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Surface Fermi arcs are the most prominent manifestation of the topological nature of Weyl semimetals.
In the presence of a static magnetic field oriented perpendicular to the sample surface, their existence leads
to unique intersurface cyclotron orbits. We propose two experiments that directly probe the Fermi arcs: a
magnetic-field-dependent nonlocal dc voltage and sharp resonances in the transmission of electromagnetic
waves at frequencies controlled by the field. We show that these experiments do not rely on quantum
mechanical phase coherence, which renders them far more robust and experimentally accessible than
quantum effects. We also comment on the applicability of these ideas to Dirac semimetals.
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I. INTRODUCTION

Topology in various guises plays a central role in modern
condensed-matter physics [1,2]. In recent years, a sharp-
ened understanding of the topology of electronic wave
functions in crystals has stimulated the discovery of new
phases of matter [3,4]. Among the remarkable manifes-
tations of these phases are robust gapless edge modes and
precisely quantized bulk response functions, linked by the
celebrated bulk-boundary correspondence. Although the
original applications of topological ideas to band structures
relied on the existence of a fully gapped bulk spectrum,
more recently it has been recognized that protected surface
states can arise even in gapless systems [5–11].
The prototypical example of a gapless topological phase

is a Weyl semimetal (SM) [8–11]: a three-dimensional
crystalline material where the bulk is gapped except at
an even number of points in the Brillouin zone (BZ) in
which the energy bands touch—the Weyl nodes. In the
vicinity of these nodes, the electrons disperse as massless
relativistic particles, and may be described at low energies
by a Weyl Hamiltonian familiar from particle physics,
H ≈�ℏv0k · σ. Here, σ is a pseudospin degree of freedom,
k is measured from the Weyl node, and the sign is set by
the electron chirality [12]. From the perspective of band
topology, a Weyl node is either a source or a sink of Berry
flux, depending on the chirality. While the total Berry flux
in the 3D BZ must be zero, as long as Weyl nodes of
opposite chirality are separated in momentum space, there
must exist two-dimensional cuts of the 3D BZ in which the

Chern number is nonzero. Each such cut defines a 2D
integer quantum Hall state. For a finite sample, these states
necessarily have edge modes on the appropriate surfaces.
Consequently, for 3D samples these real-space surfaces
host “Fermi arcs” of states that belong to the two-
dimensional momentum-space Fermi surface [9].
When a magnetic field is applied perpendicular to real-

space surfaces that carry Fermi arcs, electrons traverse
unique cyclotron orbits that connect opposite surfaces
of the sample. These cyclotron orbits are central to our
discussion. They are reflected in the quantum Shubnikov–
de Haas oscillations of the resistance [13], as was recently
observed in a closely related Dirac semimetal Cd3As2 [14].
In addition, Weyl semimetals have been predicted to exhibit
various unusual magnetotransport phenomena, related to
the “chiral anomaly” [15,16].
Following an early suggestion [17] that certain iridium

pyrochlores may host a semimetal with NW ¼ 24 Weyl
nodes, the number of Weyl SM candidates has proliferated
to include HgCr2Se4 with NW ¼ 4 [18] and heterostruc-
tures of normal and magnetically doped topological
insulators [10]. In particular, noncentrosymmetric transi-
tion metals, such as TaAs, have been predicted in
Refs. [19,20] to be Weyl SMs. Indeed, recent photoemis-
sion and transport measurements provide strong evidence
for realization of a Weyl SM phase in TaAs [21–25]. In
addition, closely related Dirac semimetals, that also carry
Fermi arcs, have been observed experimentally [26–30].
In this work we show how intersurface cyclotron

orbits affect the electronic properties of Weyl semimetals
already at the semiclassical level. As a result, we are able
to propose two experiments to probe these trajectories
without requiring quantum mechanical phase coherence.
These experiments pose far less stringent requirements than
Shubnikov–de Haas oscillations in terms of sample purity,
surface roughness, and temperature.
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We consider a box-shaped slab of Weyl semimetal with
the main axes being the Cartesian axes, and with the Fermi
arcs on the z ¼ 0, L surfaces. We assume L to be much
smaller than the other two dimensions. A magnetic field B
is to be applied in the z direction. For concreteness, we
consider a time-reversal symmetric Weyl SM. Therefore,
the surface must include an even number of Fermi arcs, and
the minimal number of Weyl nodes is NW ¼ 4, as shown in
Fig. 1(a). For simplicity, we ignore the curvature of the arcs
and consider straight Fermi lines directed in the y direction
with a constant band velocity va along the x direction and
momentum extent k0. Although the electrons that reside on
a single arc posses a nonzero mean velocity, the surface
current is zero, due to the cancellation between any pair of
time-reversed arcs.
We propose two related experiments. In the first, we

consider two parallel line-shaped Ohmic contacts placed
on the z ¼ L surface of the slab, separated by a ≪ L, as
depicted in Fig. 2(a). In standard metals, the current path
extends a distance of the order of a into the bulk. Hence, for
a ≪ L, the current at the z ¼ 0 surface vanishes as a=L2.
We show that in the presence of a perpendicular magnetic
field when a voltage V is applied between the two contacts
on the top surface, opposite currents are induced in the two
surfaces of the sample. As a consequence, a voltage αV is
induced in the bottom surface, that scales linearly, α ∝ jBj,
for small fields.
Our second proposal considers an electromagnetic

microwave radiation propagating from z ¼ ∞ downward
along the −z axis, as depicted in Fig. 2(b). We show that

when the slab is much thicker than the semimetal skin
depth, such that the radiation is expected to be mostly
reflected by the slab, there are transmission resonances at
which a significant part of the radiation is transmitted, with
an amplitude that is independent of L. The transmission
amplitude is again linear in jBj for small fields, as is the
resonant frequency.
The effects we discuss here involve transfer of electrons

between Weyl nodes. In a clean Weyl semimetal in a
magnetic field, there are two mechanisms for electrons to
be transferred between different nodes: the chiral anomaly
(which is effective in the bulk) and the Fermi arcs at the
surface. Our proposals rely on the second mechanism, in
contrast to those of Ref. [16] that originate from the first.

