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Nonlocality is arguably among the most counterintuitive phenomena predicted by quantum theory. In
recent years, the development of an abstract theory of nonlocality has brought a much deeper understanding
of the subject, revealing a rich and complex phenomenon. In the current work, we present a systematic
experimental exploration of the limits of quantum nonlocality. Using a versatile and high-fidelity source of
pairs of polarization-entangled photons, we explore the boundary of quantum correlations, demonstrate the
counterintuitive effect of more nonlocality with less entanglement, present the most nonlocal correlations
ever reported, and achieve quantum correlations requiring the use of complex qubits. All of our results are
in remarkable agreement with quantum predictions, and thus represent a thorough test of quantum theory.
Pursuing such an approach is nevertheless highly desirable, as any deviation may provide evidence of new

physics beyond the quantum model.
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I. INTRODUCTION

Distant observers sharing a well-prepared entangled state
can establish correlations that cannot be explained by any
theory compatible with a natural notion of locality, as
witnessed via a suitable Bell inequality violation [1]. Once
viewed as marginal, nonlocality is today considered as one
of the most fundamental aspects of quantum theory [2,3]
and represents a powerful resource in quantum information
science, in particular, in the context of the device-
independent approach [4-6]. Experimental evidence is
overwhelming, all major loopholes have been individually
addressed [7-10], and three experiments closing both the
locality and detection loopholes were just reported [11-13].

From a more abstract perspective, recent years have been
marked by several developments providing a much deeper
understanding of the phenomenon of quantum nonlocality.
A generalized theory of nonlocality [2,14,15] was devel-
oped, aimed at characterizing correlations satisfying the no-
signaling principle (hence, not in direct conflict with
relativity). Importantly, there exist no-signaling correla-
tions—the most notable example being the highly nonlocal
box of Popescu-Rohrlich [14]—that are stronger than any
correlations realizable in quantum theory. Characterizing
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the boundary of quantum correlations (i.e., the separation
from more general no-signaling correlations) is an impor-
tant area of research today [16-18]. Intense theoretical
research effort is also devoted to explain why super-
quantum-correlations are unlikely to exist in nature
[19-25]. These ideas have clear potential to deepen our
understanding of the foundations of quantum theory (see,
e.g., Ref. [26] for a recent review), and may give a first
glimpse of physics beyond the quantum model [27].

Another fundamental issue is the relation between
entanglement and nonlocality. While early work showed
that the two concepts are genuinely different, it was shown
recently that entanglement and nonlocality are in fact not
even monotonically related. Hence, it is possible to obtain
“more nonlocality with less entanglement” not only at the
qubit level [28] but also when there is no restriction on the
size of the entanglement [29-31]: a strikingly counterin-
tuitive effect. In particular, there exist portions of the
boundary of quantum correlations that can only be accessed
using weakly entangled states [29,31]; i.e., these correla-
tions are provably impossible to reach using maximally
entangled states of whatever Hilbert space dimension.
Perhaps even more surprisingly, very weakly entangled
states can lead to strongly nonlocal correlations, stronger
still than the highly nonlocal PR box [32].

Although the above ideas triggered considerable atten-
tion from the theoretical community, they remain essen-
tially unexplored at the experimental level. Indeed, most
Bell experiments performed thus far [9-11,33-36] focus on
the simplest (and most famous) Clauser-Horne-Shimony-
Holt (CHSH) Bell inequality [37]; note that few
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exploratory works considered Bell tests in the multipartite
setting [38—40] or for high-dimensional systems [41—43].

The goal of the present work is to start a systematic
experimental exploration of the limits of quantum non-
locality. Using a high-quality entangled-photon source, we
perform a wide range of Bell tests. In particular, we probe
the boundary of quantum correlations in the simplest Bell
scenario. We demonstrate the phenomenon of more non-
locality with less entanglement; specifically, using weakly
entangled states, we observe (i) nonlocal correlations that
could provably not have been obtained from any finite-
dimensional maximally entangled state and (ii) nonlocal
correlations that could not have been obtained using a
single PR box. Moreover, we observe the most nonlocal
correlations ever reported, i.e., featuring the smallest local
content [44], and provide the strongest bounds to date on
the outcome predictability in a general class of physical
theories consistent with the no-signaling principle [45].
Finally, we observe nonlocal correlations that certify the
use of complex qubit measurements [46].

These results provide the most comprehensive exper-
imental study of quantum nonlocality performed so far. All
of our results are in remarkable agreement with quantum
predictions. Nevertheless, we believe that pursuing such a
large-scale exploration is of prime importance. These tests
provide stringent verifications of quantum predictions, as
any deviation could indicate new physics beyond quantum
theory.

