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We propose and demonstrate a test of Lorentz symmetry based on new, compact, and reliable quartz
oscillator technology. Violations of Lorentz invariance in the matter and photon sector of the standard
model extension generate anisotropies in particles’ inertial masses and the elastic constants of solids,
giving rise to measurable anisotropies in the resonance frequencies of acoustic modes in solids. A first
realization of such a “phonon-sector” test of Lorentz symmetry using room-temperature stress-
compensated-cut crystals yields 120 h of data at a frequency resolution of 2.4 × 10−15 and a limit of
~cnQ ¼ ð−1.8� 2.2Þ × 10−14 GeV on the most weakly constrained neutron-sector c coefficient of the

standard model extension. Future experiments with cryogenic oscillators promise significant improvements
in accuracy, opening up the potential for improved limits on Lorentz violation in the neutron, proton,
electron, and photon sector.
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I. INTRODUCTION

The possibility that physics beyond the standard model
might violate Lorentz invariance [1–3] has motivated
experimental tests with high precision and broad scope.
In particular, experiments have placed stringent limits on
anisotropies in the laws of motion of the photon, electron,
proton, and neutron based on, e.g., electromagnetic cavities
[4–7], clock comparisons [8–13], magnetometry [14–18],
ultracold neutrons [19], and ion traps [20]. Some aniso-
tropic inertial masses of particles are known to be below
10−28 GeV [18], but others are more weakly constrained.
Bounding all modes of Lorentz violation often requires
active rotation and Earth’s orbit to modulate the orientation
and velocity of the apparatus, and thus data taking over a
year [11,21–23], but at the same time uses fragile and
maintenance-intensive atomic and optical setups. In this
paper, we introduce the concept of an acoustic test of

Lorentz symmetry, based on precision measurements of
phonon oscillations in a quartz crystal oscillator, demon-
strating a simple and reliable, yet sensitive, method that is
readily suited for long-term operation on a turntable or even
being carried on small air and space vehicles. Based on
commercial stress-compensated-cut quartz oscillators, we
limit the most weakly constrained mode of neutron-sector
violations in the standard model extension (SME) to
ð−1.8� 2.2Þ × 10−14 GeV, improving on previous labo-
ratory experiments [24] by 3 orders of magnitude and on a
previous astrophysics bound by about 1 order of magni-
tude. This rules out all possibilities for Lorentz-violating
anisotropies in the inertial mass of neutrons, protons, and
electron at the ∼10−14 GeV level. We show that future
experiments with cryogenic oscillators could be used to
perform more sensitive tests of Lorentz symmetry in the
proton, neutron, electron, and photon sectors.
Our method is the first to compare acoustic oscillations

in different directions to constrain Lorentz symmetry. In
this work, we show that the frequencies of the bulk elastic
waves are sensitive to the photon, electron, proton, and
neutron sector of the SME. The coefficients of the SME
that change the resonance frequency of acoustic modes in
solids are collectively referred to as phonon-sector coef-
ficients, in analogy to the photon sector. This work also
paves the way for future experiments that involve high-Q
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frequency stable phonon systems, which could be adapted
to test Lorentz symmetry. Such systems include, but are not
limited to, phonon lasers [25], optomechanical systems
[26–28], and phonon-induced Brillouin scattering devices
[29–33].
Hundreds of limits on Lorentz invariance violations do

exist [34], but there are as many gaps where large signals
may lie undetected. The gaps are typically left behind by
other technologies because filling them would take rotating
setups, long-term data taking, or operation in difficult
environments. Our method is well suited for this task.
We do note, however, that nonstandard phonon-sector
signals may exist for reasons other than encoded in the
SME, and this may lead to genuinely new tests of
fundamental laws of physics.

II. THEORY

A. Standard model extension

Lorentz invariance violation has been parametrized in
several ways; see e.g., Refs. [35–38]. We use a phenom-
enological framework known as the standard model exten-
sion [1–3] to describe the effects of Lorentz violation. It
augments the standard model with new combinations of
known particles and fields that lead to Lorentz violation,
subject to the requirement that the theory must respect
conservation of energy and momentum, renormalizability,
gauge invariance, and observer Lorentz covariance. The
new terms in the SME are parametrized by tensors, whose
component values are collectively known as Lorentz-
violation coefficients. If all such coefficients are zero,
Lorentz symmetry is exact. The value of these Lorentz-
violating coefficients is by definition frame dependent, but
can be taken as approximately constant in any frame that is
inertial on all time scales relevant to the experiment. It is
conventional to use a Sun-centered celestial equatorial
reference frame. Quantities in this frame are denoted by
capital indices T, X, Y, Z. The time coordinate T has its
origin at the 2000 vernal equinox. The Z axis is directed
north and parallel to the rotational axis of Earth at T ¼ 0.
The X axis points from the Sun towards the vernal equinox,
while the Y axis completes a right-handed system [34].

