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Charge fluctuations in nanocircuits with capacitor components are shown to give rise to a novel type of
long-ranged interaction, which coexist with the regular Casimir–van der Waals force. The developed theory
distinguishes between thermal and quantum mechanical effects, and it is applied to capacitors involving
graphene nanostructures. The charge fluctuations mechanism is captured via the capacitance of the system
with geometrical and quantum mechanical components. The dependence on the distance separation,
temperature, size, and response properties of the system shows that this type of force can have a comparable
and even dominant effect to the Casimir interaction. Our results strongly indicate that fluctuation-induced
interactions due to various thermodynamic quantities can have important thermal and quantum mechanical
contributions at the microscale and the nanoscale.
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I. INTRODUCTION

Fluctuation-induced interactions have widespread appli-
cations in materials and microscaled and nanoscaled
devices. The much-studied Casimir and van der Waals
interactions are due to electromagnetic mode fluctuations
captured via the dielectric and magnetic response properties
of the objects [1,2]. Such forces are universal, and they are
especially prominent at micron distances and below.
Fluctuations of many other observables are also possible,
which may give rise to different interactions [3]. In
particular, voltage fluctuations in capacitor systems [4]
and wires [5,6] have been of much interest, especially for
the operation of devices [7]. Charge fluctuations and the
induced forces are of relevance to biological and chemical
matter. Specifically, it has been shown that thermal charge
fluctuations in ionic solutions can generate an attractive
long-ranged dispersive force even between molecules
charged with the same sign [8,9]. Fluctuations originating
from charge disorder on neutral slabs have been shown to
give an additional contribution to the net interacting force
while completely masking the typical Casimir–van der
Waals interaction [10].
The isolation of single graphene layers and synthesis

of related nanostructures, such as carbon nanotubes and

graphene nanoribbons (GNRs), have brought new direc-
tions in electromagnetic fluctuation-induced phenomena.
For example, the Casimir–van der Waals force involving
graphene systems has nontrivial scaling behavior, which
can be tuned via temperature, chemical potential, and
doping modifications [11–15]. Understanding the electro-
magnetic fluctuations in the context of building a funda-
mental knowledge and making technological designs for
such materials can hardly be overestimated.
Capacitor systems involving graphitic nanostructures

have also been studied extensively. The application of a
bias on a graphene system above a substrate is of great
relevance to many quantum devices. A key factor has been
the control of the local graphene electrochemical potential
for the device functionality. Capacitance measurements can
also be utilized as means to probe the basic electronic
properties of graphitic nanostructures and to learn about
their Dirac-like nature. In particular, the 2D character of
graphene is exhibited in the quantum capacitance [16,17], a
concept related to the partially screened electrostatic field
due to the atomic scale of the graphene thickness [18].
Despite the presence of charges and voltage bias in
graphene-based capacitive systems, their fluctuations and
subsequent induced interaction effects have never been
considered.
In this paper, we investigate fluctuating charges trans-

ferred through the connection of a wire in a capacitor
system. Such charge-induced fluctuations are governed by
fluctuation-dissipation relations giving rise to a novel long-
ranged interaction of Casimir-like nature. The fundamental
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difference with the typical Casimir force lies in their origin.
While the Casimir phenomenon is due to the electromag-
netic fluctuation excitations associated with the dielectric
and magnetic response of each plate, the charge-induced
effect is due to monopolar charge fluctuations between the
plates transferred through the wire. Since in many cases
nanostructures are characterized by a reduced Casimir
force as compared to 3D [19–22], nanocapacitors offer
the possibility of finding regimes where the charge-induced
fluctuation interaction can be dominant.
We present a general theory utilizing the capacitance

concept and distinguishing between thermal and quantum
mechanical effects through characteristic dependences on
distance, temperature, and other factors. Graphene-based
systems are taken as templates for which this theory is
applied. Comparison with the typical Casimir interaction
helps us understand various regimes where each type of
interaction may be more important.