II. CONCEPTS AND NOTATIONS

First, we introduce the concepts and notations for
generalized Bell tests, and then present the experiments.
Consider two separated observers, Alice and Bob, perform-
ing local measurements on a shared quantum state p.
Alice’s choice of measurement settings is denoted by x
and the measurement outcome by «. Similarly, Bob’s
choice of measurement is denoted by y and its outcome
by b. The experiment is thus characterized by the joint
distribution

p(a,b|x,y) :Tr<pMa|x ®Mb|y)’ (1)

where M|, (M},,) represents the measurement operators of
Alice (Bob); see Fig. 1(a). In his seminal work, Bell
introduced a natural concept of locality, which assumes
that the local measurement outcomes depend on only a
preestablished strategy and the choice of local measure-
ments [1]. Specifically, a distribution is said to be local if it
admits a decomposition of the form

x, A)p(b

pla.blx.y) = / dig(A)p(a v, @)

where A denotes a shared local (hidden) variable, distrib-
uted according to the density ¢(4), and Alice’s probability

T )
p
a b
FIG. 1. (a) Bell test scenario. Alice and Bob perform “black

box” measurements on a shared (quantum) state p. The experi-
ment is characterized by the data {p(a, b|x,y)}, ie., a set of
conditional probabilities for each pair of measurement outputs (a
and D) given measurement settings x and y. Based on the data
pla,blx,y), Bell inequalities [see Eq. (3)] can be tested.
(b) Geometrical representation of nonsignaling correlations.
The set of local (£), quantum (Q), and nonsignaling (N'S)
distributions are projected onto a plane, where the following
inclusion relations are clear: £ C Q Cc N'S.

distribution—once A is given—is notably independent of
Bob’s input and output (and vice versa). For a given
number of settings and outcomes the set of local distribu-
tions forms a polytope L, the facets of which correspond to
Bell inequalities [2]. These inequalities can be written as

x.y)<L. 3)

§= Z ﬁa,b.x,yp(a’ b

a,b.x,y

where f,; ., are integer coefficients and L denotes
the local bound of the inequality—the maximum of the
quantity S over distributions from £, i.e., of the
form Eq. (2).

By performing judiciously chosen local measurements
on an entangled quantum state, one can obtain distributions
[Eq. (1)] that violate one (or more) Bell inequalities, and
hence do not admit a decomposition of the form Eq. (2).
Therefore, the set of quantum correlations O, i.e., those
admitting a decomposition of the form Eq. (1), is strictly
larger than the local set £. Characterizing the quantum set
Q, or equivalently the limits of quantum nonlocality, turns
out to be a hard problem [17,18]. In their seminal work,
Popescu and Rohrlich [14] asked whether the principle of
no-signaling (or relativistic causality) could be used to
derive the limits of @ and surprisingly found this not to be
the case. Specifically, they proved the existence of no-
signaling correlations that are not achievable in quantum
theory, the so-called “PR box” correlations. Therefore, the
set of no-signaling correlations, denoted by NS, is strictly
larger than Q, and we get the relation £ C Q C N'S [see
Fig. 1(b)]. The study and characterization of the boundary
between Q and NS is today a hot topic of research [26].
A central question is whether the limits of quantum
nonlocality could be recovered from a simple physical
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principle (i.e., is it possible to derive quantum mechanics
from just causality and another axiom?).

III. EXPERIMENTAL SETUP

Here, we experimentally explore the limits of quantum
nonlocality using a high-quality source of entangled
photons [7]. Our entanglement source consists of a 355-
nm pulsed laser focused onto two orthogonal nonlinear
BiBO crystals to produce polarization-entangled photon
pairs at 710 nm, via spontaneous parametric down-
conversion: the first (second) crystal has an amplitude to
create horizontal (vertical) polarized photon pairs, which
interfere to produce the entangled state [47] (see Fig. 2).
Using wave plates to control the polarization of the pump
beam, we create polarization-entangled states with arbitrary
degree of entanglement

lwy) = cosO|H, H) + sin 0|V, V). (4)

In addition to the ability to precisely tune the entangled
state of the source, which is crucial for many of the Bell
tests we perform, we also achieve extremely high state
quality. To do so, we precompensate the temporal
decoherence from group-velocity dispersion in the down-
conversion crystals with a BBO crystal [48], resulting in an
interference visibility of 0.997 = 0.0005 in all bases. The
high state quality (along with the capability of creating a
state with nearly any degree of entanglement) allows us to

L HWP1 TC NLC

FIG. 2. A diagram of the entanglement source. The high-power
laser (L) is prepared in a specific polarization state (depending on
the Bell test) by two half-wave plates (HWP1 and HWP2). We
precompensate for the temporal decoherence (arising from the
group velocity dispersion in the down-conversion crystals) by
passing the laser through a crystal (TC) designed to have the
opposite group velocity dispersion. Passing the pump through a
pair of orthogonal nonlinear crystals (NLC) produces the en-
tangled photons. The measurements are performed using a
motorized half-wave plate (HWP3) and a polarizing beam splitter
(PBS). We then spectrally filter (IF) the photons to limit the
collected bandwidth to 20 nm, as well as spatially filter the
photons using a single-mode fiber (SMF) to remove any spatial
decoherence. Finally, the photons are detected using avalanche
photodiodes (APD), the events of which are recorded on a time-
to-digital converter (TDC) and saved on a computer for analysis.

make measurements very close to the quantum mechanical
bound in a large array of different Bell tests.