B. c coefficients

We study the influence of c-type coefficients in detail
here. Later, we give an overview of all fermion- and
photon-sector coefficients of the minimal SME and what
levels of sensitivity can be expected for them in phonon-
sector experiments.
The coefficients cμν enter the Lagrangian of a free Dirac

fermion w by substituting the Dirac matrix γ → γν þ cμνγμ,
where ν ¼ 0, 1, 2, 3 are the space-time coordinates [8]. The
term enters the nonrelativistic Schrödinger Hamiltonian of
a particle by the substitution

p2

2m
→

pjpk

2m
ðδjk − 2cwjk − c00δjkÞ; ð1Þ

where pj are the components of momentum, j, k ¼ 1, 2, 3,
and m is the particle mass. Thus, the c coefficients describe
anisotropies of the inertial mass of particles that depend on
the direction of its motion. (Though protons and neutrons
are composite particles, they are approximated as Dirac
fermions for the purpose of parametrizing Lorentz violation
at low energies.) The electron, proton, and neutron tensors,
ceμν, c

p
μν, and cnμν, are independent of one another, sym-

metric, and traceless with nine independent degrees of
freedom each.
For a composite object T that consists of nw particles of

species w, the effects of Lorentz violation in Eq. (1) are
given by effective coefficients

cTμν ¼
1

mT

X
w

nwmwcwμν; mT ¼
X
w

nwmw: ð2Þ

Not all of the basic cμν coefficients are physical. The
physical combinations are conventionally expressed by the
combinations [34]

~cwQ ¼ mwðcwXX þ cwYY − 2cwZZÞ;
~cw− ¼ mwðcXX − cYYÞ;
~cwJ ¼ mwjεJKLjcKL;
~cwTJ ¼ mwðcTJ þ cJTÞ;
~cwTT ¼ mwcTT: ð3Þ

We use these combinations throughout when stating
experimental results. We note that by these definitions,
~cTJ ≠ mcTJ.

C. Relative significance of the terms

The components of ~c encode independent degrees of
freedom for Lorentz violation. Knowledge of one or many
of them does not imply anything about the remaining ones.
By analogy, in the photon sector several different modes of
Lorentz violation exist, which are characterized by how
they transform under Lorentz boosts and rotations. Some of
them, the ~κeþ and ~κo−, have been bounded astrophysically
to an accuracy of 10−34 [39]. Other coefficients (denoted
~κe− and ~κoþ) remain unexplored by these types of obser-
vations. They are best studied by laboratory experiments,
which have been continuously improved from the original
ones by Michelson and Morley, Kennedy and Thorndike,
and Ives and Stilwell [40] to modern ones that reach down
to sensitivities of 10−18 [4–6,41,42]. But even those tests
leave behind a last remaining coefficient. This one, ~κtr, is
arguably the hardest to measure, as dedicated experiments
were set up to measure this remaining coefficient, and now
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all modes of Lorentz violation in the minimal photon sector
have been very stringently limited by experiment [5,43,44].
By comparison, the fermion sectors have been studied

less comprehensively. Here, also, some components of the
coefficients for Lorentz violation have been limited with
high precision, but others remain tested at low precision.

D. Influence of the fermion c coefficients
in crystal oscillators

The principle of our search for anisotropic inertial
masses is simple: We use a quartz oscillator performing
nominally 10-MHz oscillations on a turntable. If the inertial
mass of the quartz material in one direction is fractionally
higher by δm=m than in an orthogonal direction, then
rotating the crystal leads to a modulation of the oscillation
frequency by ðδν=νÞ ¼ − 1

2
δm=m. We use shear oscilla-

tions in a SC-cut quartz crystal. This modulation can be
measured, either by comparison to a stationary reference or
by comparison to a second oscillator on the turntable,
rotated by 90° relative to the first.
Finding the sensitivity of mechanical resonators to

Lorentz violation is possible by perturbation theory for
each eigenmode. Our experiment uses a stress compensated
cut [45] crystal bulk acoustic wave (BAW) piezoelectric
plate resonator working at the third overtone of the thick-
ness shear mode. This resonator is housed in an oven at the
temperature of around 85 °C, where the vibrational mode
exhibits zero temperature coefficient of its oscillation
frequency. The SC cut is doubly rotated relative to the
crystal axis by a first angle of θ ¼ 34.11° and a second
angle ϕ ¼ 21.93°. This also results in zero stress depend-
ence of the frequency, which reduces the dependence of the
frequency on the mounting of the crystal, amplitude
variations of the oscillation, and aging [46].

1. Unperturbed modes

The eigenmodes of doubly rotated piezoelectric plate
resonators have been studied in detail [47,48]. Because of
high Q factors (typically slightly above 106 at room
temperature) the eigenmodes may be considered isolated
mechanical oscillators. We introduce a plate coordinate
system x½i� (i ¼ 1, 2, 3) in which x½2� is normal to the major
surfaces of the doubly rotated quartz blank, x½1� is directed
along the axis of the second rotation, and x½3� is completing
a right-handed system (Table I). We denote u½i�ðt; xÞ the
components of the displacement of a volume element at x½i�
as a function of time t. We start by finding the modes that
depend only on the x½2� coordinate (“thickness modes”),

