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Collective motions emerging from the interaction of autonomous mobile individuals play a key role in
many phenomena, from the growth of bacterial colonies to the coordination of robotic swarms. For these
collective behaviors to takehold, the individualsmust be able to emit, sense, and react to signals.Whendealing
with simple organisms and robots, these signals are necessarily very elementary; e.g., a cell might signal its
presence by releasing chemicals and a robot by shining light. An additional challenge arises because the
motion of the individuals is often noisy; e.g., the orientation of cells can be altered by Brownian motion and
that of robots by an uneven terrain. Therefore, the emphasis is on achieving complex and tunable behaviors
from simple autonomous agents communicatingwith each other in robust ways. Here, we show that the delay
between sensing and reacting to a signal can determine the individual and collective long-term behavior of
autonomous agents whose motion is intrinsically noisy. We experimentally demonstrate that the collective
behavior of a group of phototactic robots capable of emitting a radially decaying light field can be tuned from
segregation to aggregation and clustering by controlling the delay with which they change their propulsion
speed in response to the light intensity theymeasure.We track this transition to the underlying dynamics of this
system, in particular, to the ratio between the robots’ sensorial delay time and the characteristic time of the
robots’ random reorientation. Supported by numerics, we discuss how the same mechanism can be applied
to control active agents, e.g., airborne drones, moving in a three-dimensional space. Given the simplicity of
this mechanism, the engineering of sensorial delay provides a potentially powerful tool to engineer and
dynamically tune the behavior of large ensembles of autonomousmobile agents; furthermore, thismechanism
might already be at work within living organisms such as chemotactic cells.
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I. INTRODUCTION

The interaction between several simple autonomous
agents can give rise to complex collective behaviors.
This is observed at all scales, from the organization of
bacterial colonies [1,2] and the foraging of ants and bees [3]
to the assembly of schools of fish [4] and the collective
motion of human crowds [5]. Inspired by these natural
systems, the same principles have been applied to engineer
autonomous robots capable of performing tasks such as
search-and-rescue in disaster zones, surveillance of haz-
ardous areas, and targeted object delivery in complex
environments [6–11].
Complex behaviors can emerge even if each agent follows

very simple rules, senses only its immediate surroundings,
and directly interacts only with nearby agents, without
having any knowledge of an overall plan [12,13]. For
example, while performing their swim-and-tumble motion,

chemotactic bacteria are able to climba chemotactic gradient,
e.g., in order to move towards regions rich in nutrients,
by simply adjusting their tumbling rate depending on the
chemical concentration they sense [2,14]. Furthermore, by
releasing chemoattractant molecules into their surroundings,
they are capable of generating a chemical gradient around
themselves to which other cells can respond, e.g., in order to
create bacterial colonies [1]. Similarly, simple mechanisms
are at work in the organization of flocks of birds, schools of
fish, and herds of mammals, whereby complex collective
behaviors result from each animal reacting to signals sent by
its neighbors. A similar approach has also been fruitfully
explored in order to build artificial systems with robust
behaviors arising from interactions between very simple
constituent agents [6,10,11,15–18]. Complex behaviors
emerging from agents obeying simple rules have the advan-
tage of being extremely robust: For example, even if one or
more agents are destroyed, the others can continue to work
together to complete the task at hand; agents can also be
removed or addedmidtaskwithout significantly affecting the
final result.
Here, we experimentally and theoretically demonstrate

that it is possible to engineer the individual and collective
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behavior of autonomous agents whose motion is intrinsi-
cally noisy by making use of the delay in their sensorial
feedback cycle. In other words, we show how the delay
between the time when an agent senses a signal and the
time when it reacts to it can be used as a new parameter for
the engineering of large-scale organization of autonomous
agents. This proposal is inspired by the motion of chemo-
tactic cells, which are able to climb a chemical gradient by
adjusting a different parameter, i.e., their tumbling rate, in
response to the concentration of molecules in their sur-
roundings. We demonstrate that the collective behavior of a
group of phototactic robots, capable of emitting a radially
decaying light field, can be tuned from segregation to
aggregation and clustering by controlling the delay with
which they adjust their propulsion speed to the light
intensity. More precisely, we show that this transition
occurs as the ratio between the robots’ sensorial delay
time and characteristic time of their random reorientation
crosses a certain critical value.

II. SINGLE AGENT

We start by considering a single autonomous agent that
moves in a plane and whose orientation is subject to noise.
This happens naturally in the case of microswimmers—
microscopic particles capable of self-propulsion such as
motile bacteria and cells [19,20]—as the direction of their
motion changes randomly over time because of the pres-
ence of rotational Brownian motion [2]. Similarly, autono-
mous robots, animals, and even humans can undergo a
random reorientation when moving in the absence of
external reference points (a striking example of this is an
experiment where blindfolded people who were asked to
walk in a straight line spontaneously moved along bent
trajectories [21]). Such motion is known as active
Brownian motion and can be modeled by the following
system of stochastic differential equations [12,20,22,23]:

8>>><
>>>:

dxt
dt ¼ v cosϕt;
dyt
dt ¼ v sinϕt;

dϕt
dt ¼

ffiffi
2
τ

q
ηt;

ð1Þ

where ðxt; ytÞ is the position of the agent in the plane
at time t, ϕt is its orientation, v is its speed, τ is the
reorientation characteristic time (i.e., the time after which
the standard deviation of the agent’s rotation is 1 rad), and
ηt is a white noise driving the agent’s reorientation, as
shown in Fig. 1(a). The reorientation time τ can be
associated with an effective reorientation diffusion constant
DR ¼ τ−1, which, in the case of microswimmers, often
coincides with the rotational diffusion constant of the
particle.
Furthermore, we assume that this agent moves in the

presence of an external intensity field to which it reacts
by adjusting its speed as a function of the instantaneous
intensity it senses. We have realized this experimentally by
using a phototactic robot (Elisa-3 [24]) moving within the
light gradient generated by a 100-W infrared lamp, which
emitted a radially symmetric light intensity radially
decaying with a characteristic length R ¼ 35 cm, as shown
in Fig. 1(b). This robot measures the local light intensity
It ¼ Iðxt; ytÞ corresponding to its position ðxt; ytÞ at time t
using eight infrared sensors evenly distributed around its
circumference, and adjusts its propulsion speed vðIÞ
accordingly, while randomly changing its orientation with
a characteristic reorientation time τ ¼ 1 s. Its motion can
be described by modifying Eq. (1) as

8>>><
>>>:

dxt
dt ¼ vðItÞ cosϕt;
dyt
dt ¼ vðItÞ sinϕt;

dϕt
dt ¼

ffiffi
2
τ

q
ηt:

ð2Þ

FIG. 1. (a) An autonomous agent, whose position at time t is ðxt; ytÞ, moves with speed v in the direction described by ϕt,
corresponding to its instantaneous orientation (arrow), which varies randomly with a characteristic time τ. (b) Picture of a phototactic
robot in a light gradient generated by an infrared lamp. The propulsion speed of the robot depends on the instantaneously measured light
intensity, while its orientation changes randomly. A sample trajectory is shown by the gray solid line. (c) Relation between the measured
light intensity I and the robot’s speed v [Eq. (3)].
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Figure 1(b) also shows a sample trajectory (gray solid line)
superimposed onto the picture of the robot. The function
vðIÞ is plotted in Fig. 1(c); its functional form is

vðIÞ ¼ ðv0 − v∞Þe−I=Ic þ v∞; ð3Þ

where v0 ¼ 60 cm s−1 is the maximum speed (corre-
sponding to a null intensity), Ic ¼ 90 mV is the character-
istic intensity scale (measured in volts) over which the
velocity decays, and v∞ ¼ 3 cm s−1 is the residual veloc-
ity (in the limit of infinite light intensity). It can be seen in
Fig. 1(b) that the runs between consecutive turns are
longer in the low-intensity (high-speed) regions, while
they are shorter in the high-intensity (low-speed) regions.
The result is that over a long period of time, the robot
spends more time in the high-intensity regions. As we will
see, this behavior is in agreement with our theoretical
results given in Eq. (7). This is also in agreement with the
behavior of chemotactic cells whose explorative behavior
decreases when they reach regions with ideal conditions
and reduce their locomotion activity in favor of other
metabolic activities [2].
We now proceed to add a delay δ in the agent’s

response to the measured intensity, which is the main
novelty of our work. With this addition, the equations
describing the motion of the robot become