For the Bell tests, the local polarization measurements
are implemented using a fixed Brewster-angle polarizing
beam splitter, preceded by an adjustable half-wave plate,
and followed by single-photon detectors to detect the
transmitted photons. This allows for the implementation
of arbitrary projective measurements of the polarization,

represented by operators A = a - 6 and B = b - 6, where a

and b are the Bloch vectors and & = (6,.0y,0;) denotes the
vector of Pauli matrices. Measurement outcomes are
denoted by @ = £1 and b = %1, where in our experiments
the —1 outcome is measured by projecting onto the
orthogonal polarization. To remove any potential system-
atic loopholes (e.g., seemingly better results due to laser
power fluctuations), we measure each Bell inequality
multiple times, where the measurements settings are
applied in a different randomized order each time.
Finally, to ensure the validity of the results, we do not
perform any postprocessing of the data (e.g., accidental
subtraction).

IV. EXPERIMENTS AND RESULTS

We start our investigation by considering the simplest
Bell scenario, featuring two binary measurements each for
Alice and Bob. The set of local correlations, i.e., of the form
Eq. (2), is fully captured by the CHSH inequality [37]:

c
Scusu = En + Epp + Ey — Ep<2, (5)

where E,, = p(a = b|x,y) — p(a # b|x,y) denotes the
correlation function. Quantum correlations can violate
the above inequality up to Scysy = 2v/2, the so-called
Tsirelson bound [16]. More generally, quantum correla-
tions must also satisfy the following family of inequalities:

Q
Sctisi €08 0 + Sy Sin 0<2V/2, (6)

parametrized by 6 € [0,2x], and where Sty = —E; +
E, + E,; + E,, is a different representation (or symmetry)
of the CHSH expression. Notably, the above quantum Bell
inequalities are tight, in the sense that quantum correlations
can achieve 2+/2 for any @ € [0, 2z]. Specifically, inequal-
ity Eq. (6) can be saturated by performing appropriate local
measurements on a maximally entangled state |y, /4) (see
Appendix A). Therefore, the set of quantum correlations Q
forms a circle (of radius 2+/2) in the plane defined by
Scusu and Sgygy. Figure 3 presents the experimental
results that confirm these theoretical predictions with high
accuracy. To make the measurements, we keep the
entangled state fixed and vary the settings for 180 different
values of 0. The average radius of our measurements is
2.817, with 8 data points falling beyond the limit of
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Testing the boundary of quantum correlations in the simplest Bell test scenario. (a) Plot of the experimental measurements of

the curve Eq. (6). Here, local correlations (£) form the inner blue square, no-signaling correlations form the outer orange square (the
vertices represent the PR box and its symmetries), and quantum correlations form the green circle; the black dots are the 180 measured
data points, all of whose error bars lie within the thickness of the dot. (b) A comparison of the analyzed data with the quantum
mechanical maximum (2v/2). Here, 6 is defined in Eq. (6) and corresponds to rotating around the circle in Fig. 3(a). The vertical axis is
the distance from 2+/2 of the radius of curve formed by Scpsn and Scpsy (i-e., the radius of the data point at a given 6). Plotted values
greater than zero correspond to measured values less than 21/2. Here, the uncertainty is smaller for measurements around the vertices of
the local correlations (at 45°, 135°, 225°, and 315°) due to large correlations between Sy and Scysy. We observe 8 data points beyond
the quantum limit, which we expect to happen with a probability of 0.66.

quantum mechanics. However, given our uncertainties of
each point and the mean of our measurements, the
probability of seeing 8 or more measurements beyond
the quantum limit is 0.66; i.e., there is no conflict with
quantum predictions.

It turns out, however, that the complete boundary of Q
cannot be fully recovered by considering only maximally
entangled states. That is, there exist sections of the no-
signaling polytope where the quantum boundary can only
be reached using partially entangled states. While studies
[28,49] on minimal detection efficiency required to close
the detection loophole have already hinted at this for qubit
entanglement, a more general observation with no restric-
tion on the size of the entanglement has only been
theoretically established recently in Refs. [29-31]. To
demonstrate this bizarre phenomenon experimentally, we
first strengthen the theoretical result obtained in Ref. [29].

Specifically, consider the projection plane defined
by the parameters Scuysy and —Ef — E¥, where Ef =
> a_iap(alx = 1) denotes Alice’s marginal (similarly for
Bob’s marginal E®). In order to find the quantum boundary
in this plane, we consider the family of Bell inequalities

c
S, = Scusn +2(1 —7)[Ef + EF]<2(2—1),  (7)

with 1 <7 <3/2. For z = 1, we recover CHSH, while for
1 <t < 3/2, the inequality has the peculiar feature that the
maximal quantum violation can only be obtained using
partially entangled states [29]. Moreover, for 1/ V2+
1/2 <7 <3, as we show in Appendix B, the inequality
cannot even be violated using any finite-size maximally

entangled state. This illustrates the fact that weak entan-
glement can give rise to nonlocal correlations that cannot be
reproduced using strong entanglement. We achieve viola-
tions of the above inequalities (for several values of the
parameter 7) extremely close to the theoretically predicted
maximum, by adjusting the degree of entanglement and
using the corresponding settings; see Fig. 4. For instance,
tuning our source to produce weakly entangled states, we

obtain clear violation of the inequality S, 3 23.2, where
we measure S, = 3.258 +0.002, which is impossible
using maximally entangled states. Our results, thus, clearly
illustrate the phenomenon of “more nonlocality with less
entanglement” [29-31]. It is worth noting that, due to the
small difference between the quantum maximum and the
local bound 2(27 — 1), an experimental demonstration of
the above phenomenon using inequality Eq. (7) is essen-
tially impossible without extremely precise control of high-
quality weakly entangled states.