II. CHARGE FLUCTUATION INTERACTIONS
AND CAPACITANCE

The capacitor system under consideration is shown in
Fig. 1. It consists of two plates connected by a wire. The
voltage fluctuations of the wire induce excess fluctuating
charges on the capacitor. As a result, a force originating
from these types of fluctuations is induced between the
plates. It is clear that this monopolar charge fluctuations
force differs in origin from the dipolar fluctuation force
giving rise to the well-established van der Waals–Casimir
effect. The description of the interaction is closely related
to the surface charge density response δσ due to the
external voltage δV via the interaction Hamiltonian
δH ¼ − R

d2r0σðr0; tÞδVðr0; tÞ:

δσðr; tÞ ¼
Z

t

−∞
dt

Z
d2r0Cðr; r0; t − t0ÞδVðr0; t0Þ: ð1Þ

A key quantity here is the capacitance of the system,
which can be written in terms of the commutator of the
charge density-density correlations as [23]

Cðr; r0; t − t0Þ ¼ i
ℏ
h½σðr; tÞ; σðr0; t0Þ�i; ð2Þ

where h� � �i ¼ Trðρ…Þ, with ρ being the unperturbed
density matrix.
The density correlation can further be represented as

1

2
hδσðr; tÞδσðr0; t0Þ þ δσðr0; t0Þδσðr; tÞi

¼
Z

dω
2π

S̄ðr; r0;ωÞe−iωðt−t0Þ; ð3Þ

where the structure factor S̄ðr; r0;ωÞ is related to
the frequency-dependent capacitance via the
fluctuation-dissipation theorem as S̄ðr; r0;ωÞ ¼
ℏImCðr; r0;ωÞ cothðℏω=2kBTÞ. Using the fluctuation-
dissipation theorem in Eq. (3) and the identity
cothðxÞ ¼ P∞

n¼−∞ x=ðx2 þ n2π2Þ, one obtains for the
equal time charge density correlations

Z
dω
2π

S̄ðr; r0;ωÞ ¼ kBT
X∞
n¼−∞

Z
dω
π

ωImCðr; r0;ωÞ
ω2 þ ω2

n
; ð4Þ

with ωn ¼ 2πnkBT=ℏ being the Matsubara frequencies.
From the theory of complex analysis, one finally obtains
the charge density and charge fluctuations in terms of a
frequency-dependent capacitance:

hδσ2i ¼ kBT
X∞
n¼−∞

lim
r→r0

Cðr; r0; ijωnjÞ

¼ kBT
X∞
n¼−∞

lim
r→r0

Z
d2k
ð2πÞ2 Cðk; ijωnjÞeik·ðr−r0Þ; ð5Þ

where k is the 2D wave vector. When the voltage fluctua-
tions are distributed uniformly on the plates, the surface
charge density fluctuations can be written in terms of the
total charge fluctuations hδq2i according to

hδσ2i → hδq2i ¼ kBT
X∞
n¼−∞

CðijωnjÞ: ð6Þ

Using the electrostatic energy stored in the capacitor,
U ¼ q2=2C, one finds the force per unit area between the
capacitor plates as

f̄ ¼ − 1

2A
∂C−1
∂z hδq2i ¼ − kBT

2A
∂C−1
∂z

X∞
n¼−∞

CðijωnjÞ; ð7Þ

where A is the area of the plate and CðωÞ is the capacitance
of the system. Note that here the frequency dependence
comes from the response of the wire; therefore, in

FIG. 1. (a) Ideal system under consideration. A parallel plate
capacitor connected by a wire supporting voltage fluctuations δV.
One of the plates can be a graphene ribbon with a width w above a
thick metallic substrate separated by a distance z. The capacitor
system is assumed to be in an environment of air with ϵ ≈ 1.
(b) Experimentally realistic setting. The wire is represented by a
metallic connection between the “bottom” metal plate and the
“top” graphene nanoribbon.
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obtaining f̄ from U one does not retain the ωn

dependence in ∂C−1=∂z. In a more general case,
however, to calculate the force, one needs to use

