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Firing patterns in the central nervous system often exhibit strong temporal irregularity and considerable
heterogeneity in time-averaged response properties. Previous studies suggested that these properties are the
outcome of the intrinsic chaotic dynamics of the neural circuits. Indeed, simplified rate-based neuronal
networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are
known to exhibit chaotic dynamics when the synaptic gain (i.e., connection variance) is sufficiently large.
In the limit of an infinitely large network, there is a sharp transition from a fixed point to chaos, as the
synaptic gain reaches a critical value. Near the onset, chaotic fluctuations are slow, analogous to
the ubiquitous, slow irregular fluctuations observed in the firing rates of many cortical circuits. However,
the existence of a transition from a fixed point to chaos in neuronal circuit models with more realistic
architectures and firing dynamics has not been established. In this work, we investigate rate-based
dynamics of neuronal circuits composed of several subpopulations with randomly diluted connections.
Nonzero connections are either positive for excitatory neurons or negative for inhibitory ones, while single
neuron output is strictly positive with output rates rising as a power law above threshold, in line with known
constraints in many biological systems. Using dynamic mean field theory, we find the phase diagram
depicting the regimes of stable fixed-point, unstable-dynamic, and chaotic-rate fluctuations. We focus on
the latter and characterize the properties of systems near this transition. We show that dilute excitatory-
inhibitory architectures exhibit the same onset to chaos as the single population with Gaussian connectivity.
In these architectures, the large mean excitatory and inhibitory inputs dynamically balance each other,
amplifying the effect of the residual fluctuations. Importantly, the existence of a transition to chaos and its
critical properties depend on the shape of the single-neuron nonlinear input-output transfer function, near
firing threshold. In particular, for nonlinear transfer functions with a sharp rise near threshold, the transition
to chaos disappears in the limit of a large network; instead, the system exhibits chaotic fluctuations even for
small synaptic gain. Finally, we investigate transition to chaos in network models with spiking dynamics.
We show that when synaptic time constants are slow relative to the mean inverse firing rates, the network
undergoes a transition from fast spiking fluctuations with constant rates to a state where the firing rates
exhibit chaotic fluctuations, similar to the transition predicted by rate-based dynamics. Systems with finite
synaptic time constants and firing rates exhibit a smooth transition from a regime dominated by stationary
firing rates to a regime of slow rate fluctuations. This smooth crossover obeys scaling properties, similar
to crossover phenomena in statistical mechanics. The theoretical results are supported by computer
simulations of several neuronal architectures and dynamics. Consequences for cortical circuit dynamics are
discussed. These results advance our understanding of the properties of intrinsic dynamics in realistic
neuronal networks and their functional consequences.
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Nonlinear Dynamics, Statistical Physics

I. INTRODUCTION

The firing patterns of circuits in the central nervous
system often exhibit a high level of temporal irregularity.
The effect can be seen by the interspike interval (ISI)
distribution, which, except for a short refractory period, is
similar to that of a Poisson process [1–3]. Intracellular
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recordings [4] indicate that this irregularity is due to
fluctuations in the synaptic input to the neurons, suggesting
a dynamic origin, and motivating the exploration of under-
lying neuronal circuit mechanisms. A possibly related issue
is the ubiquitous diversity of the time-averaged response
properties of single neurons, e.g., their firing rates and
tuning modulations, within a local population [1,5].
Several theoretical studies explored the emergence of

temporal irregularity and, in particular, chaotic dynamics
in neuronal networks. These investigations focused on
two types of models: rate-based models with Gaussian
connections and spiking dynamics of sparsely connected
excitatory-inhibitory networks. The first class uses a
firing-rate dynamics in which each unit is characterized
by a smooth function that maps the synaptic input into an
output firing rate. In its simplest version, the input-output
transfer function is tanhðxÞ, where a zero value denotes
some reference activity level and 1 and −1 denote saturated
firing and quiescent states, respectively. The architecture of
the rate model was given by a random connectivity matrix
where each connection is drawn from a Gaussian distri-
bution, with zero mean and variance given by g2=N, N
being the size of the network. It was shown that the system
exhibits a transition from a stable zero fixed-point state for
low values of g to a chaotic state for large g. Furthermore,
for large N this transition is sharp and occurs at gc ¼ 1 [6].
In these models, the emergence of chaos is gradual, as the
amplitude of the fluctuations, their inverse time constant,
and the Lyapunov exponent vanish as g → 1þ. The chaotic
state is asynchronous in that the correlations between
fluctuations of different neurons are weak (and vanish
as N → ∞).
The second class is motivated by biological reality. To

capture the spiking dynamics, these models use either
binary f0; 1g neurons or integrate-and-fire spiking neurons,
and the connectivity is characterized by randomly sparse
connections, where the mean number of connections, K, is
much smaller than N. To capture the biological constraints
on the sign of the connections, the networks consist of
excitatory and inhibitory populations, where the nonzero
output connections of excitatory (inhibitory) neurons are
positive (negative). The dynamics is dominated by the
competition between strong excitatory and inhibitory con-
nections, leading to a dynamic cancellation of the excita-
tory and inhibitory inputs. The ensuing balanced state
exhibits intrinsically generated Poisson-like stochasticity as
well as asynchrony [7–10]. There is no parameter regime
where the state can be characterized as a stable fixed point,
and chaos does not emerge gradually as a function of
synaptic strength. Instead, temporal irregularity is always
strong, and correlation times are short. The origin of the
qualitative difference in the behavior of the two types of
models was never investigated comprehensively. In par-
ticular, it was unclear whether the differences originate
from the different dynamics (a smooth rate dynamics vs

spiking dynamics) or whether it is attributed to the different
architectures: Gaussian-distributed synapses in a single,
fully connected, and statistically homogeneous population
(with mixed excitation and inhibition) vs a two-population
(excitatory and inhibitory) architecture with sparse
connectivity.
The question of the existence of a bifurcation to chaos is

not only interesting from a dynamical-systems perspective
but may also have important functional consequences.
Several studies have highlighted the computational utility
of the nonlinear dynamics of random, recurrent networks
near the onset of chaos. For instance, a novel “reservoir
computing” model has been proposed, which utilizes
the rich intrinsic network dynamics to learn to generate
complex temporal trajectories [11–17]. Reservoir comput-
ing is most effective above but near the transition to chaos
because of the emergence of slow dynamical fluctuations
since many applications involve dynamics with time scales
of seconds, much larger than the microscopic time scales of
a few milliseconds. Additionally, it has been shown that
decoding signals from these networks is particularly robust
above and near the transition to chaos [18,19]. A recent
study by Saxe et al. [20] studies the dynamics of learning in
deep networks. They define a critical point above which
infinitely deep networks exhibit chaotic percolating activity
propagation, analogous to the chaotic state of recurrent
networks. Finally, recent advances in machine learning
have generated resurgence of interest in recurrent networks
(primarily of speech and language processing; see, e.g.,
Refs. [21–23] and references therein). Understanding the
dynamics of generic recurrent networks will gain insight
into these highly interesting computational capacities.
In this work, we study the existence and the properties

of the transition to chaotic dynamics in a broad range of
models that span the two model classes mentioned above.
In Sec. II, we introduce a general architecture for random
recurrent networks with multiple subpopulations, obeying
smooth rate-based dynamics. We show the correspondence
between randomly diluted networks in the balanced state
and networks with Gaussian-distributed connections with
the same multiple population architecture. Section III
introduces the mathematical framework of the dynamic
mean field theory (DMFT) used in analytical investigation
of the properties of the network state and extends the theory
of transition from fixed point to chaos, previously derived
for a single Gaussian population to the more general
architecture. In Sec. V, we apply the theory to the simple
case of a single inhibitory neuronal population and a
threshold-linear-synaptic transfer function. The example
of a two-population model is studied in Sec. VI. Although
the DMFT is more complex than the single-population
network, we show that the two-population network exhibits
a transition from fixed point to chaos that is similar to that
of the single-population case. The role of the single-neuron
nonlinear transfer function is elucidated in Sec. VII. First,
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we show that for a sufficiently sharp function, chaos
exists in large systems at all gain values. Second, the
shape of this function determines the critical behavior of
the relaxation times and largest Lyapunov exponent near
the transition.
Unlike the rate-based smooth dynamics, in models

with spiking dynamics, a fixed-point state does not exist
as long as some of the neurons are firing. Nevertheless,
it is interesting to explore the conditions under which
the spiking network exhibits a transition from a state
with stationary inputs and firing rates to a state where
the underlying inputs and rates fluctuate in time. In
Sec. VIII, we use a Poisson spiking model to show that
in the case where the synaptic integration time is much
larger than the inverse of the neuronal firing rates, the
synaptic current exhibits a sharp transition from a fixed-
point to chaotic dynamics similar to that of rate dynamics.
The behavior for large but finite synaptic integration time is
analyzed using scaling analysis, similar to that of a second-
order phase transition. The implications of the results for
the understanding of the dynamics and computations in
cortical circuits are discussed in Sec. IX.

II. MODEL

A. Randomly diluted network
with multiple populations

We consider a network of neurons composed of P
subpopulations that are assumed, for convenience, to have
equal size, N [Fig. 1(a)]. The recurrent connections Jijkl
denote the synaptic efficacy between the presynaptic jth
neuron of the lth population to the post synaptic ith neuron
of the kth population, where k; l ¼ 1;…; P, and
i; j ¼ 1;…; N. The connectivity is randomly diluted so
that each connection Jijkl is nonzero with probability p,
where

p ¼ K=N ð1Þ

and zero otherwise. Thus, the mean number of inputs to
each neuron isK × P. Some of the populations are assumed
to be inhibitory. For an inhibitory population l, all Jijkl are
nonpositive. Conversely, all nonzero outgoing connections
of an excitatory population are positive. In addition,
each neuron from the kth population receives a constant,
uniform input, equal to m0Wk, where the parameter m0

denotes the mean activity (firing rate) of neurons in the
input population, and Wk are assumed positive.
Throughout this work, we focus on networks with a high

degree of connectivity, i.e., N, K ≫ 1. Although in most
previous analytical work on the dynamics of dilute neuro-
nal networks it was assumed that the network connectivity
is sparse (i.e., 1 ≪ K ≪ N) [8,10,24,25], here we assume
only that 1 ≪ K < N, allowing for a dense regime as well.
(In Refs. [9,26], densely connected networks were studied,

but the focus was on the spatial patterns and correlations.
The dynamical properties and the temporal autocorrelations
were not addressed.) In order for the dynamics to be
affected by the fluctuations in connectivity, we assume all
nonzero connections equal Jkl=

ffiffiffiffi
K

p
, as discussed below.

Similarly, the external connections scale as Wk ¼ ωk

ffiffiffiffi
K

p
.

B. Rate dynamics

We first study a firing rate model for the dynamics of
neuronal activity. The state of each neuron, say, with
indices ði; kÞ, at time t, is given by its total synaptic
current, hikðtÞ, which obeys a first-order nonlinear
dynamics,

d
dt

hikðtÞ ¼ −hikðtÞ þ
XP
l¼1

XN
j¼1

JijklϕðhjlðtÞÞ þWkm0: ð2Þ

The first term is a decay term, the second is the synaptic
input from the network, and the last is the synaptic input
from the external source. For convenience, we set all
synaptic time constants to unity. The nonlinear transfer
function ϕðhÞ denotes the firing rate of a neuron with an
input synaptic current h and is analogous to the neuronal
input-current to firing-rate transfer function, known as the
f-I curve.

FIG. 1. Network schematics. Arrows (circles) denote excitatory
(inhibitory) connections. (a) The general network architecture
studied here consists of multiple excitatory (E) and inhibitory (I)
subpopulations driven by external inputs. Individual connections
are randomly diluted or are Gaussian distributed. Subpopulations
are distinguishable by the different statistics of connectivity.
(b) The simplest model consists of a single population with
random inhibitory recurrent connections with an external excita-
tory input. (c) Two randomly connected E and I populations.
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C. Effective Gaussian connectivity

Past work on random highly connected systems has
shown that under fairly general conditions, in the limit of
largeK, the system’s behavior depends only on the first two
moments of the connectivity matrix [27,28]. Hence, the
connectivity matrix Jijkl can be replaced by a random matrix
of Gaussian-distributed connections where the mean and
variance are matched to that of the dilute network. We thus
consider a general dynamics of a multiple population
network with a fully connected connectivity matrix with
Gaussian-distributed connections, Jijkl ¼ ðḡkl=NÞ þ J ij

kl,

d
dt

hikðtÞ ¼ −hikðtÞ þ
XP
l¼1

XN
j¼1

J ij
klϕðhjlðtÞÞ

þ
XP
l¼1

ḡklmlðtÞ þ h0k; ð3Þ

where

mkðtÞ ¼
1

N

XN
i¼1

ϕðhikðtÞÞ ð4Þ

are the mean population activities. The coefficients J ij
kl are

quenched Gaussian variables with zero mean and variance,

hðJ ij
klÞ2i ¼

g2kl
N

: ð5Þ

We refer to g as the gain of the synaptic input. The
contribution of the mean connections, ḡkl=N, is represented
by the third term in the right-hand side of Eq. (3).
In the dilute network, the mean connection between two

populations equals pJkl=
ffiffiffiffi
K

p ¼ ffiffiffiffi
K

p
Jkl=N. The variances

of these connections are pð1−pÞJ2kl=K¼ð1−K=NÞJ2kl=N.
Hence, the corresponding parameters of the equivalent
Gaussian network are

g2kl¼ð1−K=NÞJ2kl; ḡkl¼
ffiffiffiffi
K

p
Jkl; h0k¼

ffiffiffiffi
K

p
ωkm0: ð6Þ

Note that in the dilute networks, gkl and ḡkl are related
through

ḡkl ¼ gkl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

ð1 − K=NÞ

s
: ð7Þ

In the theory below, we analyze the dynamics of the
Gaussian network, defined by Eq. (3), in its generality;
namely, we consider the parameters describing the mean
and the variance of the connections, ḡkl and gkl, as
independent parameters. In addition, we will not restrict
ourselves to the case in which the mean connections ḡkl and
h0k are large. The relation Eq. (7), as well as the scaling

of ḡkl and h0k with Oð ffiffiffiffi
K

p Þ, will be adopted when applying
the theory to the balanced dilute networks. The numerical
simulations will use both Gaussian and random dilution
and will show their equivalence.

