or a set of local (gauge)
constants of motion, the time-evolved wave function will
remain in this sector under the action of the Hamiltonian. In
the QLM formulation of LGTs, a gauge-invariant tensor
description is immediately obtained if we use a “rishon”
[40] or Schwinger representation of the gauge degrees of
freedom (independent of the nature of the local continuous
symmetry—Abelian or non-Abelian—and the dimension-
ality of the lattice [31]).
In our case, the Uð1Þ QLM in ð1þ 1Þd with a spin-1 per

link, the spin operator or electric field Ex;xþ1 ¼ SðzÞx;xþ1 is
represented by a pair of Schwinger bosons Ex;xþ1 ¼
1
2
ðnR;xþ1 − nL;xÞ with a total occupation of two bosons

per link, i.e., nR;xþ1 þ nL;x ¼ 2. The first step to build an
efficient tensor network representation of such states is to
identify a local Hilbert space spanned by the states jαi
defined on the tensor product of the fermionic matter field
on a lattice site and of the rishon states on its left and right,
that is, jαi ¼ jnR;x; nΨ;x; nL;xi. This allows for the projec-
tion of the state into the gauge-invariant subspace, restrict-
ing the local bases only to the “physical” states: In our

model, this process results in the five gauge-invariant states
(uniquely identified in terms of the Schwinger rishons for
even and odd lattice sites, respectively, and depicted in
Fig. 1 (left), given by [45]

odd∶ j1i ¼ j1; 0; 2i; j2i ¼ j2; 0; 1i; j3i ¼ j1; 1; 1i;
j4i ¼ j2; 1; 0i; j5i ¼ j0; 1; 2i;

even∶ j1i ¼ j1; 1; 0i; j2i ¼ j0; 1; 1i;
j3i ¼ j1; 0; 1i; j4i ¼ j2; 0; 0i;
j5i ¼ j0; 0; 2i: ð7Þ

These are the only states allowed locally by gauge
invariance (notice that the local Hilbert space is different
on even and odd sites as a consequence of the staggered
nature of the fermions). A gauge-invariant many-body state
clearly exists in the tensor product of such local basis states.
However, not all tensor product combinations are compat-
ible with the spin representation S: With our choices, only
the states with nR;xþ1 þ nL;x ¼ 2 are allowed. This addi-
tional constraint can be satisfied by modifying the tensor
structure of the many-body state ansatz, that is, by
introducing a projector that acts on nearest-neighbor lattice
sites and enforces the correct number of rishons on the
link [31,34].
Hence, the gauge structure of systems with a local

continuous symmetry can be encoded in a matrix product
operator (MPO) as depicted in Fig. 2, such that

jΨQLMi ¼
X
~α

Aβ1
α1A

β1;β2
α2 …AβN−1

αN

Bγ1
α1;α01

Bγ1;γ2
α2;α02

…BγN−1
αN;α0N

jα1α2…αNi: ð8Þ

For the model we study, the MPO has bond dimension three
(γ ¼ 1, 2, 3), and the nonzero elements of the tensors B for
the odd sites can be expressed as

Bγ{;γ{þ1

1;1 ¼

0
B@

0 0 0

0 0 1

0 0 0

1
CA Bγ{;γ{þ1

2;2 ¼

0
B@

0 1 0

0 0 0

0 0 0

1
CA;

Bγ{;γ{þ1

3;3 ¼

0
B@

0 0 0

0 1 0

0 0 0

1
CA Bγ{;γ{þ1

4;4 ¼

0
B@

0 0 0

0 0 0

0 0 1

1
CA;

Bγ{;γ{þ1

5;5 ¼

0
B@

1 0 0

0 0 0

0 0 0

1
CA: ð9Þ

The tensors for the even sites can be computed in a similar
way. Given the gauge-invariant tensor structure introduced
above, one can reformulate the standard algorithms for
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tensor networks to compute the ground state of the model,
or, as we will do in the next sections, compute the real-time
evolution of some initial state, e.g., by means of a Suzuki-
Trotter decomposition of the time-evolution operator acting
on a pair of neighboring sites [76,77]. The parameters used
in our calculation, together with a discussion of the errors
involved in the approximations, are presented in
Appendix A. Finally, we mention that one can further
simplify the tensor structure in Eq. (9) to increase the
algorithmic efficiency and that this construction is com-
pletely transparent with respect to the Abelian or non-
Abelian nature of the gauge symmetry, resulting in a drastic
simplification of numerical analysis of non-Abelian lattice
gauge theories [31,34].