8>>><
>>>:

dxt
dt ¼ vðIt−δÞ cosϕt;
dyt
dt ¼ vðIt−δÞ sinϕt;

dϕt
dt ¼

ffiffi
2
τ

q
ηt:

ð4Þ

The idea of introducing a sensorial delay is inspired by
the way in which bacteria react to a chemotactic gradient;
in fact, chemotactic bacteria make a comparison of the
number of molecules they detect around themselves at
consecutive times in order to decide how to adapt their
motion [2,14,25]. The presence of sensorial delays is
typically ignored, or treated as a nuisance to be controlled
[26], while only few theoretical works have considered its
possible constructive effects but in situations different
from the one studied in this work [27,28]. By introducing
a delay long enough so that the robot has enough time to
randomize its direction of motion before responding to
the sensorial input by changing its speed, we can observe
that the motion becomes more directed towards the high-
intensity (low-speed) region, as can be observed by
comparing the trajectories in Fig. 2(a) (with delay
δ ¼ þ5τ) to that in Fig. 1(b) (without delay).
The system’s behavior becomes even more interesting

if a “negative” delay is introduced, i.e., if a prediction
of the future measured intensity is employed to determine
the current robot speed. While it is straightforward to see
how a positive delay is introduced (e.g., by a delay in the

transmission of the signal or by a lapse time before reacting
to the signal), the introduction of a negative delay is less
intuitive. In fact, a negative delay can be rationalized as a
prediction of the future state of the system, which can be

FIG. 2. The long-term behavior of a robot in the light gradient
generated by an infrared lamp changes depending on the delay with
which it adjusts its speed in response to the sensorial input, i.e., the
measured light intensity. The sensorial delay was introduced by
linearizing the measured light intensity as a function of time and by
extrapolating its past or future value. (a) For positive delays
(δ ¼ þ5τ), the tendency of the robot to move towards the high-
intensity (low-speed) regions is enhanced, when compared to the
case without delay presented in Fig. 1(b). (b) For negative delays
(δ ¼ −5τ), the robot tends tomove towards the low-intensity (high-
speed) regions. In both cases, the trajectories are shown for a period
of 10 s preceding the time indicated on the plot, and the robot is
shown at the final position. (c) Radial drift DðrÞ calculated
according to Eq. (5) from a 40-minute trajectory for the cases of
positive (circles) and negative (diamonds) delays. (d) Radial drift
calculated according to Eq. (5) when the robots are at 30 cm from
the center of the illuminated area as a function of δ=τ. The solid lines
in (c) and (d) correspond to the theoretically predicted radial drifts
given by Eq. (6).
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done based on the signal received up to the present time.
For example, in the case of our robots, a negative delay is
introduced by linearizing the light intensity measurement as
a function of time and extrapolating it into the future, i.e.,
Iðt − δÞ ≈ IðtÞ − δI0ðtÞ, where both IðtÞ and I0ðtÞ are
known at time t; higher-order predictor algorithms are
also possible, making use of more information about the
evolution of the intensity measured up to the present. We
show the corresponding trajectory in Fig. 2(b), where
δ ¼ −5τ. In this case, the robot escapes from the high-
intensity region and moves towards the edge, where the
infrared lamp intensity is lower (and the speed higher).
In order to quantify these observations, we have mea-

sured the effective radial drift of the robots, which is
calculated [29] as

DðrÞ ¼ 1

Δt
hrnþ1 − rnjrn ≅ ri; ð5Þ

where r is the radial coordinate, rn are samples of the
robot’s radial position, and Δt is the time step between
samples. The results are shown in Figs. 2(c) and 2(d). For
positive delay (red circles), the negative drift for large radial
distance shows that the robot tends to move towards the
central high-intensity region. For negative delay (blue
diamonds), the positive drift shows that the robot escapes
from the central high-intensity region. We have also
theoretically calculated the radial drift for an autonomous
agent whose motion is governed by Eq. (4) (the derivation

is outlined in Appendix A and described in detail in
Appendix B), obtaining

DðrÞ ¼ τ

2

�
1 − δ

τ

�
vðrÞ dv

dr
ðrÞ þ τvðrÞ2

r
; ð6Þ

where vðrÞ ¼ vðIðrÞÞ and we have assumed a radially
symmetric intensity distribution. The solid lines plotted in
Figs. 2(c) and 2(d) show that there is a good agreement
between these theoretical predictions and the experimen-
tally measured data. We have further corroborated these
results with numerical simulations, whose results, shown in
Fig. 3, are in good agreement with the experimental results
shown in Fig. 2. The numerical simulations were performed
by solving the finite difference approximation of Eq. (4)
[20,30]. The delayed sensorial measurement was evaluated
by the Taylor expansion of the measured intensity about the
agent’s location and extrapolating the corresponding past or
future value.

FIG. 3. Simulated trajectories for autonomous agents in an
intensity field (background yellow shading) for delays
(a) δ ¼ þ5τ, (b) δ ¼ 0, and (c) δ ¼ −5τ. The agents are confined
in a circular well (gray border). (d) Radial drift as a function of
the delay calculated from 1000 simulated trajectories of the
system evolving for 100 s for the cases of positive (circles) and
negative (diamonds) delays. The solid lines correspond to the
theoretically predicted radial drift given by Eq. (6). Comparing
these results with the ones shown in Fig. 2, we observe a good
agreement between simulation and experiment.

FIG. 4. Theoretically predicted radial probability distribution of
the position of an agent [Eq. (7)] moving in a radial intensity field
[in the inset in (a), the agent is confined in a circular well with
radius 100 cm indicated by the gray border] as a function of the
sensorial delay time: (a) for δ > −τ, the agent tends to spend
more time in the low-speed (high-intensity) central region; (b) for
δ < −τ, the agent spends more time in the high-speed (low-
intensity) peripheral region; for δ ¼ −τ, the probability distribu-
tion is uniform (black line). These results are corroborated by
numerical simulations of autonomous agents shown by the
symbols. For each case, we have simulated a very long trajectory
(108 s) to obtain an accurate and smooth distribution.
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We can also theoretically derive the approximate steady-
state probability distribution of the agent’s position (the
derivation is outlined in Appendix A and described in detail
in Appendix B), which exists and equals

ρ0ðx; yÞ ¼
1

Nvðx; yÞ1þðδ=τÞ ; ð7Þ

provided that the normalization constant

N ¼
Z

vðx; yÞ−½1þðδ=τÞ�dxdy < ∞:

Equation (6) confirms our initial observations that the
larger the positive delay is [solid lines in Fig. 4(a)], the
more time the agent spends in the low-speed (high-
intensity) regions. On the other hand, the more negative
the delay is [solid lines in Fig. 4(b)], the more time the
agent spends in the high-speed (low-intensity) regions.
Interestingly, we note that there is a cutoff value at δ ¼ −τ
for which the probability distribution of the agent is
uniform [black solid line in Fig. 4(b)]. We have further
corroborated these results with numerical simulations
shown by the symbols in Figs. 4(a) and 4(b).
We emphasize that the qualitative change of the particle’s

behavior occurs at a negative delay, i.e., δ ¼ −τ.
Introduction of negative delays is thus crucial for the
described transition. On the other hand, positive delays
also strongly influence the system’s behavior. While with-
out delay the particle spends more time in slow regions, a
positive delay makes this tendency more pronounced, as
clearly seen at the quantitative level from Eq. (7). This
tendency persists, albeit in a weaker form, for small
negative delays −τ < δ < 0 and gets reversed at the critical
value δ ¼ −τ.

