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We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination
of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering
is studied in a collaborative experimental and theoretical effort for both dysprosium and erbium. We present
extensive atom-loss measurements of their dense magnetic Feshbach-resonance spectra, analyze their
statistical properties, and compare to predictions from a random-matrix-theory-inspired model. Further-
more, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic
field show that weakly bound, near threshold diatomic levels form overlapping, uncoupled chaotic series
that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels,
leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes
from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme
temperature sensitivity of a small, but sizable fraction of the resonances in the Dy and Er atom-loss spectra
is due to resonant nonzero partial-wave collisions. Our threshold analysis for these resonances indicates a
large collision-energy dependence of the three-body recombination rate.
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I. INTRODUCTION

Anisotropic interactions are a central and modern tool
for engineering quantum few- and many-body processes
[1]. A prominent example of such an interaction is the
long-range dipole-dipole interaction (DDI) acting, for
instance, between polar molecules [2], Rydberg atoms [3],
or magnetic atoms [4]. Over the years, fascinating quantum
effects of the anisotropy have been observed, such as the
d-wave collapse of a dipolar Bose-Einstein condensate [5],

the deformation of the Fermi surface [6], and the control
of stereodynamics in dipolar collisions [7]. Moreover, the
DDI is expected to give rise to a plethora of few- and many-
body phenomena, which still await observation, such as
universal few-body physics [8,9], rotonic features [10,11],
two-dimensional stable solitons [12], and the supersolid
phase [13].
Recently, atomic species in the lanthanide family became

available to the field of ultracold quantum gases. The
interaction between magnetic lanthanide atoms, such as Er
[14,15] and Dy [16,17], is highly anisotropic. This is not
only due to the long-range DDI, originating from their large
magnetic moment, but also to the shorter-ranged van der
Waals interaction [18], which exhibits anisotropic contri-
butions arising from the large orbital angular momentum of
their valence electrons.
For magnetic lanthanides, which also include the suc-

cessfully laser-cooled elements Ho [19] and Tm [20], the
orbital anisotropy is a consequence of a partially filled
submerged 4f electron shell that underlies a closed outer 6s
shell. This leads to an electronic ground state with a total
atomic angular momentum ~| with j ≫ 1. Consequently, in
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collisions between such atoms there exist ðjþ 1Þ2 non-
degenerate (gerade) molecular Born-Oppenheimer (BO)
potentials and a correspondingly large manifold of collision
channels with associated molecular bound states. This is
in sharp contrast to the one or two BO potentials encoun-
tered in alkaline-earth and alkali-metal atom collisions.
In addition, the anisotropy or orientation dependence of
the BO potentials strongly mixes collision channels with

large relative orbital angular momentum ~l between the
atoms even for our ultracold collisions with a l ¼ 0,
s-wave initial channel. The complexity of the molecular
forces are reflected in a dense spectrum of Fano-Feshbach
resonances as a function of magnetic field B, as recently
observed in Er [14,21] and Dy [22]. In Er a statistical
analysis of the spacings between resonances has shown
correlations that revealed chaotic scattering. The data set
of the initial Dy experiments was too small to extract
statistically significant correlations.
Chaotic behavior is manifest in a variety of complex

systems ranging from atomic to nuclear and solid-state
physics. In atomic physics, chaos was originally studied
with Rydberg states of H and He in a magnetic field [23].
Later on, a variety of more complex atoms and ions in
highly excited states showed signatures of chaotic spectral
distributions [24]. The origin of chaos in these systems was
traced back to a strong mixing of many-electron excited
states by the Coulomb interaction [25]. A chaotic level
distribution is also common in a variety of solid-state
systems ranging from those with strong many-body inter-
actions to the motion of particles in irregular potentials
[26,27]. Experiments in nuclear physics [28,29] have also
produced substantial evidence for chaotic neutron reso-
nance spectrum fluctuations, which agree with predictions
of random matrix theory (RMT). Similar agreement was
found from numerical simulations based on nuclear shell
models [30,31]. Moreover, Refs. [32,33] suggested that
chaos is a generic property of nuclei with multiple degrees
of freedom (i.e., multiple active shells), which become
completely mixed.
This article describes a joint effort to understand ultra-

cold scattering and Fano-Feshbach spectra of strongly
magnetic Er and Dy atoms. In particular, we report on
the measurement and statistical analysis of Fano-Feshbach
spectra for Dy and Er between B ¼ 0 and 70 G at gas tem-
peratures T below and around 1 μK. Here, 1 G ¼ 0.1 mT.
We observe that both elements have similar chaotic
scattering. We present a RMT-inspired model to gain
insight into their statistical properties as well as theoretical
evidence based on coupled-channels calculations with a
microscopic Hamiltonian that chaotic scattering requires
both strong molecular anisotropy and Zeeman mixing to
fully develop. Limitations of the RMT are also discussed.
Finally, we present experimental data and a comparison
to a resonant trimer model to show that our increase in
resonance density with temperature is a consequence of

the strong collision-energy dependence of transitions from
entrance d-wave channels of three free atoms to resonant
trimer states.

II. EXPERIMENT

A. Measurement

The experimental study of Fano-Feshbach resonances in
Er and Dy is based on high-resolution trap-loss spectros-
copy on spin-polarized thermal samples. Ultracold bosonic
164Dy samples are created by direct loading from a narrow-
line magneto-optical trap, operating on the 626 nm cycling
transition, into a single-beam optical dipole trap (ODT)
[34]. By moving the last focusing lens of the ODT, the
atoms are transported from the magneto-optical trap cham-
ber to the science cell. The ODT is created with a 100 W
fiber laser at a wavelength of 1070 nm. We achieve a
transport efficiency close to unity. This fiber laser, however,
causes atom loss due to its longitudinal multimode structure
[35]. Therefore, we transfer the atoms into a second
single-beam ODT, created by a 55 W solid-state laser
at a wavelength of 1064 nm. Finally, forced evaporative
cooling in a crossed ODT leads to a sample of 105 atoms
in the energetically lowest Zeeman sublevel, mj ¼ −8
at T ¼ 600 nK.
High-resolution trap-loss spectroscopy is performed on a

spin-polarized bosonic 168Er sample at T ¼ 1400 nK and
compares this spectrum with that obtained at a 4 times
lower temperature measured in previous work for 168Er as
well as for fermionic 167Er [21]. The experimental proce-
dures for creating bosonic and fermionic samples are
described in Refs. [14,15], respectively. Bosons (fermions)
are prepared in the lowest Zeeman sublevel, mj ¼ −6
(mf ¼ −19=2). Erbium samples are trapped in a crossed
ODT and contain about 105 atoms.