D. Balanced regime

In the diluted network model, the net input from the lth
population to each of the kth neurons is proportional to ḡkl,
and h0k hence scales as

ffiffiffiffi
K

p
. On the other hand, the

fluctuations scale as gkl, and hence are of order 1. Thus,
it would seem that whenever the degree of connectivity, K,
is high, the fluctuations induced by the random dilution will
have a negligible effect on the dynamics, reducing the
system to that with uniform connections and anomalously
strong recurrent and external inputs. In fact, the system
avoids this saturated state by dynamically canceling the
mean excitatory contributions against the inhibitory ones,
resulting in the net mean inputs, which are of order 1, and
of the same order as the fluctuations. Balanced states in
networks with strong excitatory and inhibitory connections
were previously studied (see Refs. [8,29]) in the context
of binary or spiking networks. As we will show below,
networks of units with smooth rate-based dynamics and
transfer functions with finite gains also settle in this
balanced state.

III. FIXED POINTS AND THEIR STABILITY

A. Mean field equations for the fixed points

To fully characterize the state of the system, we separate
the population-averaged quantities, which are time inde-
pendent in the stationary state, from the fluctuating ones,
writing

hikðtÞ ¼ uk þ δhikðtÞ; ð8Þ

where

uk ¼
X
l

ḡklml þ h0k: ð9Þ

The fluctuating inputs obey

d
dt

δhikðtÞ ¼ −δhikðtÞ þ ηikðtÞ; ð10Þ

where the spatiotemporal fluctuations in the currents,
δhikðtÞ, are low-pass temporal filters of the fluctuating
synaptic inputs,

ηikðtÞ ¼
X
l

X
j

J ij
klϕðhjlðtÞÞ: ð11Þ

In the limit of a large number of inputs per neuron, these
quantities obey Gaussian statistics with zero mean and zero
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spatial correlation but with temporal correlations that need
to be evaluated self-consistently as explained below.
First, we study the fixed-point solution of the network

dynamics, corresponding to a time-independent state,
where δhikðtÞ ¼ δhik ¼ δηik are Gaussian distributed with
zero mean and variance Δk ≡ hðδhikÞ2i. This quantity is
calculated self-consistently as

Δk ¼ hðηikÞ2i ¼
X
l

g2klCl; ð12Þ

where Cl ¼ hϕ2ðhÞi are the average autocorrelations of the
neuronal activities. Finally, using hik ¼ uk þ δηik, we obtain
the self-consistent equation for Δk,

Ck ¼ hϕ2ð
ffiffiffiffiffiffi
Δk

p
zþ ukÞi: ð13Þ

The constants uk are determined self-consistently, via
Eq. (9), and

mk ¼ hϕð
ffiffiffiffiffiffi
Δk

p
zþ ukÞi: ð14Þ

Note that in mean field theory, all averages denote
integration over the Gaussian variables (z in the above
equations), which have zero means and unit variance. A
similar formulation, generalizing the stationary solution of
a single-population mean field treatment to several pop-
ulations, was recently employed by Cabana in Ref. [30].

B. Balance equations

In balanced architectures, both ḡkl and h0k are of orderffiffiffiffi
K

p
[see Eq. (6)]. In this case, the self-consistent equations

for mk assume a simple form. This is because, for the
system to settle into an unsaturated state, uk must be of
order 1; hence, Eq. (9) yields (to leading order in

ffiffiffiffi
K

p
)X

l

ḡklml þ h0k ¼ 0; ∀ k: ð15Þ

Since the mean rates are non-negative, Eq. (15) can be
obeyed only for a range of ḡkl and h0k values. Stability of the
balanced state (see Ref. [8]) further restricts the parameter
regimes. We refer to these restrictions on the parameters
as the balance conditions. Substituting the solution to the
balance equations into Eq. (14) yields equations for the
residual, order-1 mean inputs, uk.

C. Stability of fixed points

Stability of the population-averaged activities.—The
stability equations for the population-averaged degrees
of freedom are determined by considering the response
of the system to perturbations in the external fields, δh0k,
which are uniform within the populations. It is convenient
to define the uniform linear response by

χklðtÞ≡ ∂mkðtÞ
∂hlð0Þ ¼

1

N

XN
i

∂ϕi
kðtÞ=∂h0l ð0Þ: ð16Þ

Note that due to the spatial summation, this quantity is
essentially averaged over J . Interestingly, the response of
the population-averaged activity is coupled to the response
of the population variances, defined as

χΔklðtÞ ¼
∂

∂h0l ð0ÞΔkðtÞ ¼
∂

∂h0l ð0Þ hδh
i
kðtÞδhikðtÞi: ð17Þ

In Appendix B, we derive the following coupled equations
for the two sets of susceptibilities in the temporal Fourier
domain,� ðI−Aḡþ iωÞ −B

−Eḡ ðI−Dþ iωÞ

��
χðωÞ
χΔðωÞ

�
¼
�
A

E

�
: ð18Þ

Here, χ and χΔ are both P × P (P being the number of
populations). The P × P-dimensional matrices appearing in
Eq. (18) are defined as

Akl ¼ g2klhϕlϕ
0
li þ hϕ0

li;

Bkl ¼
1

2
g2klhϕ00

ki½hðϕ0
lÞ2i þ hϕlϕ

00
l i�;

Dkl ¼ g2klðhðϕ0
lÞ2i þ hϕlϕ

00
l iÞ;

Ekl ¼ 2g2klhϕlϕl
0i:

Thus, the fixed point is stable against population-
averaged perturbations, provided that all the eigenvalues
of the matrix

�
I − ḡA −B
−ḡE I −D

�
ð19Þ

have a negative real part.
Stability against local perturbations.—We now study

the stability of the fixed point against small perturbations
in the form of infinitesimal local fields h0ik . It is convenient
to define the local susceptibility matrix

χijklðtÞ ¼ ∂hikðtÞ=∂hj0l ð0Þ: ð20Þ

The average of the off-diagonal elements of this matrix
is zero, and their variance is Oð1=NÞ; hence, we focus on
the mean-square susceptibility matrix G, defined in the
Fourier domain by

Gklðω1;;ω2Þ ¼ N−1X
ij

hχijklðω1Þχijklðω2Þi: ð21Þ

In Appendix C, we show that the matrix G is

Gðω1;;ω2Þ ¼ ½ð1þ iω1Þð1þ iω2ÞI −M�−1; ð22Þ
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where

Mkl ¼ g2klhðϕ0Þ2i: ð23Þ

Thus, the fixed points are stable, provided that the real parts
of all eigenvalues of the P dim matrix M are less than 1.
In general, M is not symmetric; however, the largest
(in absolute value) of the eigenvalues is real. We call M
the stability matrix.
In conclusion, we have derived two stability conditions:

one related to population-averaged perturbations, Eq. (19),
and a second related to local perturbations, associated with
Eq. (22). Note that the mean interactions ḡ do not appear
in the latter condition. This is because the contribution to
the off-diagonal elements of Eq. (21) from the uniform
susceptibility is only of the order 1=N. For the fixed point
to be stable, both conditions must hold. However, the
instability associated with each condition has a different
implication. The population-averaged instability signals
either a runaway (as we show in a concrete example in
Sec. V) or a transition to another stable fixed point, a stable
limit cycle, or some other coherent spatiotemporal states.
On the other hand, as we show below, the instability in
Eq. (22) signals a transition to an asynchronous cha-
otic state.
Which of the instabilities occurs first when one varies

one of the parameters depends on the specific architecture
and parameter sets. Specific examples will be shown below.

IV. CHAOTIC STATE: DYNAMIC MEAN
FIELD THEORY

The chaotic state is an asynchronous state with statio-
nary statistics, governed by the local-field autocorrelation
functions

ΔkðτÞ≡ hδhikðtÞδhikðtþ τÞi; ð24Þ

where the angular brackets denote both average
over neurons in the population and over time t. The
self-consistent equations for these functions, derived
from the dynamic mean field theory (DMFT) are (see
Appendix A for a detailed derivation)

�
1 − ∂2

∂τ2
�
ΔkðτÞ ¼

X
l

g2klClðτÞ; ð25Þ

where CkðτÞ ¼ hϕðhikðtÞÞϕðhikðtþ τÞÞi are the firing-rate
autocorrelation functions, which depend on ΔkðτÞ through

CkðτÞ¼
DD

ϕð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0

k−ΔkðτÞ
q

yþ
ffiffiffiffiffiffiffiffiffiffiffiffi
ΔkðτÞ

p
zþukÞ

E2

y

E
z
: ð26Þ

Here, both y and z are Gaussian-distributed random
variables with zero means and unit variances. The boun-
dary conditions for the solution are ∂Δkð0Þ=∂τ ¼ 0,

∂Δ2
kð∞Þ=∂τ2 ¼ 0, and Δkð0Þ ¼ Δ0

k. The first condition
stems from the general fact that ΔðτÞ is a symmetric,
continuous function. The second one comes from the
requirement that ΔðτÞ converges to a finite value as
τ → ∞ for a chaotic solution. The solution of Eq. (26)
subject to these boundary conditions yields a unique
solution for ΔkðτÞ that converges to a fixed value,
Δkð∞Þ, at long times. Except for networks with h → −h
symmetry, the quantity Δkð∞Þ is, in general, not zero,
and it represents the variance of the Gaussian distribution
of the time-averaged synaptic currents. The fluctuations in
these inputs determine the fluctuations in the time-averaged
firing rates of individual neurons.
Details of the derivation of the DMFT are given in

Appendix A. Alternative formalisms for deriving dynamic
mean field equations for such architectures include
Faugeras and coworkers’ use of McKean-Vaslov Fokker-
Plank formalisms [31] or stochastic networks via path
integrals (see, e.g., Refs. [32,33]).
Lyapunov exponent.—In the chaotic state, we expect the

squared susceptibility to show an exponential divergence
with time, with a constant rate given by the largest
Lyapunov exponent (LE). LE is defined as

λL ¼ lim
τ→∞

1

2τ
ln
X
kl

ðGklðτÞÞ; ð27Þ

where

GklðτÞ ¼ lim
t→∞

1

N

XN
i;j

�∂hikðtþ τÞ
∂h0jl ðtÞ

�
2

: ð28Þ

Extending previous calculations [6], we show in
Appendix C that the long time behavior of GðτÞ is
determined by the ground state of a quantum mechanical
problem with the Hamiltonian operator defined as

H ¼ − ∂2

∂τ2 Iþ I −MðτÞ; ð29Þ

where

MklðτÞ ¼ g2kl
DD

ϕ0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ0
l − ΔlðτÞ

q
yþ

ffiffiffiffiffiffiffiffiffiffi
ΔðτÞ

p
zþ ul

�E2

y

E
z
:

ð30Þ

Finally, the LE is equal to

λL ¼ −1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ0

p
; ð31Þ

where ϵ0 is the ground-state energy of H. Note that, in
general, H is not Hermitian. However, complex values of
the Lyapunov exponents lead to unphysical oscillations of
the squared susceptibility, so the ground-state energy is
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expected to be real and negative. A direct rigorous proof
is still missing. In the regime of a stable fixed point, M is
time independent and ϵ0 > 0, recovering the same stability
criterion as above. A transition from a stable fixed point
to chaotic dynamics occurs as ϵ0 vanishes.

V. SINGLE INHIBITORY POPULATION
WITH THRESHOLD–POWER-LAW

TRANSFER FUNCTION

Solving the DMFT for general networks requires exten-
sive numerics. Many of the salient features are captured
by the simplest case of a single inhibitory population
[Fig. 1(b)] driven by a constant external excitatory input.
The systems’s dynamics,

d
dt

hiðtÞ ¼ −hiðtÞ þXN
j¼1

J ijϕðhjðtÞÞ þ ḡmðtÞ þ h0; ð32Þ

is characterized by the recurrent inhibitory mean gain
parameter ḡ < 0, the gain parameter of the synaptic
fluctuations, g2 ¼ NhðJ ijÞ2i, and the excitatory external
input, h0 > 0. The system is further simplified by assuming
a transfer function of a threshold–power-law form [34,35],

ϕðxÞ ¼ ½x�νþ; ν > 0; ð33Þ

where ½x�þ ¼ maxðx; 0Þ. For reasons explained below, we
see that this monomial form is general enough when one
studies the properties of the chaotic instability in networks
with continuous threshold transfer functions.

A. Fixed point and its stability

In this model, the mean field equations for the fixed point
are particularly simple. First, the mean input and its
variance are given, respectively, by

u ¼ ḡmþ h0; ð34Þ

where m is the spatially averaged activity, hϕii, and

Δ ¼ hδh2i i ¼ g2C; ð35Þ

where δhi ¼ hi − u and C is the mean square activity, hϕ2
i i.

The mean field equations for m and C are given by

m ¼ Δν=2h½zþ x�νþi ð36Þ

and

C ¼ Δνh½zþ x�2νþ i: ð37Þ

Here,

x ¼ u=
ffiffiffiffi
Δ

p
; ð38Þ

representing the mean input in units of the standard
deviation, and we have used the homogeneity property
of the transfer function.
Substituting Eq. (37) into Eq. (35), the parameter x can

be determined from

1 ¼ ~g2h½zþ x�2νþ i; ð39Þ

where ~g ¼ gΔðν−1Þ=2. The values of m and Δ are evaluated
using Eqs. (34), (36), and (38).
As one increases g, the fixed point becomes unstable.

Whether the first instability is the chaotic one [Eq. (22)] or
the uniform one [Eq. (18)] will generally depend on the
parameter set (ν, ḡ, and h0).
Chaotic stability.—A transition to a chaotic state occurs

at the fixed-point state when

1 ¼ ~g2ν2h½zþ x�2ðν−1Þþ i: ð40Þ

For a threshold-linear transfer function (ν ¼ 1), ~g ¼ g is
independent of Δ, and critical values gc and xc, at which a
bifurcation from a fixed point to chaotic dynamics occurs,
are determined by Eqs. (39) and (40) and are independent
of h0. In this case, C0ðxÞ ¼ Hð−xÞ with HðxÞ ¼
ð1= ffiffiffiffiffiffi

2π
p Þ R∞

x dze−ðz2=2Þ, and transition occurs when gc ¼ffiffiffi
2

p
and xc ¼ 0. For nonlinear transfer functions, the critical

values xc and gc depend on the values of h0 and ḡ.
Uniform stability.—The stability condition for a network

of a single population against uniform perturbations is
given by [see Appendix B, where we derive the uniform
stability condition in Eq. (18) for the case of a single
population]

g2
�
hϕ02i þ hϕϕ00i þ hϕ00ihϕϕ0iḡ

ð1 − hϕ0iḡÞ
�

< 1: ð41Þ

For ν ¼ 1, hϕϕ00i vanishes, and the third term on the left-
hand side of Eq. (41) is negative for ḡ < 0; hence, a chaotic
instability [Eq. (40)] always occurs first (i.e., for lower
values of g). For ν ≠ 1, the occurrence of uniform stability
of the fixed point will depend on the parameters ḡ and h0.