u½r� ¼ A½r� sinðηx½2�Þeiωt; ð4Þ

where

ð ¯̂c½2nr2� − c̄δ½nr�ÞA½r� ¼ 0: ð5Þ

The c̄½2nr2� are the piezoelectrically stiffened elastic con-
stants rotated into the blank coordinate system. Solving the
last equation yields three eigenvectors ðAð1−3ÞÞ½r�. These
eigenvectors are used as the basis of new “thickness”
coordinates xð1−3Þ, organized such that xðiÞ has its largest
component along x½i�. Analysis in the thickness mode
coordinates then yields three mode families, known as
quasilongitudinal (A) mode, fast shear (B) mode, and slow
shear (C) mode. For each family, the amplitude of one of
the displacement components in xðiÞ direction is large while
the others are small. Because of this smallness, the modes
nearly decouple, which makes it possible to find accurate
closed-form expressions for the eigenmodes.
The modes of interest here have the largest displacement

component along xð1Þ, which is approximately along the
x½1� axis. It can be written as [48]

u1nmp ¼ e−α1nx21=2Hmð
ffiffiffiffiffiffiffi
α1n

p
x1Þe−β1nx23=2Hpð

ffiffiffiffiffiffiffi
β1n

p
x3Þ; ð6Þ

where

α21n ¼
n2π2ĉð1Þ

8Rh30M
0
1n
; β21n ¼

n2π2ĉð1Þ

8Rh30P
0
1n
; ð7Þ

andHm is the Hermite polynomial of orderm. For the mode
used in a third-overtone SC-cut crystal at 10 MHz, n ¼ 3,
m ¼ p ¼ 0, M0

1n ¼ 5.3273, P0
1n ¼ 6.3858, ĉð1Þ ¼ 3.4379,

R is the radius of the blank, and h0 is the thickness,
which is 0.540 94 mm to make the resonance frequency
10 MHz [48].

2. Perturbation due to Lorentz violation

Since the motion of the volume elements is primarily in
the x½1� direction, Eq. (1) predicts that

p2
½x�

2m
→

p2
½x�

2m
ð1 − 2c½xx� − c½00�Þ; ð8Þ

TABLE I. Coordinates used in this paper.

Name Notation Description

Blank x½1� Axis of second crystal rotation;
approximately direction of shear

x½2� Normal to major blank surface
x½3� Completes right-handed system

Thickness xðiÞ Parallel to thickness modes
Lab x1 ¼ x Horizontally pointing south

x2 ¼ y Horizontally pointing east
x3 ¼ z Vertically upwards

Sun-centered xT ¼ T T ¼ 0 at 2000 vernal equinox
xX From Sun towards vernal equinox
xY Completes right-handed system
xZ Parallel to Earth’s axis pointing north
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which is equivalent to a rescaling of the inertial mass by
1þ 2c½xx� þ c00. Solids are composite objects; summing up
the contributions of the rescalings in the electron, proton,
and neutron sectors amounts to replacing the coefficients
by the effective coefficients Eq. (2). This leads to a relative
change in the resonance frequency of

δν

ν
¼ − 1

2
ð2cT½xx� þ cT00Þ:

To study a simple case first, we may assume that all
coefficients of Eq. (3) are zero except for ~cQ, that the
experiment with two rotating quartz oscillators is located at
the equator with the ½x� axis horizontal and rotated around a
vertical axis at an angular velocity of ωt. This would lead to
a modulation amplitude of δν=ν ¼ cQQ=4, where the super-
scriptQ indicates we are using the effective combination of
coefficients for quartz.
For the general case, we calculate the components c½xx� in

the crystal frame, rotating on the turntable, from the cμν in
the Sun-centered frame. This involves Lorentz boosts and
rotations [8]. We denote ωt the angular velocity of the
turntable measured in the lab frame, ω⊕≈2π=ð23h56minÞ,
and Ω⊕ ¼ 2π=ð1 yÞ the sidereal angular velocities of
Earth’s rotation and orbit, respectively, χ is the colatitude

of the laboratory in which the experiment is performed
(χ ≈ 52.13° for the current experiment in Berkeley,
California), and η ≈ 23.4° is the angle between the ecliptic
and Earth’s equatorial plane.
The signal either includes contributions of order 1, or is

suppressed by the Earth’s orbital velocity β⊕ ≈ 10−4. We
neglect contributions from signals suppressed by higher
powers of β⊕ or by the velocity of the laboratory due to
Earth’s rotation βL ≈ 10−6. We express the measured
frequency variation as a Fourier series,

δν

ν
¼ 1

8

X
l;m;n

ðClmn cosωlmnT þ Slmn sinωlnmTÞ; ð9Þ

where the factor of 1=8 is to simplify the Fourier
coefficients Clmn, Slmn, and

ωlmn ¼ lωt þmω⊕ þ nΩ⊕: ð10Þ

The Fourier coefficients are listed in Tables II and III. For
the purpose of these tables, we use the definitions

TABLE II. Signal components for one rotating crystal oscillator compared against a stationary reference that is not affected by the c
coefficients. Signal components suppressed by β2⊕ and higher powers are omitted. These coefficients are to be inserted in Eq. (9) and are
multiplied by 1=8 to give the frequency change.