B. Feshbach spectroscopy

Feshbach spectroscopy is performed in a similar manner
for the two species. The magnetic field is ramped up over a
few milliseconds to a magnetic-field value B, where the
atoms are held in the ODT for 500 ms for Dy, 400 ms for
168Er, and 100 ms for 167Er. During this time, inelastic
three-body recombination causes atom loss from the ODT.
At resonance, the recombination process is enhanced
because of the coupling between the atomic-threshold
state and a molecular state leading to a resonant increase
of the atom loss. We identify the field locations of
maximum loss as the positions of Fano-Feshbach reso-
nances [36]. The atom number is probed by standard time-
of-flight absorption imaging at low magnetic field. We
record atom-loss features for magnetic-field values between
0 and 70 G in steps of a few mG. Figure 1(a) shows the
normalized loss spectrum for the 164Dy isotope, where we
identify 309 resonances. For 168Er at T ¼ 1.4 μK, there are
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238 resonances. The Fano-Feshbach scan of fermionic
167Er is carried out from 0 to 4.4 G and yields 115
resonances.
The understanding of the richness of the scattering in

Er and Dy requires the development of sophisticated
microscopic coupled-channels scattering models. We defer
such analysis until later in this paper and first analyze
our data following the statistical approach based on the
RMT advocated by Ref. [21]. In particular, we study the
correlations between resonance locations via the nearest-
neighbor spacing (NNS) distribution and set up a RMT-like
model, which accounts for the structure of our B-dependent
microscopic Hamiltonian, to get intuition about these NNSs.
In our description of the coupled-channels calculations,
limitations of such a RMT-like model are discussed.

C. Statistical analyses

Our statistical analysis starts with the construction of the
staircase function, which is a steplike function that counts
the number of resonances below magnetic-field value B
[37]. Figure 1(b) shows the staircase function for Dy and
Er. For both species the function is well fit by a linear curve
forced to pass through the origin. Its slope ρ̄ corresponds

to the density of resonances. Deviations below and above
the fit occur for small and large B, respectively. The fitted
resonance densities are given in the caption. Remarkably,
the density of resonances of 168Er at T ¼ 1.4 μK is 25%
higher than the one observed at 350 nK. The discussion of
the origin of this sensitivity is postponed until Sec. V. The
density ρ̄ for bosonic Dy is 50% larger than for bosonic Er.
This is caused by the larger ~| of Dy and, thus, its larger
number of allowed collision channels. The much larger
density ρ̄ of 25.6 G−1 for the fermionic 167Er is due to its
additional hyperfine structure.
Fluctuations in the number of resonances within a

magnetic-field interval ΔB is a second measure of the
statistical properties of the spacings between resonances.
Formally, it is defined as the dimensionless number

variance Σ2¼N2− N̄2, where N̄¼P
M−1
i¼0 Ni=M, N2 ¼P

M−1
i¼0 N2

i =M, and Ni is the number of resonances in the
field interval [iΔB, ðiþ 1ÞΔB], with i ¼ 0;…;M − 1,
such that MΔB¼Bmax and Bmax¼ 70G for both species.
Consequently, N̄ ≡ ΔBρ̄. For shot noise or a Poissonian
distribution, we expect Σ2 ¼ N̄. Figure 1(c) compares Σ2

for our Dy and Er data as a function of N̄. The fluctuations
for both species monotonically increase with ΔB but are
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FIG. 1. (a) Trap-loss spectroscopy mapping of the Fano-Feshbach spectrum of 164Dy as a function of magnetic field between B ¼ 0
and 70 G with a data point every 14.5 mG and temperature T ¼ 600 nK. Each data point is an average of three measurements.
(b) Staircase function for the number of resonances as a function of B for 164Dy, 168Er at two temperatures, and fermionic 167Er.
Dashed lines are linear fits forced to pass through the origin. Their slopes give a mean density of resonances of ρ̄ ¼ 4.3 G−1 for 164Dy,
2.7 G−1 for 168Er at T ¼ 350 nK, 3.4 G−1 for Er at T ¼ 1.4 μK, and 25.6 G−1 for 167Er. (c) Number variance of the experimental data
as a function of scaled B-field interval N̄ ¼ ΔBρ̄. The experimental data for 164Dy (blue line) and 168Er at T ¼ 350 nK (orange line)
lie between the variances for an uncorrelated Poisson distribution (dashed line) and the correlated Wigner-Dyson distribution
(dot-dashed line).
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substantially less than the shot-noise limit. While this
behavior was previously demonstrated for Er [21], the
present results provide the first evidence of correlation in
Dy and indicate similarity between the species.
These correlations between resonance locations are

further studied using the nearest-neighbor spacings distri-
bution PðsÞ, where s ¼ δBρ̄ and δB is the field spacing bet-
ween two adjacent resonances in the spectrum. Figures 2(a)
and 2(b) show the computed NNS distribution of our
experimental data, derived from the number of NNS,
Si, with spacings s between iδs and ðiþ 1Þδs, where
i ¼ 0; 1;… and δs ≈ 0.3. The NNS distributions have clear
deviations from both the Poisson PPðsÞ ¼ expð−sÞ and
Wigner-Dyson PWDðsÞ ¼ ðπ=2Þs exp½−ðπ=4Þs2� distribu-
tion, two well-known distributions within RMT [21].
A Poisson distribution corresponds to a random distribution
of resonance locations, while a Wigner-Dyson distribution
corresponds to a situation where neighboring resonances
“avoid” each other and PWDðsÞ ∝ s for s → 0. Deviations
are also seen in Fig. 1(c), where for both atomic species the
variance Σ2 does not agree with the corresponding pre-
dictions for these distributions. The experimental NNS
distributions in Figs. 2(a) and 2(b) have also been fit to the
Brody distribution PBðs; ηÞ ¼ bð1þ ηÞsη exp½−bsηþ1�, an

empirical function that interpolates between PPðsÞ and
PWDðsÞ for η ¼ 0 and 1, respectively, and b is a normali-
zation constant [38]. The values for η reported in the
caption indicate intermediate or mixed behavior of the data.
We present the magnetic-field resolved Brody parameter

ηðBÞ in Figs. 2(c) and 2(d) obtained from a fit to the NNS
distribution of resonances located in moving intervals
½B − ΔB=2; Bþ ΔB=2�, with ΔB ¼ 20 G. It has a non-
negligible 1σ uncertainty equally limited by the quality of
the fit and the number of Feshbach resonances in an interval
or bin. The latter uncertainty is reflected in the bin-to-bin
variation of ηðBÞ. For Dy we observe that η increase
linearly with field for small B, which saturates at a value of
≈0.5 for B > 30 G. For Er the Brody parameter fluctuates
around 0.5. Interestingly, the Er data at our two temper-
atures have a similar behavior, indicating that the larger
density of resonances at higher T does not impact the
degree of correlation between their spacings.