f̄ ¼ − kBT
2A

P∞
n¼−∞

∂C−1ðijωnjÞ∂z CðijωnjÞ. We further elaborate
on this point in what follows. Equation (7) constitutes a
general expression for charge-induced fluctuation inter-
actions. This Casimir-like effect is determined by the
capacitance of the system. To understand the phenomenon
further, the theory is applied to graphene systems with
emphasis on thermal and quantummechanical contributions.
The capacitance is obtained by considering that the

charging of the capacitor leads to redistribution of carriers
in space in order to minimize the electrostatic energy. One
notes that the constant potential approximation is fulfilled
since the size of the considered graphene systems is on the
order of a micron, which is much larger than the screening
length range of 1 Å to a few nm-s depending on the
graphene carrier density [24]. Therefore, for classical
systems the capacitance is determined by the geometry
of the system via the geometrical capacitance C0. For thin
films, such as graphene and GNRs, the surface charges
cannot completely shield the electrostatic field. This results
in raising of the chemical potential to account for the
increased density of states necessary for complete shielding
[27]. The effect is associated with the quantum capacitance
CQ, and the total capacitance C is determined by an
addition of capacitors in series according to

1

C
¼ 1

C0

þ 1

ACQ
: ð8Þ

For the rectangular system in Fig. 1, the geometrical
capacitance can be found [28] as

C0 ¼
A
4

�
2z arctan

�
w
4z

�
þ w

4
ln

�
1þ

�
4z
w

�
2
��−1

: ð9Þ

One notes that when the width of the ribbon w is large, the
parallel plate capacitance is recovered, C̄0 ¼ A=ð4πzÞ.

In addition, a quantum capacitance is not associated with
the bottom plate since the thick metallic substrate screens
the electrostatic field completely.
The quantum capacitance is determined by the particular

material. For graphene it may be obtained via the random
phase approximation [14,25,29], as shown by several
authors [30–32]. In the static limit ðω;kÞ → 0, which is
of relevance here, one finds

CQ ¼ 4e2kBT
πðℏv0Þ2

ln

�
2 cosh

�
μ

2kBT

��
¼ e2

∂ðne − nhÞ
∂μ ;

ð10Þ
where ne, nh are the electron and hole concentrations,
respectively. Also, μ is the chemical potential and v0 ¼
106 m=s is the graphene carriers’ velocity. The above
expression reflects the fact that there is only a finite amount
of charge available on the graphene sheet, Q ¼ eðne − nhÞ,
due to the reduced dimensionality of graphene and its
subsequent restriction on the density of states. Using
Eqs. (8) and (10), an effective length parameter, associated
with the partially screened field by the graphene, may be
defined as d� ¼ ðℏv0Þ2=f16e2kBT ln½2 coshðμ=2kBTÞ�g. At
room temperature with no chemical potential, d� ≈ 1 nm.
The quantum capacitance for GNRs can be obtained in a

similar manner. For narrow ribbons, however, the energy
band structure is quantized due to the vanishing wave
functions at the edges [33,34]. The effect of the energy
quantization in the quantum capacitance can be seen in
Fig. 2(a) for an armchair GNR with w ≈ 12 nm. While the
graphene CQ montonically increases as a function of μ, the
ribbon CQ experiences peaks [28,31]. This peak structure is
much reduced if T is raised to room temperature.
We note that the developed theory provides a general

pathway to study a charge-induced fluctuations interaction
in a capacitive system. This is essentially a Lifhsitz-like
approach, which establishes a connection between the
charge-induced interaction in Eq. (7) and the response of
the system captured by the capacitance. The typical
Casimir interaction, on the other hand, is related to the

FIG. 2. (a) CQ as a function of chemical potential for graphene and a GNR with w ¼ 12.4 nm. (b) Charge fluctuations thermal force
normalized by f̄0 ¼ −kBT=ð2AzÞ. The area of all ribbon structures is 1 μm2 and μ ¼ 0.1 eV. The graphene-metal Casimir force
normalized by f̄0 at room temperature is also shown. The metal plasmon energy is taken as ℏωp ¼ 9 eV. (c) The normalized charge
fluctuations thermal force versus chemical potential for different GNRs at T ¼ 300 K.