l; m; n cos sin

dc −2cTQðsin2 χ − 2Þ
0,0,1 2½−2cTTZ sin ηsin2χ þ cos ηcTTYðsin2χ − 2Þ�β⊕ 2ð1þ cos2 χÞcTTXβ⊕
0, 1, −1 2 cos χ sin ηβ⊕cTTX 2 cos χ½cTTZð1þ cos ηÞ þ cTTY sin η� sin χβ⊕
0,1,0 −2 sin χð2 cos χcTY þ cT− sin χÞ −4 cos χ sin χcTX
0,1,1 2 cos χcTTX sin η sin χ 2 cos χ½ðcos η − 1ÞcTTZ þ cTTY sin η� sin χβ⊕
0, 2, −1 ð1þ cos ηÞðcos2 χ − 1Þβ⊕cTTY −ð1þ cos ηÞðcos2 χ − 1ÞcTTXβ⊕
0,2,0 2ðcos2 χ − 1ÞcTZ
0,2,1 ðcos η − 1Þðcos2 χ − 1ÞcTTYβ⊕ −ðcos η − 1Þðcos2 χ − 1ÞcTTXβ⊕
2, −2, −1 ðcos η − 1Þð1 − cos χÞ2cTTYβ⊕=2 ðcos η − 1Þðcos χ − 1Þ2cTTXβ⊕=2
2, −2, 0 cT−ð2 − 2 cos χ − sin2 χÞ þ 2ð1 − cos χÞcTY sin χ −ðcos χ − 1Þ2cTZ
2, −2, 1 ð1þ cos ηÞð1 − cos χÞ2cTTYβ⊕=2 ð1þ cos ηÞðcos χ − 1Þ2cTTXβ⊕=2
2, −1, −1 ðcos χ − 1Þ sin η sin χcTTXβ⊕ −ðcos χ − 1Þ½ðcos η − 1ÞcTTZ þ sin ηcTTY � sin χβ⊕
2, −1, 0 2ðcos χ − 1ÞcTX
2, −1, 1 ðcos χ − 1ÞcTTX sin ηβ⊕ −ðcos χ − 1Þ½cTTZð1þ cos ηÞ þ cTTY sin η� sin χβ⊕
2, 0, −1 ðcos ηcTTY − 2cTTZ sin ηÞ sin2 χβ⊕ −ð−1þ cos2 χÞcTTXβ⊕
2,0,0 −2cTQ sin2 χ
2,0,1 −½cos ηðcos2 χ − 1ÞcTTY þ 2cTTZ sin η sin

2 χ�β⊕ ðcos2 χ − 1ÞcTTXβ⊕
2, 1, −1 ð1þ cos χÞ sin η sin χβ⊕cTTX ð1þ cos χÞ½cTTZð1þ cos ηÞ þ cTTY sin η� sin χβ⊕
2,1,0 −2ð1þ cos χÞ sin χcTY −2ð1þ cos χÞcTX
2,1,1 ð1þ cos χÞcTTX sin ηβ⊕ ð1þ cos χÞ½ðcos η − 1ÞcTTZ þ cTTY sin η� sin χβ⊕
2, 2, −1 ð1þ cos ηÞð1þ cos χÞ2β⊕cTTY=2 −ð1þ cos ηÞð1þ cos χÞ2cTTXβ⊕=2
2,2,0 cT−ð2þ 2 cos χ − sin2 χÞ ð1þ cos χÞ2cTZ
2,2,1 ðcos η − 1Þð1þ cos χÞ2cTTYβ⊕=2 −ðcos η − 1Þð1þ cos χÞ2cTTXβ⊕=2
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cTQ ¼ cTXX þ cTYY − 2cTZZ;

cT− ¼ cTXX − cTYY; cwJ ¼ jεJKLjcTKL;
cTTJ ¼ cTTJ þ cTJT; cTTT ¼ cTTT; ð11Þ

similar to Eq. (3) but without the factor of particle mass.
They are related to the physical, single-particle coefficients
~c by, e.g., cTQ ¼ P

wη
w ~cwQ, and so on. In this equation,

ηw ¼ nw=mT is the number of particles of species w per
mass of the composite object. For naturally abundant
quartz, the numbers of electrons, protons, and neutrons
are quite similar and ηe ≃ ηp ≃ ηn ≃ 0.53=GeV.

III. PRELIMINARY EXPERIMENT WITH
ROOM-TEMPERATURE OSCILLATORS

Optimized phonon-sector experiments will be able to
improve bounds in all fermion sectors of the SME, as we
see below. For our current experiment, however, we focus
on the neutron sector. Existing limits on the proton- and
electron-sector coefficients are at levels somewhat below
the sensitivity of this preliminary experiment [34].