III. RMT ENSEMBLE MODEL

Random matrix theory is based on the powerful
notion that the statistics of eigenvalues and eigenfunctions
of a complex system can be studied by replacing the
microscopic Hamiltonian by an ensemble of random
Hamiltonians. In this spirit, we construct a RMT-inspired
model for weakly bound molecular dimer states to test the
distribution of Fano-Feshbach resonances.
Our RMT model is based on the statistics of eigenvalues

of the N × N real, symmetric matrix HRMT ¼ H0 þHZ,
where matrices H0 and HZ represent the B ¼ 0
Hamiltonian and the Zeeman interaction of the two atoms,
respectively. Without loss of generality we can assume that
HZ is a diagonal matrix with matrix elements given by
mgμBB, where m is an integer between −2j and 2j,
corresponding to the sum of the projection quantum
numbers of the atomic angular momenta, g is the atomic
Landé factor, and μB is the Bohr magneton. The Zeeman
interaction does not depend on the rotational state of the
molecule and, thus, entries in HZ correspond to states
with a definite value for l and its projection. H0 is then
the B ¼ 0 Hamiltonian expressed in this basis. It is also
convenient to define H0 ¼ Hd þHcpl, where diagonal
matrix Hd contains the diagonal matrix elements of H0

and Hcpl is the matrix of all its off-diagonal elements. The
eigenvalues of Hd can then be interpreted as the energies
of rovibrational levels of the isotropic contribution of
the molecular BO potentials, while Hcpl describes mixing
due to the anisotropic contributions of these potentials.
We generate members of our ensemble of HRMT by

choosing random matrix elements for HZ, Hd, and Hcpl

based on specific distributions. The values of m in HZ are
uniformly distributed integers between −2j and 2j. The
matrix elements of Hd are chosen according to a Brody
distribution with variable Brody parameter ηd ∈ ½0; 1� and
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FIG. 2. (a) Nearest-neighbor spacing distribution PðsÞ deter-
mined from all observed Fano-Feshbach resonances for 164Dy
(blue markers). Dashed and dot-dashed curves are the Poisson
and Wigner-Dyson distribution, respectively. The solid line is a
Brody distribution with η ¼ 0.45ð7Þ fit to the experimental data.
(b) Distributions PðsÞ for 168Er at T ¼ 350 nK and T ¼ 1.4 μK
(orange and red markers, respectively), and 167Er at T ¼ 0.4TF
(green markers), where TF is the Fermi temperature of the gas.
The solid line is a Brody distribution with η ¼ 0.68ð9Þ fit to the
168Er data at T ¼ 350 nK. Panels (c) and (d) show the magnetic-
field-resolved Brody parameter ηðBÞ as a function of magnetic
field for 164Dy and 168Er, respectively. The Brody parameters for
the Poisson and Wigner-Dyson distribution are 0 and 1, respec-
tively. Gray markers and lines in all four panels are results from
our coupled-channels calculations. The 1σ error bars in (a) and
(b) correspond to Poisson counting errors, while shaded bands in
(c) and (d) are 1σ statistical uncertainties of the fits to the data.
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with a mean energy spacing between bound states ϵd.
Finally, matrix elements of Hcpl are chosen as Gaussian-
distributed real numbers with zero mean and standard
deviation νcpl, thereby on average coupling all diagonal
elements equally. Notice that this construction deviates
from that for a true Gaussian orthogonal ensemble, where
all matrix elements of a symmetric Hamiltonian are
Gaussian distributed [39].
We apply the RMT model to the case of 168Er. The

relevant species-specific quantities are j ¼ 6, g ¼ 1.16,
and ϵd is chosen to roughly reproduce the observed density
of Fano-Feshbach resonances of 168Er and is set to
ϵd=h ¼ 6.4 MHz, where h is Planck’s constant. Figure 3(a)

shows an example of a molecular spectrum, the eigenvalues
of HRMT obtained with our RMT model as a function of B
with ηd ¼ 0 and νcpl=h ¼ 2 MHz. We observe that as B
increases, weakly bound molecular states avoid each other
multiple times before reaching the two-atom threshold
creating a Feshbach resonance. When we turn off Hcpl,
the levels cross. Similar B-field dependencies of the
eigenvalues occur for ηd > 0.
We investigate the effect of the parameters νcpl and ηd on

the NNS distribution of the Fano-Feshbach resonances as
well as that of the B ¼ 0 molecular levels. Figure 3(b)
shows the NNS distribution of Feshbach resonances,
obtained by averaging over 15 realizations of HRMT, for
four values of νcpl and ηd ¼ 0. For negligible νcpl, the
distribution follows PPðsÞ and approaches PWDðsÞ when
the anisotropic coupling strength νcpl is large compared
to ϵd. In fact, we find that a larger ϵd requires a larger νcpl
to develop correlations.
Figures 3(c) and 3(d) show Brody parameters fit to NNS

distributions as functions of νcpl and ηd. Figure 3(c) shows η
for the B ¼ 0 molecular binding energies. For νcpl ¼ 0,
the Brody parameter is simply ηd, as expected from the
distribution of the diagonal Hd, while for larger interaction
anisotropy νcpl, the parameter η ≈ 0.9, close to a Wigner-
Dyson distribution, independent of ηd. Figure 3(d) shows η
extracted from the RMT Feshbach resonance locations as a
function of νcpl. It suggests that the correlation in the NNS
of the resonances is caused by νcpl, whereas it appears fairly
independent of ηd. More precisely, the Brody parameter
fitted to these distributions rapidly increases from η ≈ 0
to η ≈ 0.8 for νcpl ≲ ϵd and tends to one for larger νcpl.
We conclude from the RMT model that the correlations
between the locations of the Fano-Feshbach resonance are
essentially due to the avoided crossings between weakly
bound molecular states at finite B and are only weakly
dependent on the energy distribution at B ¼ 0. In fact, these
correlations increase for increasing νcpl.