II. NONLOCAL CONDUCTIVITY

Both of these phenomena originate from the same
mechanism—the nonlocal conductivity of a Weyl semi-
metal in a magnetic field. Linear response theory defines
the conductivity in space-time through the relation
jðr; tÞ ¼ R

dr0dt0 ~Σðr; r0; t − t0ÞEðr0; t0Þ. Applying Drude
theory to a doped Weyl or Dirac node, we find

~Σ≡ ~ΣD ¼ e2

h
v0k2Fe

−t=τδðr − r0Þ≡ ~σ0δðr − r0Þ; ð1Þ

where τ is the momentum relaxation time, v0 the velocity,
kF the Fermi momentum, and ~σ0 the local Drude conduc-
tivity. We use ~Σ to denote time-domain conductivity, and
remove the tilde for frequency-domain conductivity.
The unique intersurface cyclotron orbits result in a

nonlocal contribution to the conductivity ~Σ, not captured
by Eq. (1). Consider an electric field pulse induced by a
vector potential Axðz; tÞ ¼ −A0fðzÞθðtÞ, where fðzÞ is
spread over a short length scale d around z ¼ L. This
length scale is a few times the spatial extent of the surface

FIG. 1. (a) Fermi arcs in the surface Brillouin zone for a time-
reversal-invariant Weyl SM. For simplicity, we ignore the
curvature of the arcs and consider straight arcs that are directed
along the y axis. The extent of the arcs is k0. The red dots denote
pair of Weyl nodes with a positive or negative chirality. The blue
dots denote their time-reversal partners. The electron velocity va
is perpendicular to the arc at each point. Within the straight arcs
approximation, the magnitude of jvaj≡ va is independent of k.
In the presence of a perpendicular magnetic field, the surface
electrons “slide” along the Fermi arcs towards the negative
chirality Weyl node. An electric field pulse in the x direction
leads to a momentum shift Δk; i.e., the right arc is slightly
populated while the left arc is depopulated. (b) Bulk LL near one
of the Weyl nodes. The red line denotes the chiral LL.

FIG. 2. (a) dc configuration: A current, I, is injected via the
upper left contact and withdrawn from upper right contact. The
voltage difference between the lower contacts is measured.
Without the nonlocal orbits, current flow in a “cigar”-shaped
configuration between the contact. (b) ac configuration: Current
cycle due to a pulse of EM field on the top surface leads to
emission from the lower surface.
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states in the z direction. Immediately after the pulse, a
surface current emerges, as may be computed from the
shift of the Fermi level of the two Fermi arcs due to the
applied vector potential. The induced current density is
j0 ¼ evak0Δk, where ℏΔk ¼ eA0fðzÞ.
Following this shift of the Fermi surface, the magnetic

field B causes the surface electrons to “slide” along the
Fermi arcs towards the negative chirality Weyl point, at a
rate _k ¼ ðe=ℏÞva × B [Fig. 1(a)]. As electrons slide on the
Fermi arcs they eventually arrive at the Weyl nodes, where
they merge into the 3D bulk. In the presence of the
magnetic field, the bulk spectrum in the vicinity of each
Weyl node consists of dispersive Landau levels (LL) as
depicted in Fig. 1(b). Specifically, the chiral LL that
originates from the ν ¼ 0 LL of Dirac electrons serves
as a direct passageway for electrons from the top to the
bottom surface. Note that the electrons travel along the
same cyclotron orbit responsible for the unique quantum
oscillation signature of Weyl SMs [13].
When the excess current is all in the chiral state, i.e.,

when the Fermi energy μ satisfies jμj < v0
ffiffiffiffiffiffiffiffiffiffiffi
2ℏeB

p
, the

entire current flows to the opposite surface, where it flows
in the −x̂ direction. In the z ¼ 0 layer, the sign of the
velocity reverses, and, hence, so does the sign of _ky, such
that the electron motion along the arc brings it to a chiral
state that flows back to z ¼ L, completing the interlayer
cyclotron motion. In the absence of scattering, this cycle
repeats indefinitely. Scattering between different Weyl
nodes is detrimental to intersurface cyclotron orbits. In
clean samples such scattering is rare due to the large
momentum difference between nodes. Scattering within
a Weyl node is highly suppressed when jμj < v0

ffiffiffiffiffiffiffiffiffiffiffi
2ℏeB

p
,

since there are no Landau levels to scatter into; we discuss
the case jμj > v0

ffiffiffiffiffiffiffiffiffiffiffi
2ℏeB

p
below.

