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We present the design, fabrication, and characterization of a planar silicon photonic crystal cavity in
which large position-squared optomechanical coupling is realized. The device consists of a double-slotted
photonic crystal structure in which motion of a central beam mode couples to two high-Q optical modes
localized around each slot. Electrostatic tuning of the structure is used to controllably hybridize the optical
modes into supermodes that couple in a quadratic fashion to the motion of the beam. From independent
measurements of the anticrossing of the optical modes and of the dynamic optical spring effect, a position-
squared vacuum coupling rate as large as ~g0=2π ¼ 245 Hz is inferred between the optical supermodes and
the fundamental in-plane mechanical resonance of the structure at ωm=2π ¼ 8.7 MHz, which in
displacement units corresponds to a coupling coefficient of g0=2π ¼ 1 THz=nm2. For larger supermode
splittings, selective excitation of the individual optical supermodes is used to demonstrate optical trapping
of the mechanical resonator with measured ~g0=2π ¼ 46 Hz.
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I. INTRODUCTION

In a cavity-optomechanical system the electromagnetic
field of a resonant optical cavity or electrical circuit is
coupled to the macroscopic motional degrees of freedom of
a mechanical structure through radiation pressure [1].
Cavity-optomechanical systems come in a multitude of
different sizes and geometries, from cold atomic gases [2]
and nanoscale photonic structures [3] to the kilogram- and
kilometer-scale interferometers developed for gravitational
wave detection [4]. Recent technological advancements in
the field have led to the demonstration of optomechanically
induced transparency [5,6], backaction cooling of a
mechanical mode to its quantum ground state [7–9], and
ponderomotive squeezing of the light field [10,11].
The interaction between light and mechanics in a cavity-

optomechanical system is termed dispersivewhen it couples
the frequency of the cavity to the position or amplitude of
mechanical motion. To lowest order this coupling is linear in
mechanical displacement; however, the overall radiation
pressure interaction is inherently nonlinear due to the
dependence on optical intensity. To date, this nonlinear

interaction has been too weak to observe at the quantum
level in all systems but the ultralight cold atomic gases [2],
and typically a large optical drive is used to parametrically
enhance the optomechanical interaction. Qualitatively novel
quantum effects are expected when one takes a step beyond
the standard linear coupling and exploits higher-order
dispersive optomechanical coupling. In particular, “x2

coupling,” where the cavity frequency is coupled to the
square of the mechanical displacement, has been proposed
as a means for realizing quantum nondemolition (QND)
measurements of phonon number [12–14], measurement of
phonon shot noise [15], and the cooling and squeezing of
mechanical motion [16–18]. In addition to dispersive
coupling, an effective x2 coupling via optical homodyne
measurement has also been proposed, with the capability of
generating and detecting non-Gaussianmotional states [19].
The dispersive x2 coupling between optical and

mechanical resonator modes in a cavity-optomechanical
system is described by the coefficient g0 ≡ 1=2½∂2ωc=∂x2�,
where ωc is the frequency of the optical resonance of
interest and x is the generalized amplitude coordinate of the
displacement field of the mechanical resonance. One can
show via second-order perturbation theory [20,21] that x2

coupling arises due to linear cross-coupling between the
optical mode of interest and other modes of the cavity. In
the case of two nearby resonant modes, the magnitude of
the x2-coupling coefficient depends on the square of the
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magnitude of the linear cross-coupling between the two
modes (g) and inversely on their frequency separation or
tunnel coupling rate (2J), g0 ¼ g2=2J. In pioneering work
by Thompson et al. [12], a Fabry-Pérot cavity with an
optically thin Si3N4 membrane positioned in between the
two end mirrors was used to realize x2 coupling via
hybridization of the degenerate modes of optical cavities
formed on either side of the partially reflecting membrane.
More recently, a number of cavity-optomechanical systems
displaying x2 coupling have been explored, including
double microdisk resonators [22], microdisk-cantilever
systems [23], microsphere-nanostring systems [24], atomic
gases trapped in Fabry-Pérot cavities [2], and paddle
nanocavities [21].
Despite significant technical advances made in recent

years [21,23,25,26], the use of x2 coupling for measuring or
preparing nonclassical quantum states of a mesoscopic
mechanical resonator remains an elusive goal. This is a
direct result of the small coupling rate to motion at the
quantum level, which for x2 coupling scales as the square of
the zero-point motion amplitude of the mechanical reso-
nator, x2zpf ¼ ℏ=2mωm, wherem is the motional mass of the
resonator and ωm is the resonant frequency. As described in
Ref. [14], one method to greatly enhance the x2 coupling in
a multimode cavity-optomechanical system is to fine-tune
the mode splitting 2J to that of the mechanical resonance
frequency.
In this work we utilize a quasi-two-dimensional photonic