B. Chaotic state

In the threshold-linear model, it is useful to define the
normalized autocorrelation

qðτÞ≡ 1 − ΔðτÞ=Δð0Þ; ð42Þ

as well as

qð∞Þ ¼ 1 − Δð∞Þ=Δð0Þ; ð43Þ
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which measures the normalized variance of the dynamics,
namely, the (spatially averaged) temporal variance of the
local fields normalized by the squared amplitude. The
autocorrelation function obeys Eq. (25),�

1 − ∂2

∂τ2
�
ΔðτÞ ¼ g2CðτÞ: ð44Þ

Normalizing by Δ0 and using the homogeneity of the
transfer function as above, we can define a Newtonian
equation of motion on the normalized autocorrelation (42),
which reads

∂2

∂τ2 qðτÞ ¼ −∂V
∂q : ð45Þ

The potential V is given by

VðqÞ≡−1

2
ð1− qÞ2

þ ~g2
Z

∞

−∞
Dz

�Z
∞

−∞
DyΦð ffiffiffi

q
p

yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− qÞ

p
zþ xÞ

�
2

;

ð46Þ

where
R
Dx¼R

dxexpðx2=2Þ= ffiffiffiffiffiffi
2π

p
andΦðhÞ¼R

h
0 dyϕðyÞ¼

½h�νþ1
þ =ðνþ1Þ [6]. In the above equation, we have used the

equality Δ0 ¼ Δð0Þ and ~g≡ gΔðν−1Þ=2
0 . The initial condi-

tions for Eq. (45) are qð0Þ ¼ 0, ∂qð0Þ=∂τ ¼ 0, and
∂2qð∞Þ=∂τ2 ¼ 0. The second condition stems from the
general fact that ΔðτÞ is a symmetric, continuous function.
The last one comes from the requirement that ΔðτÞ
converges to a finite value as τ → ∞. These three con-
ditions yield a unique solution and a unique value for the
normalized mean input x.
Because of the existence of a potential, x can be obtained

without explicitly solving for qðτÞ as follows. The above
boundary conditions imply that the initial energy equals
the potential energy Vð0Þ, while the final energy equals the
final potential energy Vðqð∞ÞÞ. Thus, conservation of
total energy yields Vð0Þ ¼ Vðqð∞ÞÞ. Finally, for qð∞Þ
to be an equilibrium point, the force must vanish; hence,
∂Vðqð∞ÞÞ=∂τ ¼ 0. These two equations determine both
qð∞Þ and x. Once x is known, Eq. (45) is integrated
numerically to yield qðτÞ. Finally, ΔðτÞ is evaluated by
solving the mean field equation (36) with Δ ¼ Δ0.

Stability of the chaotic solution.—The existence of a
bounded chaotic phase, in which the mean activity of the
network does not diverge and the trajectories of the local
fields remain bounded, requires stability of the uniform
mode. Unfortunately, a theory of uniform stability in a
time-dependent dynamical state is lacking. However, in the
linear case, one can find simple arguments for the existence
of a chaotic solution. In this case, the normalized mean
input x < 0 in the chaotic phase is independent of h0, and
one finds that only when

jḡj > jxj
h½zþ x�þi

ð47Þ

does a solution for the mean field equation exist; smaller
values of jḡj entail dynamical instability.
For nonlinear transfer functions, the above argument

does not hold. For ν ¼ 2, for example, a solution for the
MF equation exist for any value of h0 and ḡ. However,
numerical simulations show that an instability in the
chaotic phase exists, as can be seen in Fig. 2.
We note that this instability results from the unbounded-

ness of ϕ. For ϕ with a saturation level, the dynamics
will always be bounded, but a crossover is expected from
fluctuations spanning the linear dynamic range of the
neurons when the net inhibition is large, to “epileptic”
fluctuations in which neurons fluctuate between their
saturated levels for weak inhibition.
Existence of a fixed-point solution.—An interesting

result that is implied by Eq. (40) is that a stable fixed
point (FP) exists only when

ν > 1=2: ð48Þ

In contrast, when ν ≤ 1=2, the right-hand side of the FP
stability condition, Eq. (40), diverges, indicating that no
stable fixed-point solution exists for finite g, and depending
on g, the system is either in a stable chaotic state or it
diverges. This prediction is confirmed by the numerical
simulations [see Fig. 2(a)] in which the normalized
variance of the fields qð∞Þ is plotted as a function of ν.
For ν values of 0.5 or smaller, the system is in a chaotic
state even for small values of g.
The instability of the fixed point for small ν is due to the

presence of positive local fields that are arbitrarily close to
zero. Thus, for a system of finite size, where the positive
local fields are always of a nonzero minimum value, we
expect that a fixed point will be stable at sufficiently small
values of g. In the following sections, we focus on networks
with threshold-linear (ν ¼ 1) and quadratic (ν ¼ 2) transfer
functions, which exhibit a fixed point, a chaotic regime,
and therefore a transition.
Finally, we note that the same arguments hold for the

multiple population case as well.

C. Phase diagram

In Fig. 2(b), we show the phase diagram for the
threshold-linear (ν ¼ 1), depicting the regimes of stable
fixed point, chaos, and unstable dynamics in the parameter
space of g and ḡ. For values of g <

ffiffiffi
2

p
, the network settles

into a fixed point. For larger gain values, if the inhibition is
strong enough, i.e., the condition in Eq. (47) holds, then the
dynamics is chaotic and bounded to a finite regime in
the state phase. For lower values of the uniform inhibition,
the mean activity diverges. Note that because of the
semilinearity of the transfer function, the phase diagram
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is independent of the magnitude of h0 as long as it is
positive. In a diluted network, the phase plane is reduced
to a single line,

ḡ ¼ −g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K
1 − K=N

s
: ð49Þ

For a sparse network where K ≪ N, ḡ ¼ − ffiffiffiffi
K

p
[dashed

line in Fig. 2(e)]. Thus, for large values of K, as in the
balanced network case, the chaotic state at g >

ffiffiffi
2

p
is

always stable.
In Fig. 2(c), the phase diagram for the semiquadratic

(ν ¼ 2) is presented for h0 ¼ 1. For low values of jḡj,
uniform instability occurs at lower g than chaotic insta-
bility, and no stable chaotic phase exists. For larger values
of jḡj, a critical transition between a fixed point and chaotic
dynamics exists. For larger values of gain g, the dynamics
always diverges; this instability is shown by numerical
simulation in the phase diagram. For a diluted network,
where jḡj ¼ Oð ffiffiffiffi

K
p Þ, there is always a chaotic transition, as

shown in the inset of Fig. 2(c).

D. Analytical evaluation of the Lyapunov exponent

In the single-population case, the evaluation of the
Lyapunov exponent is also relatively simple. In this case,
the single-component Hamiltonian is given by H ¼
−ð∂2=∂τ2Þ þWðτÞ, with a quantum potential W ¼
−∂2V=∂q2, where V is the classical potential [Fig. 3(a)],
which can be easily evaluated once qðτÞ is known
[Fig. 3(b)]. Indeed, for the semilinear network, we find
that the ground state is negative for g <

ffiffiffi
2

p
and positive

otherwise, implying that λL is negative for g <
ffiffiffi
2

p
and

changes sign to a positive value for g >
ffiffiffi
2

p
, as expected in

a chaotic state [see Figs. 2(c)–2(f)]. For the nonlinear case
with ν ¼ 2, the Lyapunov exponents are calculated near
and above the transition in Sec. VII.

E. Numerical simulations

Numerical integration of the full network of equations in
Eq. (32) verifies our theoretical predictions. For a thresh-
old- linear network, when g <

ffiffiffi
2

p
, the network settles into

a fixed point, with the expected mean and variance of the
local quenched fields [Fig. 4(a)]. When g >

ffiffiffi
2

p
, chaos

settles with temporal fluctuations that increase with g. The
population-averaged currents remain almost constant with
small finite-size fluctuations [Figs. 4(b) and 4(c)]. The
chaotic behavior is characterized first by the decay of the
autocorrelation [Fig. 4(d)], which agrees with the theoreti-
cal qðτÞ, and second by a positive LE. The latter was
calculated from simulations using Wolf’s algorithm [36].
The resultant values λL ¼ 0.121 and 0.225 for g ¼ 2.2 and
3.0, respectively, agree well with the values 0.126 and
0.232 obtained by numerically calculating the ground state

(a)

(b)

(c)

(d)

FIG. 2. Phase diagrams for a single inhibitory population. (a)No
stable fixed point for sharp transfer functions. Simulation results for
the normalized variance qð∞Þ for networks with g ¼ 0.2 and
g ¼ 0.1 and different values of the power law, ν, characterizing the
rise of the transfer function, Eq. (33). Below ν ¼ 0.5, the variance
is nonzero, implying that there are temporal fluctuations even for
low values of g. Simulation is performed on an inhibitory network
(N ¼ 5000) with randomly diluted connections and mean activity
of m¼0.1. (b) Phase-space diagram for a threshold-linear (ν¼1)
network of inhibitory neurons with mean connectivity ḡ < 0 and
variance g. The dashed line shows an example of a transition in a
diluted network (with K¼650) where, because ḡ¼− ffiffiffiffi

K
p

g [see
Eq. (49)], the network lies on a line in the phase diagram. (c) Phase
diagram for a threshold-quadratic (ν ¼ 2) network with an excita-
tory external fieldh0 ¼ 1. Thedashed line showsuniform instability
of the fixed point, and the solid line shows the transition to the
chaotic phase (shaded area). The dotted (black) line shows the
instability of the chaotic phase found by simulations (Gaussian
connectivity,N ¼ 6000, h0 ¼ 1). The inset (d) is the same as (c) for
larger values of jḡj. The dashed line shows the existence for a
diluted network as in (b).
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of the potential WðτÞ [Fig. 2(d)]. Simulation of a semi-
quadratic network also verifies our analytical results.
Simulation results near and above the chaotic transition
are given in Sec. VII.
Randomly diluted networks.—The above numerical

results were for Gaussian-distributed synaptic connections.
However, as shown above, in the limit of large mean number
of connections per neuron,K, the DMFT is expected to hold
also for randomly diluted networks, in which case, g and ḡ
are related through Eq. (7) (dashed lines in Fig. 2). In the
case of a single population with a threshold-linear transfer
function, comparing the behaviors of different connectivity
schemes (Gaussian, sparse, and dense dilution) is relatively
simple since the normalized autocorrelation qðτÞ depends
only on g, not on ḡ (see above). These expectations are
borne out by our numerical simulations, shown in Fig. 5.
For simulations performed on the network with the same
variance in their connectivity, the calculated normalized
autocorrelationqðτÞ is identical in theGaussian network and
the randomly diluted networks with both p ¼ K=N ¼ 0.05
(sparse network) and p ¼ 0.8 (dense network).

VI. TWO POPULATIONS WITH
THRESHOLD-LINEAR
TRANSFER FUNCTION

Here, we address briefly the application of the general
theory to the case of a two-population network with one

(a) (b)

(c)

(d)

FIG. 4. Numerical simulations of a single population with a
linear-threshold transfer function. (a) Distribution of the local
fields hi in the fixed-point regime. The thick curve shows normal
distribution given the theoretical mean and variance obtained
from the mean field theory. The dashed (red) vertical line marks
the firing threshold, which is taken to be zero. (b,c) Activities
of two networks with gains g ¼ 2.1 and g ¼ 2.8, respectively.
Bold lines show spatially averaged local fields; thin lines are
local fields of a sample of four neurons. (d) The normalized ac
function, ΔðτÞ=Δ0 ¼ 1 − qðτÞ, for two values of gain parameters
as in (b) and (c). Solid black lines are the solutions of the equation
of DMFT, Eq. (45), superimposed on simulation results (dashed
lines). We show simulations performed on a network (N ¼ 6800)
with Gaussian-distributed connections and ḡ ¼ ffiffiffiffi

K
p

g, where
K ¼ 680 and the external field h0 ¼ 1.

(a)

(c)

(e) (f)

(d)

(b)

FIG. 3. Calculation of the largest Lyapunov exponent for a
threshold-linear network. (a) Numerical integration of Eq. (45).
The value of x is determined through the requirement that the
maximum of the potential at nonzero q equals its value at zero q.
Compare the form of the potential with the exact value of x
(solid line) with those calculated with x deviating by �1%
from the correct value (dashed lines). (b) Numerical solution for
the normalized variance qð∞Þ as a function of g. (c)–(f) The
normalized autocorrelation function qðτÞ found by integrating
the equation of motions (45) using the correct value of x for
two values of g (top), and the corresponding quantum potential
W ¼ −∂2V=∂q2 (bottom). The ground-state energies ϵ0 (hori-
zontal lines) were found numerically. In both cases, they are
negative, implying a positive Lyapunov exponent.

(a) (b)

FIG. 5. Robustness to changes in the synaptic distribution.
(a) Autocorrelation function for sparse (p ¼ 0.05), dense
(p ¼ 0.8), and Gaussian connectivity networks (N ¼ 7000,
h0 ¼ 1). The gains were chosen such that all networks have
the same variance for the connectivity distribution (g ¼ 2.8 for
the Gaussian distribution and g

ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p ¼ 2.8 for the randomly
diluted networks). (b) Normalized autocorrelation function
1 − qðτÞ ¼ ΔðτÞ=Δ0 compared with the solution of the DMFT.
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excitatory (denoted as E) and one inhibitory (I) population
[Fig. 1(c)]. For simplicity, we study the example of the
semilinear transfer function. Generalization to other values
of ν is straightforward, as presented in Sec. III.

A. Fixed point and its stability

The fixed-point equations for the variance and mean of
the synaptic current are

Δk ¼
X
l¼E;I

g2klΔlh½zþ xl�þiz; k ¼ E; I; ð50Þ

mk ¼ Δν=2
k h½zþ xk�þiz; k ¼ E; I; ð51Þ

along with the definition of xk,

xk
ffiffiffiffiffiffi
Δk

p
¼

X
l

ḡklml þWkm0: ð52Þ

The eigenvalues of the stability matrixMkl ¼ g2klHð−xlÞ
are given by

Λ� ¼ 1

2

h
MEE þMII �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMEE −MIIÞ2 þ 4MIEMEI

q i
:

ð53Þ

Note that the two eigenvalues are real. For a fixed point to
be stable, Λþ < 1. Thus, the transition to chaos occurs at
parameters s.t. Λþ ¼ 1. When this eigenvalue becomes
larger than 1, one must solve the DMF equations for the
chaotic state.