Altogether, then, a pulse of an electric field in the x
direction at z ¼ L leads to alternating and opposite currents
j1, j3 in the two surfaces, and an alternating bulk current
j2 − j4 between the surfaces. The periodic orbit is depicted
in Fig. 2(b). The period T0 is obtained by combining two
basic time scales: T0 ¼ 2ðTz þ TarcÞ, where Tz ¼ L=v0 is
the time needed for electrons to cross from the upper to the
lower surface, and Tarc ¼ ℏk0=ðeBvaÞ is the time needed
for electrons to slide along the Fermi arc. Here, again, k0 is
the extent of the arc in k space and va is the magnitude of
the arc velocity, as depicted in Fig. 1(a).
We now focus on the current in the lower surface, j3

in Fig. 2(b), from which we calculate ~Σð0; L; t − t0Þ. We
consider only the evolution of the excess electrons due
to the imbalance generated by the electromagnetic (EM)
pulse, since the current is solely determined by these
electrons. At t ¼ 0 the excess electrons populate all the
states along the Fermi arc. These states are gradually
depleted to the bulk at a constant rate ðe=ℏÞBva until all
states are empty at t ¼ Tarc. The first excess electron

reaches the lower surface at t ¼ Tz. Gradually, more and
more excess electrons reach the lower surface until
t ¼ Tz þ Tarc, where a maximum in the current density,
j3, occurs. Then, the excess electrons start to leave the
lower surface and move towards the upper one, completing
the cycle. Scattering between the Weyl nodes is expected to
suppress this current, and we characterize it by a relaxation
time τv and length lv. The current decays as e−t=τv as
more and more cycles occur. The effect of intranode
scattering, which takes place when jμj > v0

ffiffiffiffiffiffiffiffiffiffiffi
2ℏeB

p
, is

discussed below.
A sketch of the real-time current on the lower surface,

j3ðtÞ, is shown in Fig. 3(a) for the case jμj < v0
ffiffiffiffiffiffiffiffiffiffiffi
2ℏeB

p
.

Assuming a linearly rising current as the electrons arrive at
the bottom surface, the current on the lower surface is
obtained by convolving a periodic function representing
the cycles, with a “triangle function” ΛðtÞ describing the
growth and decay of the current in each cycle, and
scattering-induced exponential suppression.

j3ðtÞ ≈ ΛðtÞ �
X∞
n¼0

δ

�
t − T0

�
nþ 1

2

��
e−t=τv ; ð2Þ

where * denotes a convolution. The current induced at the
same surface at which the electric field is applied is given
by a similar expression, with the 1=2 absent.
Fourier transforming and substituting j0, we get an

expression for contribution of the cyclotron orbits to the
conductance,

Σð0; L;ωÞ≡−jxð0;ωÞ
ExðL;ωÞ

¼ iG0sinc2ðωTarc
2
Þ

2 sinhðφÞ ; ð3Þ

ΣðL;L;ωÞ≡ jxðL;ωÞ
ExðL;ωÞ

¼ ΣðL; 0;ωÞeφ; ð4Þ

FIG. 3. (a) A sketch of real-time current on the lower surface
for jμj < v0

ffiffiffiffiffiffiffiffiffiffiffi
2ℏeB

p
. In this case, the source of current decay

is intervalley scattering. (b) The transmission coefficient as a
function of the source frequency. A significant part of the
radiation is transmitted whenever the frequency of the applied
EM field is an integer multiple of ω0 ¼ 2π=T0.
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where φ ¼ ðτ−1v − iωÞT0=2 and G0 ¼ e2vak0Tarc=hd.
Consequently, we approximate the nonlocal currents by

jNLx ≈ dσWðωÞδðz − LÞ½ExðLÞeφ − Exð0Þ� þ ð0 ↔ LÞ;
ð5Þ

where σW ≡ Σð0; L;ωÞ is the “Weyl conductivity.” The
Drude conductivity σ0 and the Weyl conductivity σW have
the same units. In our estimate of σW we neglect the
variation along the arc of the localization length of surface
states in the z direction. We also ignore diabatic transitions
into the bulk [13]. The latter effect is just a correction
k0 → k0 − βl−1

B , where lB is the magnetic length and
β ∼Oð1Þ.

III. EXPERIMENTAL SIGNATURES OF
NONLOCAL CONDUCTIVITY

Having calculated the nonlocal part of the conductivity,
we are in a position to analyze the two experiments we
propose.

A. dc transport

When a dc voltage is applied between the lines x¼�a=2
on the z ¼ L surface, a current flows in the sample. The
current density and electric field must satisfy Kirchoff’s
rules and Ohm’s law,

∇ · j ¼ 0; ð6Þ

∇ × E ¼ 0; ð7Þ

j ¼ ΣE; ð8Þ

where Σ is the calculated conductivity [including the
nonlocal part in Eq. (4)]. We ignore the intervalley currents
due to the chiral anomaly, which would generically make
the bulk conductivity moderately anisotropic (see the next
section for a discussion). The boundary conditions impose
zero current perpendicular to the surface everywhere except
at the contacts and enforce the voltage V ¼ − R

E · dl
between the contacts. At zero magnetic field, the conduc-
tivity is purely local. Consequently, the current path
extends a distance of the order of a into the bulk, and
vanishes as a=L2 at the z ¼ 0 surface. Figure 4 presents
the current path in the presence of a nonlocal conductance.
The color represents the stream function ψðx; zÞ, which is
related to the current as follows:

Jx ¼ −∂zψ ; Jz ¼ ∂xψ : ð9Þ
A few equal value contours of ψðx; zÞ and the direction of
the current along them are also shown in Fig. 4. The current
flows along contours (green) of constant ψ (in the direction
of the arrows). The values of the presented contours are

equally spaced. Hence, the current that flows between any
two contours is the same, and the magnitude of the current
density is proportional to the density of the (green)
contours. As can be seen in Fig. 4(a), only a small current
reaches the lower surface. On the other hand, as seen in
Fig. 4(b), the application of a magnetic field leads to an
opposite current at the z ¼ 0 surface. The chiral modes in
the bulk, which mediate the current between the two
surfaces, are always parallel to the magnetic field.
Therefore, when the magnetic field is along the z axis,
the current on the lower surface appears approximately
below regions on the upper surface where a non-negligible
electric field is developed. Details of the calculation are
given in Appendix A 1.