In the remainder of this paper, we go beyond the CHSH
scenario and consider Bell inequalities featuring n > 2
binary-outcome measurements per observer. This allows us
to investigate other aspects of the phenomenon of quantum
nonlocality. We start by considering the family of chained
Bell inequalities [50,51]:

I, = Z {p(a:bn,l)—l—p(a;ébn,n)
a.b==+1
n—1 x+1 r
+ 33 pla# bl )
x=1 y=x
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FIG. 4. Testing the boundary of quantum correlations with the tilted Bell inequality. (a) A plot of the measured values for a projection
where the quantum boundary can only be attained using partially entangled states. The orange line is the boundary for no-signaling
correlations (the PR box sitting at the top), and the red line is the boundary of the set of correlations achievable by a maximally entangled
state (see Appendix B), whereas the horizontal axis at Scysy = 2 coincides with the boundary of the local set £. The green curve
represents the quantum boundary, with the black points corresponding to measured data points. For large values of —E*l‘ —EB
(corresponding to less entangled states), the system becomes increasingly sensitive to system noise (i.e., slight state creation and
measurement imperfections), resulting in the measured values deviating slightly from the quantum curve. (b) A plot of the measured
values for the tilted Bell inequalities. The red line is the bound of maximally entangled sates, the blue line is the local bound, and the
black points are the analyzed data. The red and blue lines cross at 1/v/2 + 1/2, where maximally entangled states can no longer violate a
tilted Bell inequality. Here, for the measured points up to 7 = 1.323, we see a value of S, at least 3 standard deviations above the local
bound; notably, we have violations for z = 1.223, 1.250, 1.265, 1.296, and 1.323 (circled data points in both plots), as well as 7 = 1.300
(see text and Appendix C), none of which are possible for maximally entangled states in any dimension, implying that with less
entanglement we have more nonlocality.

Using a maximally entangled state |y, /4), quantum theory 0.9

allows one to obtain values up to I, = n[l — cos(x/2n)]. 0.8

Note that, as n increases, the quantum violation approaches 07

the bound imposed by the no-signaling principle; namely, 06

I,, = 0 (here given by the algebraic minimum of 7,,). Using ' Nonlocal

our setup, we obtain violations of the chained inequality up ~=05 content

to n = 45. Because [, becomes increasingly sensitive to 0.4

any noise in the system as n increases, we find the strongest 0.3

violation at n = 18, with a value of I3 = 0.126 + 0.001; 02

see Fig. 5. For comparison, the previous best measurement ' \ 4 Tocal

of I, was I; = 0.324 + 0.0027 [52]. 01 content
These violations have interesting consequences. First, 0 0 15 20 25 30 35 40 45

they allow us to put strong lower bounds on the nonlocal n

content of the observed statistics Pgps = { Pops(@b|xy)}-

Following the approach of Ref. [44], we can write the FIG. 5. A plot of the measured chained Bell inequality values

for n = 2 to n = 45. Here, the local limit is /, = 1 and the no-
signaling limit is /, = 0. The quantum boundary in this case is
the green line; our measured Bell inequality values are connected
by the black line, with the error bars lying within the thickness of
the line. The local content for a given n is represented by distance
from O to the measured /, value (black line), which is colored
blue, and the nonlocal content is the distance from the measured
value to 1, colored orange. As the value of /,, approaches 0, the
correlations present in the system match those of a PR box—if
I, = 0 were measured, the system would require the use of a PR
box for every measurement. Our measured points deviate from

decomposition

Pobs = (1 —q)PL + gPns. ©)
where p; is a local distribution (inside £) and pys is a no-
signaling distribution (achieved, e.g., via PR boxes), and
then minimize ¢ € [0, 1] over any such decomposition. The
minimal value ¢, is then the nonlocal content of p,, and
can be viewed as a measure of nonlocality. That is, we can

think of ¢.;, as being the likelihood that some nonlocal
resource (e.g., a PR box) would need to be used in order to
replicate the results. For an observed violation of the
chained inequality, we can place a lower bound on the

the quantum boundary due to the 0.3% noise from imperfect state
preparation, which becomes more noticeable with larger number
of measurements (e.g., /45 requires 360 specific measurements
along the Bloch sphere).
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nonlocal content: ¢, > 1 — I, [53]. Notably, for the case
n = 18, we obtain ¢,,;, = 0.874 £ 0.001, which represents
the most nonlocal correlations ever produced experimen-
tally. For comparison, the previous best bound was g, =
0.782 £ 0.014 [54,55] (and if one maximally violates
SCHSH’ then Gmin = 041)