CHARGE INDUCED FLUCTUATION FORCES IN … PHYS. REV. X 6, 011004 (2016)

011004-3



dielectric and magnetic response of the media. In general,
the capacitance can be frequency dependent, as shown in
Eqs. (1)–(6); therefore, we distinguish between thermal and
quantummechanical contributions in a similar manner as in
the case of the Casimir force. The thermal n ¼ 0Matsubara
frequency is considered first. The capacitance in this case is
determined by Eq. (8), containing the geometrical contri-
bution and the static limit of the quantum capacitance
[Eqs. (9) and (10)]. The force per unit area for a system with
a wider GNR, in which the discrete band structure is not
apparent (Fig. 1), is found analytically:

f̄T ¼ − 4kBT
A2

C0ðzÞ arctan
�
w
4z

�

×
ge2kBT
πðℏv0Þ2 ln½2 coshð

μ
2kBT

Þ�
C0ðzÞ
A þ ge2kBT

πðℏv0Þ2 ln½2 coshð
μ

2kBT
Þ�
: ð11Þ

For a graphene parallel plate capacitor, the geometrical
capacitance is replaced by C̄0 ¼ A=ð4πzÞ and w → ∞ in
f̄T . The above equation gives a unique expression for the
thermal charge-induced fluctuation interaction involving
graphene, which enables developing our further under-
standing of this type of force.

III. RESULTS AND DISCUSSION

The characteristic behavior of the thermal charge fluc-
tuations interaction in terms of size of the system, sepa-
rations, and quantum mechanical effects can now be
examined. Figure 2(b) shows how the thermal force
depends on the separation for both graphene and GNRs
with different widths. For separations z ≫ d�, one finds
that CQ ≫ C0, and the thermal force is determined mainly
by the geometrical capacitance. In the case of graphene,
the force reduces to f̄0 ¼ −kBT=ð2AzÞ. For separations
z ≪ d�, f̄T is determined mainly by the quantum capaci-
tance. For narrower ribbons, the magnitude of the force is
reduced, as seen in Fig. 2(b). While the effect of CQ for
graphene is relatively small over a large part of the distance
range z, its role for narrower ribbons can be much enhanced
[Fig. 2(c)]. This feature, which reduces the magnitude of

f̄T , is attributed to the quantized band structure of the
narrow ribbons.
It is important to compare how the typical Casimir force

differs from the charge fluctuations induced interaction.
The Casimir graphene-metallic substrate interaction has
been calculated by the Lifshitz approach [11,12], and it is
also summarized in the Appendix. In Fig. 2(b) we show
results for an infinite graphene sheet, described by the
Dirac model, and a typical metal with a plasmon energy of
ℏωp ¼ 9 eV. Because of its 1=z dependence, however,
f̄T is more important for larger z. It should be noted that
the region where the size of the Casimir force is com-
parable to the charge fluctuation force is in that separation
length where the thermal Casimir force is dominant (as
opposed to the quantum mechanical contribution). This
reduction in the distance scale where thermal effects take
place, as compared to other systems, is due to the reduced
dimensionality of graphene [19].
Figure 2(c) shows how the thermal charge fluctuations

force evolves as a function of μ for GNRs with different
widths. Because of the quantized electronic structure, μ
affects the force much more for narrower ribbons. For wider
ribbons, however, the interaction is hardly changed upon μ.
The quantum mechanical contribution to the charge

fluctuations force is closely related to the frequency-
dependent total capacitance. One must account for the
particular mechanism for charging the capacitor, which
happens via the connecting wire, as shown in Fig. 1(a).
Taking a Drude model [35,36] for the wire conductivity leads
to a frequency-dependent total capacitance according to

1

CtðωÞ ¼
1

C0

þ 1

ACQ
− iωR − ω2Rτ; ð12Þ

where R is the resistance of the wire and τ is the relaxation
time [5,26,37]. Using Eqs. (7) and (12), the charge fluctua-
tions force can now be calculated by taking into account all
Matsubara frequencies. Results for the distance, R, and τ
dependences of the force are shown in Fig. 3. Figure 3(a)
shows the effect of the finite size of the ribbon; as the
separation increases, the force is further reduced for all values
of R. Also, it is found in Fig. 3(b) that smaller values of R
lead to an enhancement of the charge fluctuation force due to