1. Intervalley currents due to chiral anomaly

We address the effect of the chiral anomaly on the dc
effect. When a dc voltage is applied between the two upper
contacts, the electric field lines bend into the bulk at the
vicinity of the upper surface. The resulting Ez leads to a
density transfer between the two chiral modes in the bulk
according to

dn
dt

¼
�
e
h

�
2

E ·B ¼
�
e
h

�
2

EzB: ð10Þ

This is the so-called chiral anomaly. The change in the
bulk current is then given by ðdjz=dtÞ ¼ ev0ðdn=dtÞ.
Employing theses relations, we conclude that an extra
current jz is produced due to the chiral anomaly:

janomz ∼
djz
dt

Tz ¼
djz
dt

L
v0

¼
�
e
h

�
2

ev0B
L
v0

Ez ¼
e2

h
L
l2
B
Ez;

where lB is the magnetic length. Evidently, the chiral
anomaly renormalizes the longitudinal conductivity in
the z direction, i.e., σzz ¼ σ0 þ ðe2=hÞðL=l2

BÞ, while the
other directions remain unchanged, σxx¼σ0¼ðe2=hÞk2Fl.

FIG. 4. The stream function ψ for (a) ρW=ρ0 ¼ 0 and
(b) ρW=ρ0 ¼ σW=σ0 ¼ 0.15. The current flows along contours
(green) of constant ψ (in the direction of the arrows), and its
magnitude is given by j∇ψ j, which is proportional to the density
of the green contours. In (a) we find that ðVCD=VABÞ ≈ 0.005,
while in (b) we find ðVCD=VABÞ ≈ −0.273.
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Hence, the effect of the chiral anomaly is to make the
bulk conductivity anisotropic. The solution of the Kirchoff-
Ohm equations in the anisotropic case may be related to
the solution in the isotropic case by the following simple
rescaling:

ðEx; EzÞ ¼ ð ~Ex; α−1 ~EzÞ;
ðjx; jzÞ ¼ ð ~jx; α ~jzÞ;
ðx; zÞ ¼ ð~x; α~zÞ; and

σW ¼ α ~σW;

where the tilde represents quantities evaluated in the isotropic
case and α ¼ ðσzz=σxxÞ1=2 ≈ ½ð2N þ 1Þ−1L=l�1=2, with N
being the filling factor of the nonchiral Landau levels. Thus,
as long as α ∼Oð1Þ the dc effect is only moderately affected
by the chiral anomaly.

B. ac transport

The second experiment examines the transmission of
electromagnetic radiation through the slab. Assuming
translational invariance in the xy plane, the propagation
of a monochromatic electromagnetic wave along the z
direction is described by the inhomogeneous wave equation
(c ¼ 1),

ð∂2
z þ ω2ÞE ¼ −½iωμj − ð∂zρÞẑ�; ð11Þ

where ρ and j are the charge and current densities inside the
metal and μ is the permeability of the metal. Assuming
incident radiation polarized along x and with an amplitude
E0, only the x component of the electric field is nonzero
outside the slab, so that the solution of Eq. (11) satisfies
Eðω; z ¼ 0Þ ¼ Eð0Þx̂ and Eðω; z ¼ LÞ ¼ EðLÞx̂. Solving
for Eð0Þ as a function of E0 and ω allows us to characterize
the transmission amplitude of the wave through the
sample, jEð0;ωÞ=E0j.
In the presence of a nonlocal electrodynamic response,

we can rewrite Eq. (11) as

ð∂2
z þ ω2 þ iωμσ0ÞExðz;ωÞ ¼ iωμjNL; ð12Þ

where σ0 is the conductivity of the metal and jNL is
defined in Eq. (5). For Σ ¼ 0, the solution of Eq. (12)
is an evanescent wave decaying exponentially into
the bulk, ExðzÞ ∼ e−z=δ, with the skin depth δ−1 ¼
Imðω2 þ iωμσ0Þ1=2 ≈ ðωμσ0=2Þ1=2. We assume that the
bulk is sufficiently metallic that the Hall angle is small;
then, in the absence of nonlocal terms, the transmission is
exponentially small in the sample width.
Solving Eq. (12), we find a significant increase in the

transmission coefficient when the frequency of the applied
EM field is an integer multiple of ω0 ¼ 2π=T0, as depicted

in Fig. 3(b). In Appendix B, we analyze the transmission
coefficient as a function of the ratio σW=σ0. We find that for
frequencies where σWðωÞ is non-negligible, electric field
Eð0Þ is comparable to EðLÞ. As σW increases, the trans-
mission increases rapidly until σW ∼ σ0, where it saturates.
The saturation value depends on the ratio ω=σ0. The
nonlocal orbits “connect the surfaces,” which eventually
leads to a field in the lower surface Eð0Þ that may be as
high as the field EðLÞ. That does not amount to a full
transmission because EðLÞ is not E0. For a thick standard
metal the radiation is partially reflected and partially
absorbed. The absorption originates from the penetration
of an electric field into the metal. In the Weyl case, the
mechanism we describe transforms part of the absorption
into transmission, with an effectiveness that increases
with σW=σ0. However, this mechanism does not comple-
tely eliminate the reflection, and, hence, the transmission
saturates at a value smaller than one. The increase in
absorption with ω in standard metals is converted into
resonant transmission at multiples of the cyclotron
frequency.
In other words, in the presence of a magnetic field the