A. Previous neutron-sector limits

The most sensitive experiments to determine limits
on the ~c~n for neutrons are based on magnetometry
[8,15,18,49–51]. In particular, a neon-rubidium-potassium
comagnetometer has been used, which simultaneously
senses the influence of background magnetic fields and
the signal for Lorentz violation. This bounds the four
spatial components ~cnJ , ~c to the very low level of 10−29 [18].
Limits on the fifth, cnQ, are not available from this

experiment, but are available from tests of the weak
equivalence principle [24] and astrophysics [52].
Without making untested assumptions about the character
or degree to which Lorentz symmetry is broken in other
sectors of the SME, the best laboratory limit on cnQ is j~cnQj<
10−8GeV [24]. Assuming that the αaeff coefficients vanish,
an improved limit of 10−11 GeV is possible [24].
Astrophysics studies of the stability of cosmic-ray protons
yields j~cQj<2×10−13 GeV and j~cTJj<5×10−14GeV [52].
The temporal ~cnTT have been measured in atom interfer-
ometry [53].

B. Setup

Our experiment (Fig. 1) uses active rotation at a
frequency of ωt ¼ 2π × 0.36 Hz on a precision air-bearing
turntable. Relative to experiments based solely on Earth’s
rotation, this increases the signal frequencies and thus
allows us to suppress the drift of the oscillators due, e.g., to
aging or temperature instability. The turntable (Professional
Instruments, model 10R-606) is specified to 0.1 μrad tilt of
the rotation axis and <25 nm radial and axial wobble, and
has a specified stiffness of 10 Nm=μrad. We use two
oscillators that are rotating on the turntable and that are
directly compared on the turntable. This avoids the need to
bring the signals in or out of the turntable. (The target
accuracy of 10−13 out of 10MHz requires us to detect phase
modulations of microradian size; any modulations intro-
duced when transmitting the signal from the turntable to the
stationary laboratory frame would be synchronized with
the putative signal, and none of the available methods can
be trusted to not introduce tiny phase or amplitude
modulations.) The oscillators (Stanford Research

TABLE III. Signal components for an experiment with two rotating crystal oscillators compared against one another. Components
suppressed by β2⊕ and higher powers have been omitted. These coefficients are to be inserted in Eq. (9) and are multiplied by 1=8 to give
the frequency change.

l, m, n cos sin

dc −4cTQ cosð2θÞ
2, −2, −1 ðcos η − 1Þðcos χ − 1Þ2cTTYβ⊕ ðcos η − 1Þðcos χ − 1Þ2cTTXβ⊕
2, −2, 0 2ðcos χ − 1Þ2cTM 0
2, −2, 1 ð1þ cos ηÞð−1þ cos χÞ2cTTYβ⊕ ð1þ cos ηÞðcos χ − 1Þ2cTTXβ⊕
2, −1, −1 2ðcos χ − 1ÞcTTX sin η sin χβ⊕ 2ð1 − cos χÞ½ðcos η − 1ÞcTTZ þ cTTY sin η� sin χβ⊕
2, −1, 0 4ðcos χ − 1ÞcTY sin χ 4ðcos χ − 1ÞcTX sin χ
2, −1, 1 2ðcos χ − 1ÞcTTX sin η sin χβ⊕ 2ð1 − cos χÞðcTTZ þ cos ηcTTZ þ cTTY sin ηÞ sin χβ⊕
2, 0, −1 2 sin2 χðcos ηcTTY − 2cTTZ sin ηÞβ⊕ 2 sin2 χcTTXβ⊕
2,0,0 −4 sin2 χcTQ 0
2,0,1 2 sin2 χðcos ηcTTY − 2cTTZ sin ηÞβ⊕ −2 sin2 χcTTXβ⊕
2, 1, −1 2ð1þ cos χÞcTTX sin η sin χβ⊕ 2ð1þ cos χÞðcTTZ þ cos ηcTTZ þ cTTY sin ηÞ sin χβ⊕
2,1,0 −4ð1þ cos χÞcTY sin χ −4ð1þ cos χÞcTX sin χ
2,1,1 2ð1þ cos χÞcTTX sin η sin χβ⊕ 2ð1þ cos χÞ½ð−1þ cos ηÞcTTZ þ cTTY sin η� sin χβ⊕
2,2, −1 ð1þ cos ηÞð1þ cos χÞ2cTTYβ⊕ −ð1þ cos ηÞð1þ cos χÞ2cTTXβ⊕
2,2,0 2cT−ð1þ cos χÞ2 2ð1þ cos χÞ2cTZ
2,2,1 ðcos η − 1Þð1þ cos χÞ2cTTYβ⊕ ð1 − cos ηÞð1þ cos χÞ2cTTXβ⊕
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Systems SC-10) are signal generators classified as ovenized
voltage-controlled crystal oscillators based on quartz SC-
cut BAW resonators. The oscillators are specified to an
Allan variance of 2 × 10−12 at 1 s averaging time. All
components are highly reliable and covered with a mu-
metal shield, allowing the experiment to take uninterrupted
data over long stretches of time.
Directly comparing the frequency of the oscillators via

an available frequency counter is limited to a resolution of
about 10−11 in 1 s by the ∼100-ps timing resolution of the
device. Much higher resolution can be achieved by using a
double-balanced mixer (Mini-Circuits RPD-1) to measure
the phase difference between the oscillators. We use the
mixer’s internal signal transformers to provide galvanic
isolation between the quartz oscillators and the dc circuits
(the RPD-1 allows the three ports to have separate grounds)
to avoid dc signal errors through ground loops, given the
large supply current of the quartz ovens. The output signal
of the mixer is preamplified 1000 times and the resulting
voltage U is digitized on the turntable. The digital signal is
brought out of the turntable via a universal serial bus