Moreover, following the work of Ref. [45], we can place
bounds on the outcome predictability in a general class of
physical theories consistent with the no-signaling principle.
While quantum theory predicts that the measurement
results are fully random (e.g., one cannot predict locally
which output port of the polarizing beam splitter each
photon will be detected), there could be a super-quantum-
theory that could predict better than quantum theory (that
is, with a probability of success strictly greater than 1/2) in
which port each photon will be detected. This predictive
power, represented by the probability § of correctly
guessing the output port, can be upper bounded from the
observed violation of the chained Bell inequality. In our
experiments, the best bound is obtained for the case
n = 18, for which we obtain 6 = 0.5702 4+ 0.0005 (that
is, given any possible extension of quantum theory satisfy-
ing the free-choice assumption [52], the measurement
result could be guessed with a probability at most 57%),
which is the strongest experimental bound (closest to 50%)
to date; the previous bound was 6 = 0.6644 + 0.0014 [52].

The above results on the chained Bell inequality show
that, in order to reproduce the measured correlations,
nonlocal resources (such as the PR box) must be used in
more than 87% of the experimental rounds. While the
chained Bell inequality provides an interesting metric of
nonlocal content, there are, however, even more nonlocal
correlations achievable using two-qubit entangled states,
which can provably not be reproduced using a single PR
box [32]. Interestingly, such correlations can arise only
from partially entangled states, since maximally entangled
states can always be perfectly simulated using a single PR
box [56]. The accuracy of our experimental setup allows for
the study of Bell inequalities that require the use of more
than a single PR box. Specifically, consider the inequalities
from Ref. [32] (for n =3 and n = 4):

Mz = Ey + Ep + Ei3 + Ey + Exyy — Eps

L-+1PR
+E; —Ep—E}—E} —ES+E5 < 6,

(10a)

My =Ej | +Ep+E;z+Ey—Ep+Ey
+ E5; —E32—E34—E?—E‘§—E‘_§}—Ef
L+1PR

= )

(10b)

which cannot be violated by any local correlations sup-
plemented by a single maximally nonlocal PR box
(L + 1PR), which is viewed as a unit of nonlocality.

Nevertheless, by performing well-chosen measurements
on a very weakly entangled state (|1//z3,,/7>), we observe
violations of the above inequalities (see Table I). Note that
since the observed statistics (leading to M33,, > 6 and
M35, > T) could not have been obtained using a single PR
box, they also cannot be obtained using a maximally
entangled state |y,/4), and require the use of a weakly
entangled state (or two PR boxes). Hence, we provide a
second experimental verification of the phenomenon of
more nonlocality with less entanglement.

Finally, we consider a Bell inequality that can certify the
use of complex qubits (versus real qubits) [46].
Specifically, the Bell inequality is given by

Sg=E+Ep+E;3+Ey)—Eyp—Ey
c
—E3 + Ey — Es3 — Ey) — Eip + E<6.  (11)

The optimal quantum violation is Sy = 4v/3 = 6.928,
which can be obtained by using a maximally entangled
two-qubit state |y, /4), and a set of highly symmetric qubit
measurements. The measurements of Bob are given by
three orthogonal vectors on the sphere, and Alice’s mea-
surements are given by the four vectors of the tetrahedron:
ay = (1/V3)(L L), a=(1/V3)(l.-1.-1), a =
(1/V3)(=1.1,=1), a; = (1/v/3)(—=1,—1,1) and b, =
(1,0,0), b, = (0,1,0), by = (0,0, 1). To perform these
measurements, we add an additional quarter-wave plate
after HWP3 in Fig. 2. Implementing this strategy exper-
imentally, we observe a violation of S = 6.890 4 0.002
close to the theoretical value. Interestingly, such a violation
could not have been obtained using a real qubit strategy.
Indeed, the use of measurement settings restricted to an
equator of the Bloch sphere, i.e., real qubit measurements,

can only provide violations up to Sy = 2 4 2v/5 = 6.472
[46]. Thus, the observed violation certifies the use of

TABLE I. A table of the measured values from two different
Bell inequalities, M33,, and M3,,, as defined in Eq. (10). For
these inequalities, correlations from £ and those augmented with
the use of a single PR box (represented as £ + 1PR) give rise to
the same bound. Any measured values above the corresponding
bound imply that the data are not only incompatible with Bell
locality, but also with a single use of a PR box. Instead, two PR
boxes must be used to replicate the data. The approximate
quantum mechanical maximums (obtained using the tools of
Refs. [17,18,57,58]) and the quantum mechanical maximums for
two qubits are given as a reference.

Measured Quantum (two-qubit)
Bell inequality value maximum
L+1PR 6.016 £ 0.0003 6.130 (6.024)
My <
L+1PR 7.004 £+ 0.0004 7.127 (7.041)
Mz

041052-6



EXPLORING THE LIMITS OF QUANTUM NONLOCALITY ...