Weyl semimetal acts as a “narrow bandpass filter” for
incident EM radiation around harmonics of the frequency
ω0 ¼ 2π=T0. The frequency ω0 can be tuned easily, since
it depends on both the system width L and the magnetic
field B. In crystals where the surface hosting Fermi
arcs lacks C4 symmetry, the results of the ac experiment
would be polarization dependent. More details appear in
Appendix B.
The resonant transmission we find resembles the Azbel’-

Kaner cyclotron resonance [31–35], in which magnetic
fields parallel to the sample surface lead to enhanced
transmission when the cyclotron radius and frequency
match the sample thickness and the frequency of the
applied electromagnetic field, respectively. Note that pre-
viously proposed nonlocal effects in Weyl SMs [16] are
quite distinct from those considered here.

IV. EFFECTS OF SCATTERING

Shubnikov–de Haas oscillations of the resistance are a
consequence of quantum interference, and are hence sup-
pressed by elastic and inelastic scattering, even at small
momentum transfer. As such, they are suppressed expo-
nentially in the ratio of the size of the cyclotron orbit to
the mean free path and the ratio of the temperature to the
cyclotron energy [36]. For the intersurface cyclotron orbits
we consider, this requirement restricts the sample size
L≲ l, achieved through low-temperature measurements
on very thin, high-purity samples.
In contrast, the two transport phenomena that we discuss

here, while they rely on the existence of the cyclotron
orbits, do not rely on quantum interference around the
orbits, and, therefore, phase coherence is unimportant.
Their existence is affected instead by how multiple

CURRENT AT A DISTANCE AND RESONANT … PHYS. REV. X 5, 041046 (2015)

041046-5



scattering events in the bulk alter the structure of ~ΣðtÞ
[shown in Fig. 3(a)]. To address this, we return to the
spectrum depicted in Fig. 1(b), and assume the chemical
potential μ to be such that the chiral state overlaps in energy
with N > 1 Landau levels.
For concreteness, we consider a Weyl node where the

chiral state flows downwards (in the −z direction). In the
absence of scattering, the Weyl node has N þ 1 modes
flowing downwards and N modes flowing upwards. We
model the semiclassical scattering as a diffusion process, in
which the electron is scattered between the 2N þ 1 modes,
with a scattering event taking place at a rate 1=τ, with
τ ≪ Tz. For each Landau level, the upwards and down-
wards velocities are identical in magnitude, but velocities
are not necessarily identical between Landau levels.
Because of the unpaired chiral state, the diffusion process
results in a downwards average drift velocity vd, which is
smaller than the velocity of the chiral mode v0. Neglecting
velocity differences between different Landau levels,
vd ¼ v0=ð2N þ 1Þ, and the average crossing time between
surfaces becomes hTzi ¼ ðL=vdÞ > ðL=v0Þ. Moreover, the
diffusion leads to fluctuations in the crossing time, char-
acterized by a varianceΔTz around hTzi. The relative width
of the distribution of arrival times to the bottom surface is
given by

ΔTz

hTzi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DhTzi

p
vdhTzi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2N þ 1Þl

L

r
; ð13Þ

where D ¼ v20τ is the diffusion constant and l ¼ v0τ is the
mean free path. Thus, as long as lð2N þ 1Þ ≪ L, the first
passage of the current from one surface to another occurs
at a rather well-defined time. In terms of ~ΣðtÞ, this will
lead to a shift, smoothening and broadening of the first
peak of Fig. 3(a). The area under the peak stays constant,
since the entire current crosses from one surface to
another (see below). As the current continues along the
intersurface cyclotron orbits, the spread of the crossing
times increases, and, hence, the peaks of ~ΣðtÞ further
broaden, until effectively merging together at a time t
where Dt ≈ L2.
Interestingly, intra-Weyl node scattering does not sup-

press the cyclotron current that gives rise to the nonlocal
~ΣðtÞ, even after the peaks merge together. The reason for
that may be understood by considering an analog situation
in the realm of the two-dimensional quantum Hall effect
(QHE). Imagine a ν ¼ 1 QHE state at the half-plane x < 0,
with an downwards-moving chiral edge along the y axis.
Now imagine coupling the y < 0 part of the edge to N
semi-infinite quantum wires of spinless electrons, each
carrying one upwards-moving chiral mode and one
downwards-moving chiral mode. Independent of whether
the coupling is ordered or random, it cannot block a
downwards-moving current emanating from y ¼ þ∞,

due to the chirality of the QHE edge. The coupling to
the wires merely renormalizes the velocity of the edge state
and modifies its wave function.
In Weyl semimetals the surface plays the role of the