III. STRING BREAKING

In this section, we present our results of the lattice-gauge
TN numerical simulations for the real-time dynamics of

string breaking. We focus on the time evolution of the
electric and matter fields, quantitatively studying the
properties of string breaking and of the Schwinger mecha-
nism. In the following section, we analyze the time
evolution of quantum correlations during this process—
an analysis enabled by the TN approach—and show that
the two figures of merit are intimately related.
The setup for our simulations is a dynamical string

surrounded by the vacuum. The total lattice length N ¼
100 is chosen such that boundary effects are negligible for
the time scales we investigate. Some typical results of the
electric-field time evolution are shown in the left column of
Fig. 3 (column A) for different values of the fermion mass
m and electric-field coupling strength g (hereafter, we set
t ¼ ℏ ¼ 1, and times are given in units of ℏ=t). In the top
row, the string freely breaks, as for g ¼ m ¼ 0 no energy
cost is needed for such a process to occur, and the system
evolves according to the free hopping Hamiltonian. The

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

FIG. 3. Real-time evolution of a string of electric flux of length L ¼ 20 embedded in a larger lattice (of lengthN ¼ 100) in the vacuum
state (the initial cartoon state is sketched on the left side of the figure with the notation of Fig. 1). The electric flux real-time evolution
(column A) is shown with the evolution of the mass excitations (column B) and the evolution of the bipartite von Neumann entropy
(column C) form ¼ 0, g ¼ 0 (line 1),m ¼ 0.25, g ¼ 1.25 (line 2), andm ¼ 3, g ¼ 3.5 (line 3). The von Neumann entropy is calculated
using a bipartition of the system defined via a cut between lattice sites x and xþ 1.
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electric field starts to oscillate between string and antistring,
displayingprimary, secondary (markedbyvertical lines), and
subsequent string breakings.Moreover, the string propagates
into the vacuum, creating two diverging electric-field exci-
tation wave fronts. In the middle row, representing the same
scenario for nonzero mass and electric-field coupling
strengths, string breaking still occurs; however, the string
evolution is damped and it stabilizes the mean electric flux
around zero. Finally, the large masses m and g suppress
vacuum fluctuations, while the large electric coupling
prevents the occurrence of string breaking; thus, the string
does not decay. However, some dynamics still occurs, as we
see in more detail in Sec. III B, as fermion-antifermion pairs
are created using the energy of the electric field and then
annihilated, thus restoring the electric-field excitations.
To perform a quantitative analysis of string breaking, we

repeat the same simulation for different values ofm and g and
analyze themean electric field of the central six lattice sites of
the string as a function of time. The results are reported in
Fig. 4, where one can clearly see that different scenarios
might occur: Either the string breaks when the mean electric
field drops below zero, or the electric flux remains positive
throughout the whole evolution and no string breaking
occurs. In the limit of m ¼ g ¼ 0, the oscillations show
the highest amplitude, which is reduced by changing at least
one of the two parameters; as previously noticed, for high
values of either system parameter, the string never breaks. In
the regime between these two extreme cases, we observe a
third type of behavior: The electric flux tends to zero.

However, no antistring is formed; the oscillation is strongly
damped, and the system remains in the broken string state
(compare with the middle row in Fig. 3). These findings are
summarized in Fig. 5. For g, m≲ 1, we observe the full
string-breaking dynamics with at least the partial formation
of a string with opposite electric-field flux after reaching the
broken string state (red area). For g, m≳ 1, string breaking
was not observed, and the dynamics is dominated by the
interplay of the state of maximum pair creation and the
original string (green area). Finally, thewhite area in between
represents the region of parameters where we observe the
string breaking with overdamped oscillations.

A. String wave-front spreading

During the string-breaking process, a wave front of
electric flux spreads outwards, as can be clearly seen in
Fig. 3 (panels A1 and A2). In this section, we quantitatively
characterize the wave-front spreading by analyzing its
spreading velocity and the oscillation intensity.
In Fig. 6, we show the wave-front propagation as a

function of time for different electric coupling g for the zero
mass case. The lower inset illustrates how we calculated
such propagation: We follow the electric-field excitation on
one side of the string by means of tracking the difference
ΔE between the gauge field at some position x and the
next-nearest-neighbor site xþ 2. Furthermore, we define
the timewhen this difference displays a maximum as arrival
of the wave front [82]. As can be seen from the lower inset
of Fig. 6, where different colors represent different coor-
dinates x, a wavelike propagation can be clearly identified.
Following this scheme, we plot the position of the wave

front as a function of time in the main panel of Fig. 6. The
result shows an approximatively linear spreading after an
initial transient time of about τ ≈ 2, with a velocity almost
independent of the values of the electric coupling for g < 1.
Increasing g starting from g ¼ 1, the velocity increases as
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FIG. 4. Mean electric field of the central six lattice sites as a
function of time τ for the electric coupling g ¼ 0.00, 0.25, 0.50,
0.75, 1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.50 (orange to light blue)
for m ¼ 0 (top panel) and m ¼ 0.25 (bottom panel). Primary
(secondary) string breaking occurs when the mean electric field
crosses the zero line from positive (negative) values.
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FIG. 5. State diagram of string breaking. The red area shows the
parameters where the string breaks and evolves into a negative
string (Emean < −0.15Emax). The white area represents the
parameters where the mean electric field approaches zero and
stays around that value (jEmeanj < 0.15Emax). And finally, the
green area represents the parameters without string breaking
(Emean > 0.15Emax).
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well, until g > 1.5, where the results are inconclusive, as
increasing g leads to smaller wave-front amplitudes.
Consequently, the errors bars prevent us from carrying
out an accurate analysis. However, for small g, the spread-
ing velocity can be extracted directly from Fig. 6. By fitting
the values for τ > 2=t and m ¼ 0, we obtain a value
of vE ¼ 1.96� 0.02.
Finally, in the upper inset of Fig. 6, we repeated this