PHYS. REV. X 5, 041052 (2015)

complex qubit measurements, i.e., spanning the Bloch
sphere. Note, however, that any strategy involving complex
qubit measurements can be mapped to an equivalent
strategy involving two real qubits [59,60].

V. CONCLUSION

To summarize, we report the observation of various
facets of the rich phenomenon of quantum nonlocality. The
results of our systematic experimental investigation of
quantum nonlocal correlations are in extremely good
agreement with quantum predictions; nevertheless, we
believe that pursuing such tests is of significant value, as
Bell inequalities are not only fundamental to quantum
theory, but also can be used to discuss physics outside of
the framework of quantum theory. By doing so, one can
continue to place bounds on the features of theories beyond
quantum mechanics, as we have here. Such continued
experiments investigating the bounds of quantum theory
are important, as any valid deviation with quantum pre-
dictions, e.g., by observing stronger correlations than
predicted by quantum theory, would provide evidence of
new physics beyond the quantum model. Furthermore,
nonlocality has important applications towards quantum
information protocols, though the optimal way to quantify
the nonlocality present in a system is still an open question
(see, e.g., Ref. [61]). Here, we experimentally verify, for the
first time, that for certain correlations from nonmaximally
entangled states, two PR boxes (i.e., two units of the
nonlocal resource) are required to recreate the correlations
from these weakly entangled states. A natural question then
is if these systems could be used advantageously for certain
quantum information tasks.
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Note added.—Recently, a related work appeared, present-
ing the most precise measurement of the Tsirelson bound of
the CHSH Bell inequality [62].

APPENDIX A: CHARACTERIZATION OF THE
QUANTUM BOUNDARY

Here, we discuss in detail the characterization of the
boundary of quantum correlations in a two-dimensional
projection of the no-signaling polytope in the case of binary
inputs and outputs (i.e., the CHSH scenario). Specifically,
let us consider the two-dimensional plane (Fig. 3) defined
by the expectation values of

Scusu = Ei + Enp + Ey — Ey, (A1)

Seusy = —En + Eip + Ey + En. (A2)

Note that the correlation functions E,, can equivalently be
seen as the average value of the product of +1 outcome
local (projective) measurements; i.e.,

Exy = Z abp(a,b|x,y).

a,b==+1

(A3)

They can thus be evaluated in quantum theory as
E., = Tr(pA.B,), where A, B, are dichotomic
observables satisfying

A2=B =1, [A.B]=0 Vuxy (Ad)

The boundary of the set of legitimate quantum distributions
in this two-dimensional plane is given by the circle (see
also Refs. [25,63]):

Stusn + SCusu < 8. (A5)

or, equivalently,

Scust €080 + Shygy SN0 <2vV2 ¥V 0 €[0,22].  (A6)

To see that this is the case, let us note that for any
dichotomic observables A;, A,, By, B, satisfying
Eq. (A4), and any 6 € |0, 2z, the following identity holds
true:

2V21 -8

1 7. (= z 2
= ﬁ [sm (Z + 6>A2 + cos (Z + 0)A1 — Bl]
+ L [COS <§ + 9>A2 — sin <z + 9>A1 + Bz} 2,
V2 4 4
(A7)
where 5 is the Bell operator [64] associated with the

Bell expression given in the left-hand side of Eq. (A6);
1.e.,

2
B=" {[cosO(—1)D0=Y + sin 6(—1)]A, B, }

x,y=1

= x/i[sin G + 9) (A1B, + A,B))
+ cos <% + 9) (A{B; — Asz)] : (AB)

Since the right-hand side of Eq. (A7) is a sum of non-
negative operators, it then follows that for any quantum
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state p, and hence for any quantum correlation, we must
have

2V2 = Tr(pB) = 2v2 — (Scus €05 0 + Sy Sin 0) > 0.
(A9)

The above bound on the set of quantum correlations is
indeed achievable. Explicitly, for each 8, by measuring the
following observables,

Al = Oy, A2 = 0,

By = —sinyo, — cos yo,, B, =cosyo, —sinyo,,

(A10)

with y = 6 — (3z/4) on the maximally entangled two-
qubit state,

Wa) = —=
l//n/4 7\/5

[with |H) (|V)) being the +1 (—1) eigenstate of o], we
arrive at quantum correlations that saturate the inequality
given in Eq. (A6). By varying 6 over the entire interval
[0,27], it can be verified that one indeed generates
the entire (circular) boundary of the quantum set in this
two-dimensional plane.

(H,H) +|V,V)) (A11)

APPENDIX B: UPPER-BOUNDING QUANTUM
VIOLATION BY MAXIMALLY
ENTANGLED STATES

Let us denote by 7¢, =1+ (1/v2)~1.2071 and by
® ") the maximally entangled state of local Hilbert space
d y g p

dimension d, i.e.,

A
) IW;IOIO, (B1)
where d > 2. Here, we provide further details showing the
following observation.

Observation 1: For 7 € [r¢,.3], the family of Bell
inequalities given by Eq. (7) cannot be violated by any
finite-dimensional maximally entangled state D).