IV. MICROSCOPIC COUPLED-CHANNELS
MODEL

A. Realistic setup

A quantitative understanding of the origin of the
chaotic resonance distribution requires coupled-channels
and bound-state calculations with physically realistic
angular-momentum couplings and interaction potentials.
We do so here based on the time-reversal symmetric
Hamiltonian for the relative motion of Dy and Er described
in Refs. [21,40]. It contains the Zeeman Hamiltonian, the
molecular vibration and rotation, and the molecular inter-
actions with isotropic (orientation-independent) and aniso-
tropic (orientation-dependent) contributions, V̂iðRÞ and
V̂að~RÞ, respectively, where ~R describes the separation R
and orientation of the atom pair R̂. The potential has eight
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(a) Example of a spectrum of molecular binding energies as a
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constant. Squares atE=h ¼ 0 MHz indicate crossings ofmolecular
levels with the threshold of twomj ¼ −6 atoms and correspond to
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we show only the spectrum between B ¼ 0 and 10 G. (b) NNS
distributions of simulated Feshbach resonances for ηd ¼ 0
and νcpl=h ¼ 0 MHz (circles), 2 MHz (squares), and 10 MHz
(triangles). The dashed and dash-dotted lines are Poisson and
Wigner-Dyson distributions, respectively. Solid lines are
best-fit Brody distributions with η ¼ 0.03ð1Þ, η ¼ 0.41ð5Þ, and
η ¼ 0.82ð1Þ for νcpl=h ¼ 0, 2, and 10MHz, respectively. (c) Fitted
Brody parameters of the nearest-neighbor energy-spacing
distribution of the eigenvalues of HRMT at B ¼ 0 G as a function
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over 15 realizations of HRMT, each of dimension 500 × 500 and
using Feshbach resonances computed up to B ¼ 85 G.
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tensor operators coupling the two atomic and relative
orbital angular momenta, ~|1, ~|2, and ~l. For B ¼ 0, the

total angular momentum ~J ¼ ~|1 þ ~|2 þ ~l is conserved. For
B > 0 G, only the projection M of ~J along ~B is conserved.
The zero of energy of the Hamiltonian is the energy of an
atom pair in the absolute lowest Zeeman sublevel,
mjα ¼ −jα.
The potentials V̂iðRÞ and V̂að~RÞ contain short-ranged

exchange, medium-ranged van der Waals, as well as
long-range magnetic dipole-dipole interactions. We use the
isotropic van der Waals coefficient C6 ¼ 1723Eha60 and
anisotropic coefficients spread over ΔC6 ¼ 174Eha60 for Er
[21]. For Dy we have improved the value of van der Waals
coefficients of Ref. [40] by including additional experimen-
tal and theoretical transition frequencies and oscillator
strengths [41–44] and now use C6 ¼ 2003Eha60 and spread
ΔC6 ¼ 188Eha60. In particular, the anisotropic spread for Dy
has significantly increased. Here, Eh ¼ 4.360 × 10−18 J is
the Hartree energy and a0 ¼ 0.052 97 nm is the Bohr radius.

B. Bound-state calculations

In Ref. [21] we performed initial coupled-channels cal-
culations of the scattering between ultracold Er atoms and
predicted that tens of partial waves l should have been
included as the strength of the anisotropic contribution is
large. We, however, were unable to reach numerical con-
vergence with respect to the number of coupled equations.
Here, we circumvent this limitation by performing

multichannel bound-state calculations, in which we use
B ¼ 0 eigenstates as a basis for those at B > 0 G. For
B ¼ 0, where J is a good quantum number, at most 49 and
81 Bose-symmetrized and parity-conserving channels are
coupled for Er and Dy, respectively. The B ¼ 0 coupled
Schrödinger equations are discretized on the interval
R ∈ ½0; Rmax� assuming zero boundary conditions and
solved as a matrix eigenvalue problem [45–48]. For each
J, only eigenstates with energies between ½E0; E1� sur-
rounding the zero of energy are computed and stored. The
bound states for B > 0 G are solutions of the matrix
eigenvalue problem that includes all computed B ¼ 0
solutions with jMj ≤ J ≤ Jmax and their coupling due to
the Zeeman interaction. Selection rules of the Zeeman
interaction ensure that there only exists direct coupling
between J and J0 zero-field eigenstates with J − J0 ¼ 0,
�1. For both species, Rmax ¼ 1000a0, E0=h ¼ −3 GHz,
and E1=h ¼ 0.9 GHz, ensuring that Feshbach resonance
locations below 70 G are converged.
In this section on the microscopic calculations we focus

on analyzing the spectra at our coldest temperatures, where
the initial collision channel has s-wave (l ¼ 0) character.
Hence, we need to consider only even-l channels with total
projection quantum number M ¼ −12 and −16 for 168Er
and 164Dy, respectively, and inclusion of zero-field sol-
utions up to Jmax ¼ 36 for Dy and 39 for Er is sufficient to

reproduce the experimental resonance densities. In Sec. V,
we discuss higher-temperature collisions between Er atoms,
whered-wave (l ¼ 2) entrance channelsmust be considered
and, hence, spectra at other M values (i.e., M between −14
and −10 for 168Er) contribute.

C. Interaction anisotropies

We first look into the role of interaction anisotropies
on the level distribution of the most weakly bound
molecular energy levels at zero magnetic field. There are
two dominant components to the anisotropy, the dispersion
VΔC6

ð~RÞ and magnetic dipole-dipole VMDDð~RÞ contribu-
tion. To distinguish the contributions of these two terms,
we define

V̂að~RÞ ¼ λΔC6
VΔC6

ð~RÞ þ λMDDVMDDð~RÞ; ð1Þ

with variable strength λΔC6
and λMDD. We systematically

increase the strengths λΔC6
and λMDD from zero, where we

recover the full physical strength for λMDD ¼ λΔC6
¼ 1.