B. Chaotic state

The DMF equations can be written as

�
1 − ∂2

∂τ2
�
qkðτÞ ¼ 1 − ~g2kECEðτÞ − ~g2kICIðτÞ; ð54Þ

CkðτÞ ¼ hh½
ffiffiffiffiffiffiffiffiffiffiffi
qkðτÞ

p
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − qkðτÞ

p
zþ xk�þi2yiz; ð55Þ

for k ∈ fE; Ig, where

qkðτÞ ¼ 1 − ΔkðτÞ=Δkð0Þ ð56Þ

are the normalized autocorrelation functions for each
population, and here we set

~gkl ≡ gkl

ffiffiffiffiffiffiffiffiffiffiffiffi
Δlð0Þ
Δkð0Þ

s
:

Unlike the simple case of a single population, no
classical potential function can be defined for the above
two-particle motion in Eq. (54). Nevertheless, the

dynamical equations can be integrated numerically, iter-
atively finding the values for xk that yield the desired
asymptotic behavior of the normalized variance,

qkð∞Þ ¼ 1 − Δkð∞Þ=Δkð0Þ: ð57Þ

Likewise, in general, the Hamiltonian governing the
Lyapunov susceptibility GðτÞ is not Hermitian. However,
as stated above, we expect the ground state to be real since
the elements of GðτÞ are non-negative by definition, and a
complex ground state would mean oscillations around zero
(see Appendix C).

C. Numerical results

Below we describe the chaotic state of this network,
based on numerical investigations. In these simulations, we
focus on the balanced regime, in which all the mean
contribution of each population to the local input is of
order

ffiffiffiffi
K

p
. In this case, to leading order, excitation and

inhibition cancel each other, and the mean activity of each
population is given by

mE ¼ −½J−1W�Em0 ð58Þ

and

mI ¼ −½J−1W�Im0; ð59Þ

where W ¼ ½WEWI�T is the vector of feedforward con-
nections, and J is the 2 × 2 matrix of the mean recurrent
connections, as defined in the diluted model above. The
balance conditions on the parameters are

det J < 0;

JEIWI < JIIWE;

and

JIEWE < JEEWI:

To demonstrate the properties of the two-population
system, we fix all the values of the connections except for a
global gain g, and α, which controls the excitatory con-
nections. For α ¼ 0, the network is reduced to the single
inhibitory network with the parameters used in Sec. V, and
for α > 0, the excitatory connections are JEE ¼ JIE ¼
WE ¼ αJII ¼ αg. In Fig. 6(a), we show a section of the
phase space, with the critical gcðαÞ line. The critical curve
is calculated by solving the eigenvalues of the stability
matrix (53) for each value of α. Figure 6(b) shows an
example of the stability for α ¼ 0.55. Numerical simula-
tions confirm the theoretical results, as seen in Fig. 6(c). For
convenience of comparison, parameters were chosen so that
they correspond to the same network parameters studied in
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Refs. [8,9]. Unlike the binary network in which no stable
fixed point exists for any g, in the threshold-linear network,
a transition to chaos occurs at g ¼ 1.21 [Figs. 6(b) and
6(c)]. Figure 6(c) indicates that the normalized variances
of the two populations are very similar to each other
(see discussion in Sec. 10 below).
Figure 7 shows an example of the chaotic fluctuations

in the two-population network. The same parameters
were used as in Figs. 6(a) and 6(b) with g ¼ 1.6, within
the chaotic phase. As expected, inputs into neurons from
both populations show large fluctuations, while the mean
activity of each population is constant up to fluctuations
of order 1=

ffiffiffiffi
K

p
[Fig. 7(a)]. The autocorrelation of both

population decays monotonically with jτj to an equilibrium
value [Fig. 7(b)]. A signature of a dynamical balanced
state is the substantial synchrony in the fluctuations of
the excitatory and inhibitory mean activities [Fig. 7(c)].
Consistent with Fig. 6(c) above, Fig. 7(b) shows that the
autocorrelation functions of the two populations are nearly
proportional to each other, implying that the normalized
autocorrelation functions, qEðτÞ and qIðτÞ, are approxi-
mately equal (as observed recently also by Ref. [37]; see
Sec. VII).

VII. CRITICAL BEHAVIOR AT THE
ONSET OF CHAOS

In this section, we analyze the characteristics of the
system at the onset of the chaotic state and ask what
features determine the critical properties of this transition.
As will be seen below, these properties depend on the shape
of the single neuron transfer function near the origin. As
such, the class of power-law functions defined in Eq. (33)
can represent any continuous threshold function.
Absence of stable chaotic phase.—Before we explore the

critical properties near the transition to chaos, we note that
not all transfer functions allow a stable chaotic solution. For
example, Eq. (25) may not have a solution satisfying all
boundary conditions. In these instances, the dynamics is
either stationary or explosive (i.e., “epileptic”). An example
of such behavior is the exponential curve ϕðxÞ ¼ ex, as
shown in Appendix D. On the other hand, all ϕðxÞ that
saturate as x → ∞ are expected to exhibit a stable chaotic
state for large values of g.
In the following, we focus our study on a transfer

function of the type (33), with ν > 1=2, which exhibits a
phase transition from FP to stable chaos.

A. Critical properties: Single population

When ν > 1=2, the critical properties near the transition
to chaos depend on the value of ν. To see this, we first
consider the case of a single inhibitory population. The
critical value of g is given by the value at which
g2h½ϕ0ð ffiffiffiffi

Δ
p

zþ uÞ�2i ¼ 1 [see Eq. (39)]. As the chaotic
state approaches the critical g from above, the amplitude of
the time-dependent fluctuations becomes small; hence, we
can expand the MF equations in powers of qðτÞ (which is

(a)

(c)

(b)

FIG. 6. Transition to chaos in a system of two populations.
Parameters used: JEE ¼ JIE ¼ WE ¼ αg, JII ¼ −g,
JEI ¼ −1.11g, and WI ¼ 0.44g. Note that g is a global gain
multiplying all the synapses; α denotes the excitatory efficacy.
(a) The critical value of g as a function of the excitatory efficacy α.
For α ¼ 0, the network is identical to the single inhibitory
network and the phase transition occurs at g ¼ ffiffiffi

2
p

. (b) Largest
eigenvalue of the stability matrix (53) for a network with α ¼
0.55 [marked by “^” in panel (a)]. MF predicts a phase transition
when Λþ ¼ 1 (asterisks). (c) Normalized variance qkð∞Þ for
inhibitory (blue triangles) and excitatory (red circles) populations
as a function of the gain calculated from network simulations
with α ¼ 0.55. It was calculated from simulation of a balanced
diluted network with NE ¼ NI ¼ 3500, K ¼ 700, connectivity
parameters as in panel (b), and external activity m0 ¼ 1. Theory
predicts a phase transition at g ¼ 1.21 (asterisks), as seen in
panel (b).

(a) (b)

(c)

FIG. 7. Fluctuations of an E-I balanced network with linear-
threshold transfer function. Same parameter set as in Fig. 6(c).
(a) Traces of the local fields of six neurons from excitatory (red)
and inhibitory (blue) populations. Dashed lines show mean
input into each population. (b) Time-lagged autocorrelation
function of two populations computed from the simulation.
(c) Trace of the fluctuations in the spatially averaged activities
δmkðtÞ≡mkðtÞ − hmkðtÞit of both populations [same color
codes as (a)]. Simulations of network are similar to the one
used in Fig. 6(b), with g ¼ 1.6.
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small at all τ). In addition, we expand the equations in the
small static parameter δx≡ x − xc and the bifurcation
parameter ϵ≡ g2=g2c − 1.
To leading order, the DMF equation (54) takes the form

(see Appendix E)

∂2qðτÞ
∂τ2 ¼ aðϵÞ þ bϵqðτÞ þ cqρðτÞ; ð60Þ

where b and c are parameters of order unity, and the
exponent ρ obtained from expansion of the firing-rate
autocorrelation, CðτÞ (see Appendix E), is

ρ ¼
(

3
2

1
2
< ν ≤ 3

2

2 3
2
< ν:

ð61Þ

The constant term a vanishes at the transition and
depends on ϵ. In order for a nontrivial solution to exist,
all the terms in Eq. (60) should be of the same order of ϵ;
hence, the time scale of qðτÞ should scale as τeff ∼ 1=

ffiffiffi
ϵ

p
.

The amplitude of qðτÞ should scale as ϵ2 for ν ≤ 3=2 and as
ϵ for larger ν. Finally, a should scale as OðϵqÞ (as indeed
found by an explicit evaluation of a; see Appendix E),
yielding the following scaling behavior:

qðτÞ ¼ ϵ1=ðρ−1Þf
�

τffiffiffi
ϵ

p
�
; ð62Þ

where fðxÞ is of order 1. The Hamiltonian in Eq. (29)
scales as

WðτÞ ¼ ϵF

�
τffiffiffi
ϵ

p
�
; ð63Þ

where FðxÞ is some other function of order 1. Equation (63)
implies that the largest Lyapunov exponent, Eq. (31),
scales as

λL ¼ OðϵÞ: ð64Þ

We have confirmed the above predictions numerically, for
the cases of ν ¼ 1 (Fig. 8) and ν ¼ 2 (Fig. 9).
In this work, we assume a synaptic transfer function of

the form (33). In Ref. [6], the variance of a network with a
sigmoid synaptic transfer function, ϕðhÞ ¼ tanhðhÞ, and
h0 ¼ 0, was shown to scale asΔðτÞ ¼ ϵfðτ= ffiffiffi

ϵ
p Þ and its LE

as λL ¼ Oðϵ2Þ. This behavior results from the h → −h
symmetry of the system, which implies that Δ0 vanishes at
the transition. This symmetry is not expected to hold in
biological networks. Thus, the scaling shown in Eqs. (62)
and (64), in which the LE is larger than in the symmetric
case, reflects the behavior in generic neuronal networks.
In Ref. [38], the authors study the distribution of

equilibria points above criticality, for a single population
with a sigmoidal transfer function. An interesting result is

that the mean (with respect to realizations of Jij) number
of equilibria behaves just like the Lyapunov exponent.
Consequently, Eq. (64) may also elucidate the topological
complexity of the flow above criticality for threshold
power-law transfer functions.

(a)

(c)

(b)

(d)

FIG. 8. Critical behavior of a single inhibitory population with
linear transfer function. Normalized variance (a) network relax-
ation time (b), and largest Lyapunov exponent (c) as a function of
the distance from the critical point ϵ ¼ 1

2
g2 − 1. Circles show the

average over 20 simulations (Gaussian connectivity, N ¼ 6000,
h0 ¼ 1), and dashed lines show theoretical predictions (see
Appendix E). (d) Rescaled one-dimensional quantum potential
Fðτ= ffiffiffiffi

ϵÞp
, Eq. (63), for the Hamiltonian in Eq. (29).

(a) (b)

(c)

FIG. 9. Critical behavior of a single inhibitory population with
quadratic (ν ¼ 2) transfer function. Normalized variance (a),
network relaxation time (b), and LE (c) for small ϵ≡ g2=g2c − 1
gain above the critical point. Circles show the average over 20
simulations (Gaussian connectivity in the balance regime,
N ¼ 6000,K ¼ 1200, h0 ¼ 1), and dashed lines show theoretical
predictions (see Appendix E).
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B. Multiple populations

The above critical properties were derived for the case of
a single population. However, we argue that these proper-
ties hold also for multiple populations. In the case of several
populations, transition to chaos occurs when the largest
eigenvalue of the stability matrix, M [Eq. (22)], equals 1
(and assuming the uniform stability still holds). Near the
transition (on the chaotic side), this eigenvalue is slightly
larger than 1, while the real part remains stable. To leading
order, the unstable direction, R1, in the space of qkðτÞ ¼
1 − ΔkðτÞ=Δkð0Þ remains the same as the marginally stable
eigenvector at the critical point. Hence, near the transition,
the dominant direction of temporal fluctuations is along the
critical eigenvector, and the dynamic equations collapse
into one dimension, similar to the one population case. In
general, we expect that all qk have nonzero components on
the critical direction; hence, qkðτÞ ≈ qðτÞR1 and the critical
properties are the same as the single-population properties
above (see Appendix E). Similar arguments apply to the
scaling properties of the quantum Hamiltonian; hence, the
LE scales as Eq. (64). These results are supported by
simulations of an excitatory-inhibitory network, defined in
Sec. VI. The simulations displayed in Fig. 10 demonstrate
the universality of the critical properties of the transition to
chaos. In the specific case of a threshold-linear model, we

find for a wide range of parameters, R1 ≈ ð1; 1; 1;…; 1Þ,
implying that near the transition, the normalized autocor-
relations of all populations are not only proportional but
are expected to be approximately equal to each other, as
detailed in Appendix E.
Note that the one-dimensional character of the chaotic

fluctuations is exact only asymptotically close to the
transition. Away from the transition, the nonlinearity of
CðqÞ couples the unstable mode to the other modes,
inducing fluctuations in all modes. Interestingly, we find
numerically that in many cases, even far from the transition,
the autocorrelations are still close to being equal,
qkðτÞ ≈ qðτÞ, as is apparent in the example of Figs. 6(c)
and 7(b). Similar observations have been made recently
in Ref. [37].