analysis for different masses and g ¼ 0. The results clearly
show that, for sufficiently large m=t≳ 4, the wave-front-
spread velocity has an inverse linear dependence on the
mass. All these results are in agreement with a theoretical
estimate obtained by assuming the ends of the string as
sources of excitations: In a quasifree or weak coupled
model, the speed is related to the bandwidth of the kinetic
term, resulting in an excitation spreading velocity propor-
tional to vth ¼ 2=m.

B. Schwinger mechanism

During string breaking, the Schwinger model dynamics
exhibits particle-antiparticle pair production as a conse-
quence of the energy released from the external electric-
field string. This phenomenon is usually referred to as the
Schwinger mechanism and has been studied extensively
since its first presentation in 1951 [59]. In the following, we
provide a systematic investigation of the Schwinger mecha-
nism in the context of the U(1) QLM.
In our analysis, in the initial state defining the string, the

only two mass excitations present are the two dynamical

charges which create the string itself. However, during the
dynamics, the energy of the string is transformed into mass
excitations. When the maximum mass production is
reached, the particles start to annihilate, either to break
the string or to restore it. The time needed to reach the
maximum mass production τmax depends on the mass and
electric coupling as shown in Fig. 7. It clearly displays two
different behaviors, depending on whether the electric
coupling g is greater or less than 1. For small g, τmax is
maximal for m ¼ 0 and decreases monotonically with m.
This occurs, recalling the results of Fig. 5, in the regime
where string breaking is observable. Indeed, these are the
cases comparable to the top row in Fig. 3. On the contrary,
for larger values of g, we observe the maximum that occurs
form > 0. In particular, the maximum is obtained at a point
where the energy of the electric field approximately
matches the energy needed to fully convert the string into
particle pairs, i.e., m ¼ g2=4. This corresponds to the
dynamics as displayed in the bottom row in Fig. 3. In
the regime of high masses, we can use second-order
perturbation theory to estimate the mass dependence of
the mass-production time scale analytically, as the model
can be approximated as decoupled double-well potentials,
resulting in τmax ¼ ðπ=2=mÞ ≈ ð1.57=mÞ. We checked this
approximation by comparing the analytical estimate with
the numerical results in Fig. 8: The best fit results in
τmax ¼ ð1.54� 0.02Þ=m, in good agreement with the
theoretical prediction.

C. Observability of string breaking
in synthetic platforms

Recently, the implementation of Abelian quantum link
models has been envisaged on different platforms, such as
ultracold atom gases in optical lattices [45,46,52], trapped
ions [48], and circuit QED architectures [47,51]. In this
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FIG. 6. Spreading of the wave front of the electric field for
m ¼ 0 and g increasing from g ¼ 0 (blue) to g ¼ 1.5 (orange). A
linear fit for τ > 2 results in a velocity of vE ¼ 1.96� 0.02
(dashed green line). Inset (top left): Time needed for the wave
front to spread one lattice site as a function of m for g ¼ 0. Inset
(bottom right): Wave front as a function of time evolving from the
last site of the original string (x ¼ xi, blue) to the lattice site
x ¼ xi þ 16 (orange) for g ¼ 0. The wave front is calculated
using the electric-field difference ΔE ¼ Eðxþ 2Þ − EðxÞ.

FIG. 7. Time needed for the maximal mass production caused
by the Schwinger mechanism as a function of the mass for g ¼ 0,
0.5, 1, 1.5, 2, 2.5, 3, 3.5 (orange to light blue).
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context, the possibility of investigating the real-time
dynamics using TN methods provides an invaluable tool
to benchmark experiment against theory in ð1þ 1Þd, and to
address the role of possible imperfections in quantum
simulators.
Unavoidable imperfections that will be present in any

implementation can be detrimental to the observation of
both ground-state physics properties and real-time dynam-
ics. The former case has recently been investigated in the
context of adiabatic state preparation, where it was shown
how gauge-variant perturbations weakly affect the fidelity
of the loading process [33]. Here, we focus instead on
the effect of gauge-invariant imperfections on the string-
breaking dynamics. Different from gauge-variant terms, the
role of gauge-invariant imperfections cannot be systemati-
cally addressed in an experiment using, e.g., postselection
over the experimental data.
Following the implementation schemes in

Refs. [45,47,48], one of the most common forms of
gauge-invariant imperfections are nearest-neighbor inter-
actions between matter and gauge fields:

HI ¼ ξ
X
x

nxðSzx−1;x þ Szx;xþ1Þ; ð10Þ

with nx ¼ ψ†
xψx. This form of the imperfection is usually

generated as a resonant term in perturbation theory to next-
to-leading order with respect to t. While this implies t ≫ ξ,
for realistic implementations, the difference in magnitudes
between these two terms cannot be made arbitrarily large:
This will require small absolute energy scales, thus making
other sources of more detrimental imperfections such as
temperature (for the cold atom implementation) and dis-
order (in the circuit QED implementation) dominant. At a
qualitative level, this interaction term can freeze the system
into a configuration where the matter fields remain pinned.