For completeness, we note that the dominant tensor
operator for the anisotropic dispersion contribution is

VΔC6
ð~RÞ ¼ ca

R6

X
i¼1;2

1ffiffiffi
6

p f3ðR̂ · ~|iÞðR̂ · ~|iÞ − ~|i · ~|ig þ � � � ;

with strength ca < 0 found with the methodology dis-
cussed in Sec, IVA. Weaker contributions indicated by dots
are included in our calculations. Moreover,

VMDDð~RÞ ¼ − μ0
4π

ðgμBÞ2
R3

f3ðR̂ · ~|1ÞðR̂ · ~|2Þ − ~|1 · ~|2g;

where μ0 is the magnetic constant.
Figures 4(b) and 4(d) show the most weakly bound

B ¼ 0, J ¼ 16 levels of 164Dy2 as a function of anisotropy
strength for purely dipolar (λΔC6

¼ 0, varying λMDD) and
dispersive (λMDD ¼ 0, varying λΔC6

) anisotropic interac-
tion, respectively. For λMDD ¼ λΔC6

¼ 0, the binding ener-
gies are regularly structured with many near degeneracies.
In fact, the corresponding states are rovibrational levels of
the isotropic centrifugal potentials V̂iðRÞ and labeled by l.
In our 3-GHz energy window an s-wave channel has at
most three bound states, while even l > 0 channels with
their centrifugal barriers have fewer [21,49]. For small λΔC6

and λMDD, the degeneracy is lifted and levels shift linearly.
The linear dependence for increasing strength of the dipole-
dipole is approximately valid up to the physical value of
λMDD ¼ 1. Hence, the dipole-dipole interaction does not
lead to our chaotic level distributions. In fact, Fig. 4(a)
shows that at λMDD ¼ 1 and λΔC6

¼ 0 the NND distribution
is Poissonian.
On the other hand, for a relatively small anisotropic

dispersion strength λΔC6
≈ 0.1, levels start to avoid each
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other. Starting from λΔC6
≈ 0.5, most avoided crossings

are noticeable on the 3-GHz scale of the figure. At the
nominal λΔC6

¼ 1, where there are 56 levels with
−3 < E=h < 0 GHz, a significant fraction of the levels
have undergone multiple avoided crossings and cannot be
described by a single dominant partial wave. The level
spacing is chaotic as confirmed by the NND distribution
for λΔC6

¼ 1 and λMDD ¼ 0 in Fig. 4(c). We compute
the weakly bound J ¼ 16 levels for λMDD ¼ λΔC6

¼ 1.
Visually the level distribution is much the same as the
one shown in Fig. 4(d). Similar results have been obtained
for 168Er2.
Figure 4(e) quantifies the intuition gained from

Figs. 4(a)–4(d) by showing the Brody parameter η of the
B ¼ 0 J ¼ 16 164Dy2 levels as a function of λΔC6

or λMDD.
The Brody parameter is obtained by fitting a Brody
distribution to the NNS distribution of the bound state
data in Figs. 4(b) and 4(d). For increasing dipole-dipole
strength λMDD and no anisotropic dispersion (λΔC6

¼ 0), the
parameter is always zero, indicating the prevalence of small
level spacings. On the other hand, in the absence of the
DDI, increasing λΔC6

leads to an increasing η. It evolves
from η ¼ 0.2 for λΔC6

≲ 0.5 to η ¼ 0.7 for λΔC6
¼ 1,

indicating a depopulation of small energy spacings. Note

that our systems does not reach a Wigner-Dyson distribu-
tion, which corresponds to η ¼ 1.
In Fig. 4(f), we compare two NNS distributions of

B ¼ 0 weakly bound states of 164Dy2 obtained for the
full anisotropic interaction (λMDD ¼ λΔC6

¼ 1). Both
distributions are based on jE=hj < 3 GHz bound states
computed for J ¼ 16 up to 25. The first so-called
individual-J distribution is constructed by averaging
the NNS distribution of levels for individual J’s assum-
ing that individual distributions are the same. The
second, combined-J NNS distribution, is calculated
from a sorted list of all J ¼ 16;…; 25 levels. Data for
J > 25 are not included as the number of bound states
is too small for a reliable determination of the NNS
distribution.
The individual-J NNS distribution is non-Poissonian as

levels with the same J repel each other. The combined-J
distribution, however, follows a Poisson distribution indi-
cating that energies of bound states with different J are
uncorrelated. In other words, even though the Hamiltonian,

i.e., the set of coupling operators between ~|1, ~|2 and ~l, is
the same, differences in the matrix elements and thus
coupling strengths between channels lead to uncorrelated
eigenenergies.
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FIG. 4. Interaction-anisotropy-induced chaos of B ¼ 0 near-threshold bound states. (b) Weakly bound J ¼ 16 bound-state energies of
164Dy2 as a function of the anisotropy scale λMDD with λΔC6

¼ 0. (a) NNS distribution (red circles) for the J ¼ 16 bound-state data in
(b) at λMDD ¼ 1 and λΔC6

¼ 0. The solid red line is a Brody distribution fit to the data and agrees well with a Poisson distribution.
(d) Weakly bound J ¼ 16 bound-state energies of 164Dy2 as a function of the anisotropy scale λΔC6

with λMDD ¼ 0. (c) NNS distribution
(purple squares) for the J ¼ 16 bound-state data in (d) at λMDD ¼ 0 and λΔC6

¼ 1. The solid purple line is a Brody distribution fit to the
data and is close to a Wigner-Dyson distribution. (e) Moving average of the Brody parameter η as a function of λΔC6

(purple squares) or
λMDD (red circles) with bins Δλ ¼ 0.2 obtained by fitting the NNS distribution for the J ¼ 16 bound-state data in (b) and (d) to Brody
distributions, respectively. The horizontal lines at η ¼ 0 and 1 correspond to the Brody parameter for a Poisson and Wigner-Dyson
distribution, respectively. The 1σ error bars combine statistical and fitting uncertainties. (f) The individual-J (blue squares) and
combined-J (red circles) NNS distributions PðsÞ at λMDD ¼ λΔC6

¼ 1 as a function of the normalized energy spacing s. The distributions
are derived from B ¼ 0 bound-state data for J ¼ 16;…; 25. The gray shaded areas in (a), (b), and (f) indicate the Wigner-Dyson
distribution.
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D. Atom scattering in a magnetic field

The study of the B ¼ 0 G multichannel bound states has
shown that interaction anisotropies mix channels with the
same J, while states with different J are uncorrelated.
The Zeeman interaction mixes these molecular levels and
leads to the Fano-Feshbach spectrum. Figures 5(a) and 5(b)
show example 164Dy2 M ¼ −16 bound-state spectra as a
function of B on two binding-energy and field regions.
Similarly, Figs. 5(c) and 5(d) showM ¼ −12 168Er2 bound
states. In all cases, the full nominal anisotropy (λΔC6