FIG. 3. (a) Charge fluctuations force
versus distance between ribbon of
width 0.1 μm and area 1 μm2 and a metal
plate at room temperature, where CtðωÞ
is used. Typical values for τ and R are
taken. (b) The normalized by f̄0 charge
fluctuations force as a function of the
wire resistance for different relaxa-
tion times.
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quantum mechanical effects while a larger resistance
(compared to τ=C0) leads to thermal fluctuations dominating
the interaction.
The quantum mechanical effects related to the mecha-

nism of charging the capacitor can be analyzed further by
considering the situation when RC0 is small compared to τ
and CQ can be neglected. The total capacitance in this case
becomes CtðωÞ ≈ C0=ð1 − ω2RC0τÞ. From Eq. (7), the
force is found as

f̄ ¼ − ℏ
4A

C0

∂C−1
0

∂z
1ffiffiffiffiffiffiffiffiffiffiffi
RC0τ

p coth

�
ℏ

2kBT
ffiffiffiffiffiffiffiffiffiffiffi
RC0τ

p
�
: ð13Þ

In the classical limit of large T and large plate size com-
pared to the separation z, one recovers f̄0 ¼ −kBT=ð2AzÞ.
In the quantum mechanical limit (with z ≪

ffiffiffiffi
A

p
), where

ℏ=
ffiffiffiffiffiffiffiffiffiffiffi
RC0τ

p
≫ kBT, the force for the graphene layer is

found as

f̄ ¼ − ℏ
2A

ffiffiffi
z

p
ffiffiffiffiffiffiffiffiffi
π

ARτ

r
: ð14Þ

Equations (13) and (14) are instrumental in understanding
Fig. 3 in a more transparent way. They clearly show how
the role of R affects the distance dependence of the
interaction. For the quantum regime, which is characterized
by smaller R, the dependence upon the separation goes as
1=

ffiffiffi
z

p
. In the thermal regime, on the other hand, the force

acquires an asymptotic distance behavior of 1=z.
Casimir and van derWaals forces are universal and of great

importance in nature, especially when the scale goes down to
micrometer distances and below. This type of interaction,
induced by dipolar fluctuations, can be essential in determin-
ing the behavior of nanostructures and devices. Yet there are
many other fluctuation-induced forces that become important
at such small scales. Here, we consider charge-induced
fluctuation forces in capacitive systems. The developed theory
utilizes static and frequency-dependent capacitance, and it is
applied in graphene-based structures. The total capacitance
contains both a geometrical and a collective electronic
components. Just like in the Casimir–van der Waals forces,
we distinguish between thermal and quantum mechanical
effects.
The origin of this induced interaction comes from

fluctuating charges, which is a key difference when
compared to the Casimir–van der Waals interaction that
originates from fluctuating polarizations. This is important
for understanding the 1=z asymptotic distance dependence
as compared to the 1=z3 dependence of the thermal Casimir
force. Similarly, the quantummechanical regime of 1=

ffiffiffi
z

p
is

of much longer range as compared to the metal-graphene
quantum mechanical asymptotics [11,12,14]. It is also
important to note that the geometrical capacitance takes
into account the geometry of the system in a rather
straightforward manner. This is unlike the Casimir force,
where nontrivial geometry is usually difficult to describe

theoretically. This is reflected in the fact that capacitance
can be found for objects with nontrivial boundary con-
ditions via electrostatic methods, while electromagnetic
boundary conditions are not easily solved beyond highly
symmetric extensions. Another distinct feature is the role of
the size of the system. The charge fluctuations force is
explicitly dependent on the area of the interacting objects,
which is not the case for the Casimir–van der Waals force.
The charge fluctuations interaction is ∼1=A for the thermal
and ∼1=A3=2 for the quantum mechanical regimes.
We have demonstrated that in nanocapacitors a monop-