III. MULTIPLE AGENTS

We can now build on these observations to engineer the
large-scale organization of groups of robots. In order to do
this, each robot must be able not only to sense the local
intensity, but also to create a luminosity field. Thus, we
have equipped each robot with six LEDs evenly placed
around its circumference (EDEI-1LS3) [as shown in
Fig. 5(a)], which emit infrared light (wavelength
850 nm) so that each robot generates a decaying light
intensity around itself. The LEDs are arranged so that the
robot measures only the light intensity emitted by the other
robots. A phototactic robot capable of measuring this light
intensity will be able to move in the resulting field similarly
to the case discussed above, i.e., that of the light intensity
generated by a static infrared lamp. We stress that each
robot only measures the local intensity without being aware
of the positions of the other robots.
We have experimentally studied how three autonomous

robots organize by reacting to the cumulative light field

created by all of them as a function of their sensorial delay.
For a positive sensorial delay [δ ¼ þ3τ, Fig. 5(b)], the
three robots gradually move towards each other and form a
dynamic cluster, which remains stable over time. A single
robot’s tendency to spend more time in the high-intensity
regions when there is positive delay leads to multiple
robots forming clusters because of their preference for
high-intensity regions. For a negative delay [δ ¼ −3τ,
Fig. 5(c)], the three robots tend to move away from each
other, dispersing and exploring a much larger area. In order
to understand this behavior in a more quantitative way, we
have also simulated a larger number of trajectories for a
group of three agents and plotted the average distance
between the agents as a function of time for various
sensorial delays. The results are reported in Fig. 5(d):
For positive delays, as the agents tend to come together and
form a cluster, their average distance decreases over time;
for negative delays, as the agents move apart and explore a

FIG. 5. (a) Picture of a phototactic robot equipped with six
infrared LEDs so that it can emit a radially decaying light
intensity around itself. (b) A group of three such robots, which
adjust their speed as a function of the sensed light intensity,
aggregate and form a dynamic cluster if their sensorial delay is
positive (δ ¼ þ3τ) and (c) segregate if it is negative (δ ¼ −3τ). In
each panel in (b) and (c), the trajectories are shown for a period of
10 s preceding the time indicated on the plot, and the dot indicates
the final position of the robot. (d) Average distance d between
agents in a group of three simulated autonomous agents as a
function of time: For positive delays, as the agents tend to come
together and form a cluster, their average distance decreases over
time; for negative delays, as the agents move apart and explore a
larger area, their average distance increases.
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larger area, their average distance increases. The qualitative
change of the agents’ behavior occurs at a strictly negative
value of the dimensionless parameter δ=τ ¼ −1 [see
Eq. (7)]. While introduction of negative delays is thus
crucial for the described transition from aggregation to
segregation, positive delays also strongly influence the
system’s behavior by enhancing the tendency of the agents
to aggregate. Importantly, not only a light field, but any
radially decaying scalar (e.g., chemical, acoustic) field
created by the autonomous agents can be used in order
to achieve this kind of control over their behavior.
In order to explore the scalability of this mechanism, we

have simulated the behavior of an ensemble of 100 robots.
Each robot emits a field that decays radially like a Gaussian
and responds to the locally measured cumulative intensity
by adjusting its speed. The long-term behavior and the
large-scale organization of these ensembles of agents
significantly depend on the sensorial delay, as shown in
Fig. 6. For positive delay, they move collectively by
forming clusters [Figs. 6(a) and 6(b)]. On the other hand,
for negative delays, they move away from each other in
order to reduce the intensity that each of them measures
and are thus able to explore the space more effectively
[Figs. 6(c) and 6(d)]. The possibility of tuning the sensorial
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FIG. 7. The long-term behavior of autonomous agents can be
tuned by changing the function that relates the speed to the
measured intensity. For a fixed sensorial delay (δ ¼ þ10τ), we
consider various speed-intensity relations (first column), which
lead to different particle behaviors (center column) and different
stationary probability densities (last column).

FIG. 8. (a)–(c) 100 agents whose speed-intensity relation
(last column) is nonautonomous form dynamic clusters whose
(d) characteristic average size depends on the intensity corre-
sponding to the minimum speed: The higher the intensity, the
larger the average cluster size.

FIG. 6. Simulation of the long-term behavior of an ensemble
of 100 autonomous agents that emit a radially decaying
intensity field and adjust their speed depending on the measured
local intensity. Depending on the sensorial delay, the long-term
behavior and large-scale organization are significantly different.
(a,b) In the case of positive delays, the agents come together and
form metastable clusters. (c,d) In the case of negative delays, they
explore the space, staying away from each other.
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delay can be exploited, for example, in a search-and-rescue
task by initially setting a negative delay so that the robots
can thoroughly explore the environment and, at a later
stage, a positive delay so that the robots can be collected
into clusters to share the gathered information. Collecting
all robots can also be easily achieved by sending a strong
signal capable of eclipsing the signals emitted by the robots
themselves.
It is also possible to adjust the behavior of the agents by

altering the intensity-speed relation to something different
than Eq. (3). For example, instead of a monotonically
decreasing relation, it is possible to use a relation with a
minimum at some specific value. As can be seen in Fig. 7,
this alters the agent’s behavior so that it spends more time
where the intensity corresponds to the minimum speed. In
this way, it is possible to control where the agent will spend
most of its time, which may be useful, e.g., for targeted
delivery. Furthermore, in the presence of multiple agents
capable of emitting a radially decaying intensity field,
changing the intensity-speed relation permits one to control
various features of the clusters such as their characteristic
size, as shown in Fig. 8.

IV. SINGLE AND MULTIPLE ROBOTS
IN THREE DIMENSIONS

Our results can also be extended to the three-dimensional
case, where they still hold with only minor adjustments.
This could be important when considering airborne objects
(e.g., drones, flying insects, birds) or underwater objects
(e.g., fish, submarine robots). In three dimensions, the
autonomous agent motion can be modeled by the set of
equations

8>>>>>>>>><
>>>>>>>>>:

dxt
dt ¼ vðIt−δÞ sin θt cosϕt;
dyt
dt ¼ vðIt−δÞ sin θt sinϕt;
dzt
dt ¼ vðIt−δÞ cos θt;
dθt
dt ¼ 1

τ cot θt þ
ffiffi
2
τ

q
ηð1Þt ;

dϕt
dt ¼ 1

sin θt

ffiffi
2
τ

q
ηð2Þt ;

ð8Þ

where ðxt; yt; ztÞ is the position of the agent at time t, θt and
ϕt are its azimuthal and polar orientations, respectively, and

ηð1Þt and ηð2Þt are independent white noises. Similar equa-
tions but without delay have already been considered, e.g.,
in Ref. [31], to describe active Brownian motion in three
dimensions. The last two equations describe (accelerated)
Brownian motion on the surface of the unit sphere.
From this model, we obtain the approximate steady-state
probability distribution (the derivation is described in
Appendix B), which exists and equals

FIG. 9. Radial drift for an agent moving in a three-dimensional
radially decaying intensity field. The symbols represent the
results of numerical simulations, and the solid lines show the
corresponding theoretically predicted values [see Eq. (B21)]. For
positive delays (red circles and line), there is a negative radial
drift that pushes the agent towards the central high-intensity
(low-speed) region. For negative delays (blue diamonds and line),
there is a positive radial drift that pushes the agent away from the
high-intensity region and towards the peripheral low-intensity
(high-speed) region.