¼ 1

and λMDD ¼ 1) is used. For Dy and Er, channels with J up
to 36 and 39 are included, respectively. The figure shows
that the Dy level density is higher than that for Er. This
simply follows from the larger atomic angular momentum
of Dy, leading to a larger number of channels with the same
J − jMj. We also observe that for both species the level
structure in the 0–10 G, small field region is qualitatively
different from that in the larger field region. For small B,
the avoided crossings are substantially narrower than for
larger B. Moreover, at small field the levels cluster, while
at larger field they are more uniformly distributed. These
changes are a consequence of the linearly increasing
Zeeman coupling between vibrational levels with different
J’s as a function of B.
Figure 6(a) shows effective length asðBÞ as a function

of B. It diverges at every resonance location and is closely
related to the scattering length of a zero-energy collision.
Our calculations cannot be directly used to define the
scattering length as we use a hard-wall potential for
R ≥ Rmax. This wall leads to a discrete set of states with
positive energy, and using the lowest of these EsðBÞ, we
can define the effective length asðBÞ shown in the figure
by solving for EsðBÞ ¼ ℏ2π2=f2μr½Rmax − asðBÞ�2g, with
μr ¼ m=2 and atomic mass m [50].

It is of interest to briefly discuss the convergence
properties of our calculations. The data in Figs. 6(a), 5(c),
and 5(d) are based on computations with channels with J
up to Jmax ¼ 39. Figure 6(b) shows the 168Er2 Feshbach-
resonance density ρ̄ as a function of Jmax. The resonance
density increases linearly from ≈0.5 1=G at Jmax ¼ 12 but
then is seen to “saturate” for larger Jmax. At Jmax ¼ 39 the
experimental density is reproduced. In addition, Fig. 6(c)
shows the field location of resonances between 50 and 55 G
as a function of Jmax. The resonance locations change
significantly for Jmax < 22, but then rapidly converge. This
implies strong mixing among bound states with those J.
On the other hand, the location of resonances that appear
for J ≥ 22 is almost immediately converged indicating
weak mixing to smaller J states.

E. Comparison of experiment and
coupled-channels model

In Figs. 2(a) and 2(b), we show the NNS distribution
of converged Feshbach-resonance locations based on our
multichannel data between B ¼ 0 and 70 G for 164Dy2
with Jmax ¼ 36 and 168Er2 with Jmax ¼ 39, respectively.
For both species the distribution clearly deviates from a
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FIG. 5. Theoretical 164Dy2 [(a),(b)] and 168Er2 [(c),(d)] near-
threshold bound states as a function of magnetic field. Calcu-
lations have been performed with the full nominal anisotropy.
Panels (a) and (c) show the near-threshold region between B ¼ 0
and 10 G, while panels (b) and (d) show the region between
B ¼ 50 and 60 G. Red crosses indicate the location of Feshbach
resonances.

50 52 54 56 58 60
magnetic field (G)

-20

-15

-10

-5

E
/h

 (
M

H
z)

15 20 25 30 35 40
Jmax

0

1

2

3

ρ 
(1

/G
)

15 20 25 30 35 40
Jmax

50
51
52
53
54
55

B
 (

G
)

-400
0

400
800

a s
/a

0

(a)

(b) (c)
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resonances in a magnetic field. (a) Near-threshold bound states
forM ¼ −12 168Er2 for fields between B ¼ 50 and 60 G (bottom
half of image). The top half of the image shows the effective
scattering length, defined in the text, as a function of B. It is
infinite at a resonance location where a bound state has zero
energy. Calculations use the physical interaction anisotropies and
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between 50 and 55 G as a function of Jmax. Purple lines connect
resonances when their location has converged.
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Poisson distribution, consistent with the experimental
distributions that are also shown. The fitted experimental
and coupled-channel Brody parameters agree within their
error bars.
The anisotropy parameters λΔC6

and λMDD in the
coupled-channels calculations and the parameter νcpl in
the RMT play analogous roles in the Hamiltonian and in the
emergence of chaotic level distributions, even though no
explicit quantitative connection exists. This role is most
manifest in the Brody parameters of the B ¼ 0 G bound
states and that of the Feshbach-resonance spectra for the
two models. For 168Er the corresponding Brody parameters
from the coupled-channels calculations are ≈0.01 and 0.68
at the physical λMDD ¼ λΔC6

¼ 1, respectively. Within the
RMT model, the small η value for the B ¼ 0 G level
distribution requires weak coupling νcpl ≪ ϵd and ηd ≈ 0.
In contrast, the Brody parameter for the Feshbach-
resonance spectrum requires νcpl ≈ ϵd and points at limi-
tations of the current RMTmodel. Similar conclusions hold
for bosonic Dy. Future advanced RMT models might
circumvent these limitations by incorporating overlapping,
uncoupled chaotic series as is found from our B ¼ 0 G
coupled-channels calculations.
We plot the B-field-resolved Brody parameter ηðBÞ of

the theoretical coupled-channels data in Figs. 2(c) and 2(d).
A comparison with the experimental ηðBÞ shows excellent
agreement for 164Dy, while the agreement for 168Er is less
satisfactory. A possible explanation for the discrepancies in
168Er is the larger bin-to-bin fluctuations as bins contain
fewer resonances than for 164Dy.
For 164Dy the theoretical field-resolved Brody parameter

in Fig. 2(c) linearly increases from zero for small B fields

and saturates at ηðBÞ ≈ 0.5 for fields larger than 35 G,
where the size or width of the avoided crossings between
weakly bound states is larger. For 168Er in Fig. 2(d) we find
a much more rapid increase of ηðBÞ at small fields. This is
followed by a plateau at ηðBÞ ≈ 0.5 between B ¼ 20 and
50 G, after which ηðBÞ → 0.9 with an uncertainty of 0.2
close to a Wigner distribution. The initial rise of ηðBÞ
for both atomic species is a consequence of weakly
bound vibrational levels, uncoupled and randomly distrib-
uted when B ¼ 0 G, that start to repel each other as the
Zeeman interaction increases in strength for increasing B.
The plateau at ηðBÞ ≈ 0.5 and the sudden increase of ηðBÞ
to one for 168Er have no simple explanation and are
determined by the not-fully-explored complex interplay
between the Zeeman and anisotropic interatomic inter-
actions. It does, however, indicate that Wigner’s assump-
tions on ensembles of Hamiltonians do not hold for fields
below 50 G.