connection through slip-ring contacts. Power at 15 V is also
supplied via slip rings.
On time scales much longer than the rotation period of

our turntable, we phase lock the oscillators together so that
the mixer may always operate close to 90° phase difference,
i.e., near-zero output signal. The effective frequency-to-
voltage conversion factor measured at the mixer output is
thus zero at extremely low frequencies, where any voltages
are removed by the feedback loop; at high frequencies,
where the feedback is ineffective, the factor is given purely
by the mixer itself. We measure the conversion efficiency of
the mixer as a frequency discriminator by replacing one of
the quartz oscillators with a digital synthesizer that pro-
vides a known frequency modulation. Figure 2 shows the
measured response function. At our signal frequency of
2ωt ∼ 2π × 0.76 Hz, we obtain δν ¼ ΔU=ð1.3 V=HzÞ.
The turntable is driven by an unregulated dc motor. Even

small changes of the rotation rate accumulate to a large
angle offset over time. We, therefore, use a light gate as a
rotation encoder that delivers one pulse per turn to the
computer, resetting the angle scale of the turntable rotation.
The computer then interpolates linearly assuming a
constant rotation rate during one turn.

C. Results

The system proves to be extremely reliable and capable
of unattended operation. Figure 3 shows the amplitude
Fourier transform of 120.0 h of data (about 164 000
turntable rotations). Zooming into the region close to the
expected signals around 2ωt (Fig. 4) reveals sine and cosine
amplitudes that are normally distributed with a standard
deviation of σ2 ¼ hA2

ci ¼ 32 μV after amplification. The
measured signal at 2ωt is −26 μV. This corresponds to
ð−26� 32Þ nV at the mixer output and, thus, δν=ν ¼
ð−2.0� 2.4Þ × 10−15; see Fig. 2.

FIG. 1. Schematic of the room-temperature experiment.
(a) Crystal blank showing coordinates x½1−3�, the direction of
propagation, and the direction of the displacement of the shear
mode. (b) Orientation of a shear relative to the turntable plane.
(c) Frequency comparison on the turntable: The phase between
two 10-MHz ovenized, voltage-controlled crystal oscillators
(OVCXO) is detected by homodyne detection using a double-
balanced mixer (DBM). Phase lock with a PI feedback controller
keeps the DBM operating near zero output voltage. The feedback
is very slow, leaving the oscillators essentially free-running on the
time scale of the turntable rotation rate and its harmonics. The
DBM output is amplified by a low noise amplifier (LNA) and
acquired after analog-to-digital (A/D) conversion. All compo-
nents are enclosed in a cylindrical dual-layer mu-metal magnetic
shield (not shown).

102101100
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FIG. 2. Conversion efficiency of the mixer as frequency
discriminator, measured with the phase-lock loop closed by
inserting a signal having a known frequency modulation.
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The signal for Lorentz violation (Table III) has compo-
nents at various frequencies around 2ωt. At our present
accuracy, we restrict our analysis to the effect of cQQ,
which causes a signal proportional to cosð2ωtTÞ. For its
amplitude, we find δν=ν ¼ 1

2
sin2 χcQQ ≃ 0.31cQQ. In the

experiment, however, the axes of the oscillators are
oriented 45° relative to the rotation axis, which we take
into account by a factor of sin 45°. We thus find cQQ ¼
ð−0.9� 1.1Þ × 10−14 on the effective coefficient for nat-
urally abundant quartz, which translates into a limit of
~cnQ ¼ ð−1.8� 2.2Þ × 10−14 GeV on the neutron-sector
coefficient.
Systematic effects of quartz oscillators, such as aging,

temperature fluctuations and thermal hysteresis, acceler-
ation, magnetic fields, power supply voltage, load imped-
ance, electric fields, ionizing radiation, and ground loops,

are well understood. At our current resolution, most
systematics are negligible, so here we discuss the largest
two effects: We measure the acceleration sensitivity of our
quartz oscillators by inverting them relative to Earth’s
gravitational acceleration g. For the most sensitive axis,
we find δν ∼ 20 mHz=2g. The turntable wobble is specified
to be less than 25 nm radially and axially. If we conserva-
tively assume that this wobble contributes a 2ωt frequency
component (in reality, the energy of the wobble is likely
spread out over many Fourier components), the corre-
sponding acceleration is 25 nm × 4ω2

t ∼ 0.14 × 10−6 g,
which produces frequency changes of 2.8 nHz.
Changing magnetic fields induce voltages into our wiring.
Assuming 1 G and an enclosed area of 1 cm2 at the
turntable frequency 2ωt (conservatively assuming that all
the magnetic field will contribute to the second harmonic of
the turn table rate), we obtain an induced voltage of
∼40 nV, comparable to our signal size. For this reason,
we enclose the entire setup up to and including the
amplifier in a two-layer mu-metal shield, which should
reduce this influence at least ∼100-fold.