crystal structure to create an optical cavity supporting a pair
of high-Q optical resonances in the 1500-nm-wavelength
band exhibiting large linear optomechanical coupling. The
double-slotted structure is split into two outer slabs and a
central nanobeam, all three of which are free to move, and
electrostatic actuators are integrated into the outer slabs to
allow for both the trimming of the optical modes into
resonance and tuning of the tunnel coupling rate J.
Because of the form of the underlying photonic band
structure, the spectral ordering of the cavity supermodes in
this structure may be reversed, enabling arbitrarily small
values of J to be realized. Measurement of the optical
resonance anticrossing curve, along with calibration of the
linear optomechanical coupling through measurement of
the dynamic optical spring effect, yields an estimated
x2-coupling coefficient as large as g0=2π ¼ 1 THz=nm2

to the fundamental mechanical resonance of the central
beam at ωm=2π ¼ 8.7 MHz. Additional measurements of
g0 through the dynamic and static optical spring effects are
also presented. In comparison to other systems, the
corresponding vacuum x2-coupling rate we demonstrate
in this work (g0x2zpf=2π ¼ 245 Hz) is many orders of
magnitude larger than has been obtained in conventional
Fabry-Pérot [26] or fiber-gap [25] membrane-in-the-middle
(MIM) systems. It is also orders of magnitude larger than
demonstrated in the small mode volume microdisk-
cantilever [23] and paddle nanocavity [21] devices.

Whereas the double-disk microresonators previously stud-
ied by us [22] reach a comparable x2-coupling magnitude,
the planar photonic crystal structure of this work realizes an
order of magnitude larger vacuum coupling rate, with a
much simpler mechanical mode spectrum and a tunable
tunneling rate J.

II. THEORETICAL BACKGROUND

Before we discuss the specific double-slotted photonic
crystal cavity-optomechanical system studied in this work,
we consider a more generic multimoded system consisting
of two optical modes that are dispersively coupled to the
same mechanical mode, and in which the dispersion of each
mode is linear with the amplitude coordinate x of the
mechanical mode. If we further assume a purely optical
coupling between the two optical modes, the Hamiltonian
for such a three-mode optomechanical system in the absence
of drive and dissipation is given by Ĥ ¼ Ĥ0 þ ĤOM þ ĤJ:

Ĥ0 ¼ ℏω1â
†
1â1 þ ℏω2â

†
2â2 þ ℏωmb̂

†b̂; ð1Þ

ĤOM ¼ ℏðg1â†1â1 þ g2â
†
2â2Þx̂; ð2Þ

ĤJ ¼ ℏJðâ†1â2 þ â†2â1Þ: ð3Þ

Here, âi and ωi are the annihilation operator and the
bare resonance frequency of the ith optical resonance, x̂ ¼
ðb̂† þ b̂Þxzpf is the quantized amplitude ofmotion, xzpf is the
zero-point amplitude of the mechanical resonance,ωm is the
bare mechanical resonance frequency, and gi is the linear
optomechanical coupling constant of the ith optical mode to
the mechanical resonance. Without loss of generality, we
take the bare optical resonance frequencies to be equal
(ω1 ¼ ω2 ≡ ω0), allowing us to rewrite the Hamiltonian in
the normal mode basis, â� ¼ ðâ1 � â2Þ=

ffiffiffi
2

p
, as

Ĥ ¼ ℏωþð0Þâ†þâþ þ ℏω−ð0Þâ†−â− þ ℏωmb̂
†b̂

þ ℏ

�
g1 þ g2

2

�
ðâ†þâþ þ â†−â−Þx̂

þ ℏ

�
g1 − g2

2

�
ðâ†þâ− þ â†−âþÞx̂; ð4Þ

where ω�ð0Þ ¼ ω0 � J.
For jJj ≫ ωm such that x̂ can be treated as a quasistatic

variable [13,14], the Hamiltonian can be diagonalized,
resulting in eigenfrequencies ω�ðx̂Þ:

ω�ðx̂Þ ≈ ω0 þ
ðg1 þ g2Þ

2
x̂� J

�
1þ ðg1 − g2Þ2

8J2
x̂2
�
: ð5Þ

As shown below, in the case of the fundamental in-plane
motion of the outer slabs of the double-slotted photonic
crystal cavity, we have only one of g1 or g2 nonzero,
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whereas in the case of the fundamental in-plane motion of
the central nanobeam, we have g1 ≈ −g2.
For a system in which the mechanical mode couples to

the a1 and a2 optical modes with linear dispersive coupling
of equal magnitude but opposite sign (g1 ¼ −g2 ¼ g), the
dispersion in the quasistatic normal mode basis is purely
quadratic with effective x2-coupling coefficient,

g0 ¼ g2=2J; ð6Þ

and quasistatic Hamiltonian,

Ĥ ≈ ℏðωþð0Þ þ g0x̂2Þn̂þ þ ℏðω−ð0Þ − g0x̂2Þn̂− þ ℏωmn̂b;

ð7Þ

where n̂� are the number operators for the a� supermodes
and n̂b is the number operator for the mechanical mode.
Rearranging this equation slightly highlights the interpre-
tation of the x2 optomechanical coupling as inducing a
static optical spring,