QHE y > 0 edge. As long as the surface is free of
scattering, the momentum of states on the surface is well
defined. The finiteness of the arc, together with the drift
imposed by the equation of motion ℏ _k ¼ eva ×B,
enforces a flow of the electrons into the bulk, which
plays the role of the y < 0 region in the QHE case. This
flow cannot be reversed as long as electrons are not
transferred to a Weyl node with an opposite chirality,
since the direction of _k is fixed for every arc. Thus, the
entire current that enters the bulk from one surface must
cross all the way to the other surface. As long as
electrons’ chirality changes only at the surface, the peaks
in Fig. 3(a) preserve their area under scattering.
Transforming these observations into the frequency

domain, we find that ΣðωÞ shows clear resonances, as in
Fig. 3(b), around harmonics of a modified cyclotron
frequency 2π=hT0i. The height of the peaks decays fast
with frequency, but the low-frequency peaks remain almost
unaltered when compared to the clean case. The dc part,
Σðω ¼ 0Þ, which involves the integral over all times, is not
altered by intranode scattering. Consequently, intranode
scattering does not affect the signal in the first experiment
we propose here. Two factors that do affect this experiment
are internode scattering and the chiral anomaly. Internode
scattering is characterized by valley relaxation length lv,
which can be tens of microns [16]. It should, therefore, be
rather ineffective. For the ac experiment, intervalley scat-
tering suppresses the area under the peaks in ~ΣðtÞ and,
hence, also the resonances in ΣðωÞ. However, as long as the
rate is smaller relative to the resonance frequency, its effect
is small.
The effect of temperature on the two experiments is

indirect, through its effect on the intra- and internode
scattering rates, as well as on the number of bulk filled
Landau levels. In all cases, the resulting effect scales
like a power law. This is in contrast to quantum
oscillations, whose amplitude decreases exponentially with
temperature [36].
Finally, we comment on the applicability of these ideas

to Dirac semimetals. Dirac SMs host similar intersurface
cyclotron orbits. In Dirac SMs, unlike in Weyl SMs, the
counterpropagating chiral LL reside at the same node. This
reduces the robustness of the proposed effects, since now
scatterings between the two chiral channels do not require
large momentum transfer. Furthermore, in Cd3As2, the
surface on which arcs are seen breaks the protecting
symmetry [13] and, hence, one might worry that the arcs
could be reconstructed into an ordinary Fermi surface.
Nonetheless, as long as the scattering rate between the
different chiral levels is small, as suggested in Ref. [16], the
effects should be visible also in Dirac SM. Note that
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the experimental observation of Fermi-arc orbits in Cd3As2
[14] is very encouraging in this regard.

V. ESTIMATES OF SCALES

We provide quantitative estimates of various relevant
quantities. For typical values of L ¼ 5–50 μm,
v0 ¼ 1 × 105–6 × 105 m=s, and Tarc < Tz, the Weyl cyclo-
tron frequency is ωc ¼ 5–500 GHz., i.e., in the microwave
range. In order for the described resonances to be a relevant
probe, the sample should be thicker than the skin depth δ at
moderate frequencies (if not, samples will be transparent
at these frequencies independently of the magnetic field).
Assuming low-temperature scattering rates similar to the
ones measured in Dirac SM, we may extract a typical
sample resistivity of the order ∼10 μΩ cm [26,27]. This
value produces a skin depth δ ≈ 40 cm, which is ∼1 μm
at microwave frequencies, serving as a lower bound on
sample thickness. The upper bound is determined by the
internode scattering processes: we require that L≲ lv, the
valley relaxation length, which can be tens of microns [16].
As a final point, we remark on a subtlety: unlike usual
cyclotron orbits, the frequency for electron motion on the
nonlocal orbit connecting opposite surfaces is thickness
dependent. Since the Weyl cyclotron resonances occur at
the harmonics of this frequency, in order to observe the
resonant transmission, we require that the skin depth at the
lowest resonant frequency is smaller than the sample size L,
which induces an implicit dependence of the skin depth
on the thickness, δ ¼ δ½ωcðLÞ�, in order to observe Weyl
cyclotron resonance. Thus, we have an additional constraint
on the thickness, δ½ωcðLÞ� < L. Figure 5 shows the
dependence of δ on the thickness for various values of
the drift velocity vd; we see that for L≳ 5 μm, this
condition is indeed satisfied.

VI. CONCLUSIONS

We show that intersurface cyclotron orbits affect the
electronic properties of Weyl semimetals already at the
semiclassical level, and we propose two experiments that
directly probe these orbits. We demonstrate that, in the
presence of a magnetic field, the transport in Weyl SMs
is characterized by a nonlocal conductivity that leads to
the appearance of a magnetic-field-dependent nonlocal dc
voltage and to a resonant transmission of electromagnetic
radiation through macroscopic samples of Weyl semimet-
als. Furthermore, we argue that the semiclassical origin of
the effects dramatically reduces the experimental require-
ments of thin films, low temperatures, and pure samples.
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APPENDIX A: dc SETUP

1. Solution of the Kirchoff-Ohm equations

We consider a sample with four stripelike Ohmic
contacts lying along the y direction and at a distance
a ≪ L from one another, as shown in Fig. 6(a). Two
contacts are positioned on the z ¼ 0 plane and two on the
z ¼ L plane. We assume that the y direction extent is much
larger than L, such that we expect translation invariance
along y. Therefore, we consider a slice of the x-z plane,
Fig. 6(b). A current I is injected via contact A and
withdrawn from contact B. The voltage difference VCD
will then be calculated.
The equations governing the current flow are

∇ · J ¼ 0; ðA1Þ

∇ × E ¼ 0; ðA2Þ

E ¼ Σ−1J: ðA3Þ

We choose to work here with the resistivity and not the
conductivity since it simplifies the implementation of

FIG. 5. Dependence of skin depth at the lowest resonance
frequency, δ½ωcðLÞ�, on sample thickness L and for ρ0 ¼
10 μΩ cm, for L ≳ 5 μm, δ ≪ L.
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boundary conditions in this setup. The generalized
Ohm’s law can be expressed in a matrix form: JðzÞ ¼R
dz0Σðz; z0ÞEðz0Þ, where Σðz; z0Þ ¼ σ0δz;z0 þ σWðz; z0Þ.