Proof.—Let us first note that for arbitrary 7 € [r¢,.3], the
Bell inequality S, can be written as a convex combination
of that for 7 = 7, and that for 7 = % Moreover, for any
given quantum state p (and given experimental scenario), it
is easy to show that the set of Bell inequalities satisfied by p
is a convex set. Since S, fort = % cannot be violated by any
legitimate probability distribution [29], it suffices to show

that S, for r = 7, also cannot be violated by |®) (for any
finite d).

To show that no finite-dimensional |®) can violate the
Bell inequality S, for 7 = 7¢,, we make use of the hierarchy
of semidefinite programs (SDPs) considered in Ref. [65] for
characterizing exactly the quantum correlations achievable
by |®). Specifically, to obtain (an upper bound on) the
maximal value of S,_,  attainable by finite-dimensional
|®1), it suffices to consider a fixed level of the hierarchy, and
solve a SDP over the positive semidefinite (moment) matrix
variable I" such that (1) certain entries of I are required to be
non-negative, (2) certain entries of I" are required to be
identical, and (3) a particular entry of I is required to be “1”
(for details, see Ref. [65], pp. 16, 17).

To this end, we consider I defined by the 17 symbolic
operators 1, AY, By, AfB, Bf A}, B;'Bj,, AFAY, with x,
X,v,y €1,2and x # x', y # y'. Solving the correspond-
ing SDP via the solver SEDUMI (interfaced through YALMIP
[66]), we find that the quantum value of S, attainable by
any finite-dimensional |®7) is upper bounded by
2(27¢, — 1) + €, with € ~ 1.09 x 1073, which is vanishing
within the numerical precision of the solver. In other words,
after accounting for the numerical error present in the
optimization problem, the output of the SDP provides a
numerical certificate that no finite-dimensional maximally
entangled state can violate the Bell inequality S, for
T = 1¢,. This completes the proof of Observation 1. [

Note that as 7 increases, the equality S, =2(27— 1),
cf. Eq. (7), corresponds to a plane tilting from the
horizontal axis towards the vertical axis at —E} — E¥ =
2; see Fig. 4(a). For 7 = 7, this plane corresponds
precisely to the red solid straight line joining the points
(0,21/2) and (2,0). Observation 1 thus translates to the fact
that, in Fig. 4(a), all correlations present in the region
between the actual quantum boundary (green curve) and
the red solid line are unattainable by finite-dimensional
maximally entangled states—a fact that can also be
independently verified by solving an analogous SDP that
maximizes the value of Scygy under the equality constraint
that marginal correlations —E7 — E¥ take on specific
values in the interval [0, 2].

Finally, let us note that the same numerical technique
could also be used to show that both the M33y, and the
M 435, inequality hold true (to within a numerical precision
of 1078) for all correlations arising from the maximally
entangled state of any Hilbert space dimension.

APPENDIX C: DETAILED DATA AND
ESTIMATED STATES

In this Appendix, we give the results of the analyzed data
and quantum states used for each Bell test presented in this
paper. First, for the data collected for the projection onto the
Scusucosf and Sgygysind axes, we use maximally
entangled states, altering the measurement settings to rotate
around the circle in Fig. 3. Here, we collect data for 1 s at
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each setting (where each point requires 16 total measure-
ment combinations). To calculate the likelihood, given our
measurements, of having the observed 8 (or more) events
beyond the quantum limit, first, we consider our expected
radius to be the mean of all measured radii, calculated to be
2.817. Next, we assume the calculated error bars to
correspond to one o from the mean (that is, each data
point comes from a Gaussian distribution with a mean of
the mean radius and a standard deviation given by the error
bar). From here, we can compute the probability of each

data point being measured greater than 2v/2. We then
assume that the probability distribution of seeing k events
beyond the quantum limit follows a Gaussian distribution
with mean u = >_,p; = 8.677 and variance of &> =
> ipi(1 — p;) =7.928. This distribution then determines
our probability of seeing 8 or more events of 0.66.

For the plot of the tilted Bell inequality in Fig. 4
[Eq. (7)], we collect data for 15 s for each setting (again,
16 total measurement setting combinations). We use states
of varying degree of entanglement, which we cite by listing
the 6 value in the state cosO|H,H) +sind|V,V). The
analyzed data are displayed in Table II. As a note, the value
in the text listed for S,_ 3 has separately optimized settings
(instead of automatically generated settings), as well as is
measured for 100 s.

For the chained Bell inequality [Eq. (8)], I, is the
chained Bell parameter, with v, being the measurement
bias. The measurement bias is the deviation of Alice’s (or

TABLE II. Analyzed data and estimated parameters for the
tilted Bell inequality [Eq. (7)]. Here, the estimate of the
uncertainty of S, is given by AS..