This result is due to the effective attraction generated by the
nearby electric-field configuration.
To estimate the effects of these imperfections on a

quantum simulation of the dynamics considered in this
work, we repeat the numerical simulations including
realistic imperfections expected in a first generation of
experiments. In the top row of Fig. 9, we show the string-
breaking evolution of the electric field, in the presence of
HI , with the same system parameters as used for Fig. 3,
with imperfections of the order of 10%, ξ ¼ 0.1. The
results, including the imperfections, still clearly exhibit the
physics observed in the imperfection-free results. In gen-
eral, even the quantitative dynamics is very well captured
up to long time scales, as illustrated in the bottom row of
Fig. 9. The only exceptions are intermediate g and m
values, where significant discrepancies (up to 50%) are
observed for intermediate time scales (middle panel of the
last row). In all other regimes, we could observe deviations
up to a maximum of 15% caused by typical imperfec-
tions ξ ¼ 0.1.

IV. ENTANGLEMENT DYNAMICS

One of the key aspects of MPS-based methods is that
they give full access to the wave function during the real-
time dynamics. By considering the dynamics of quantum
correlations embodied by entanglement, this enables us to
tackle the string-breaking problem from a fully comple-
mentary viewpoint with respect to the electric-field and
mass-generation studies undertaken in the previous sec-
tions. The main question we want to address in this section
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FIG. 8. Large-mass behavior of the mass-production time
scale for g ¼ 0. The black line fits the data points with
τmax ¼ ð1.54� 0.02Þ=m. Inset: Log-log plot of the same data.

FIG. 9. Time evolution of the electric field, including imper-
fections of the type HI ¼ ξ

P
xnxðSzx−1;x þ Szx;xþ1Þ, with ξ ¼ 0.1

at the system parameters m ¼ 0, g ¼ 0 (left), m ¼ 0.25, g ¼ 1.25
(center), and m ¼ 3, g ¼ 3.5 (right). The bottom row shows the
difference from the result obtained without imperfection.
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is whether and to what extent entanglement plays a role in
the string-breaking dynamics.
In the last decade, it has been shown that entanglement

plays a fundamental role in many-body quantum processes,
from quantum-critical phenomena to quantum-information
theory and other fundamental aspects of quantum physics.
Moreover, several aspects of quantum field theories, such
as the static properties of conformal field theories, have also
been extensively studied using entanglement measures
[75,83]. Additionally, entanglement was shown to play a
crucial role in the limits of classical simulations of quantum
systems, calling for the need to develop quantum simu-
lators to overcome such limitations [12].
A common way to quantify entanglement for pure

quantum states is by using the so-called Renyi entangle-
ment entropies and, in particular, the von Neumann
entropy. Given a pure state with the density matrix
ρ ¼ jψihψ j, the entanglement entropy is given by the
von Neumann entropy of the reduced density matrix
ρðxÞ ¼ TrL−xρ [75]:

SðxÞ ¼ −TrfρðxÞ log2 ρðxÞg; ð11Þ

where SðxÞ is a measure of the entanglement of a bipartition
at the lattice site x. The entanglement entropy takes values
between SðxÞ ¼ 0 for a separable state (product state) and
SðxÞ ¼ log2 d, with d being the size of the Hilbert space,
for a maximally entangled state.

A. Von Neumann entropy after string breaking

In Fig. 3 (column C), we plot the time evolution of the
entanglement entropy for the three different cases consid-
ered before (panels 1–3): As it can be clearly seen, the
entanglement evolution resembles the mass and electric-
field excitations, indicating how the two phenomena are
related. First, the vacuum fluctuations for small g and m
generate not only mass and electric-field fluctuations but
also a large amount of correlations. Moreover, the electric-
field wave front is mimicked by the entanglement behavior,
once again showing that not only do excitations propagate
from the string but correlations do as well. Second, the
string-breaking process is clearly a two-step process: First,
a correlated pair is created in between odd-even sites and
later in between the even-odd sites (blue-yellow checker-
board pattern inside the string in panels C1 and C2).
Finally, for large g and m, when the string does not break,
the correlation behavior drastically changes as well. Within
the string, the correlations are built periodically only
between odd-even sites, while in the vacuum, the correla-
tions are drastically suppressed (panel C3).
A transparent picture of how entanglement is generated

during the quench dynamics can be gathered by monitoring
the entanglement growth at different points in space. In
Fig. 10, we show the entanglement time evolution for a set

of system bipartitions and parameters, e.g., cutting the
system in the middle of the string or in the vacuum.
The solid lines are results obtained for m ¼ 0 and g ¼ 0,