V. TEMPERATURE DEPENDENCE
OF THE RESONANCE DENSITY

We now describe the origin of the strong temperature
dependence of some of the resonances in our atom-loss
spectra and thus explain the accompanying increase of the
resonance density. Here, atom loss is solely due to three-
body recombination, where three ultracold atoms collide to
form a diatomic molecule and an atom that are both lost
from the atom trap. Figure 7(a) shows atom-loss spectra for
one such resonance for 168Er at four temperatures below
2 μK. Atom loss, indeed, is larger for larger temperatures,
but we also observe a broadening of the B-field width and
a shift of the maximum loss position to larger B fields.
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FIG. 7. Line shapes for a strongly temperature-dependent 168Er Feshbach resonance near B ¼ 1.48 G. Panel (a) shows experimental
data (markers with error bars) as a function of B of the remaining atom number divided by the atom number away from resonance
measured 400 ms after initial preparation. Black, red, green, and blue markers correspond to data for temperatures T ¼ 230, 740, 1400,
and 2000 nK, respectively. Dashed lines connecting the markers guide the eye. Solid lines are theoretical line shapes of the remaining
atom number based on the d-wave (N ¼ 2) recombination rates shown in (c). Panels (b) and (c) show simulated three-body
recombination rates for the same four temperatures assuming three-body entrance s- (N ¼ 0) and d-wave (N ¼ 2) scattering,
respectively. Curves are based on a thermally averaged line shape discussed in the text. Recombination rates are scaled such that the
largest value in each panel is one. For both panels, μ ¼ 3.1μB and Γbr=kB ¼ 250 nK, while ΓðEÞ=kB ¼ 0.2ðE=ErefÞ2 nK in (b) and
ΓðEÞ=kB ¼ 0.1ðE=ErefÞ4 nK in (c), where Eref=kB ¼ 1000 nK.
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Resonances with a weak temperature dependence show
none of these behaviors.
We show with an intuitive resonant “trimer” model that a

strongly temperature-dependent resonance is due to scatter-
ing processes with entrance d-wave channels even though
the two-body d-wave centrifugal barrier, Vb=kB ¼ 250 μK,
is 100 times larger than our highest temperature, where kB is
the Boltzmann constant. The difference in the power-law
Wigner-threshold behavior of the recombination rate with
collision energy for s- and d-wave entrance-channel colli-
sions can explain our observations.
Three-body recombination has been extensively studied

in the context of Efimov physics [51–54]. We follow
Refs. [55–57] and start from a coupled-channels descrip-
tion in the (mass-scaled) hyperradius ρ, which describes the
size of the three-atomic system, and basis functions in the
five other hyperspherical coordinates that are ρ-dependent
eigenstates of the squared “grand-angular-momentum oper-
ator.” Similar to the coupled-channels description for two
atoms, there are entrance, open, and closed channels. The
collision starts in one of the entrance channels with atoms
in the energetically lowest Zeeman state and relative three-
body kinetic energy E3, the dimer plus atom are the open
channels, and bound states in closed channels can lead to
resonances. These closed channels dissociate to three free-
atom states with at least one atom in a Zeeman level with
higher internal energy. The bound states are resonant trimer
states giving us our name for the model. It should, however,
be realized that their origin lies in bound states of pairs of
atoms and that the resonant state is better thought of as a
pair bound state that hops from pair to pair. We define
E3 ≡ ℏ3k23=ð2μ3Þ≡ μ3v23=2 with the three-body reduced
mass μ3 ¼ m=

ffiffiffi
3

p
, where k3 and v3 are the relative wave

vector and velocity, respectively.
The potentials in the entrance channels have long-range

repulsive centrifugal potentials, governed by the asymp-
totic behavior of the grand-angular-momentum operator,

and depend on the relative orbital angular momentum ~N
of the three atoms. In fact, the centrifugal potentials are
ℏ2ðλþ 3=2Þðλþ 5=2Þ=ð2μ3ρ2Þ with non-negative integer
quantum number λ [55]. For N ¼ 0, the least repulsive
potential has λ ¼ 0, while that for N ¼ 2 has λ ¼ 2.
For an isolated trimer resonance in a closed channel

coupled to both entrance and other open channels, we can
apply the resonance theories by Fano and Feshbach and
derive that the recombination rate coefficient at collision
energy E3 and entrance channel with quantum number λ is
given by L3ðE3; BÞ ¼ v3σðE3; BÞ, where the cross section
σðE3;BÞ¼ð2Nþ1Þ192π2jSðE3;BÞj2=k53 and

jSðE3; BÞj2 ¼
ΓðE3ÞΓbr

½E3 − μðB − B0Þ�2 þ ½ΓtotðE3Þ=2�2

is a resonant expression for the square of a dimensionless
S-matrix element, where B0 is the trimer resonance

location and μ is the magnetic moment of the resonant
trimer relative to that of the entrance channel. The defi-
nition for jSðE3; BÞj2 also contains the entrance-channel
energy width ΓðE3Þ ¼ AλE

λþ2
3 to the trimer resonance with

a characteristic power-law energy dependence that reflects
the threshold behavior of the scattering solutions in the
centrifugal potentials. The energy width Γbr determines
the decay or breakup rate of the resonance into the fast
atom and dimer pair and is independent of E3. Finally,
ΓtotðE3Þ ¼ ΓðE3Þ þ Γbr. For simplicity, we assume that
nonresonant, direct recombination from the entrance to
open channels is weak. We also note that for N ¼ 0 and
λ ¼ 0, L3ðE3; BÞ approaches a finite constant for E3 → 0
as expected.
In our experiments we have thermal samples of Er and

we require the thermally averaged rate coefficient

L3ðT; BÞ ¼
1

Z

Z
∞

0

E2dEL3ðE;BÞe−E=kT

and normalization Z ¼ R
∞
0 E2dEe−E=kT ¼ 2ðkTÞ3. In order

to increase the signal-to-noise ratio, we allow a significant
fraction of atoms to be lost [see Fig. 7(c)], which, assuming
a homogeneous sample, can be modeled by the rate
equation dnðtÞ=dt ¼ −3L3ðT; BÞn3ðtÞ for atom density
nðtÞ [53] with solution

Nðth; BÞ ¼
N0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6L3ðT; BÞn20th
p ;

where Nðth; BÞ is the remaining atom number after hold
time th, N0 is the initial atom number, and n0 is the initial
density. This nonlinear time evolution adds additional
broadening to the lines.
Figures 7(b) and 7(c) show our model event rates