FIG. 10. Probability distribution in the radial direction for a
single agent moving in a three-dimensional spherical well (radius
100 cm) with a radially decaying intensity field. The probability
densities obtained from simulations are denoted by the symbols,
and the corresponding theoretical predictions [Eq. (9)] are shown
by the solid lines.
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ρ0ðx; y; zÞ ¼
1

Mvðx; y; zÞ1þ2ðδ=τÞ ; ð9Þ

provided that the normalization constant

M ¼
Z

vðx; y; zÞ−½1þ2ðδ=τÞ�dxdydz < ∞:

Comparing Eq. (9) and Eq. (7), we note that the main
difference is that in the three-dimensional case, the uniform
distribution occurs for δ ¼ −0.5τ instead of for δ ¼ −τ.
Otherwise, the agents still exhibit a qualitatively different
behavior for positive and negative sensorial delay, corre-
sponding, respectively, to an effective drift towards high-
intensity and low-intensity regions, as illustrated in Figs. 9
and 10. As in the two-dimensional case, in the three-
dimensional case, it is also possible to engineer this drift by
changing the time delay in order to tune the collective
behavior of a swarm from aggregation and clustering to
segregation.

V. CONCLUSION

We have demonstrated the use of delayed sensorial feed-
back to control the organization of an ensemble of autono-
mous agents.We realized this model experimentally by using
autonomous robots, further backed it upwith simulations, and
finally provided a mathematical analysis that agrees with the
results obtained in the experiments and simulations. Our
findings show that a single robot, measuring the intensity
locally, spends more time in either a high- or a low-intensity
region depending on its sensorial delay. Tuning the value of
the delay permits one to engineer the behavior of an ensemble
of robots so that they come together or separate from each
other. The robustness and flexibility of these behaviors are
very promising for applications in the field of swarm robotics
[6,10,11,16,18], as well as in the assembly of nanorobots,
e.g., for targeted delivery within tissues. Furthermore, since
some living entities, such as bacteria, are known to respond to
temporal evolution of stimuli [2,25], the presence of a
sensorial delay could also explain the swarming behavior
of groups of living organisms.
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APPENDIX A: MATHEMATICAL
DERIVATION—AN OUTLINE

We studied the limit of the system (4) as δ, τ → 0 at the
same rate so that δ ¼ cϵ and τ ¼ kϵ, where c and k remain
constant in the limit δ, τ, ϵ → 0. We expanded v about t to
first order in δ and solved the resulting equations for _x and
_y. We expanded the resulting system to first order in the
small parameter δ=

ffiffiffi
τ

p
. We then considered the correspond-

ing backward Kolmogorov equation for the probability
density ρ. We expanded ρ in powers of the parameter

ffiffiffi
ϵ

p
,

i.e., ρ ¼ ρ0 þ
ffiffiffi
ϵ

p
ρ1 þ ϵρ2 þ � � �, and used the standard

multiscale expansion method [32] to derive the backward
Kolmogorov equation for the limiting density ρ0:

∂ρ0
∂t ¼ τ

2

�
1−δ

τ

�
v

�∂v
∂x

∂ρ0
∂x þ∂v

∂y
∂ρ0
∂y

�
þτv2

2
Δρ0: ðA1Þ

From this equation, we got the limiting SDE:

8<
:

dxt ¼ τ
2

�
1 − δ

τ

�
vðxt; ytÞ ∂v∂x ðxt; ytÞdtþ

ffiffiffi
τ

p
vðxt; ytÞdW1

t ;

dyt ¼ τ
2

�
1 − δ

τ

�
vðxt; ytÞ ∂v∂y ðxt; ytÞdtþ

ffiffiffi
τ

p
vðxt; ytÞdW2

t ;

ðA2Þ

where W1 and W2 are independent Wiener processes.
Assuming that v is rotationally invariant, from Eq. (A2),
we obtain the formula for the radial drift [Eq. (6)]:

DðrÞ ¼ τ

2

�
1 − δ

τ

�
vðrÞ dv

dr
ðrÞ þ τvðrÞ2

r
: ðA3Þ

Setting the right-hand side of the forward (Fokker-Planck)
equation corresponding to Eq. (A1) equal to zero, we get
the formula for the stationary probability density ρ0 (if it
exists) [Eq. (7)],

ρ0ðx; yÞ ¼
1

Nvðx; yÞ1þðδ=τÞ ; ðA4Þ

where N is the normalization constant. A similar analysis
follows for the three-dimensional case, leading to the three-
dimensional stationary probability density given by Eq. (9).
A more detailed derivation is provided in the following
appendix.

APPENDIX B: MATHEMATICAL
DERIVATION—DETAILS

1. Mathematical derivation in two dimensions

Our motivation is the system given by Eq. (4), which we
can rewrite as
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8>>><
>>>:

dxt
dt ¼ vðxt−δ; yt−δÞ cosϕt;
dyt
dt ¼ vðxt−δ; yt−δÞ sinϕt;

dϕt
dt ¼

ffiffi
2
τ

q
ηt:

While the reorientation characteristic time τ is constant
in the experiment, to analyze the system mathematically
we study the limit as τ and δ go to zero. Thus, in the
mathematical analysis, we use ~τ and ~δ to represent the
reorientation characteristic time and time delay, in order to
differentiate these parameters that will go to zero from the
reorientation characteristic time τ and time delay δ in the
experiment. If τ is very small, a particle that moves
according to the above equations changes direction very
rapidly; thus, for the displacement of this particle from its
initial position to be significant, the particle must have a
large speed. We account for this mathematically by letting v
increase as ~τ decreases. In order to obtain nontrivial
behavior in the limit, we must define v ¼ ðu= ffiffiffi

~τ
p Þ, where

u does not depend on ~τ. Then, we have

8>>><
>>>:

dxt ¼ 1ffiffi
~τ

p uðxt−~δ; yt−~δÞ cosϕtdt;

dyt ¼ 1ffiffi
~τ

p uðxt−~δ; yt−~δÞ sinϕtdt;

dϕt ¼
ffiffi
2
~τ

q
dWt;

where Wt is a Wiener process.
We expand u about t to first order in ~δ. The resulting

system approximates the above equations and is also the
system actually used in numerical simulation. We thus
study the approximate equations:

8>>>>><
>>>>>:

_xt¼ 1ffiffi
~τ

p
h
uðxt;ytÞ− ~δ∂u∂xðxt;ytÞ_xt− ~δ∂u∂yðxt;ytÞ_yt

i
cosϕt;

_yt¼ 1ffiffi
~τ

p
h
uðxt;ytÞ− ~δ∂u∂xðxt;ytÞ_xt− ~δ∂u∂yðxt;ytÞ_yt

i
sinϕt;

ϕt¼
ffiffi
2
~τ

q
Wt:

Solving the first two equations for _xt and _yt, we get

8>>>>><
>>>>>:

_xt ¼ 1ffiffi
~τ

p uðxt; ytÞ cosϕt ×
h
1þ ~δffiffi

~τ
p

�
∂u
∂x ðxt; ytÞ cosϕt þ ∂u

∂y ðxt; ytÞ sinϕt

�i−1
;

_yt ¼ 1ffiffi
~τ

p uðxt; ytÞ sinϕt ×
h
1þ ~δffiffi

~τ
p

�
∂u
∂x ðxt; ytÞ cosϕt þ ∂u

∂y ðxt; ytÞ sinϕt

�i−1
;

ϕt ¼
ffiffi
2
~τ

q
Wt:

We approximate the system further, for ð~δ= ffiffiffi
~τ

p Þ ≪ 1, by

8>>>>><
>>>>>:

dxt ¼ 1ffiffi
~τ

p uðxt; ytÞ cosϕt ×
h
1 − ~δffiffi

~τ
p

�
∂u
∂x ðxt; ytÞ cosϕt þ ∂u

∂y ðxt; ytÞ sinϕt

�i
dt;

dyt ¼ 1ffiffi
~τ

p uðxt; ytÞ sinϕt ×
h
1 − ~δffiffi

~τ
p

�
∂u
∂x ðxt; ytÞ cosϕt þ ∂u

∂y ðxt; ytÞ sinϕt

�i
dt;

dϕt ¼
ffiffi
2
~τ

q
dWt:

ðB1Þ

We study the limit of the system (B1) as ~δ and ~τ go to zero at the same rate. This is consistent with the assumption
ð~δ= ffiffiffi

~τ
p Þ ≪ 1. Thus, we suppose that ~δ and ~τ stay proportional to a single characteristic time ϵ, i.e., ~δ ¼ cϵ and ~τ ¼ kϵ, where

c and k remain constant in the limit ~δ, ~τ, ϵ → 0. Writing Eq. (B1) in terms of ϵ, we obtain

8>>>>><
>>>>>:

dxt ¼
�

1ffiffiffiffi
kϵ

p u cosϕt − c
k u

∂u
∂x cos2ϕt − c

k u
∂u
∂y cosϕt sinϕt

�
dt;

dyt ¼
�

1ffiffiffiffi
kϵ

p u sinϕt − c
k u

∂u
∂x cosϕt sinϕt − c

k u
∂u
∂y sin2ϕt

�
dt;

dϕt ¼
ffiffiffiffi
2
kϵ

q
dWt:

ðB2Þ

We take the limit ϵ → 0 by using the multiscale expansion method (a detailed exposition can be found in, e.g., Ref. [32]).
The backward Kolmogorov equation corresponding to the system (B2) of SDEs is
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∂ρ
∂t ¼

1

kϵ
∂2ρ

∂ϕ2
þ 1ffiffiffiffiffi

kϵ
p u cosϕ

∂ρ
∂xþ

1ffiffiffiffiffi
kϵ

p u sinϕ
∂ρ
∂y

−
�
c
k
u
∂u
∂x cos

2 ϕþ c
k
u
∂u
∂y cosϕ sinϕ

� ∂ρ
∂x

−
�
c
k
u
∂u
∂x cosϕ sinϕþ c

k
u
∂u
∂y sin

2 ϕ

� ∂ρ
∂y ;

which can be written as

∂ρ
∂t ¼

�
1

ϵ
L0 þ

1ffiffiffi
ϵ

p L1 þ L2

�
ρ; ðB3Þ

where

L0 ¼
1

k
∂2

∂ϕ2
;

L1 ¼
1ffiffiffi
k

p u cosϕ
∂
∂xþ

1ffiffiffi
k

p u sinϕ
∂
∂y ;

and

L2 ¼ −
�
c
k
u
∂u
∂x cos

2ϕþ c
k
u
∂u
∂y cosϕ sinϕ

� ∂
∂x

−
�
c
k
u
∂u
∂x cosϕ sinϕþ c

k
u
∂u
∂y sin

2ϕ

� ∂
∂y :

We expand ρ in powers of
ffiffiffi
ϵ

p
,

ρ ¼ ρ0 þ
ffiffiffi
ϵ

p
ρ1 þ ϵρ2 þ � � � ; ðB4Þ

and derive the backward Kolmogorov equation for the
limiting density ρ0. First, substituting Eq. (B4) in Eq. (B3)
and equating terms of the same order in

ffiffiffi
ϵ

p
gives the

equations

O

�
1

ϵ

�
∶ L0ρ0 ¼

1

k
∂2ρ0
∂ϕ2

¼ 0; ðB5Þ

O

�
1ffiffiffi
ϵ

p
�
∶L1ρ0þL0ρ1

¼ 1ffiffiffi
k

p ucosϕ
∂ρ0
∂x þ 1ffiffiffi

k
p usinϕ

∂ρ0
∂y þ1

k
∂2ρ1
∂ϕ2

¼0;

ðB6Þ

Oð1Þ∶ L2ρ0 þ L1ρ1 þ L0ρ2 ¼
∂ρ0
∂t : ðB7Þ

While fðx; y;ϕ; tÞ ¼ Aðx; y; tÞϕþ Bðx; y; tÞ is the general
solution to Eq. (B5), we expect ρ0 to be independent of ϕ,
and therefore, we choose ρ0 ¼ ρ0ðx; y; tÞ. Next, we find ρ1
in terms of ρ0 by solving Eq. (B6); since ρ0 does not depend
on ϕ, we have

ρ1 ¼
ffiffiffi
k

p
u
∂ρ0
∂x cosϕþ

ffiffiffi
k

p
u
∂ρ0
∂y sinϕ;

where we leave out a linear term in ϕ in order to make ρ1
periodic in ϕ. We could include a term that is constant in ϕ,
but this would not change the final result. Equation (B7)
implies that the function ð∂ρ0=∂tÞ − L1ρ1 − L2ρ0 is in the
range of the operator L0. This is a self-adjoint operator on
the space L2½0; 2π�, so the above function must be
orthogonal to its kernel, which, in particular, contains
constants. It follows that

1

2π

Z
2π

0

�∂ρ0
∂t − L1ρ1 − L2ρ0

�
dϕ ¼ 0

so that

∂ρ0
∂t ¼ 1

2π

Z
2π

0

��
1ffiffiffi
k

p u cosϕ
∂
∂xþ

1ffiffiffi
k

p u sinϕ
∂
∂y

�

×

� ffiffiffi
k

p
u
∂ρ0
∂x cosϕþ

ffiffiffi
k

p
u
∂ρ0
∂y sinϕ

�

−
�
c
k
u
∂u
∂x cos

2ϕþ c
k
u
∂u
∂y cosϕ sinϕ

� ∂ρ0
∂x

−
�
c
k
u
∂u
∂x cosϕ sinϕþ c

k
u
∂u
∂y sin

2ϕ

� ∂ρ0
∂y

�
dϕ;

and so

∂ρ0
∂t ¼ u

2

∂
∂x

�
u
∂ρ0
∂x

�
þ u

2

∂
∂y

�
u
∂ρ0
∂y

�
− c
2k

u
∂u
∂x

∂ρ0
∂x

− c
2k

u
∂u
∂y

∂ρ0
∂y

or, equivalently,

∂ρ0
∂t ¼

�
1 − c

k

2

�
u

�∂u
∂x

∂ρ0
∂x þ ∂u

∂y
∂ρ0
∂y

�
þ u2

2
Δρ0:

In order to compare this with the experimental results, we
substitute u ¼ ffiffiffi

τ
p

v, where τ is the reorientation character-
istic time in the experiments, to obtain

∂ρ0
∂t ¼ τ

2

�
1− δ

τ

�
v

�∂v
∂x

∂ρ0
∂x þ ∂v

∂y
∂ρ0
∂y

�
þ τv2

2
Δρ0: ðB8Þ

a. Radial drift [Eq. (6)]

Equation (B8) is the backward Kolmogorov equation for
the SDE system
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8<
:

dxt ¼ τ
2

�
1 − δ

τ

�
vðxt; ytÞ ∂v∂x ðxt; ytÞdtþ

ffiffiffi
τ

p
vðxt; ytÞdW1

t ;

dyt ¼ τ
2

�
1 − δ

τ

�
vðxt; ytÞ ∂v∂y ðxt; ytÞdtþ

ffiffiffi
τ

p
vðxt; ytÞdW2

t ;

where W1 and W2 are independent Wiener processes.
Letting r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and applying the Itô formula, we

obtain

drt ¼
�
τ

2

�
1 − δ

τ

�
v

�∂v
∂x

∂r
∂xþ

∂v
∂y

∂r
∂y

�

þ τv2

2

�∂2r
∂x2 þ

∂2r
∂y2

��
dt

þ ffiffiffi
τ

p
v

�∂r
∂x dW

1
t þ

∂r
∂y dW

2
t

�

or, equivalently,

drt ¼
�
τ

2

�
1 − δ

τ

�
v
rt

�
xt
∂v
∂x þ yt

∂v
∂y

�
þ τv2

rt

�
dt

þ
ffiffiffi
τ

p
v

rt
ðxtdW1

t þ ytdW2
t Þ:

Assuming v is radially symmetric, i.e., vðx; yÞ ¼ vðrÞ with
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, we have

drt ¼
�
τ

2

�
1 − δ

τ

�
vðrtÞ

dv
dr

ðrtÞ þ
τvðrtÞ2

rt

�
dt

þ
ffiffiffi
τ

p
vðrtÞ
rt

ðxtdW1
t þ ytdW2

t Þ: ðB9Þ

We note that ðxt=rtÞdW1
t þ ðyt=rtÞdW2

t is the stochastic
differential of the martingale

Bt ¼
Z

t

0

�
xs
rs
dW1

s þ
ys
rs
dW2

s

�
;

which is a Wiener process by the Lévy theorem [33]
[Theorem 8.6.1] because its quadratic variation is equal to
t. Thus, the effective radial drift is given by

DðrÞ ¼ τ

2

�
1 − δ

τ

�
vðrÞ dv

dr
ðrÞ þ τvðrÞ2

r
: ðB10Þ

b. Density [Eq. (7)]

The forward Kolmogorov equation corresponding to
Eq. (B8) is

∂ρ0
∂t ¼ − τ

2

�
1 − δ

τ

�� ∂
∂x

�
v
∂v
∂x ρ0

�
þ ∂
∂y

�
v
∂v
∂y ρ0

��

þ τ

2
Δðv2ρ0Þ:

Thus, the stationary probability density ρ0 satisfies

− τ

2

�
1 − δ

τ

�� ∂
∂x

�
v
∂
∂x ρ0

�
þ ∂
∂y

�
v
∂
∂y ρ0

��

þ τ

2
Δðv2ρ0Þ ¼ 0: ðB11Þ

One can check that

ρ0ðx; yÞ ¼
1

Nvðx; yÞ1þðδ=τÞ ; ðB12Þ

whereN is the normalization constant, is a positive solution
of Eq. (B11).

2. Mathematical derivation in three dimensions

Equation (8) describes the motion of a particle in three
dimensions whose speed is given by vðx; y; zÞ and whose
direction is given by an accelerated Wiener process on the
surface of the unit sphere (just like in two dimensions,

ei
ffiffiffiffiffiffiffiffi
ð2=τÞ

p
Wt is an accelerated Wiener process on the unit

circle). The precise form of the equations is8>>>>>>>>>>><
>>>>>>>>>>>:

dxt ¼ 1ffiffi
~τ

p uðxt−~δ; yt−~δ; zt−~δÞ sin θt cosϕtdt;

dyt ¼ 1ffiffi
~τ

p uðxt−~δ; yt−~δ; zt−~δÞ sin θt sinϕtdt;

dzt ¼ 1ffiffi
~τ

p uðxt−~δ; yt−~δ; zt−~δÞ cos θtdt;

dθt ¼ 1
~τ cot θtdtþ

ffiffi
2
~τ

q
dW1

t ;

dϕt ¼
ffiffi
2
~τ

q
1

sin θt
dW2

t :

ðB13Þ

The justification of the last two equations is the following.
We start from a Wiener process on the sphere, i.e.,

(
d~θt ¼ 1

2
cot ~θtdtþ d ~W1

t ;

d ~ϕt ¼ 1

sin ~θt
d ~W2

t ;

and rescale the time so that

	
θt ¼ ~θ2t=~τ;

ϕt ¼ ~ϕ2t=~τ:

It is easy to show that these rescaled processes satisfy the
last two equations of the above system with the newWiener
processes

Wj
t ¼

ffiffiffi
~τ

2

r
~Wj
2t=~τ; j ¼ 1; 2:

We follow the procedure that was used to analyze the two-
dimensional case. Let xt ¼ ðxt; yt; ztÞ. In Eq. (B13), we
expand u about t to first order in ~δ to get
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8>>>>>>>>>>>><
>>>>>>>>>>>>:

_xt ¼ 1ffiffi
~τ

p
h
uðxtÞ − ~δ ∂u

∂x ðxtÞ_xt − ~δ ∂u
∂y ðxtÞ_yt − ~δ ∂u

∂z ðxtÞ_zt
i
sin θt cosϕt;

_yt ¼ 1ffiffi
~τ

p
h
uðxtÞ − ~δ ∂u

∂x ðxtÞ_xt − ~δ ∂u
∂y ðxtÞ_yt − ~δ ∂u

∂z ðxtÞ_zt
i
sin θt sinϕt;

_zt ¼ 1ffiffi
~τ

p
h
uðxtÞ − ~δ ∂u

∂x ðxtÞ_xt − ~δ ∂u
∂y ðxtÞ_yt − ~δ ∂u

∂z ðxtÞ_zt
i
cos θt;

dθt ¼ 1
~τ cot θtdtþ

ffiffi
2
~τ

q
dW1

t ;

dϕt ¼
ffiffi
2
~τ

q
1

sin θt
dW2

t :

ðB14Þ

Solving the first three equations for _xt, _yt, and _zt, we have

8>>>>><
>>>>>:

_xt ¼ 1ffiffi
~τ

p uðxtÞ cosϕt sin θt ×
h
1þ ~δffiffi

~τ
p

�
∂u
∂x ðxtÞ cosϕt sin θt þ ∂u

∂y ðxtÞ sinϕt sin θt þ ∂u
∂z ðxtÞ cos θt

�i−1
;

_yt ¼ 1ffiffi
~τ

p uðxtÞ sinϕt sin θt ×
h
1þ ~δffiffi

~τ
p

�
∂u
∂x ðxtÞ cosϕt sin θt þ ∂u

∂y ðxtÞ sinϕt sin θt þ ∂u
∂z ðxtÞ cos θt

�i−1
;

_zt ¼ 1ffiffi
~τ

p uðxtÞ cos θt ×
h
1þ ~δffiffi

~τ
p

�
∂u
∂x ðxtÞ cosϕt sin θt þ ∂u

∂y ðxtÞ sinϕt sin θt þ ∂u
∂z ðxtÞ cos θt

�i−1
:

We approximate the system further, for ð~δ= ffiffiffi
~τ

p Þ ≪ 1, by

8>>>>><
>>>>>:

dxt ¼ 1ffiffi
~τ

p uðxtÞ cosϕt sin θt ×
h
1 − ~δffiffi

~τ
p

�
∂u
∂x ðxtÞ cosϕt sin θt þ ∂u

∂y ðxtÞ sinϕt sin θt þ ∂u
∂z ðxtÞ cos θt

�i
dt;

dyt ¼ 1ffiffi
~τ

p uðxtÞ sinϕt sin θt ×
h
1 − ~δffiffi

~τ
p

�
∂u
∂x ðxtÞ cosϕt sin θt þ ∂u

∂y ðxtÞ sinϕt sin θt þ ∂u
∂z ðxtÞ cos θt

�i
dt;

dzt ¼ 1ffiffi
~τ

p uðxtÞ cos θt ×
h
1 − ~δffiffi

~τ
p

�
∂u
∂x ðxtÞ cosϕt sin θt þ ∂u

∂y ðxtÞ sinϕt sin θt þ ∂u
∂z ðxtÞ cos θt

�i
dt:

Let ~δ ¼ cϵ, ~τ ¼ kϵ. Then, the system we study is

8>>>>>>>>>>>><
>>>>>>>>>>>>:

dxt ¼
�

1ffiffiffiffi
kϵ

p u cosϕt sin θt − c
k u

∂u
∂x cos2ϕtsin2θt − c

k u
∂u
∂y cosϕt sinϕtsin2θt − c

k u
∂u
∂z cosϕt sin θt cos θt

�
dt;

dyt ¼
�

1ffiffiffiffi
kϵ

p u sinϕt sin θt − c
k u

∂u
∂x sinϕt cosϕtsin2θt − c

k u
∂u
∂y sin2ϕtsin2θt − c

k u
∂u
∂z sinϕt sin θt cos θt

�
dt;

dzt ¼
�

1ffiffiffiffi
kϵ

p u cos θt − c
k u

∂u
∂x cosϕt sin θt cos θt − c

k u
∂u
∂y sinϕt sin θt cos θt − c

k u
∂u
∂z cos2θt

�
dt;

dθt ¼ 1
kϵ cot θtdtþ

ffiffiffiffi
2
kϵ

q
dW1

t ;

dϕt ¼
ffiffiffiffi
2
kϵ

q
1

sin θt
dW2

t :

The backward Kolmogorov equation corresponding to the above system of SDEs is

∂ρ
∂t ¼

1

kϵ
∂2ρ

∂θ2 þ
1

kϵ sin2 θ
∂2ρ

∂ϕ2
þ 1

kϵ
cot θ

∂ρ
∂θ þ

1ffiffiffiffiffi
kϵ

p u cosϕ sin θ
∂ρ
∂x

þ 1ffiffiffiffiffi
kϵ

p u sinϕ sin θ
∂ρ
∂yþ

1ffiffiffiffiffi
kϵ

p u cos θ
∂ρ
∂z

−
c
k
u

�∂u
∂x cos

2 ϕ sin2 θ þ ∂u
∂y cosϕ sinϕ sin2 θ þ ∂u

∂z cosϕ sin θ cos θ

� ∂ρ
∂x

−
c
k
u

�∂u
∂x sinϕ cosϕ sin2 θ þ ∂u

∂y sin
2 ϕ sin2 θ þ ∂u

∂z sinϕ sin θ cos θ

� ∂ρ
∂y

−
c
k
u

�∂u
∂x cosϕ sin θ cos θ þ ∂u

∂y sinϕ sin θ cos θ þ ∂u
∂z cos

2 θ

� ∂ρ
∂z
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or, equivalently,

∂ρ
∂t ¼

�
1

ϵ
L0 þ

1ffiffiffi
ϵ

p L1 þ L2

�
ρ; ðB15Þ

where

L0 ¼
1

k

� ∂2

∂θ2 þ
1

sin2θ
∂2

∂ϕ2
þ cot θ

∂
∂θ

�
; L1 ¼

uffiffiffi
k

p
�
cosϕ sin θ

∂
∂xþ sinϕ sin θ

∂
∂yþ cos θ

∂
∂z

�
;

and

L2 ¼ − c
k
u

��∂u
∂x cos

2ϕsin2θ þ ∂u
∂y cosϕ sinϕsin2θ þ ∂u

∂z cosϕ sin θ cos θ

� ∂
∂x

þ
�∂u
∂x sinϕ cosϕsin2θ þ ∂u

∂y sin
2ϕsin2θ þ ∂u

∂z sinϕ sin θ cos θ

� ∂
∂y

þ
�∂u
∂x cosϕ sin θ cos θ þ ∂u

∂y sinϕ sin θ cos θ þ ∂u
∂z cos

2θ

� ∂
∂z

�
:

We expand ρ in powers of
ffiffiffi
ϵ

p
,

ρ ¼ ρ0 þ
ffiffiffi
ϵ

p
ρ1 þ ϵρ2 þ � � � : ðB16Þ

Using Eq. (B16) in Eq. (B15) and equating terms of like powers of
ffiffiffi
ϵ

p
gives the equations

O

�
1

ϵ

�
∶ L0ρ0 ¼

1

k

�∂2ρ0
∂θ2 þ 1

sin2θ
∂2ρ0
∂ϕ2

þ cot θ
∂ρ0
∂θ

�
¼ 0; ðB17Þ

O

�
1ffiffiffi
ϵ

p
�
∶ L1ρ0 þ L0ρ1 ¼

uffiffiffi
k

p cosϕ sin θ
∂ρ0
∂x þ uffiffiffi

k
p sinϕ sin θ

∂ρ0
∂y þ uffiffiffi

k
p cos θ

∂ρ0
∂z

þ 1

k
∂2ρ1
∂θ2 þ 1

ksin2θ
∂2ρ1
∂ϕ2

þ 1

k
cot θ

∂ρ1
∂θ ¼ 0; ðB18Þ

Oð1Þ∶ L2ρ0 þ L1ρ1 þ L0ρ2 ¼
∂ρ0
∂t : ðB19Þ

In order to satisfy Eq. (B17), we choose ρ0 ¼ ρ0ðx; y; z; tÞ,
where we leave out a term of the form Aðx; y; z; tÞϕ because
we expect ρ0 to be independent of ϕ. Next, we find ρ1 in
terms of ρ0 by solving Eq. (B18). We see that ρ1 is the sum
of the solutions to the partial differential equations (PDEs):

uffiffiffi
k

p cosϕsinθ
∂ρ0
∂x þ1

k
∂2ρ1
∂θ2 þ

1

ksin2θ
∂2ρ1
∂ϕ2

þ1

k
cotθ

∂ρ1
∂θ ¼0;

uffiffiffi
k

p sinϕsinθ
∂ρ0
∂y þ1

k
∂2ρ1
∂θ2 þ

1

ksin2θ
∂2ρ1
∂ϕ2

þ1

k
cotθ

∂ρ1
∂θ ¼0;

and

uffiffiffi
k

p cos θ
∂ρ0
∂z þ 1

k
∂2ρ1
∂θ2 þ 1

k
cot θ

∂ρ1
∂θ ¼ 0

or, equivalently,

uffiffiffi
k

p cosϕsin3θ
∂ρ0
∂x þ 1

k
sin2θ

∂2ρ1
∂θ2

þ 1

k
∂2ρ1
∂ϕ2

þ 1

k
sin θ cos θ

∂ρ1
∂θ ¼ 0;

uffiffiffi
k

p sinϕsin3θ
∂ρ0
∂y þ 1

k
sin2θ

∂2ρ1
∂θ2 þ 1

k
∂2ρ1
∂ϕ2

þ 1

k
sin θ cos θ

∂ρ1
∂θ ¼ 0;

and

1

k
∂2ρ1
∂θ2 þ 1

k
cot θ

∂ρ1
∂θ ¼ − uffiffiffi

k
p cos θ

∂ρ0
∂z :
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The solution to the first equation is

ρ1 ¼
ffiffiffi
k

p
u

2

∂ρ0
∂x sin θ cosϕ;

the solution to the second equation is

ρ1 ¼
ffiffiffi
k

p
u

2

∂ρ0
∂y sin θ sinϕ;

and the solution to the third equation is

ρ1 ¼
ffiffiffi
k

p
u

2

∂ρ0
∂z cos θ;

so that

ρ1 ¼
ffiffiffi
k

p
u

2

�∂ρ0
∂x sin θ cosϕþ ∂ρ0

∂y sin θ sinϕþ ∂ρ0
∂z cos θ

�
;

where we leave out a term of the form Aðx; y; z; tÞϕ in
order to make ρ1 periodic in ϕ. We could include a term
that is constant in ϕ and θ, but this would not change the
final result. Equation (B19) implies that the function