while the dashed lines correspond to the case m ¼ 3 and
g ¼ 3.5. The orange line represents the entanglement
growth for a partition at lattice site x ¼ 20, therefore in
the center of the lattice region starting in the vacuum. In the
zero-mass case, one can see that the entanglement entropy
grows almost linearly for most of the evolution—signaling
the vacuum instability against resonant particle-antiparticle
pair production. Towards the end of the evolution, the linear
growth breaks down as boundary effects start to play a role.
The remaining solid lines in Fig. 10 represent the behavior
of a partition between an even-odd lattice site (violet) and
between an odd-even lattice site (blue) and display a more
complex behavior. These results are obtained in the center
of the string while it breaks up; the counter-phase oscil-
lations indicate the competition of two states, together with
an overall growth of the entanglement entropy, though not
as fast as in the vacuum. As we have seen, in this regime,
the string breaking is a result of consecutive hopping
processes: Fermions hop on the lattice, creating mass
excitations followed by annihilations, which result in the
string breaking with two remaining dynamical mesons.
This dynamical process continues, and after two hopping
processes, the antistring is created. Figure 10 shows that
these dynamics are well captured by the oscillations of the
entanglement entropy. Each maximum represents one
hopping process: At the first maximum of the blue line,
the fermions are about to hop for the first time, while at the
first maximum of the violet line, the second hopping
process is at its peak, resulting in the broken-string state.
At around τ ≈ 4, the blue line does not display a maximum:
This “depleted region” signals the antistring state, where
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FIG. 10. Bipartite von Neumann entropy SðxÞ at m ¼ 0, g ¼ 0
(solid line), m ¼ 0.25, g ¼ 1.25 (dot-dashed line) and m ¼ 3,
g ¼ 3.5 (dashed line). Partition at the center of the initial string
(x ¼ 51, blue; x ¼ 50, violet) and in the vacuum (x ¼ 20,
orange).

T. PICHLER et al. PHYS. REV. X 6, 011023 (2016)

011023-10



the last hopping event creating the antistring is again the
first hopping to break the negative string (and thus, it takes
twice as long for the entropy to reach the next maximum).
In contrast, in the massive scenario (dashed lines), we see

that the entanglement entropy for the vacuum stays close to
zero as the large mass and electric coupling strongly
suppress the particle-pair creation that triggered the strong
growth of the entropy in the previous case. Moreover, in the
middle of the string, the entanglement entropy is drastically
affected: The blue dashed line initially behaves as the solid
line in the massless case, reflecting the samemass excitation
by pair creation. However, the violet dashed line always
remains close to zero as further evolution into the broken-
string state is energetically forbidden; the state evolves back
into the string, and the correlations between the even-odd
sites cannot be created. The system is then oscillating
between two almost degenerate states: the initial string state
and the state made out of pairs. This results in the oscillating
behavior of the entanglement entropy between zero and one.
Finally, the third case with m ¼ 0.25 and g ¼ 1.25 (dot-
dashed lines) lies between the two previous limiting cases:
Here, the string breaks but does not evolve into an antistring.
In the vacuum, the entanglement evolution is very similar to
the first case (m ¼ 0 ¼ g) as the entropy grows almost
linearly after a transient regime. However, the slope is
reduced by the nonzero mass. The entanglement in the
center of the string initially evolves as for the massless case,
but after the first two hopping processes for τ ≳ 2, the
oscillation turns into vacuumlike growth. This is a strong
indication for nonperiodic string breaking; the dynamics,
although unitary, resemble a dissipative process where the
electric-field energy irreversibly disperses into the vacuum.
This irreversible behavior directly resembles what we
observe in the electric-field dynamics, which does not
display any clear periodic signature.

B. Entanglement propagation and wave front

Even more remarkably, the real-space particle creation
and the entanglement dynamics are quantitatively tied. We
concentrate on the signatures of the wave front of the string
imprinted on the evolution of the entanglement entropy. We
consider the case m ¼ g ¼ 0 as it is characterized by the
most pronounced wave front, where the string with its slow
entanglement growth is embedded in the fast-growing
vacuum (see Fig. 3, panel C1). To characterize the
entanglement spreading due to the wave front, we exploit
the fact that the entanglement entropy in the vacuum is
constant in space even though it evolves in time. Therefore,
far enough from both sides of the string, there is a plateau of
constant entropy much higher than the entropy in the
middle of the string. Thus, to define the wave front of
entanglement spreading due to the string, one can look for
the lattice site at which the entropy plateau starts to
decrease. We identify this point by computing the differ-
ence of entropy between nearest-neighbor bipartitions;

tracking when this quantity becomes bigger than a given
threshold allows us to characterize the entanglement wave-
front spreading.
In Fig. 11, we show the estimated spreading velocity for

different values of the threshold; the limit for the threshold
value going to zero gives an estimate of the spreading
velocity. A power-law fit results in a spreading velocity of
vS ¼ 2.0� 0.2, in very good agreement with the analytic
estimate of vT ≃ 2 and the result from the electric field of
vE ¼ 1.96� 0.02, demonstrating the intimate connection
between entanglement and electric-field spreading.