VIII. TRANSITION TO CHAOS
IN SPIKING NETWORKS

In this section, we ask under what conditions the
transition to chaos observed in the rate dynamics occurs
also in spiking networks. In contrast to rate models, the
membrane potentials of spiking networks are not at a fixed
point as long as some of the neurons are active. Hence, in
general, there is no transition from fixed point to chaos.
An exception is the case of networks with slow synapses. If
the synaptic time constant is long compared to the spiking
dynamics, it is possible that for low synaptic strength, the
spiking dynamics is averaged out at the level of the slow
synaptic currents, which will therefore stay approximately
constant. Thus, there might be a critical g in which the
state with almost constant synaptic currents undergoes
an instability leading to a chaotic (or at least temporally
irregular) state in which temporal fluctuations of the
synaptic currents are large even at the scale of the synaptic
time constant.
To explore the possibility of transition to chaos in

spiking networks with a slow synaptic time constant,
we consider a network of spiking neurons that fire with
inhomogeneous Poisson statistics, specified by the instan-
taneous rate of each neuron, riðtÞ ¼ ϕðhiðtÞÞ. We assume
that the network is in an asynchronous state [39] and that
the typical firing rate is large compared with the inverse
synaptic time constant, τ−1s .
Focusing on single inhibitory populations, we write the

dynamic equation of the local fields as

τs
d
dt

hiðtÞ ¼ −hiðtÞ þXN
j¼1

J ijξjðtÞ þ τ0ḡrðtÞ þ h0; ð65Þ

where J ij is either a Gaussian-distributed connection or
the corresponding randomly dilute network, as appears in
Eq. (32) above. The spike train ξjðtÞ ¼ P

kδðt − tjkÞ of the
presynaptic neuron j at times tik represents the random
Poisson process of neuron j. The nonlinear rate function is

(a) (b)

(c)

FIG. 10. Critical behavior of a network with two populations
and a linear transfer function. Diamond (red) and circles (blue)
denote excitatory and inhibitory populations, respectively.
(a) The normalized variances of the two populations, qEð∞Þ
and qIð∞Þ, show the same critical behavior (a linear rise from
zero) as the single population [Eq. (62)]. Because of the linearity,
the normalized autocorrelations are nearly equal to each other
near the critical point (see Appendix E). (b) Network relaxation
times of both populations are similar at the scaling limit. (c) LE of
the entire network calculated over all populations, Eq. (27), scale
as a single population, Eq. (64). We show simulations conducted
on a network with a diluted connectivity matrix (N ¼ 3600,
K ¼ 600 for each population) and a parameter set as in
Figs. 7 and 6(c).
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given by the rectified linear transfer function ϕðxÞ ¼
τ−10 ½x�þ, where τ0 is a microscopic time constant, which
is related to the inverse slope of the single-neuron f-I
curve. Note that in this model, the connections have units of
time; hence, we define g2 ¼ NhðJ ijÞ2iτ−20 so that g (and ḡ)
is dimensionless. For simplicity of notation, in the follow-
ing, we measure rates and times in units of τ0; i.e., we use
units such that τ0 ¼ 1.
To understand the effect of spiking dynamics, we can

separate the synaptic input into a rate contribution and a
spiking noise contribution,

ηiðtÞ ¼ ηri ðtÞ þ ηspi ðtÞ; ð66Þ

where

ηri ðtÞ ¼
XN
j¼1

J ijϕðhjðtÞÞ; ð67Þ

ηspi ðtÞ ¼
XN
j¼1

J ijðξjðtÞ − ϕðhjðtÞÞÞ: ð68Þ

The autocovariances of the two terms on the right-hand side
of Eq. (66) are

hηri ðtÞηri ðtþ τÞi ¼ g2CðτÞ ð69Þ

and

hηspi ðtÞηspi ðtþ τÞi ¼ g2rδðτÞ; ð70Þ

where CðτÞ ¼ hϕiðtÞϕiðtþ τÞi is the autocorrelation
of the rate functions given by Eq. (26) (in units of τ−20 ),
and δðτÞ is the Dirac delta function. The last equation
results from the average over the Poisson process,
hðξjðtÞ−ϕðhjðtÞÞðξjðtþ τÞ−ϕðhjðtþ τÞÞi¼ϕðhjðtÞÞδðτÞ.
Thus, the Poisson noise is equivalent to an additive white
noise with amplitude g2r, where r is the population
averaged rate r (in units of τ−10 ). Thus, the spiking noise
can be incorporated into the dynamic mean field theory,
yielding

�
1 − τ2s

∂2

∂τ2
�
ΔðτÞ ¼ g2CðτÞ þ g2rδðτÞ: ð71Þ

A. Perturbation analysis of the spiking noise

As explained above, we are interested in the regime of
large τs (which is the synaptic time constant relative to τ0).
This limit can be illuminated by writing the rescaled mean
field dynamics,

�
1 − ∂2

∂t2
�
ΔðτÞ ¼ g2CðtÞ þ g2r

τs
δðtÞ; ð72Þ

where we have scaled time so that t ¼ τ=τs. The above
equation demonstrates that the contribution of the Poisson
noise (proportional to g2r=τs) is small relative to the rate
contributions (which are proportional to g2r2), and the ratio
between the two is of the order of ðrτsÞ−1.
For gain values above gc ¼

ffiffiffi
2

p
, and rτs ≫ 1, the noise

contribution will be small compared to the unperturbed
rate autocorrelation given by the solution of Eq. (45)
[Fig. 11(a)]. Below gc, the only time dependence comes
from the spikes. To study this regime, we consider the
spikes contribution as a small perturbation around the

(a) (b)

(c) (d)

FIG. 11. Network of spiking neurons with inhomogeneous
Poisson statistics. Simulation results for a network that follows
the dynamic equation in Eq. (65). (a) Above the critical point
of the underlying rate dynamics, gc ¼

ffiffiffi
2

p
, the rate term domi-

nates the DMF equation, Eq. (72), and the autocorrelation
calculated from simulation (rτs ¼ 30, solid line) is fully ex-
plained by autocorrelations of the rates, found by Eq. (45)
(dashed line). (b) For values of g well below the rate transition,
the rates do not have intrinsic fluctuations, and the fluctuations in
the fields are solely due to the Poisson firing. MFT results of
Eq. (74) (dashed line) agree with simulations (rτs ¼ 30, solid
line). In intermediate values of g, rate and spike fluctuations
interact nonlinearly. (c) Normalized variance of the local fields
qð∞Þ from simulations of networks at different gain levels in the
transition region. For higher levels of rτs, the crossover between
variance dominated by the Poisson process and variance domi-
nated by the fields dynamics becomes sharper. (d) The coefficient
of variation (CV), Eq. (76), for different values of gain. For low
values of g, the CV approaches 1, indicating a Poisson process
with (almost) constant rates. For higher values of the gain, the CV
is larger, as expected from an inhomogeneous Poisson process.
The crossover between the two regimes becomes sharper as rτs
increases. Simulations are performed using an inhibitory
population with Gaussian-distributed connectivity (N ¼ 3500,
K ¼ 700) and ḡ ¼ h0 ¼ 1.
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static autocorrelation, ΔðtÞ ¼ Δst þ ΔspðtÞ, where Δst is
the static solution for Δ in the rate model, and we expand
the equation above to linear order in ΔspðtÞ, which yields

�
1 − ∂2

∂t2
�
ΔspðtÞ ¼ g2C0ΔspðtÞ þ

g2r
τs

δðtÞ; ð73Þ

where C0 ¼ Hð−xÞ [see Eq. (40)]. Solving Eq. (73) yields

ΔspðτÞ ¼
g2r
2λτs

e−λðjτj=τsÞ; ð74Þ

where, following Eq. (40),

λ2 ≡ 1 − g2Hð−xÞ: ð75Þ

Here, x is the unperturbed net input, Eq. (38), and we have
substituted back τ ¼ tτS. [Note that g is in units of τ0].
Figure 11(b) displays the simulation results for the auto-
correlation δΔðτÞ ¼ ΔðtÞ − Δð∞Þ for g below the critical
value, and the theoretical estimates ΔspðτÞ.

B. Scaling analysis

Approaching the transition point from below, the
Poisson contribution, Eq. (74), is amplified by the divergent
response of the fields’ dynamics as λ → 0. For a finite rτs,
however, the autocorrelation remains finite at all g and the
transition is smoothed. Indeed, Fig. 11(c) shows that qð∞Þ
increases smoothly as a function of g, but its increase
becomes sharper the larger rτs is. Figure 11(d) shows a
similar behavior for a measure of the fluctuations in the
spike times, known as coefficient of variation (CV), defined
as the ratio between the standard deviation of the ISI
distribution, σISI, and its mean, μISI [40],

CV ¼ σISI
μISI

: ð76Þ

The CV increases from CV ≈ 1, at small g, which is the
value for a homogeneous Poisson process, to substantially
larger values above g ¼ ffiffiffi

2
p

, because of the fluctuations in
the underlying rates. This increase is smooth but becomes
sharper for large values of rτs.
To study the effect of the small spiking noise on the

transition, one needs to perform a nonlinear analysis. Here,
we use a scaling analysis, similar to that of a second-order
phase transition in equilibrium statistical mechanics. The
scaling regime is characterized by two variables, rτs ≫ 1

and ϵ≡ g2=g2c − 1, jϵj ≪ 1. We write the normalized
variance near the transition as

qð∞Þ ¼ 1

ðrτsÞα
fðzÞ; ð77Þ

where the scaling variable z is given by

z ¼ rτsjϵjβsignðϵÞ: ð78Þ

Far below the transition, z → −∞, and according to
Eq. (74), q−ð∞Þ ∼ ½1=ðrτsÞλ� ∼ ½1=ðrτsÞϵ1=2�, requiring
fðz → −∞Þ ∝ zα−1 and βð1 − αÞ ¼ 1

2
. Similarly, above

the transition z → ∞, and from Eq. (62), qþð∞Þ ∼ ϵ2,
entailing fðz → ∞Þ ∝ zα and αβ ¼ 2. It follows that the
critical exponents are

α ¼ 4

5
; β ¼ 5

2
: ð79Þ

The behavior of the effective relaxation time of the
network can also be treated in a similar manner. In the
absence of the spiking noise, the effective time constant of
the autocorrelation diverges as the transition is approached
from above, as τeff ∼ ϵ−1=2 [Eq. (62) and Fig. 8(b)]. In the
presence of small spiking noise, this time constant never
diverges, and we write

τ−1eff ¼
1

ðrτsÞγ
FðzÞ; ð80Þ

where τeff is the effective correlation time in units of τs.
Here, the critical behavior both below and above transition,
z → �∞, is similar [as can be seen from Eq. (74)], and
τ−1eff ∼ λ ∼ ϵ1=2, implying Fðz → �∞Þ ∝ jzjγ and βγ ¼ 1

2
, or

γ ¼ 1

5
: ð81Þ

Note that the above results predict that at the (rate
dynamic) transition (ϵ ¼ 0), the amplitude of the variance
vanishes as ðrτsÞ−4=5 and the effective time constant
diverges ðrτsÞ1=5, respectively. Simulation results that
support these analytical predictions are presented in
Fig. 12.

IX. DISCUSSION

Universality of the transition to chaos across network
architectures.—The results presented here show the uni-
versality of the dynamical transition from a fixed point to
chaos in large networks across different network architec-
tures. The theory, as well as simulations, show no depend-
ence on the detailed distribution of the synaptic
connectivity beyond the first two moments. In particular,
a Gaussian network behaves similarly to randomly dilute
networks with either sparse or dense connectivity. The two
architectures differ in the mechanism by which fluctuations
are not suppressed by the high connectivity. In the Gaussian
networks, the mean of the connection distribution is
assumed to be smaller by a factor of 1=

ffiffiffiffi
N

p
than their

variance. In contrast, in the dilute networks, the mean
inputs from each population are strong compared to the
fluctuations, and the fluctuations are nevertheless potent
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because of the dynamic balance of excitation and inhib-
ition. This balancing amplifies not only the temporal
fluctuations but also the time-averaged ones. For instance,
the neurons in the dilute networks exhibit a broad distri-
bution of time-averaged firing rates. In the threshold linear
case, the distribution of the firing rates will have a truncated
Gaussian shape with a width that is related to Δkð∞Þ. This
balance mechanism is similar to the previously shown
balanced state in spiking or binary networks. Here, we
show that this process is quite general and holds also in
smooth dynamics with graded nonlinearity. It should also
be noted that most of the previous work on balanced states
assumed sparse connectivity, i.e., K ≪ N. In this limit,
neurons share only a few common sources; hence, the
network state is naturally asynchronous. Interestingly, we
show here that even dense networks (where, e.g., K=N is as
large as 0.8; see Fig. 5) exhibit the same transition from a
fixed point to asynchronous chaos, as in sparse or Gaussian
networks (see also Refs. [9,26]). It would be interesting to
prove analytically the absence of stable synchronous states
in these systems.
The analytical and numerical investigations indicate that

the transitions to chaos in a single-population and a two-
population (E-I) network is of the same nature, and the
DMFT predicts that this is true also for networks with a
general multiple-population architecture. The extension of

the DMFT to multiple populations is similar in spirit to
previous work on stochastic multipopulation networks with
weak connections (of order 1=K) [41] and remains valid as
long as the number of populations is small compared to K.
The structure of the DMFT in the case of multipopulation
networks is different than in the single-population case in
that the dynamics of the autocorrelation function is not
governed by a potential; thus, numerically solving these
equations is more challenging. Furthermore, although near
the transition the autocorrelations behave qualitatively
similarly to the single-population case, deep in the chaotic
phase, depending on the parameter value, they may not
be monotonically decreasing with time but might exhibit
damped oscillations. Likewise, in multiple-population net-
works, the “quantum” operator for the Lyapunov exponent
is non-Hermitian, the implications of which needs to be
further explored.
Stability against uniform perturbation.—We have

focused primarily on asynchronous dynamical states and
instabilities driven by the random components of the
interactions. However, in the general architectures consid-
ered here, the fixed-point state may first undergo an
instability associated with the population-averaged pertur-
bations. Interestingly, because of the inherent nonlinearity
of our system, the uniform and local degrees of freedom are
coupled. As a result, the response to uniform perturbations
involves equations that couple the susceptibility of the
population mean activities and that of the population
activity variances, Eq. (18). This, together with Eq. (22),
constitutes the stability conditions for the fixed points of
our general architecture. These results can also be inter-
preted as results regarding the eigenvalue spectrum of the
random matrix of effective couplings that incorporate the
local gains ϕ0ðhilÞ from linearizing around the fixed points,
which are correlated with the random coupling (see also
Ref. [42]).
In the examples studied here, the uniform instability

leads to a runaway of the dynamics. In general, in the
multipopulation case, the fixed-point instability to uniform
perturbations may exhibit an instability leading to coherent
oscillatory states, and these states may further become
destabilized by the random connectivity yielding possibly
chaotic states in the form of partially synchronous oscil-
lations. The exploration of these states is beyond the scope
of this paper. Finally, we emphasize that in the case of
dilute networks, the primary focus of our work, the
underlying strong inhibition moves the system away from
these instabilities as long as they are in states with
excitation-inhibition balance. In particular, multiply stable
states occur only under special conditions [29,43].
Spatially modulated networks.—In the multipopulation

model, the functional structure of the entire network is
given in terms of pairwise connectivity, which depends on
the subpopulation membership of the pair. In the brain,
connectivity probability also depends on the distance