Hence, the inverse relation is given by

EðzÞ ¼ Σ−1ðz; z0ÞJðz0Þ ¼ ½σ0δz;z0 þ σWðz; z0Þ�−1Jðz0Þ

≈
1

σ0
JðzÞ − σWðz; z0Þ

σ20
Jðz0Þ: ðA4Þ

In the last equality, we assume that σW ≪ σ0. This
approximation is not essential. However, it simplifies the
calculation. Later, we also discuss the opposite limit,
σW ≫ σ0. Using the form of the nonlocal conductivity,
Eq. (5), we conclude that

ELðzÞ ¼ 1

σ0
JðzÞ≡ ρ0JðzÞ;

ENLðzÞ ≈ −dρWδðz − LÞ½Jð0Þ − JðLÞ� þ ð0 ↔ LÞ;

where the L and NL refer to local and nonlocal,
respectively, and ρW ¼ σWðω ¼ 0Þ=σ20. Notice that
ρW=ρ0 ¼ σW=σ0.
We introduce the stream function ψðx; zÞ as follows:

J ¼ ŷ ×∇ψ → Jx ¼ −∂zψ ; Jz ¼ ∂xψ : ðA5Þ

Equation (A1) and the x, z components of Eq. (A2) are
automatically satisfied. The y components of Eq. (A2) are

0 ¼ ð∇ ×EÞy ¼ ð∇ ×ELÞy þ ð∇ ×ENLÞy
¼ ρ0∇2ψ þ ð∇ ×ENLÞy → ρ0∇2ψ ¼ −ð∇ ×ENLÞy:

ðA6Þ

Since no current can leave or enter the system except at the
contacts, the stream function ψ must be constant along the
boundaries. Since a current I is injected at contact A and
withdrawn at contact B, integrating Jx ¼ −∂zψ across the

step discontinuity at either contact implies that the jump in
ψ across contact A (B) is I (−I). We choose I ¼ 1; thus, the
boundary conditions are ψ ¼ 1 on the boundary segment
between A and B and ψ ¼ 0 on all the other boundary
segments. Notice that the current density J lies along
contours of constant ψ , with magnitude j∇ψ j. Additionally,
the voltage difference between any two points on the
boundary is given by

Vij¼
Z

xj

xi

dxEx¼
Z

xj

xi

dxρ0Jx¼−
Z

xj

xi

dxρ0∂zψ : ðA7Þ

For ENL ¼ 0, the solution is depicted in Fig. 4(a).
Evidently, the current path extends a distance of the
order of a into the bulk, and is therefore vanishingly small
at the z ¼ 0 surface. Inserting the solution in Eq. (A7)
gives VCD=VAB ≈ 0.005.
Next, we introduce the nonlocal part ENL. The boundary

conditions remain unchanged. The solution to Eq. (A6)
with ρW=ρ0 ¼ σW=σ0 ¼ 0.15 is depicted in Fig. 4(b), and
the voltage ratio becomes VCD=VAB ≈ −0.273.
In the limit σWðω ¼ 0Þ ≪ σ0, in which the voltage ratio

may be calculated numerically, it is proportional to σW=σ0.
The voltage ratio is depicted in Fig. 7.
Next, we comment on the limit σW ≫ σ0. Neglecting

the dependence of the current on x, we may write a one-
dimensional model for the current in the z direction.
By discretizing the z coordinate, z ¼ ð0;Δz; 2Δz;…; LÞ,
where Δz is larger than the thickness of the Fermi arcs,
the conductivity may be expressed as a finite matrix of
the form:

FIG. 6. (a) The dc setup. y direction extent is much larger than
L. (b) x − z slice of the setup in (a). A current, I, is injected via
contact A and withdrawn from contact B.

FIG. 7. The ratio of the voltages on the bottom and top
surfaces as a function of the ratio σW=σ0. The voltage ratio is
calculated numerically, in the limit σW=σ0 ≪ 1, using the
approximated Eqs. (A1)–(A3). In the limit σW ≫ σ0, the voltage
ratio tends to unity.
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Σz;z0 ¼

2
666664

σ0 þ σW 0 � � � 0 −σW
0 σ0 0 0

..

. . .
. ..

.

0 0 σ0 0

−σW 0 � � � 0 σ0 þ σW

3
777775
: ðA8Þ

Inverting the conductivity matrix yields the resistivity
matrix:

Σ−1 ¼

2
666664

A 0 � � � 0 B
0 1=σ0 0 0

..

. . .
. ..

.