V. MESON SCATTERING AND ENTANGLEMENT
GENERATION

Bound states are a fundamental component of gauge
theories, and understanding their complex internal structure
is one of the most ambitious goals of computational physics
[84]. In experiments, such internal structure is usually
explored by colliding heavy ions, so the energy released
during the process can be released via particle-antiparticle
creation. This makes the ab initio numerical simulations of
such scattering processes challenging, as MC simulations
suffer from a severe sign problem when tackling real-time
dynamics.
Here, we show how TN simulations allow us to inves-

tigate meson scattering for the ð1þ 1Þd QLM using TNs.
First, we present a general procedure to implement scatter-
ing processes between composite particles and discuss the
electric-field dynamics after the collision. Then, we present
results for the entanglement dynamics during and after the
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FIG. 11. Estimation of the spreading velocity v from the
entanglement entropy S. The wave front is defined as when
the entropy drops below a certain threshold value with respect to
the vacuum. The resulting fit using v ¼ vS − a=½log10ðΔSÞ −
S0�2 gives us an estimate for the spreading velocity of
vS ¼ ð2.0� 0.2Þ. Inset: Log-log plot of the same data adjusted
by vS and S0.
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collisions, showing that the meson collision is accompanied
by the creation of entanglement between the mesons
themselves. Indeed, as we will show, the entanglement is
bounded by the propagation wave fronts of the particles
after collision, and it is characterized by a constant plateau
of the entanglement entropy within the region.

A. Electric-field patterns during meson collisions

In order to produce the scattering process, we start with
two composite particles. Each particle is a charge-
anticharge pair and divided only by one link, namely, a
meson, with opposite momentum. For the two-meson
problem, there is a simple picture in the strong-coupling
limit: The massless theory is a free massive boson (meson)
theory that is expected to become weakly interacting once a
small mass term is included. Hence, in the strong-coupling
region, a possible two-meson bound state is loosely bound,
while in the weak-coupling region it is tightly bound.
We start the numerical simulation with the state repre-

sented in the cartoon (D) in Fig. 1: two mesons separated by
a vacuum state of ten sites, which can be straightforwardly
written in a simple, separable matrix product state with
t ¼ 0. We provide momentum to the mesons by adiabati-
cally moving them from the boundaries toward the center of
the system; this is done by introducing a deep box-shaped
potential that decouples the mesons from the rest of the
system, with the only dynamics allowed being the oscil-
lation between its position and a neighboring site. The box
potential is removed at time τi ¼ 17.4 when the meson is
exactly at half oscillation; from that point on, the mesons
evolve freely with an effective momentum mostly in one
direction, one towards the other and eventually colliding
[85]. In order to avoid vacuum fluctuations during the
process, we choose a large value of g ¼ 8. Figure 12 shows
an example of such a scattering process. In particular, it
shows the absolute value of the electric field of two mesons
approaching each other, colliding in the center and parting
again. While before the collision the mesons are tightly
bound, after the scattering process the electric field diffuses,
and the corresponding wave front has a significantly
attenuated signal. In the lower panel of Fig. 12, we monitor
the time evolution of the total particle number (blue), clearly
indicating that this quantity is approximately conserved over
the entire time evolution because of the large electric-field
strength, which suppresses particle-antiparticle creation.

B. Postcollision entanglement generation

A classical-like picture of the scattering process pre-
sented above would show two particles moving against
each other and then bouncing back, as there is not enough
energy available to generate a more complex inelastic
scattering. However, this picture is oversimplified, as this
is a fully quantum process. Indeed, one can, once more,
monitor the quantum correlations generated during the
scattering process. This is done in Fig. 13, where we show

FIG. 12. Scattering of two dynamical mesons using the system
parameters m ¼ 0, g ¼ 8. The plot illustrates the time evolution
of the electric field EðxÞ as a function of the position x. Lower
panel: Number of charges NB ¼ P

x∈Bnx in the system during
the evolution (blue: B ¼ f1;…; 32g), number of particles present
in the center (purple: B ¼ 16), and number of charges on either
side of the center (coinciding lines, red: B ¼ f1;…; 15g;
orange: B ¼ f17;…; 32g).

FIG. 13. Scattering of two dynamical mesons. Main panel:
Entanglement entropy SðxÞ using a bipartition between sites x
and xþ 1 as a function of time. After the scattering, the entropy
significantly increases in the system; this is a direct signature of
enhanced quantum correlations. Right panel: SðxÞ at different
times (see color bar), showing a clear plateau after the collision,
which enlarges as a function of time. The empty circles show the
current position of the maxima of the electric field which follow
approximately the meson’s center of mass. The dashed line
represents SðxÞ generated by a single meson, while the green
bar highlights the difference ΔS from the entropy of the
colliding mesons (difference between solid and dashed lines at
τ ¼ 120, xi ¼ 17).
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the evolution of the bipartite entanglement entropy; one
sees that entanglement is created and that it is mostly
carried by the two mesons. In this parameter regime, the
vacuum does not generate entanglement because of the
very large value of g2. Studying the bipartite entanglement
entropy for different bipartitions and times, one clearly sees
that there are two regimes: Before the scattering occurs, the
entanglement is present only in the bipartition that cuts the
meson wave packets, indicating two electron-positron wave
packets internally correlated but not sharing any quantum
correlations among them. To the contrary, after the scatter-
ing, the two wave packets become highly correlated even
when their two centers of mass are clearly separated (see
Fig. 12 for times τ > 100).
The values of the entanglement entropy indicate that one