ð∂ρ0=∂tÞ − L1ρ1 − L2ρ0 is in the range of the operator
L0. We are working in the Hilbert space defined by

ðu; vÞ ¼
Z

2π

0

Z
π

0

uv sin θdθdϕ:

Note that the operator 1
2
ð∂2=∂θ2Þ is not self-adjoint in this

space; its adjoint is

1

2

∂2

∂θ2 þ cot θ
∂
∂θ −

1

2
:

The adjoint of the operator 1
2
cot θð∂=∂θÞ is

− 1

2
cot θ

∂
∂θ þ

1

2

so L0 is self-adjoint in this space. In particular, constants
are in the kernel of L�

0. Thus, we have

1

4π

Z
2π

0

Z
π

0

�∂ρ0
∂t − L1ρ1 − L2ρ0

�
sin θdθdϕ ¼ 0

so that

∂ρ0
∂t ¼ 1

4π

Z
2π

0

Z
π

0

�
uffiffiffi
k

p
�
cosϕ sin θ

∂
∂xþ sinϕ sin θ

∂
∂yþ cos θ

∂
∂z

�

×

ffiffiffi
k

p
u

2

�∂ρ0
∂x sin θ cosϕþ ∂ρ0

∂y sin θ sinϕþ ∂ρ0
∂z cos θ

�

−
c
k
u

��∂u
∂x cos

2ϕsin2θ þ ∂u
∂y cosϕ sinϕsin2θ þ ∂u

∂z cosϕ sin θ cos θ

� ∂
∂x

þ
�∂u
∂x sinϕ cosϕsin2θ þ ∂u

∂y sin
2ϕsin2θ þ ∂u

∂z sinϕ sin θ cos θ

� ∂
∂y

þ
�∂u
∂x cosϕ sin θ cos θ þ ∂u

∂y sinϕ sin θ cos θ þ ∂u
∂z cos

2θ

� ∂
∂z

�
ρ0

�
sin θdθdϕ:

Using
R
2π
0 sinϕdϕ ¼ R

2π
0 cosϕdϕ ¼ R

2π
0 sinϕ cosϕdϕ ¼ 0, this simplifies to

∂ρ0
∂t ¼ 1

4π

Z
2π

0

Z
π

0

�
u
2
cos2ϕsin3θ

∂
∂x

�
u
∂ρ0
∂x

�
þ u

2
sin2ϕsin3θ

∂
∂y

�
u
∂ρ0
∂y

�

þ u
2
cos2θ sin θ

∂
∂z

�
u
∂ρ0
∂z

�
− c
k
u
∂u
∂x cos

2ϕsin3θ
∂ρ0
∂x

−
c
k
u
∂u
∂y sin

2ϕsin3θ
∂ρ0
∂y − c

k
u
∂u
∂z cos

2θ sin θ
∂ρ0
∂z

�
dθdϕ:

Using
R
π
0 sin3 θdθ ¼ 4

3
,
R
π
0 cos2 θ sin θdθ ¼ 2

3
, and

R
2π
0 cos2 ϕdϕ ¼ R

2π
0 sin2 ϕdϕ ¼ π, we have

∂ρ0
∂t ¼ u

6

∂
∂x

�
u
∂ρ0
∂x

�
þ u

6

∂
∂y

�
u
∂ρ0
∂y

�
þ u

6

∂
∂z

�
u
∂ρ0
∂z

�
−

c
3k

u
∂u
∂x

∂ρ0
∂x − c

3k
u
∂u
∂y

∂ρ0
∂y − c

3k
u
∂u
∂z

∂ρ0
∂z

MIJALKOV, MCDANIEL, WEHR, and VOLPE PHYS. REV. X 6, 011008 (2016)

011008-14



or, equivalently,

∂ρ0
∂t ¼

�
1 − 2 c

k

6

�
u

�∂u
∂x

∂ρ0
∂x þ ∂u

∂y
∂ρ0
∂y þ ∂u

∂z
∂ρ0
∂z

�

þ u2

6
Δρ0:

As in the two-dimensional case, we substitute u ¼ ffiffiffi
τ

p
v to

obtain

∂ρ0
∂t ¼ τ

6

�
1 − 2

δ

τ

�
v

�∂v
∂x

∂ρ0
∂x þ ∂v

∂y
∂ρ0
∂y þ ∂v

∂z
∂ρ0
∂z

�

þ τv2

6
Δρ0: ðB20Þ

a. Radial drift

Equation (B20) is the backward Kolmogorov equation
for the SDE,

8>>>><
>>>>:

dxt ¼ τ
6

�
1 − 2 δ

τ

�
vðxtÞ ∂v∂x ðxtÞdtþ

ffiffi
τ
3

p
vðxtÞdW1

t ;

dyt ¼ τ
6

�
1 − 2 δ

τ

�
vðxtÞ ∂v∂y ðxtÞdtþ

ffiffi
τ
3

p
vðxtÞdW2

t ;

dzt ¼ τ
6

�
1 − 2 δ

τ

�
vðxtÞ ∂v∂z ðxtÞdtþ

ffiffi
τ
3

p
vðxtÞdW3

t ;

where W1, W2, and W3 are independent Wiener processes.
Letting r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and applying the Itô formula,

we obtain

drt ¼
�
τ

6

�
1 − 2

δ

τ

�
v

�∂v
∂x

∂r
∂xþ

∂v
∂y

∂r
∂yþ

∂v
∂z

∂r
∂z

�

þ τv2

6

�∂2r
∂x2 þ

∂2r
∂y2 þ

∂2r
∂z2

��
dt

þ
ffiffiffi
τ

3

r
v

�∂r
∂x dW

1
t þ

∂r
∂y dW

2
t þ

∂r
∂z dW

3
t

�

or, equivalently,

drt ¼
�
τ

6

�
1 − 2

δ

τ

�
v
rt

�
xt
∂v
∂x þ yt

∂v
∂y þ zt

∂v
∂z

�
þ τv2

3rt

�
dt

þ
ffiffiffi
τ

3

r
v
rt
ðxtdW1

t þ ytdW2
t þ ztdW3

t Þ:

Assuming v is radially symmetric, i.e., vðx; y; zÞ ¼ vðrÞ,
we have

drt ¼
�
τ

6

�
1 − 2

δ

τ

�
vðrtÞ

dv
dr

ðrtÞ þ
τvðrtÞ2
3rt

�
dt

þ
ffiffiffi
τ

3

r
vðrtÞ
rt

ðxtdW1
t þ ytdW2

t þ ztdW3
t Þ:

We note that xt
rt
dW1

t þ yt
rt
dW2

t þ zt
rt
dW3

t is the stochastic
differential of

Bt ¼
Z

t

0

�
xs
rs
dW1

s þ
ys
rs
dW2

s þ
zs
rs
dW3

s

�
;

which is a Wiener process because its quadratic variation is
equal to t. Thus, the radial drift is given by

DðrÞ ¼ τ

6

�
1 − 2

δ

τ

�
vðrÞ dv

dr
ðrÞ þ τvðrÞ2

3r
: ðB21Þ

b. Density [Eq. (9)]

The forward Kolmogorov equation corresponding to
Eq. (B20) is

∂ρ0
∂t ¼ − τ

6

�
1 − 2

δ

τ

�� ∂
∂x

�
v
∂v
∂x ρ0

�
þ ∂
∂y

�
v
∂v
∂y ρ0

�

þ ∂
∂z

�
v
∂v
∂z ρ0

��
þ τ

6
Δðv2ρ0Þ:

Thus, by equating the right-hand side to zero, we find that
the stationary probability density ρ0 (if it exists) is

ρ0ðx; y; zÞ ¼
1

Mvðx; y; zÞ1þ2ðδ=τÞ ; ðB22Þ

where M is the normalization constant.
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