(a)

(b)

FIG. 12. Scaling behavior near criticality. (a) Rescaled
form for the normalized variance, ðrτsÞαqð∞Þ and (b) inverse
effective relaxation time ðrτsÞγτ−1eff , using the scaling variable
z ¼ τsrjϵjβsignðϵÞ. The data reveal the underlying scaling func-
tions fðzÞ and FðzÞ, respectively, consistent with Eqs. (77)
and (80). Dashed lines show the predicted asymptotic behavior
(see text). Simulations are performed on a Gaussian network
of various sizes (N ¼ 2000, 3500, and 6000, h0 ¼ 1) and
with various synaptic time scales (see legend). Effective
relaxation was calculated from simulations by taking τeff ¼R
τδΔðτÞdτ= R δΔðτÞdτ for τ ≥ 0.
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between neurons. This distance can be either with respect
to physical location or functional, namely, the preferred
stimulus of a neuron. Likewise, the external input to
neurons is not, in general, homogeneous but may depend
on the physical or functional coordinate of each neuron.
Because these location dependencies are broad and smooth,
the system can be well described by dividing it into
columns, each representing many neurons having similar
locations. The total system, a hypercolumn, can thus be
considered a special case of our general multipopulation
architecture. In the large N limit, the sums over columns
will turn into smooth integrals over the spatial coordinates.
In general, the architecture of a neural circuit, if large
enough, will consist of both genuinely discrete subpopu-
lations (e.g., excitatory and inhibitory) and continuously
varying coordinates. An example is a model of an ori-
entation hypercolumn in V1 cortex, where the connectivity
between neurons depends on the difference in their pre-
ferred orientation, and the external input depends on the
difference between the preferred orientation and the stimu-
lus orientation [29]. In this case, the balance equations (15)
determine the tuning properties of the mean firing rates of
the network. The DMFT describes the statistical properties
of the spatiotemporal fluctuations in the network dynamics.
The shape of the nonlinear transfer function.—We have

found that the existence of a transition from a fixed point
to chaos, as well as its critical properties when it exists,
depends on the shape of the input-output transfer function
near the origin (i.e., near the firing threshold). An important
result is that for a transfer function rising as a square root or
sharper, i.e., for ϕðxÞ ∝ xν with ν ≤ 1=2, there is no stable
fixed point, and the system is also chaotic for small g. This
raises the interesting question about the value of ν in
biologically relevant networks. In biological applications of
rate models, linear, quadratic, or values of ν larger than 1
have often been used [44–48]. The transfer function ϕ is
often interpreted as reflecting the f-I curve of a spiking
neuron. The linear leaky integrate and fire (LLIF) model
[49,50] exhibits a sharp [1=j logðxÞ|] rise from zero,
corresponding to ν ¼ 0. Our theory predicts that random
networks with such f-I curves exhibit chaotic dynamics
also for low g. In conductance-based (Hodgkin-Huxley-
type, or HH-type) models, the behavior of the f-I curve
near threshold depends on the type and parameter values
of the various nonlinear conductances contributing to the
spike generation. In HH-type-I models, often used for
modeling cortical neurons, the generic behavior of the f-I
curve near threshold is a square root [51], making them
borderline cases for a transition at finite g. Similar ν ¼ 1=2
behavior is exhibited also by nonlinear (NLLIF) models
[50]. The presence of an adaptation current with a long
adaptation time constant results in a linearization of the f-I
curve [52,53] and thus corresponds to ν ¼ 1. Therefore,
slow adaptation currents in randomly connected networks
are predicted to stabilize fixed-point states at low g. It is

interesting to note that the fixed-point equations for the
population-averaged activities (14) are stable to linear
perturbations even for ν < 1

2
because of the smearing of

the singularity near threshold by the Gaussian fluctuations.
On the other hand, as we have shown here, this smearing
is not strong enough to avoid instability of the fixed point
of the local activities and fields.
Finally, our prediction that for ν ≤ 1=2 no stable fixed

point exists was derived in the limit of large K, where
the distribution of local inputs is Gaussian and hence
unbounded. However, in a finite system, where K is finite,
there will be a finite gap between zero and the smallest
input (in absolute value). Hence, in a finite system, there
should be a stable fixed point for sufficiently low values
of g, even for low values of ν. Studying this finite size effect
is an interesting topic for future research.
Although the properties of the transition to chaos are

determined by the behavior of ϕðxÞ near threshold, the
overall shape of ϕ may also affect the system’s behavior.
For instance, in the threshold linear case, the effect of
changing the magnitude of the external input is marginal, as
it can be scaled out from the equations determining the
chaotic behavior because of the inherent linearity above
threshold [see Eq. (39)]. In contrast, when ϕðxÞ saturates to
a finite value at large x, large external input pushes neurons
to saturation and suppresses the onset of chaos [54]. Also,
the unboundedness of the threshold-linear ϕ leads to a
divergent dynamics for sufficiently large g (see Fig. 2).
Furthermore, when ϕðxÞ grows exponentially with x, this
instability sets in as soon as the fixed point is unstable. This
divergent dynamics does not appear when ϕ has a finite
saturation value.
Spiking dynamics.—The question of whether networks

with spiking dynamics exhibit a phase transition to chaos at
finite synaptic gain extends beyond the issue of the shape
of the f-I curve. In contrast to recent claims [25], we have
shown that a sharp transition from a fixed point to chaos in
such networks is meaningful only when the synaptic time
constant is large, where there is a clear separation between
spiking dynamics and rate dynamics. In this limit, depend-
ing on the shape of the f-I curve, the underlying rates
may be constant in low synaptic gain and become chaotic
above a critical gain, similar to the behavior of rate-based
dynamics. The general correspondence between smooth
rate dynamic models and the dynamics of synaptic currents
in neuronal systems with long synaptic time constants has
been studied previously [55]. However, the implications on
the transition to chaos in random neuronal networks were
not previously addressed. In any realistic systems, the time
constants are finite; hence, it is important to assess the
smoothing of the transition due to finite synaptic times.
Here, we have characterized this smoothing by a scaling
function with a single crossover exponent. This exponent
determines the rate of change from stochastic spiking
dynamics with static rates to smooth rate dynamics, as

JONATHAN KADMON AND HAIM SOMPOLINSKY PHYS. REV. X 5, 041030 (2015)

041030-18



the synaptic time constant increases. This scaling analysis
predicts relatively strong “finite size” effects of the spiking
dynamics near the transition of the corresponding rate
dynamics. First, the scaling regime is relatively large, given
by jg − gcj ∝ ðrτsÞ−2=5, where r is the mean firing rate and
τs is the synaptic integration time. In addition, the effective
time constant of the synaptic fluctuations due to spiking
scales as τeff ∝ ðrτsÞ1=5. Thus, a sharp transition requires
rather large values of rτs.
Concerning the biologically relevant regime, typical

values of mean rates range from an order of 1 Hz to
100 Hz. Fast synaptic currents (AMPA and GABAA) have
decay time constants of the order of 1–10 msec so are not
expected to exhibit the above transition. Slow synaptic
currents (e.g., NMDA, GABAB, and peptide neurotrans-
mitters) have time constants ranging from a few hundred
milliseconds to minutes [40] and thus might be appropriate
candidates for exhibiting transition from spike dynamics to
rate fluctuations for systems with moderate rates (such as
primate visual and motor cortex).
Our analysis of networks of spiking neurons assumed an

inhomogeneous Poisson spiking model, which is a well-
known and extensively used statistical model of spiking
fluctuations [49,56]. However, it is interesting to ask
whether our results hold for deterministic spiking models
with an appropriately smooth f-I curve. We believe our
results regarding a transition to chaos for large K and large
rτs are also valid for conductance-based spiking dynamics
since they rely only on the separation of time scales
between the firing dynamics and synaptic fluctuations.
In particular, we expect that for weak synaptic gain, the
network will be in an asynchronous state characterized
by synaptic inputs and population firing rates whose
fluctuation amplitude is small, on the scale of τs. On the
other hand, for strong synaptic gain, these fluctuations
will be large even on the scale of τs, and the statistics
of these fluctuation will follow the chaotic dynamics of
smooth rate dynamics.
Beyond its simplicity, the advantage of the treatment of

the Poisson model is that it demonstrates the condition for
rate chaotic fluctuations for stochastically firing neurons
as well. Our analysis of the Poisson model was restricted
to a threshold-linear rate function. It is straightforward to
extend the DMFT equations to a general rate function,
including one with a power-law behavior above threshold
with ν ≠ 1. It will be of interest to study in more detail the
effect of fast spiking noise on the network dynamics,
particularly for the cases where the (noiseless) f-I curve
has ν < 1=2.
One difference between the Poisson and the determin-

istic spiking dynamics is the degree of irregularity in the
spike times, as measured, e.g., by the standard deviation of
the ISI distribution divided by its mean (known as the
coefficient of variation). In the Poisson model, the CV is
close to 1 in the fixed-point regime (as in the homogeneous

Poisson process) and increases above it in the chaotic
regime because of the induced rate fluctuations. In contrast,
in deterministic spiking models, the CV is expected to
be substantially lower than 1 in the fixed-point regime.
A detailed study of random networks with deterministic
spiking dynamics associated with a sufficiently smooth f-I
curve and slow synaptic time constants is an interesting
topic for future work.
In this work, we have addressed the effect of spiking

dynamics in smearing the transition from a state with static
underlying synaptic currents to a state where the currents
themselves (hence the underlying rates) fluctuate in time.
However, there can be other types of transitions from
nonchaotic dynamics to chaotic dynamics in a spiking
network even for fast synaptic time constants. In the case of
deterministic spiking networks, this transition may mark
the separation from a limit cycle at low g to a chaotic
attractor at high g. In this case, the chaotic dynamics
typically presents fast time constants, and can not be
described as instability in the rates. In addition, it is likely
that even in the nonchaotic regime of deterministic spiking
models, irregular transients (with an effective negative
Lyapunov exponent, termed as stable chaos) will persist
for a long time, and convergence time to the limit cycle will
grow exponentially with the system size (as in Refs. [57–
59]). Interestingly, the existence of chaos vs stable chaos in
spiking networks has been shown to depend on the details
of the spike initiation dynamics [60]. A transition from an
irregular but nonchaotic state to a truly chaotic state might
be important for the information-processing capacity of the
system but will be hard to observe experimentally, as it is
not reflected in the properties of the correlation functions.
Our discussion of biological relevance of rate-based

dynamics focused on identifying the units in the rate-based
models as single neurons and utilized temporal averaging
as the mechanism for the adequacy of a rate-based theory.
An alternative scenario where the rate description of a
spiking network might be applicable is when the system
consists of clusters of neurons, where spatial averaging can
lead to rate dynamics (e.g., Refs. [53,61,62]). Under this
interpretation, single units in our model represent weakly
synchronous neuronal subpopulations, and the random
connectivity corresponds to the large-scale effective con-
nectivity between these populations. As such, these models
can serve as a useful framework for investigating aspects of
the large-scale nonlinear dynamics of the nervous system,
as measured by EEG and fMRI signals.
This work explored the conditions under which random

networks exhibit a transition from fixed point to chaos
and the rate of development of chaotic fluctuations near
the transition. These questions may bear important conse-
quences for the computations that such networks can
produce. Recent models [13,14,63] have shown that ran-
dom recurrent networks can be shaped through learning
to generate a broad repertoire of desired trajectories with
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biologically relevant time scales. These abilities prevail
only near the onset of chaos. For substantially low gain, the
activity in the network is strongly suppressed, whereas high
above the transition, the intrinsic fluctuations are too fast
and erratic to match the smooth and slow desired trajecto-
ries. It would be very interesting to study in detail how the
results of the present work affect the computational powers
of recurrent neuronal networks.
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APPENDIX A: DMFT EQUATIONS FOR THE
AUTOCORRELATIONS

We extend previous derivations in Ref. [6] to the current
model of multiple subpopulation. Here, we show the
derivation of the self-consistent dynamical equations for
the population-averaged autocorrelation function of the
local fields, ΔkðτÞ, defined in Eq. (24). The dynamic
equations for the fluctuations in the local fields, δhikðtÞ,
are given by Eq. (10), where in the large N limit, the noise
terms ηikðτÞ are Gaussian random variables with zero
mean and hηikðtÞηikðtþ τÞi ¼ P

lg
2
klClðτÞ, where CkðτÞ≡

hϕðhikðtÞÞϕðhikðtþ τÞÞi is calculated self-consistently by
integrating over a temporally colored Gaussian noise ηikðτÞ.
A convenient way of treating the temporal correlations
between δhkðtÞ and δhkðtþ τÞ is to introduce three
uncorrelated Gaussian variables y1, y2, and z with unit
variances such that

δhkðtÞ ¼
ffiffiffi
α

p
y1 þ

ffiffiffi
β

p
z;

δhkðtþ τÞ ¼ ffiffiffi
α

p
y2 þ

ffiffiffi
β

p
z;

with

α ¼ Δkð0Þ − ΔkðτÞ;
β ¼ ΔkðτÞ:

With these variables, the population-averaged autocorrela-
tion function can be written as the integral over independent
Gaussian variables,

CkðτÞ ¼
Z

Dy1

Z
Dy2

Z
Dzϕð ffiffiffi

α
p

y1 þ
ffiffiffi
β

p
zþ ukÞ

× ϕð ffiffiffi
α

p
y2 þ

ffiffiffi
β

p
zþ ukÞ: ðA1Þ

Finally, to yield the self-consistent equations for Δk, it is
convenient to use the Fourier transform of the dynamic
equation (10) to get

ð1þ iωÞδhikðωÞ ¼ ηikðωÞ; ðA2Þ

from which we obtain

ð1þ ω2ÞhjδhikðωÞj2i ¼ hjηikðωÞj2i ¼
X
l

g2klClðωÞ: ðA3Þ

Finally, performing a Fourier transform back to the time
domain, and substituting the result of Eq. (A1), the P self-
consistent equations for the autocorrelations of the local
fields read

�
1− ∂2

∂τ2
�
ΔkðτÞ

¼
X
l

g2kl
DD

ϕ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δlð0Þ−ΔlðτÞ
p

yþ
ffiffiffiffiffiffiffiffiffiffiffi
ΔlðτÞ

p
zþ ul

�E
2

y

E
:

APPENDIX B: STABILITY EQUATIONS
FOR THE FIXED POINTS

In this Appendix, we derive the stability conditions for
the fixed-point states of the network.