ebit of quantum information has been created during the
scattering process. In the right panel of Fig. 13, we present
various cuts of the entanglement entropy profile taken at
different times, together with a comparison with the entan-
glement generated by a single meson moving through the
lattice (dashed line). The difference of ΔS ≈ 1 between the
two cases (highlighted in Fig. 13, green bar) clearly shows
that one additional ebit of entanglement has been generated
during the scattering process: that is, that a singlet state has
been created between the two indistinguishablemesons. The
entropy has increased as the information on which process
occurs (either mesons bouncing and moving back, or each
one moving freely through the other one and still moving
with its own momentum) is completely lost. Notice that this
is a direct consequence of the wave nature of the mesons:
The classical case of two scattering particles in one dimen-
sion—with the constraint that no double occupancy might
occur in a single matter site—would necessarily result only
in backscattering since the two hard classical particles
cannot pass through each other.

VI. CONCLUSIONS

We presented a detailed tensor network study on the real-
time dynamics of a lattice gauge theory in the presence of
dynamical charges and quantum gauge fields. Within this
approach, we have shown that one has direct access to all
local quantities of interest—the time evolution of the mass,
charge and gauge fields—and to the quantum correlation
between bipartitions of the system by means of the von
Neumann entropy. We investigated the primary and secon-
dary string breaking in QED in ð1þ 1Þd, represented by an
S ¼ 1 quantum link model with staggered fermions. In this
context, we studied the real-time evolution of the Schwinger
mechanism, leading to mass creation and annihilation by
means of the interplaywith the electric energy released by the
string. We quantified key properties of these effects such as
the mass production rate of the Schwinger mechanism and
the velocity of the electric-field spreading. Moreover, we
unveiled the relation between string-breaking dynamics and
the entanglement spreading in the systems, and we showed

that it is possible to study scattering dynamics, characterizing
not only mass and charge real-time evolution but also the
creation of quantum correlations among scattered particles.
Finally, we showed that the presented results can be, in
principle, verified experimentally in possible future quantum
simulations, as they appear to be robust with respect to the
most common sources of gauge-invariant imperfections
appearing in most of the proposed implementations.
This work paves theway to systematic studies of real-time

dynamical phenomena in Abelian and non-Abelian LGTs in
low-dimensional systems. Indeed, the present approach can
be straightforwardly generalized to more complex LGT and
geometries, e.g., ladders or cylinders, and can also be studied
in the presence of an external environment by means of, for
example, the tensor network approach presented inRef. [86].
Moreover, one can also study the continuum limit of theLGT
(as already discussed for Wilson theories [30]): For QLMs,
this can either be doneusingdimensional reduction [56] or by
increasing the quantum link representation, similarly towhat
was done in Ref. [29]. Notice that the gauge-invariant tensor
network formulation behaves favorably as the speedup it
grants scales as the number of rishons per link squared [34].
The unprecedented access to the entanglement dynamics in
LGTs will allow investigations on the role of quantum
correlations in different contexts, enabling a deeper under-
standing of the quantum real-time dynamics of lattice gauge
theories. Finally, exploiting the capability to prepare a wide
class of complex states granted from recent developments in
quantum optimal control of many-body quantum systems
[87,88], more complex dynamics could be investigated. One
example would be to perform extensive studies of the
scattering at different energies.
In addition, these methods can also be applied to study

condensed-matter systems to compute, e.g., response
functions of antiferromagnets described by LGT (spin ices,
resonating valence bond models, etc.), which are very
difficult to evaluate using MC because of analytic con-
tinuation [89]. Moreover, real-time dynamics of gauge
theories is fundamentally interesting to ab initio inves-
tigations of scattering equilibration and prethermalization
[56]. Finally, these methods can also be used to benchmark
and verify small quantum simulations whose proposals
have recently appeared for different platforms (ranging
from cold atoms to superconducting circuits and trapped
ions) and that can be foreseen to be experimentally
implemented in the next years [41–55].
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APPENDIX A: CONVERGENCE CHECKS OF
THE MPS SIMULATIONS

We investigated string breaking in a one-dimensional
system with up to 100 lattice sites. The simulation was
performed using a matrix-product-state (MPS) algorithm
with a second-order Suzuki-Trotter decomposition for the
time evolution. In this appendix, we present the parameters
we used for our simulations and provide a discussion on the
relative errors.
The main sources of numerical error in our calculations

are the finite bond dimension of the MPS-state representa-
tion and the Suzuki-Trotter time step. As a bond dimension,
we used a value up to χ ¼ 200, which ensures a truncation
error on the corresponding wave function of maximum
order 10−8 and 10−3 for τ ¼ 5 and 9, respectively, for
the string-breaking calculations, and 10−5 for τ ¼ 250 for
the scattering processes. Examples of the change of the
truncation error during the evolution can be seen in the inset
of the left panel in Fig. 14.