D. Cryogenic experiment

The quartz bulk acoustic wave technology provides the
most stable oscillators in the medium- and high-frequency
range (1–50 MHz) between 1 and 30 s of averaging time.
Such oscillators are also the most stable macroscopic
mechanical harmonic oscillators, with fractional frequency
stabilities as low as 2.5 × 10−14 [54] for room-temperature
devices. Over the past decade there has been no major
improvement in quartz oscillator performance at room
temperature, mainly due to the quartz resonator self-noise.
For this reason, the electrodeless [or boîtier à vieillissement
amélioré, enclosure with improved aging (BVA)] [55]

FIG. 3. Fourier transform of 120 h of data. Frequency is
measured in multiples of the turntable rotation frequency. The
inset shows the region around the expected signals.

FIG. 4. Cosine (a) and sine (b) Fourier transform around 2ωt.
The arrow points out the putative signal at 2ωt.

FIG. 5. Schematic view of a BVA (boîtier à vieillissement
amélioré, enclosure with improved aging) BAW quartz resonator.
The vibrating quartz body, resonator blank, is held by a quartz
support deposited electrode. The resonator is fabricated in a
plano-convex geometry that traps vibration in the disk center.
Electrodes are deposited on the support and separated from the
plank by a small vacuum gap.
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BAW quartz resonators (see Fig. 5) have been investigated
for cryogenic operation. These investigations reveal
extremely high values of the quality factors exceeding
109 [56,57], as well as an ability to operate at high
overtones [58], providing a new platform for many physical
experiments [59,60], for example, detection of high-fre-
quency gravitational waves [61] and cooling a macroscopic
object to its ground state for tests of fundamental physics
[58,62]. Table IV gives values of quality factors for some
overtones measured in a 4 K environment.
Such a significant increase of the quality factor may

result in reduction of the oscillator fractional frequency
stability. Assuming that the dominant flicker noise
of the resonator at 1 Hz from the carrier Sϕð1 HzÞ∼
−130 ðdBc =HzÞ does not change between cryogenic
and room temperatures, the Allan deviation of a cryogenic
source may be estimated to achieve a level of

σy ¼
1

2Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2Sϕð1 HzÞ

q
∼ 2 × 10−16: ð12Þ

BAW resonator aging is a systematic drift of its resonant
frequency that can be typically observed at long averaging
times. This process usually gives a slope of τ1 (where τ is
the integration time) in the Allan deviation curve domi-
nating over the τ1=2 law resulting from thermal fluctuations
for averaging times over 103 s. The aging process can be
caused by a number of effects primarily related to manu-
facturing. This process is the most prominent during the
first months of the oscillator continuous operation, which
gradually decreases during that time. For the current
experiment, the aging is about 2 × 10−10 fractional drift
per day. For ultrastable oscillators, this can be reduced to
3 × 10−12 fractional drift per day or 1 × 10−9 fractional
drift per year after at least 90 days of continuous operation.
Another source of stability improvement is associated

with the relation between the flicker and white noise in
typical BAWoscillators. While the white noise is connected
to the signal-to-noise ratio and could thus be reduced by
increasing the oscillation power, the flicker noise drops
with decreasing power. This situation results in a com-
promise between the midterm stability (flicker noise

region) and short-term stability (white noise region). At
cryogenic temperatures the white noise is naturally reduced
according to the Nyquist relation, thus giving more room
for flicker noise improvement by oscillator power reduc-
tion. The Nyquist noise limit for BAW resonators has been
recently demonstrated at liquid helium temperatures [63]
and unequivocally demonstrates the drop in this limit.
Nevertheless, practical realization of such a cryogenic

BAW clock is associated with technical difficulties [64,65].
Thus far, only moderate long temperature stability
improvement has been demonstrated [65,66]. The main
problem is the absence of a frequency-temperature turnover
point giving rise to significant fluctuations. Additionally,
the absence of reliable low-temperature components at
the medium- and high-frequency range makes the
oscillator design a challenging problem. Whereas the first
problem may be overcome by a design of a special cut for
cryogenic temperatures, the second is solvable by shifting
from semiconductor to superconductor technology.
Furthermore, for realizing Lorentz violation experiments,
which utilize two oscillators, one just needs to match
temperature coefficients of two orthogonally orientated
resonators, so as to read-out a stable beat frequency, in a
similar way to the cryogenic sapphire oscillator tests in the
photon sector [5]. This may relax the requirements for a
turnover point for these types of measurements.

E. Potential sensitivity

Given our expected stability of the cryogenic source
given in Eq. (12), we can expect a 4 orders of magnitude
improvement in sensitivity, compared to the room-
temperature measurement; thus, a cryogenic quartz oscil-
lator experiment should be able to test Lorentz invariance
with a sensitivity to fractional frequency changes of 10−19.
We now estimate the limits that can be derived from such a
phonon-sector experiment to the coefficients of the fer-
mions and photons in the SME. Optimistically, perhaps
the performance can be improved by a further order of
magnitude or more.
The estimates are based on the nonrelativistic single-

particle Hamiltonian describing Lorentz violation in the
SME; see, e.g., Eq. (4) in Ref. [8]. This Hamiltonian
contains constant terms, terms proportional to the spin σj,
and terms proportional to momentum pj. These terms are
unmeasurable as they are either constant or average out
over a cycle of the acoustic oscillation. The term propor-
tional to pjσk averages out as well, but can perhaps be
measured by applying an oscillating magnetic field at the
same frequency as the acoustic oscillation, which would
periodically polarize the spin and thus cause a nonzero
hpjσki. We do not consider this. Measurable signals arise
from two terms in the Hamiltonian. The one proportional to
pjpk allows measuring the ~c coefficients, as discussed in
detail above. Using spin-polarized materials, the term
proportional to pjpkσl can be measurable.