T Scusu —E1—E, S, AS, Local bound &

1.001 2.828 0.052  2.828 0.011 2.004 45.0
1.020 2.827 0.120  2.837 0.010 2.080 46.5
1.039 2.816 0.220  2.833 0.010 2.156 48.1
1.063 2.800 0.320 2.840 0.010 2.252 49.8
1.095 2.764 0.480  2.855 0.009 2.380 522
1.128 2.736 0.620  2.895 0.009 2.512 54.9
1.137 2.712 0.720  2.909 0.008 2.548 55.5
1.171  2.660 0.860  2.954 0.008 2.684 58.5
1.193 2.616 0.980  2.994 0.007 2.772 60.2
1.223  2.564 1.120  3.064 0.007 2.892 62.7
1.250 2.504 1.240  3.124 0.006 3.000 65.2
1.265 2.456 1.320  3.156 0.006 3.060 66.4
1.296 2.368 1.460  3.232 0.005 3.184 69.2
1.323  2.304 1.580  3.325 0.005 3.292 71.7
1.348 2.228 1.680  3.397 0.004 3.392 74.2
1.369 2.168 1.760  3.467 0.003 3.476 76.3
1.390 2.120 1.820  3.540 0.003 3.560 78.4
1.410 2.064 1.880  3.606 0.002 3.640 80.5
1.424  2.036 1.920  3.664 0.002 3.696 81.9
1.435 2.016 1.932  3.697 0.002 3.740 82.9
1.442  2.000 1.946  3.721 0.002 3.768 83.7
1.449 1.964 1.957 3.722  0.002 3.796 84.6

Bob’s) individual measurements from being completely
random, that is, the difference in probability of measuring
output —1 to measuring output 1 [calculated by p(1|x)—
p(—1]x)]. The bias given in Table III (and the bias used in
calculating §,) is the maximum bias over all possible
measurement settings. Finally, &, is the bound on the
predictive power, with Ad, being the uncertainty. The
uncertainty of /,, is approximately twice as large as the AJ,
(since 6, «x I,/2). For these measurements, we use a

TABLE III. Analyzed data for the chained Bell inequality
(Eq. (3)].

n I, v, o, A9,
2 0.5931 0.0062 0.8028 0.0016
3 0.4115 0.0058 0.7116 0.0014
4 0.3148 0.0055 0.6629 0.0013
5 0.2624 0.0068 0.6380 0.0012
6 0.2230 0.0058 0.6173 0.0012
7 0.1965 0.0065 0.6048 0.0011
8 0.1812 0.0059 0.5964 0.0011
9 0.1667 0.0073 0.5906 0.0011
10 0.1539 0.0066 0.5836 0.0011
11 0.1479 0.0069 0.5809 0.0011
12 0.1419 0.0069 0.5778 0.0011
13 0.1396 0.0065 0.5763 0.0011
14 0.1357 0.0064 0.5742 0.0011
15 0.1324 0.0077 0.5739 0.0010
16 0.1312 0.0061 0.5718 0.0010
17 0.1294 0.0064 0.5711 0.0010
18 0.1262 0.0065 0.5702 0.0005
19 0.1318 0.0070 0.5714 0.0005
20 0.1290 0.0075 0.5722 0.0005
21 0.1279 0.0074 0.5709 0.0005
22 0.1291 0.0071 0.5717 0.0010
23 0.1287 0.0065 0.5708 0.0010
24 0.1325 0.0072 0.5734 0.0010
25 0.1312 0.0074 0.5730 0.0010
26 0.1380 0.0067 0.5757 0.0011
27 0.1372 0.0070 0.5755 0.0010
28 0.1389 0.0073 0.5768 0.0011
29 0.1409 0.0073 0.5777 0.0011
30 0.1429 0.0069 0.5783 0.0011
31 0.1456 0.0075 0.5803 0.0011
32 0.1474 0.0066 0.5803 0.0011
33 0.1475 0.0070 0.5808 0.0011
34 0.1506 0.0083 0.5836 0.0011
35 0.1547 0.0073 0.5846 0.0011
36 0.1573 0.0066 0.5853 0.0011
37 0.1577 0.0081 0.5870 0.0011
38 0.1594 0.0072 0.5869 0.0011
39 0.1655 0.0072 0.5899 0.0011
40 0.1665 0.0070 0.5903 0.0011
41 0.1698 0.0073 0.5922 0.0011
42 0.1716 0.0065 0.5923 0.0011
43 0.1750 0.0067 0.5942 0.0011
44 0.1810 0.0069 0.5974 0.0011
45 0.1801 0.0079 0.5980 0.0011
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TABLE IV. Details for the M3z, and M35, Bell inequalities
(Eq. (10)].

Inequality 0 a; a, a3 ay by b, bs
M3z, 77.2—1.227.2 =35.2 Not applicable-0.7 9.2 —-20.3
M 432 76.6 0 61 45 119 15.61643 0

maximally entangled state and collect data for 5 s at each
measurement setting, except fromn = 18 ton = 21, where
we collect for 20 s at each setting, as the first scan through
all values of n shows the lowest value in that region. The
analyzed data for the chained Bell inequality are shown in
Table III.

Finally, in Table IV we list the measurement settings and
states for the M3z, and M,3,, Bell inequalities. The
settings are given as the angle in the projection onto the
state cos a;|H) + sin ¢;|V) (and similarly for b;). Here, data
are collected data for 1200 s at each measurement setting.
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