0 0 1=σ0 0

B 0 � � � 0 A

3
777775
; ðA9Þ

where A ¼ ð1=2σ0Þ þ f1=½2ðσ0 þ 2σWÞ�g and B ¼
fσW=½σ0ðσ0 þ 2σWÞ�g.
In agreement with Eq. (A4), for σW ≪ σ0 the coefficients

become A ≈ 1=σ0 and B ≈ σW=σ20. In the opposite limit,
σW ≫ σ0, the coefficients become A ≈ B ≈ 1=ð2σ0Þ.
Independently of the current density profile, the condition
A ≈ B forces the electric fields on the top and bottom
surfaces to be equal; i.e., the voltage ratio tends to unity in
the limit σW ≫ σ0.
Finally, we comment on the locality of Σ in the x-y plane.

In the above calculations, we assume that Σ is local in the
x-y plane. The locality breaks for length scales smaller than
k0l2

B. Nonetheless, as long as k0l2
B ≪ a, the effects of the

nonlocality in the x-y plane are negligible and the locality
assumption is justified.

APPENDIX B: ac SETUP: CALCULATION OF
THE TRANSMISSION COEFFICIENT

The Maxwell equations in SI units are

∇ ×E ¼ −μ ∂H∂t ¼ iωμH;

∇ ×H ¼ Jþ ϵ
∂E
∂t ¼ J − iωϵE; ðB1Þ

where μ ¼ μ0μr and ϵ ¼ ϵ0ϵr are the permeability and
permittivity of the metal. We choose the applied ac electric
field to be along the x direction. Hence, we may consider
only the x component of Eq. (B1). The current in Eq. (B1)
has two parts: JðzÞ ¼ σ0EðzÞ þ JNLðzÞ, where σ0 is the
conductivity and JNLðzÞ is the nonlocal part [see Eq. (5) in
the main text]. In general, σ0 depends on ω. However, for
microwave frequencies, ωτ ≪ 1; hence, we neglect the
frequency dependence of σ0.
Inserting the two parts of J to Eq. (B1), assuming

translational invariance in the xy plane, and introducing
the dielectric function, εðωÞ ¼ ϵr þ ðiσ0=ωϵ0Þ, Eq. (B1)
becomes

�
∂zz þ

�
ω

c

�
2

ε

�
EðzÞ ¼ iωμJNLðzÞ; ðB2Þ

where we assume μr ≈ 1 and employ the relation
μ0ϵ0 ¼ c−2. Integrating Eq. (B2) from 0− to 0þ and from
L− to Lþ, we find the boundary conditions (BC): ExðzÞ
is a continuous function, in particular, Exð0−Þ ¼ Exð0þÞ,
ExðL−Þ ¼ ExðLþÞ, and

ð∂zExÞz¼0þ − ð∂zExÞz¼0− ¼ −iωμdσW ½Exð0Þ − ExðLÞ�;
ð∂zExÞz¼Lþ − ð∂zExÞz¼L− ¼ iωμdσW ½Exð0Þ − ExðLÞ�:

The last two BC are equivalent to the requirement that
the discontinuity of the tangential magnetic field is propor-
tional to the surface current. Next, we consider an incoming
monochromatic field with a unit amplitude E0 ¼ 1. For
z ≠ 0 or L, the solution to Eq. (B2) has the following
general form:

ExðzÞ ¼
8<
:

e−ikz þ Ereikz L < z

E1eiqz þ E2e−iqz 0 < z < L

Ete−ikz z < L;

ðB3Þ

where k ¼ ðω=cÞ and q ¼ ðω=cÞ ffiffiffiffiffiffiffiffiffiffi
εðωÞp

. In typical metals
and for microwave frequencies, σ0 ≫ ϵ0ω. In this regime,
all the physical quantities may be recast in terms of
following three dimensionless quantities: Ω ¼ ðkδÞ−1,
Δ ¼ L=δ, and S ¼ σW=σ0. Imposing the BC, we find

M̂

2
6664
E1

E2

Er

Et

3
7775 ¼

2
6664

1

1 − 2SΩ
0

2SΩ

3
7775; ðB4Þ

FIG. 8. The transmission coefficient as a function of S ¼
σW=σ0 for different values of Ω ¼ ðkδÞ−1 and for Δ ¼ L=δ ¼ 20.
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where the matrix M̂ is given by

0
BBB@

1 1 −1 0

ð1þ iÞΩ −ð1þ iÞΩ 1þ 2SΩ −2SΩeiΔ=Ω
eði−1ÞΔ e−ði−1ÞΔ 0 −eiΔ=Ω

−ð1þ iÞΩeði−1ÞΔ ð1þ iÞΩe−ði−1ÞΔ −2SΩ ð2SΩþ 1ÞeiΔ=Ω

1
CCCA:

Equation (B4) may be solved for jEtj to yield the trans-
mission coefficient as depicted in Fig. 8.
For S ¼ 0, the field in the metal decays as Ese−z=δ,

where δ ∼ ðωσ0Þ−1=2 is the skin depth and the quantity
Es is the field on the surface. The ratio between the field
on the surface and amplitude of the applied field is
proportional to ðωσ0Þ1=2. In particular, the dissipation isR
dzE · J ∼ δσ0E2

s ∝ ðω=σ0Þ1=2. For a fixed σ0, as ω
increases, the decay becomes stronger; however, the value
from which it decays becomes larger.
In the Weyl case, the mechanism we describe transforms

part of the absorption into transmission, with an effective-
ness that increases with σW=σ0. However, this mechanism
does not eliminate the reflection, and hence the trans-
mission saturates at a value that is smaller than one. The
increase of absorption with ω in standard metals is trans-
formed here into higher transmission.
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