TABLE IV. Values of Q factors for some overtones of
cryogenic (4K) BAW resonators.

Xn;m;p fr (MHz) Q (108) Xn;m;p fr (MHz) Q (107)

C3;0;0 4.99 0.4 A23;0;0 72.22 5.01
C5;0;0 8.39 1.1 A25;0;0 78.51 2.98
B3;0;0 5.51 0.5 A27;0;0 84.78 41.2
B5;0;0 8.39 0.6 A33;0;0 103.6 42.3
B5;m;p 9.15 1.2 A37;0;0 116.2 49.6
B5;m;p 9.25 2.6 A43;0;0 135.0 35.6
A3;0;0 9.37 0.6 A45;0;0 141.2 33.5
A5;0;0 15.97 3 A47;0;0 147.5 20.0
A15;0;0 47.11 19.3 A55;0;0 172.6 49.6
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Table V shows the order of magnitude of sensitivities
from a phonon-sector experiment with a frequency sensi-
tivity of 10−18. For each entry, all other coefficients for
Lorentz violation are assumed to vanish. An asterisk
highlights coefficients for which the phonon-sector experi-
ment can provide improved bounds, based on comparison
with the maximum sensitivities table in the 2015 edition of
the Data Tables on Lorentz and CPT violation [34]. Two
asterisks highlight entries where the phonon-sector experi-
ment would provide the first bound on a parameter, based
on the same comparison.
The ~bJ coefficients enter from the pjpkσl term. For the

estimate, we assume that hσi ∼ 10% of all electron spins
and 10−6 of all nuclear spins have been polarized. The ~bT
coefficients enter through the same mechanism, suppressed
by a factor of β⊕, Earth’s orbital velocity. The ~d coefficients
enter through spin polarization, similar to the ~b’s.
The fact that bindings in crystals are electromagnetic

results in an influence of photon-sector coefficients
[7,67,68]. This is expected to result in leading-order signals
in phonon-sector experiments as reflected in the Table V. A
detailed calculation would have to be specific for the
material used in the experiment. This is beyond the scope
of this paper.
Like the photon terms, the coefficients entering the

equations of motion of the valence electrons will modify

the bindings, which will perhaps provide additional signals
for the electron terms of the SME. These signals will be
roughly proportional to the relative change in inertial mass
and thus given by the ce coefficients. Their effect may
potentially be quite strong. An electron coefficient of,
e.g., ~ceQ ¼ 10−20 GeV corresponds to ceXX þ ceYY − 2ceZZ ≃
2 × 10−17 because 1=me ∼ 2000 GeV−1, and might thus be
measurable. As above, the detailed analysis of specific
crystals is beyond the scope of this paper.

IV. SUMMARY AND OUTLOOK

We present a new method for testing Lorentz symmetry,
frequency comparisons between quartz crystal oscillators.
While their stability today is surpassed by atomic clocks
(especially optical clocks), many tests of Lorentz symmetry
are not limited by signal to noise, but often by systematic
effects from wobble and tilt of the turntable, and the ability
to take data over long stretches of time. Quartz oscillators
are compact and are simple to apply and to shield from
environmental influences. Their low acceleration sensitiv-
ity makes them relatively immune to wobble and tilt.
Maintenance-free operation allows for long-term data
taking, which helps to make up for the reduced stability.
As a demonstration, we improve the laboratory limit on the
neutron-cQ coefficient by 6 orders of magnitude, surpass-
ing even current astrophysics bounds. Currently, cryogenic
oscillators are under development at University of
Western Australia and FEMTO-ST in Besancon, France,
and promise strong improvements in stability and sensi-
tivity to Lorentz-violating coefficients.
By analogy to photon-sector experiments, we believe our

method can be strongly improved. Photon-sector experi-
ments have gained 4 orders of magnitude in sensitivity over
the past 12 years, through higher quality factors resonance
and cryogenic operation. A cryogenic version of our
experiment may increase the quality factor of the resonance
about 10 000-fold and may strongly reduce the temperature
coefficient of the oscillators. We thus estimate that 3–4
orders of magnitude improvement to ∼10−18 frequency
resolution are realistic. This new technology may also lead
to milligram-scale mechanical oscillators at the quantum
limit and may see a new brand of ultrastable oscillators. At
this sensitivity, the experiment will be able to improve the
bounds on several fermion- and photon-sector coefficients,
including several coefficients that are not bounded today.
Likewise, a detailed theoretical analysis of specific materi-
als might reveal large additional sensitivities to the electron
c coefficients.
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