olar force arising from fluctuating charges transferred via a
connecting wire can be made comparable or even larger in
magnitude than the dipolar fluctuations forces at separations
typical for the Casimir–van der Waals regimes. A key point
here is the fact that the van der Waals–Casimir force in many
nanostructures, including graphene systems, is much
reduced as compared to bulk counterparts due to character-
istic suppressions of the relevant plasma excitations
[19,20,22]. Thus, controlling the properties of the graphene
nanostructures and connecting wire provides an excellent
opportunity for potentially observing the charge-induced
fluctuation interaction. To better understand the quantitative
side of this issue, we calculate that the charge-induced and
Casimir interactions for the graphene system with w ¼
1 μm at 0.45 μm are on the order of 26 Pa [see Fig. 2(b)].
As the separation is further increased to 0.6 μm, the charge-
induced fluctuation force becomes 17 Pa, which is almost
double the Casimir interaction of 10 Pa at that distance. We
note that fluctuation-induced interactions of this magnitude
can be accessed experimentally, as shown for the Casimir
regime [21,38]. Therefore, we suggest that measurements in
a nanocapacitor with and without the connecting wire might
give means to distinguish between the typical Casimir and
charge-induced Casimir-like interactions in an experimental
setting. Challenges in terms of measurement accuracy might
be overcome by exploiting the various factors, such as
distance, area, and chemical potential to make a particular
fluctuations force dominant. Nevertheless, how to engineer
the specific setup with optimum conditions, where one can
observe the different regimes for the charge-induced inter-
action, can be addressed by experimentalists in the future.
In summary, we argue that charge fluctuation forces are

always present in the considered capacitorlike systems.
They must be taken into account in conjunction with the
standard Casimir interaction as the charge fluctuation force
can be comparable or even bigger in magnitude. Charge
fluctuation forces enable further probing of thermal and
quantum mechanical effects due to fluctuation-induced
phenomena in nanostructured materials such as graphene
and GNRs. Finally, we point out that it is worthwhile to
further pursue the effects of fluctuation forces due to not
just electromagnetic fluctuations but also due to other
thermodynamic parameters, for they will necessarily have
an important effect in many nanostructures and devices.
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APPENDIX: CASIMIR FORCE CALCULATIONS

The Casimir force fc between a metallic substrate and
graphene separated by a distance z is presented here using
the Lifshitz formalism [11,12,39],

fcðzÞ ¼ − kBT
2π

X∞
n¼−∞

Z
∞

0

hðωnÞk⊥dk⊥

×

��
e2hðωnÞz

ρgrB ðijωnjÞρMB ðijωnjÞ
− 1

�−1

þ
�

e2hðωnÞz

ρgrE ðijωnjÞρME ðijωnjÞ
− 1

�−1�
; ðA1Þ

where hðωnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n=c2 þ k2⊥

p
, c is the speed of light in

vacuo, and ωn are the Matsubara frequencies. The reflec-
tion coefficients for the transverse magnetic mode are

ρgrB ðiωÞ ¼
2πσðiωÞhðωÞ=ω

1þ 2πσðiωÞhðωÞ=ω ;

ρMB ðiωÞ ¼
ϵðiωÞhðωÞ − hMðωÞ
ϵðiωÞhðωÞ þ hMðωÞ

; ðA2Þ

where ϵ is the dielectric response of a typical metal and
hMðωÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðiωÞω2=c2 þ k2⊥

p
. The reflection coefficients

for the transverse electric mode are

ρgrE ðiωÞ ¼ − 2πσðiωÞω=hðωÞc2
1þ 2πσðiωÞω=hðωÞc2 ;

ρME ðiωÞ ¼
hðωÞ − hMðωÞ
hðωÞ þ hMðωÞ

: ðA3Þ

Using the two-band model for the conductivity of graphene
[40] and a plasma model for a typical metal with the
plasmon energy of ∼9 eV, one obtains the graphene-metal
substrate force labeled as “Casimir” in Fig. 2(b).
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