L3ðT; BÞ as a function of B for N ¼ 0, λ ¼ 0 and
N ¼ 2, λ ¼ 2, respectively. Curves are for the same four
temperatures as in Fig. 7(a). A comparison of Figs. 7(b) and
7(c) shows a striking difference. The strongest features in
Fig. 7(b) are for the smallest temperatures, while those in
Fig. 7(c) are for the largest temperatures. This behavior
naturally follows from an approximation of the integrant in
L3ðT; BÞ under the conditions kT ≫ Γbr ≫ ΓðEÞ [58].
In this limit the Lorentzian is sharply peaked around E3 ¼
μðB − B0Þ for B > B0, and after some algebra it follows
that L3ðT; BÞ as a function of B has a maximum value
proportional to ðkTÞλ−1 located at B ¼ B0 þ ðλþ 2ÞkT=μ.
Consequently, for λ ¼ 0 and 2 the maximum loss rate
decreases and increases with T, respectively. Even for less
restrictive parameter values as used in Fig. 7 this trend
remains.
Our experimental data have a temperature trend as in

Fig. 7(c). In fact, Fig. 7(a) compares our experimental loss
data with model Nðth; BÞ for N ¼ 2, λ ¼ 2 using the
same parameters as in Fig. 7(c) and requiring a ≈ 50%
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maximum atom loss as in the experiment. It is worth noting
that, from our theoretical calculations, the magnetic-field
width of L3ðT; BÞ is noticeably smaller than that for
Nðth; BÞ, indicating that the finite hold time does indeed
lead to broadening. The agreement of the experimental data
and the prediction of our model for the losses is satisfactory
for all four temperatures given the limitations and approx-
imations within our modeling. We conclude that our
strongly T-dependent resonances correspond to d-wave
or more preciselyN ¼ 2 entrance-channel collisions. Note
that we have not observed any resonances with temperature
dependence similar to Fig. 7(b) in our spectra. In the case
of resonances with a three-body s-wave entrance channel,
which would correspond to such a dependence, we infer
that the loss spectra are saturated. This will be subject for
future investigations.
As a corollary, this implies that for two colliding atoms,

as described in Sec. IV, temperature-dependent resonances
are due to collisions with entrance d waves for which there
are multiple allowed values of the total angular projection
quantum numberM. Here,M ¼ −14 to −10 for bosonic Er
and M ¼ −18 to −14 for bosonic Dy. Numerical compu-
tations, not presented here, show that their zero-field bound
states and thus resonance locations are again uncorrelated
and random.

VI. CONCLUSION

In summary, we experimentally and theoretically study
the resonant scattering of ultracold Er and Dy atoms
in a magnetic field. We show that chaotic scattering as
witnessed by chaotic nearest-neighbor spacings between
Feshbach-resonance locations emerges due to the aniso-
tropy in the molecular dispersion.
Our study also reveals several unique features of collid-

ing magnetic lanthanides that have not been observed in
any other ultracold atomic system. These lanthanides are
characterized by their exceptionally large electron orbital
angular momentum, which leads to large anisotropic
dispersion interactions between these atoms. Our theoreti-
cal estimate shows that in both Er and Dy collisions the
ratio of anisotropic to isotropic dispersion interaction
ΔC6=C6 is about 10%. This anisotropy leads to significant
splittings among the 48 and 81 gerade short-range poten-
tials that dissociate to the ground-state atomic limits of
Er and Dy, respectively. We show that each potential has
its own rovibrational structure, which by Coriolis forces
and the Zeeman interaction interacts with that of other
potentials, creating a dense distribution of levels near the
threshold and initiating chaos. In fact, we find a very large
number of partial waves contributing to the creation of
Fano-Feshbach resonances.
On the other hand, if we just consider the anisotropy

from the magnetic dipole-dipole interaction alone, our
coupled-channel calculations indicate that chaos in the
level distribution does not appear. The strength of the

dipole-dipole interaction is too small. In addition, we
show that the NNS distributions for Dy and Er are very
similar, as can be expected from their similarΔC6=C6 ratio.
The difference in their magnetic moment plays only a
small role. This further confirms that chaos is due to the
anisotropic dispersion interaction.
The distribution of Feshbach resonances of ultracold

ground-state alkali-metal, alkaline-earth, Yb, and Cr atoms,
as experimental studies have shown, is not chaotic. This is
because these atoms have a zero electron orbital angular
momentum and, hence, only an isotropic dispersion inter-
action. Even though alkali-metal and Cr atoms have a
nonzero magnetic moment of 1μB and 6μB, respectively,
these moments do not lead to chaos. We would expect that
other magnetic lanthanides and actinides with nonzero
orbital angular momentum will exhibit chaotic properties
in their collisions. In addition, collisions between mixed
species, such as magnetic lanthanides and alkali metals,
like Kþ Dy or Naþ Er, might be susceptible to chaos.
A first theoretical analysis for Liþ Er [59], however,
estimates a small 2% dispersion anisotropy and no chaos
is predicted.
Another interesting property of magnetic lanthanide

gases is the extreme sensitivity of the atom-loss spectra
and, in essence, three-body recombination to the temper-
ature. This phenomenon was first observed in Ref. [22] for
loss spectra of Dy. The number of Dy resonances increases
by 50% when the temperature is increased from 420 to
800 nK. Here, we observe a 25% increase in the Er
resonance density when the temperature rises from 250
to 1400 nK. We show by a comparison of resonance
profiles taken at several temperatures and predictions of a
theoretical model of three-body recombination via the
formation of a trimer, or, more precisely, of a shared pair
bound state, that the origin of the temperature-dependent
resonances lies in the “partial wave” of the three-atom
entrance channel. Entrance channels with zero and nonzero
total orbital angular momentum N lead to line shapes
with a different temperature behavior. Those with N ¼ 0
or “s-wave” entrance channels have sharply decreasing
recombination rates with temperature, whereas those with
N ¼ 2 or “d-wave” entrance channels have an increa-
sing recombination rate. Temperature-sensitive resonances
can be explained only by “d-wave” collisions. It is worth
noting that for alkali-metal-atom collisions a number of
entrance-channel p-wave resonances have been observed
(see, for example, Ref. [60] for cesium). Analysis of the
temperature-dependent rate coefficient, however, was not
performed.
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