1. Population-average linear response

For simplicity, we present the derivation with one
population architecture. The extension to multiple popu-
lations is straightforward.
We evaluate the time-dependent response function

χiðtÞ≡ ∂ϕðhiðtÞÞ=∂h0ð0Þ; ðB1Þ

and denote by χðtÞ the spatial average of χi at the fixed-
point solution. From the equations of motion, we obtain

ð1þ ∂tÞχiðtÞ ¼ ϕ0ðhiÞ
X
j

J ijχjðtÞ þ ϕ0ðhiÞḡχðtÞ

þ ϕ0ðhiÞδðtÞ; ðB2Þ

where ϕ0ðhiÞ are the derivatives of the activation function
evaluated at the fixed points. Let us consider the general
term
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ϕ0ðhiÞ
X
j

J ijχjðtÞ ¼
∂

∂hð0Þϕ
0ðhiÞ

X
j

J ijϕðhjðtÞÞ: ðB3Þ

The fixed-point values of hi are independent of a
perturbation at time 0. Thus, using Eqs. (10) and (11),
we have

ϕ0ðhiÞ
X
j

J ijχjðtÞ ¼
∂

∂hð0Þ ð1þ ∂tÞϕ0ðhiÞδhiðtÞ; ðB4Þ

where ∂t stands for the time-derivative operator. After
averaging and using mean field theory,

hϕ0ðhiðt2ÞÞδhiðt1Þi
¼ hϕ0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðt2; t2Þ − Δðt2; t1Þ

p
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðt2; t1Þ

p
zþ uðt2ÞÞ

× ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðt1; t1Þ − Δðt2; t1Þ

p
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðt2; t1Þ

p
zÞi

¼ hϕ0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðt2; t2Þ − Δðt2; t1Þ

p
x

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðt2; t1Þ

p
zþ uðt2ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðt2; t1Þ

p
zi

¼ Δðt2;t1Þhϕ00ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðt2; t2Þ

p
zþ uðt2ÞÞi; ðB5Þ

where Δðt; t0Þ ¼ hδhðtÞδhðt0Þi. Thus,
	
ϕ0ðhiÞ

XN
j¼1

J ijχjðtÞ



¼ ð1þ ∂tÞ
∂Δðt0; tÞ
∂h0ð0Þ hϕ00i ðB6Þ

with t0 → ∞. Finally, we note that in this limit,

∂Δðt2;tÞ
∂h0ð0Þ ¼ ∂hδhðt2ÞδhðtÞi

∂h0ð0Þ : ðB7Þ

We denote

χΔðtÞ ¼ 2χΔð∞; tÞ; ðB8Þ

where

χΔðt0; tÞ ¼ ∂Δðt0; tÞ
∂h0ð0Þ : ðB9Þ

Note that the factor of 2 was introduced because, at the
fixed point, we have

χΔðt; tÞ ¼ 2χΔð∞; tÞ≡ χΔðtÞ; ðB10Þ

which is the susceptibility of the mean equal-time variance.
Substituting the above results in Eq. (B2) and averaging,

we obtain

ð1 − hϕ0iḡþ ∂tÞχðtÞ

¼ 1

2
hϕ00ið1þ ∂tÞχΔðtÞ þ hϕ0iδðtÞ: ðB11Þ

Calculating of χΔ.—From the DMFT, we obtain

ð1þ ∂t1Þð1þ ∂t2ÞΔðt2;t1Þ ¼ g2Cðt1; t2Þ; ðB12Þ

where

Cðt1; t2Þ¼ hϕð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðt2; t2Þ−Δðt2; t1Þ

p
x

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðt2; t1Þ

p
zþuðt2ÞÞϕð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðt1; t1Þ−Δðt2; t1Þ

p
y

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðt2; t1Þ

p
zþuðt1ÞÞi: ðB13Þ

Thus,

ð1þ ∂t1Þð1þ ∂t2ÞχΔðt2;t1Þ
¼ g2½∂Cðt1; t2Þ=∂Δðt2; t1ÞχΔðt2; t1Þ
þ ∂Cðt1; t2Þ=∂Δðt2; t2ÞχΔðt2; t2Þ
þ ∂Cðt1; t2Þ=∂Δðt1; t1ÞχΔðt1; t1Þ
þ hϕ0ðt2Þϕðt1Þi½ḡχðt2Þ þ δðt2Þ�
þ hϕðt2Þϕ0ðt1Þi½ḡχðt1Þ þ δðt1Þ��; ðB14Þ

where, by derivation of Eq. (14),

∂Cðt1; t2Þ=∂Δðt2; t1Þ ¼ hϕ0ðt2Þϕ0ðt1Þi; ðB15Þ

∂Cðt1; t2Þ=∂Δðt1; t1Þ ¼ 1

2
hϕðt1Þϕ00ðt1Þi; ðB16Þ

and

∂u
∂h0 ¼ ḡχðtÞ þ δðtÞ: ðB17Þ

We assume that t2 > t1 > t0 are all large, but their
difference is of order 1.
Let us take t2 − t1 → ∞. Then, substituting Eq. (B10),

one obtains

ð1þ ∂tÞχΔðtÞ ¼ g2½hϕ02i þ hϕϕ00i�χΔðtÞ
þ 2g2hϕϕ0i½ḡχðtÞ þ δðtÞ�: ðB18Þ

Equations (B11) and (B18) constitute two coupled
equations for the response functions of the mean and
variance of the population activity. It is perhaps convenient
to eliminate the time derivative in the right-hand side of
Eq. (B11) by substituting Eq. (B18), resulting in
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ð1 − hϕ0iḡþ ∂tÞχðtÞ ¼
1

2
hϕ00ig2½hϕ02i þ hϕϕ00i�χΔðtÞ

þ hϕ00ig2hϕϕ0i½ḡχðtÞ þ δðtÞ�
þ hϕ0iδðtÞ: ðB19Þ

We can write these equations as

ðaþ ∂tÞχðtÞ ¼ bχðtÞ þ cδðtÞ; ðB20Þ

ðdþ ∂tÞχΔðtÞ ¼ eχðtÞ þ fδðtÞ; ðB21Þ

or, in Fourier and matrix representation,

� ð1 − ḡaþ iωÞ −b
−ḡe ð1 − dþ iωÞ

��
χ

χΔ

�
¼

�
a

e

�
; ðB22Þ

where

a ¼ hϕ00ig2hϕϕ0i þ hϕ0i; ðB23Þ

d ¼ g2½hϕ02i þ hϕϕ00i�; ðB24Þ

b ¼ 1

2
hϕ00ig2½hϕ02i þ hϕϕ00i�; ðB25Þ

and

e ¼ 2g2hϕϕ0iḡ: ðB26Þ

Multiple population network.—A straightforward gen-
eralization to the case of multiple populations yields

χklðtÞ≡ ∂mkðtÞ
∂hlð0Þ ðB27Þ

and

χΔklðtÞ ¼
∂

∂hlð0ÞΔkðtÞ: ðB28Þ

In this case, the equation for χΔðtÞ [Eq. (B18)] reads

ð1þ ∂tÞχΔklðtÞ ¼
X
m

g2km½hϕ02
mi þ hϕmϕ

00
mi�χΔmlðtÞ

þ 2
X
m

g2kmhϕmϕ
0
mi

×

�X
m0

ḡmm0χm0lðtÞ þ δmlδðtÞ
�
; ðB29Þ

or, in matrix notation,

ðI −Dþ ∂tÞχΔ ¼ Eðḡχ þ IδðtÞÞ: ðB30Þ

Likewise, the dynamical equation on χðtÞ is

ð1þ ∂tÞχklðtÞ ¼
X
m

ḡkmhϕ0
miχmlðtÞ þ hϕ0

kiδklδðtÞ

þ 1

2
hϕ00

kið1þ ∂tÞχΔklðtÞ ðB31Þ

or

ðI −Aḡþ ∂tÞχðtÞ ¼ BχΔ þAδðtÞ: ðB32Þ

In the above, we have defined the P × P matrices

Akl ¼ δklhϕ0
li þ hϕ00

kig2klhϕlϕl
0i; ðB33Þ

Bkl ¼
1

2
g2klhϕ00

ki½hϕl
02i þ hϕlϕl

00i�; ðB34Þ

Dkl ¼ g2kl½hϕ02
l i þ hϕlϕ

00
l i�; ðB35Þ

and

Ekl ≡ 2g2klhϕlϕl
0i: ðB36Þ

Equations (B30) and (B32) can be written using a 2P × 2P
matrix in Fourier space as

� ðI −Aḡþ iωÞ −B
−Eḡ ðI −Dþ iωÞ

��
χðωÞ
χΔðωÞ

�
¼

�
A

E

�
:

ðB37Þ

Thus, the fixed point is stable against population-average
perturbations provided that all the eigenvalues of the matrix

�
I −Aḡ −B
−Eḡ 1 −D

�
ðB38Þ

have a negative real part.

2. Response to local perturbations

The susceptibility matrix of the network to a random
local perturbation is defined as

χijklðt − t0Þ ¼ ∂hikðtÞ=∂h0jl ðt0Þ; ðB39Þ

where h0jl ðt0Þ are infinitesimal external perturbations
around the fixed-point state. We are interested in the mean
square of this quantity. Using the dynamical equation (2),
we find the time evolution of the susceptibility
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�
1þ d

dt

�
χijklðt− t0Þ ¼

XP
l0¼1

XN
j0¼1

J ij0
kl0ϕ

0ðhj0l0 Þχj
0j
l0l ðt− t0Þ

þ 1

N

XP
l0¼1

ḡkl0
X
j0
ϕ0ðhj0l0 Þχj

0j
l0l ðt− t0Þ

þ δðt− t0Þδijδkl; t ≥ 0; ðB40Þ

where δij and δðtÞ are the Kronecker and Dirac delta
functions, respectively. Defining

Gklðω1;;ω2Þ ¼ N−1X
ij

hχijklðω1Þχijklðω2Þi ðB41Þ

and averaging Eq. (B40) yields

Gðω1;;ω2Þ ¼ ½ð1þ iω1Þð1þ iω2ÞI −M�−1; ðB42Þ

where M is the stability matrix, Mkl ¼ hϕ0ðhikÞϕ0ðhilÞi
[Eq. (23)].
Note that Gkl are of order 1; the contribution of the

uniform χkl to Gkl is of order 1=N and hence negligible.
Furthermore, the uniform components of the interactions
[in Eq. (B40)] do not contribute to Eq. (B41) to leading
order, as they are smaller by a factor of 1=N relative to the
random contributions.

APPENDIX C: STABILITY EQUATIONS AND
THE LARGEST LYAPUNOV EXPONENT

The susceptibility matrix of the network to a random
local perturbation is defined as

χijklðt; t0Þ ¼ ∂hikðtÞ=∂h0jl ðt0Þ; ðC1Þ

where h0jl ðt0Þ are infinitesimal external perturbations. Using
the dynamical equation (2), we find the time evolution of
the susceptibility,

�
1þ d

dt

�
χijklðt; t0Þ ¼

XP
l0¼1

XN
j0¼1

J ij0
kl0ϕ

0ðhj0l0 ðtÞÞχj
0j
l0l ðt; t0Þ

þ 1

N

XP
l0¼1

ḡkl0
X
j0
ϕ0ðhj0l0 ðtÞÞχj

0j
l0l ðt; t0Þ

þ δðt − t0Þδijδkl; t ≥ 0; ðC2Þ

where δij and δðtÞ are the Kronecker and Dirac delta
functions, respectively, denoting a local spatiotemporal
perturbation.
Population averaged susceptibility.—Let us define χ0 as

the within-population spatial-average susceptibility

χ0klðt − t0Þ ¼ 1

N2

XN
i;j¼1

χijklðt; t0Þ ¼
1

N2

XN
i;j¼1

hχijklðt; t0ÞiJ : ðC3Þ

This uniform matrix is formally given by

χ0ðt− t0Þ ¼
	�

I − ~J − 1

N
~J0
�−1


aðtÞδðt− t0Þ; t ≥ t0;

ðC4Þ

where I is the spatial identity matrix, aðtÞ is the temporal

operator a ¼ ð1þ d=dtÞ−1, ~J ij
kl ¼ aJ ij

klϕ
0ðhj0l0 Þ, and ~J0ijkl ¼

aḡklϕ0ðhjlÞ. (The right-hand side is formally an NP × NP
matrix; however, it is meant to be reduced to a P × Pmatrix
by averaging over the i, j indices.)
Expanding the right-hand side in powers of ~J shows that

all contributions vanish upon averaging; hence,

χ0ðt−t0Þ¼
	�

I− 1

N
~J0
�−1


aðtÞδðt−t0Þ; t≥ t0: ðC5Þ

Furthermore, performing the averaging in the right-hand
side of Eq. (C5) and Fourier transforming the result yields

χ0ðωÞ ¼ 1

N
½ð1þ iωÞI − J0�−1; ðC6Þ

where

J0kl ¼ ḡklhϕ0ðhilÞi: ðC7Þ

Note that this population-averaged susceptibility is the
solution of the population-averaged part of the dynamics,
namely,�
1þ d

dt

�
χ0klðtÞ¼

X
k0
ḡkk0 hϕ0ðhliÞiχ0k0lðtÞþ

1

N
δklδðtÞ; t≥0:

ðC8Þ

Note that all elements of χ0kl are of order 1=N, including
the diagonal. This is because χ0iikk , which is of order 1, adds
only a 1=N contribution to the spatially averaged quantity,
Eq. (C3).
Statistics of the full susceptibility.—We now evaluate

the full susceptibility, χijkl. The random fluctuations in the
susceptibility, i.e., the off-diagonal elements of χ, are of
order 1=

ffiffiffiffi
N

p
as will be seen below; i.e., locally they are

much larger than χ0kl. Their average second-order moments
are defined in terms of

Gklðta; tb; tc; tdÞ ¼
1

N

XN
i;j

hχijklðta; tcÞχijklðtb; tdiJ : ðC9Þ
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To evaluate Eq. (C9), we multiply two realizations of
Eq. (C2) (differing in the time indices) and take the spatial
average over all neurons, leading to