In order to make sure that these errors lead to small
changes in our main observables, we tested the conver-
gence of the mean electric field in the center of the chain
(cf. Fig. 4) for different values of χ and typical system
parameters. The results can be seen in the left panel of
Fig. 14, where we plot the mean electric field at the end of
the evolution (τ ¼ 8) as a function of the inverse bond
dimension 1=χ. The mean electric field was subtracted by a
fitted offset Elim to allow for a better comparison between
the two sets of system parameters. As we see from the plot,
even for rather small bond dimensions χ < 100, the change
to the largest bond dimension used (χmax ¼ 220) is on the
order of 0.1%–0.01%. For the bond dimension used in our
simulations (χ ¼ 200), the difference from the extrapolated
correct value is on the order of E − Elim ∼ 10−5.
As said before, we used a second-order Suzuki-Trotter

decomposition with a time step of δτ ¼ 0.01 to simulate the
time evolution. In the right panel of Fig. 14, we report the
convergence test obtained by repeating the same simulation
with different time steps. As expected, we find a clear E −
Elim ∼ δτ2 dependence. This clean power-law behavior
allows us to give a very good estimate of the correct value
of Elim. In summary, the error from the Suzuki-Trotter
decomposition using a time step of δτ ¼ 0.01 is of the order
of E − Elim ∼ 10−5, that is, of the same order as the error
introduced by the truncated bond dimension.

APPENDIX B: SCREENING OF CHARGES

From the earliest discussion of the Schwinger model, the
screening of static charges due to vacuum polarization has
attracted a lot of interest [61,64]. Recent semiclassical
calculations have reproduced this process including also
finite masses where it could be shown that the main
dynamics for m < g is mostly independent from the mass
[91]. Here, we show that it is possible to study such a process
using quantum linkmodels implemented in a tensor network
algorithm, already with very small spin representation, e.g.,
S ¼ 1. As the screening of charges can be observed only in
asymptotically large times, the large correlations building
up during the process have to be carefully kept under
control; otherwise, they would undermine the efficiency of
our approach. Thus, here we limit our system size to 20
lattice sites and encode the two static charges that build up
the initial string in the boundary conditions on both sides of
the lattice. In such a way, we avoid simulating the vacuum
regions where quantum correlations build up very quickly
(see Fig. 3) and are less interesting for the phenomena under
study. Thus, we simulate the time evolution of the string of
the electric field among the charges with a small but finite
mass: after a long time compared to other time scales of the
system (τ ¼ 400) when the largest fluctuations in the lattice
damped out. We report the final charge distribution qx
(averaged over the last τ ¼ 10 to remove the remaining
oscillatory effects) in Fig. 15. The net results is an
exponential decay of the charge density with the distance

FIG. 14. Convergence tests of the electric field E for the cases
m ¼ 0, g ¼ 0 (blue) and m ¼ 0.25, g ¼ 1.00 (orange). Left
panel: Difference of the computed electric field from the offset
E − Elim at τ ¼ 8 as a function of the inverse bond dimension χ.
The offset is obtained via a fit according to E ∝ ð1=χÞb þ Elim.
Inset: Truncation error during the time evolution for χ ¼ 200.
Right panel: Difference of the computed electric field from
the offset E − Elim at τ ¼ 2 as a function of the time step δt.
The offset electric field is obtained via a fit according to
E ∝ δtb þ Elim. The exponent b is in perfect agreement with
the expected value of 2.
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from the charges, as discussed in Ref. [91], where the
authors showed that the screening at m ≠ 0 is also equal to
that experienced by the massless Schwinger model, as qx ¼
a expð−bxÞwith a decay rate b ¼ g=

ffiffiffi
π

p
≈ 0.5642 [61]. The

parameter a ¼ expðbÞ − 1 is derived from the normaliza-
tion condition

P∞
x¼1 qx ¼ 1. It can be clearly seen that our

findings are compatible with the theoretical results from
Ref. [91] (black solid line in Fig. 15).
We stress that the goal of the analysis presented is to

show that it is possible to perform a study of the screening
of charges using tensor networks, not to perform a thorough
discussion, which will be presented elsewhere. Indeed, an
extensive numerical analysis is needed to individuate or
rule out possible deviations of the massive from the
massless case in a full quantum-mechanical model, the
influence of the spin representation in the quantum link
formulation, possible finite-size effects, and also more
challenging regimes of parameters, e.g., m ∼ 1 as shown
in Ref. [91]. However, the agreement between the results
presented and the semiclassical approach indicates that
both analyses are capable of describing the physics of the
system and might be alternative approaches that can
complement and benchmark each other.
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