�
1þ ∂

∂ta
��

1þ ∂
∂tb

�
Gklðta; tb; tc; tdÞ

−X
m

Mklðta − tbÞGmlðta; tb; tc; tdÞ

¼ δðta − tb − tc þ tdÞδðta þ tb − tc − tdÞδkl; ðC10Þ

where

MklðτÞ ¼ g2klhϕ0ðhliðtþ τÞϕ0ðhliðtÞi: ðC11Þ

Note that Gkl are of order 1, while the contribution of χ0kl
to them is of order 1=N and hence negligible. Furthermore,
the uniform components of the interactions [in Eq. (C2)]
do not contribute to Eq. (C9) to leading order as they
are smaller by a factor of 1=N relative to the random
contributions.
Defining new time variables as τ ¼ ta − tb, τ0 ¼ tc − td,

T ¼ ta þ tb, and T 0 ¼ tc þ td, Eq. (C10) can be written as

���
1þ ∂

∂T
�

2 − 1

�
I þHðτÞ

�
G

¼ 2δðT − T 0Þδðτ − τ0ÞI; ðC12Þ

where HðτÞ is the P × P operator [see Eq. (29)],

HðτÞ ¼ − ∂2

∂τ2 Iþ I −MðτÞ: ðC13Þ

Fixed point.—At the fixed point,

HðτÞ ¼ − ∂2

∂τ2 Iþ I −M; ðC14Þ

where M is a time-independent P × P matrix. Fourier
transforming Eq. (C12) yields

½ð2iΩ −Ω2ÞI þ ðω2 þ 1ÞI −M�GðΩ;ωÞ ¼ 4πI; ðC15Þ

where Ω and ω are the frequencies associated with T and τ,
respectively, and

GðΩ;ωÞ ¼
Z

dT
Z

dτGðT; 0; τ; 0Þ

× expð−iΩT − iωτÞ: ðC16Þ

Thus, the zero-frequency limit yields a static matrix given
(up to a constant) by

GðΩ ¼ 0;ω ¼ 0Þ ¼ ðI −MÞ−1;

where M is defined in Eq. (30) and fixed-point stability
requires that all eigenvalues ofM have real parts less than 1.
Note that Gkl ¼ Nhðχijklðω ¼ 0ÞÞ2i, i.e., the square average
of the local static susceptibility.
Chaotic regime.—The largest Lyapunov exponent is the

exponential divergent rate of the squared susceptibility
Nhðχijklðt; 0ÞÞ2i ¼ Gklð2t; 0; 0; 0Þ, in the chaotic state,
which corresponds to T ¼ 2t, and T 0 ¼ τ ¼ τ0 ¼ 0.
Thus, the largest Lyapunov exponent is found by

λL ¼ lim
t→∞

1

2t
ln
XP
kl

Gklð2t; 0; 0; 0Þ: ðC17Þ

To evaluate it, we first write the time-dependent solution
of Eq. (C12) as

GklðT; T 0; τ; τ0Þ ¼
X∞
μ¼1

ΓμðT; T 0Þjψμ
kðτÞihψμ

l ðτ0Þj; ðC18Þ

where hψμðτÞj and jψμðτiÞ are the left and right μth
eigenvectors of the Hamiltonian HðτÞ. We note that, in
general,HðτÞ is non-Hermitic and the eigenvectors jψμðτÞi
are not necessarily orthogonal. From Eq. (C12), we find
that the general solution for ΓμðT; T 0Þ is proportional to
eλμðT−T 0Þ with

λμ ¼ −1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵμ

p
;

where ϵμ is the corresponding eigenvalue of HðτÞ. For
completeness, one must consider the boundary conditions
on the solutions, namely, that a solution exists only for
T > T 0, and that the second derivative of G is a delta
function while the first derivative is finite. One obtains

GklðT; T 0; τ; τ0Þ ¼ 4
X∞
μ¼1

ΘðT − T 0Þjψμ
kðτÞihψμ

l ðτ0Þjffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵμ

p
× e−ðT−T 0Þ sinh ððT − T 0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϵμ
p Þ:

ðC19Þ

Finally,

Nhχ2klðt; 0Þi ¼ Gklð2t; 0; 0; 0Þ

¼ 4
X∞
μ¼1

jψμ
kð0Þihψμ

l ð0Þjffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵμ

p
× e−2t sinh ð2t ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϵμ
p Þ: ðC20Þ

Thus, the maximal Lyapunov exponent is given by

λL ¼ −1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ0

p
; ðC21Þ

where ϵ0 is the ground state of the Hamiltonian (29).

JONATHAN KADMON AND HAIM SOMPOLINSKY PHYS. REV. X 5, 041030 (2015)

041030-24



APPENDIX D: EXPONENTIAL
TRANSFER FUNCTION

We show in the following that a single inhibitory
population, with the architecture studied in Sec. III and
an exponential transfer function, ϕðxÞ ¼ ex, does not
exhibit a chaotic phase. The fixed point of the dynamic
is stable when g2C0ðxÞ < 1, where C ¼ hϕ2

i i, leading to

g2hexp ð
ffiffiffiffiffiffi
Δ0

p
zþ uÞi ¼ g2e2uþΔ0 ¼ g2m2 < 1: ðD1Þ

The variance, given by Δ0 ¼ g2CðxÞ, is

Δ0 ¼ g2hexp ð2
ffiffiffiffiffiffiffiffi
Δ0z

p
þ 2uÞi ¼ g2e2uþΔ0 ¼ g2m2: ðD2Þ

It follows from Eqs. (D1) and (D2) that the fixed
point loses its stability at the critical point gc where
Δ0 ¼ g2m2 ¼ 1. For variance values higher than 1, the
dynamics is characterized by the autocorrelation function
given by the solution to the dynamical MF differential
equation in Eq. (45). A stable chaotic solution requires

∂2

∂τ2 Δ
����
τ¼∞

¼ 0; ðD3Þ

or, equivalently, the vanishing of the potential (46) at
τ ¼ ∞. Carrying the Gaussian integrals in Eq. (46), one
finds that if the potential vanishes, then

Δ0 ¼ Δð∞Þe3Δð∞Þ: ðD4Þ

Since every solution for the autocorrelation function
requires 0 ≤ Δð∞Þ ≤ Δ0, Eq. (D4) cannot be obeyed for
a nonvanishing variance, and a chaotic phase does not exist.
Consequently, when Δ0 > 1, the mean activity diverges.

APPENDIX E: DYNAMIC EQUATION
NEAR CRITICALITY

Single population.—Using the homogeneity of the trans-
fer function, the correlation function CðτÞ in Eq. (26) can
be written in terms of the parameter qðτÞ ¼ 1 − ΔðτÞ=Δ0

giving

CðτÞ ¼ Δ2ν
0

DD
ϕ
� ffiffiffiffiffiffiffiffiffi

qðτÞ
p

yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − qðτÞ

p
zþ x

�E
2

y

E
z
: ðE1Þ

Near and above criticality, CðτÞ can be expanded in powers
of qðτÞ about the fixed-point value qðτÞ ¼ 0. Since linear
analysis is not sufficient to account for the critical phenom-
ena, we keep all terms up to the first nonlinear term in qðτÞ,

Δ−2ν
0 C ¼ hϕ2

νðzþ xÞi − ν2hϕ2
ν−1ðzþ xÞiqþ cqρ; ðE2Þ

where c is a numerical factor of order 1. The Gaussian
integral in hϕ2

ν−ni diverges for 2ðν − nÞ ≤ −1. As a result,

the first nonlinear term may be larger than quadratic. The
first nonlinear term is ρ ¼ 2 for ν > 3

2
and ρ ¼ 3

2
for

1
2
< ν ≤ 3

2
.

For convenience, we redefine the gain parameter as

~g ¼ gΔðν−1Þ=2
0 ; the value of the gain g can be recovered

using the mean field equations (36). The dynamic equa-
tion (45) can be written as

∂2

∂τ2 q ¼ ~g2hϕ2
νðzþ xÞi − 1

þ ð1 − ~g2ν2hϕ2
ν−1ðzþ xÞiÞqþ ~g2cqρ: ðE3Þ

Next, we expand each term in Eq. (E3) in powers of
ϵ ¼ g2=g2c − 1, which controls the distance from criticality.
We also denote δx ¼ x − xc, which is a function of ϵ.
Equation (E3) can be written as

∂2qðτÞ
∂τ2 ¼ aðϵÞ þ bðϵÞqðτÞ þ cqρðτÞ; ðE4Þ

where

aðϵÞ ¼ ϵþ 2ν~g2ch½zþ xc�2ν−1þ iδxð1þ ϵÞ
þ 2νð2ν − 1Þ~g2ch½zþ xc�2ν−2þ iδx2 þOðϵδx2Þ ðE5Þ

and

bðϵÞ ¼ ϵþ 2~g2ν2bð1Þν δx: ðE6Þ

The factor bð1Þν is of order 1 and equals

bð1Þν ¼

8>><
>>:

ðν − 1Þh½zþ xc�2ν−3þ i ν > 1

1ffiffiffiffi
2π

p ν ¼ 1

ðh½zþ xc�2ν−1þ i þ h½zþ xc�2ν−2þ iÞ 1
2
< ν < 1:

ðE7Þ

In Eqs. (E5)–(E7), we have used the stability
condition (22),

ν2 ~g2chϕ2
ν−1ðzþ xcÞi ¼ 1; ðE8Þ

and the fixed-point solution for the variance, which also
holds at the transition point, Eq. (12),

~g2chϕ2
νðzþ xcÞi ¼ 1: ðE9Þ

We expect that aðϵÞ would scale as bðϵÞq, implying that
the leading order in Eq. (E5) vanishes and

δx ¼ − 1

2ν
~g−2c h½zþ xc�2ν−1þ i−1ϵ: ðE10Þ
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Thus, we can write bðϵÞ ¼ ϵb. Following the same argu-
ment as in Eq. (46), we define a classical potential for qðτÞ
by integrating the left-hand side of Eq. (E4), giving

V½q� ¼ aðϵÞqþ 1

2
ϵbq2 þ c

ρþ 1
qρþ1: ðE11Þ

By applying the boundary requirements for a stable chaotic
solution, V½0� ¼ V½qð∞Þ� and ðdV=dqÞjτ¼∞ ¼ 0, one gets
the scaling of q and a for small ϵ,

qð∞Þ ¼
�ð1þ ρÞ

2ρ

b
c
ϵ

�
1=ðρ−1Þ

ðE12Þ

and

a ¼ − ρ − 1

ρþ 1
cqρð∞Þ ∼ ϵρ=ðρ−1Þ: ðE13Þ

Multiple populations.—In a network composed of P
populations, stability is determined by the eigenvalues
of the P × P stability matrix, Eq. (29). Here, we define
a normalized stability matrix ~Mkl ¼ Δ−1

k ð0ÞMkl ¼
~g2klhϕ02ðzþ xki and

~g2kl ¼ g2kl
Δlð0Þ
Δkð0Þ

: ðE14Þ

We write ~Mkl ¼
P

μΛμRkL�
l , where Λμ are the eigenvalues

ordered according to a decreasing value of their real part,
and R,L are the right and left eigenvectors of ~M, respec-
tively. At the transition, Λ1 ¼ 1 and ReΛμ≠1 ≤ 1. When
gkl ≈ gckl, the unstable eigenvalue is Λ1 ¼ 1þ ϵ, where
jϵj ≪ 1 and the sign of ϵ determines which direction in the
space of g (away from gckl) is the unstable one. To leading
order, the eigenvector R1 does not change. Note that Λ1

depends on both g and x. For convenience, we define ϵ via
Λ1ðg; xcÞ, i.e., as the change induced in Λ1 due to the
change in g for x ¼ xc. We are interested in the properties of
the system for 0 < ϵ ≪ 1. For multiple subpopulation,
Eq. (E4) takes the form

∂2qk
∂τ2 ¼ akðϵÞ þ

X
kl

ðI − ~MÞklql þ
X

~g2klclq
ρ
l ; ðE15Þ

where ak ¼ 1 −P
l ~g

2
klChϕ2ðzþ xki, which vanishes at

criticality because of Eq. (12), and ~Mkl¼ ~g2klhϕ02ðzþxki.
Since the matrix I − ~M vanishes only in the 1 direction, the
dominant component of the vector q is in this direction.
To see this, we make the ansatz qkðτÞ≡ 1 − ΔkðτÞ=Δ0

k ¼P
μζ

μðτÞRk
μ and assume that jζ1j ≫ jζμj. We then obtain

∂2ζ1

∂τ2 ¼ â1ðϵÞ þ ð1 − Λ1Þζ1ðτÞ þ ĉ1ζ1ðτÞρ; ðE16Þ

∂2ζμ

∂τ2 ¼ âμðϵÞ þ ð1 − ΛμÞζ1ðτÞ þ ĉμζ1ðτÞρμ ≠ 1; ðE17Þ

where â and ĉ are the factors in the basis of ~M. Here,
1 − Λ1 vanishes at the transition to the order of ϵ, δx, while
ð1 − ΛμÞ remains of order 1 near the transition. Thus, ζμðτÞ
scales as ζ1ðτÞρ ≪ ζðτÞ, and the “normal form” of the
dynamics of qk, Eq. (E15), is the same as that of a single
population, Eq. (E4). In addition, in the generic case, we
expect all qk to have nonzero projection on R1. Hence, they
will all scale as ζ1, giving

qkðτÞ ∼ ζ1ðτÞ ∼ ϵ1=ðρ−1Þ: ðE18Þ

Threshold-linear transfer function.—In Sec. V, we have
shown that in one population with a threshold-linear
transfer function (ν ¼ 1), the excess mean input is zero
at the transition (Fig. 2). Our numerical solutions show that
in two-population networks with this transfer function, xl
are no longer exactly zero at the transition; nevertheless,
they remain small in a wide region above the transition.
Assuming jxlj ≪ 1, the stability matrix can be written as

~Mkl ¼ ~g2klHð−xlÞ ≈ 0.5~g2kl: ðE19Þ

The mean field expression for the variance, Eq. (12), can
be written as 1 ¼ P

l ~g
2
klhϕ2ðzþ xlÞiz ≈ 0.5

P
l ~g

2
kl. Hence,

we find that
P

l
~Mkl ¼ 1þOðxlÞ, ∀ k, implying that the

eigenvector corresponding to the largest eigenvalue of ~M
is uniform to leading order in xk. It follows that near
criticality, when jxkj is small, R1 is approximately uniform,
and all qk are nearly equal, as can be seen in Fig. 10.
Furthermore, if xk remain small away from criticality, then
R1 is nearly uniform, which can explain the numerical
results observed by Ref. [37]. It should be interesting to see
further analysis of the exact solutions for xk.
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