Ĥ ≈ ℏωþð0Þn̂þ þ ℏω−ð0Þn̂− þ ℏ½ωmn̂b þ g0ðn̂þ − n̂−Þx̂2�;
ð8Þ

where the static optical spring constant k̄s¼2ℏg0ðnþ−n−Þ
depends on the average intracavity photon number in the
even and odd optical supermodes, n� ≡ hn̂�i.
For a sideband resolved system (ωm ≫ κ), the quasistatic

Hamiltonian can be further approximated using a rotating-
wave approximation as

Ĥ ≈ ℏ½ωþð0Þ þ 2~g0ðn̂b þ 1=2Þ�n̂þ
þ ℏ½ω−ð0Þ − 2~g0ðn̂b þ 1=2Þ�n̂− þ ℏωmn̂b; ð9Þ

where ~g0 ≡ g0x2zpf ¼ ~g2=2J and ~g≡ gxzpf are the x2 and
linear vacuum coupling rates, respectively. It is tempting to
assume from Eq. (9) that by monitoring the optical trans-
mission through the even or odd supermode resonances one
can then perform a continuous QND measurement of the
phonon number in the mechanical resonator [12,27–29]. As
noted in Refs. [13,14], however, the quasistatic picture
described by the dispersion of Eq. (5) fails to capture
residual effects resulting from the nonresonant scattering
between the aþ and a− supermodes, which depends
linearly on x̂ [last term of Eq. (4)]. Only in the vacuum
strong-coupling limit (~g=κ ≳ 1) can one realize a QND
measurement of phonon number [13,14].
The regime of j2Jj ∼ ωm is also very interesting, and is

explored in depth in Refs. [14,30]. Transforming to a
reference frame that removes in Eq. (4) the radiation
pressure interaction between the even and odd supermodes
to first order in g yields an effective Hamiltonian given
by [14,31]

Ĥeff ≈ ℏωþð0Þn̂þ þ ℏω−ð0Þn̂− þ ℏωmn̂b

þ ℏ
~g2

2

�
1

2J − ωm
þ 1

2J þ ωm

�

× ðâ†þâþ − â†−â−Þðb̂þ b̂†Þ2

þ ℏ
~g2

2

�
1

2J − ωm
− 1

2J þ ωm

�

× ðâ†þâ− þ â†−âþÞ2; ð10Þ

where we assume j~g=δj ≪ 1 for δ≡ j2Jj − ωm, and terms
of order ~g3=ð2J � ωmÞ2 and higher are neglected. In the
limit jJj ≫ ωm, we recover the quasistatic result of Eq. (7),
whereas in the near-resonant limit of jδj ≪ jJj, ωm, we
arrive at

Ĥeff ≈ ℏωþð0Þn̂þ þ ℏω−ð0Þn̂− þ ℏωmn̂b

þ ℏ
~g2

2δ
½2sgnðJÞðn̂þ − n̂−Þðn̂b þ 1Þ

þ 2n̂þn̂− þ n̂þ þ n̂−�: ð11Þ

Here, we neglect highly oscillatory terms such as ðâ†þâ−Þ2
and b̂2, a good approximation in the sideband-resolved
regime (κ ≪ ωm, jJj). From Eq. (11), we find that the
frequency shift per phonon of the optical resonances is
much larger than in the quasistatic case (~g2=2jδj ≫
~g2=2jJj). Although a QND measurement of phonon num-
ber still requires the vacuum strong-coupling limit, this
enhanced read-out sensitivity is attainable even for
~g=κ ≪ 1. Equation (11) also indicates that, much like
the QND measurement of phonon number, in the near-
resonant limit a measurement of the intracavity photon
number stored in one optical supermode can be performed
by monitoring the transmission of light through the other
supermode [14,31].

III. DOUBLE-SLOTTED PHOTONIC CRYSTAL
OPTOMECHANICAL CAVITY

A sketch of the double-slotted photonic crystal cavity
structure is shown in Fig. 1(a). As we detail below, the
optical cavity structure can be thought of as being formed
from two coupled photonic crystal waveguides, one around
each of the nanoscale slots, and each with propagation
direction along the x axis. A small adjustment (∼5%) in the
lattice constant is used to produce a local shift in the
waveguide band-edge frequency, resulting in trapping of
optical resonance to this “defect” region. Optical tunneling
across the central photonic crystal beam, which in this case
contains only a single row of holes, couples the cavity
mode of slot 1 (a1) to the cavity mode of slot 2 (a2).
The two outer photonic crystal slabs and the central

nanobeam are all mechanically compliant, behaving as
independent mechanical resonators. The mechanical reso-
nances of interest in this work are the fundamental in-plane
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flexural modes of the top slab, the bottom slab, and the
central nanobeam, denoted by b1, b2, and b3, respectively.
For a perfectly symmetric structure about the x axis of the
central nanobeam, the linear dispersive coupling coeffi-
cients of the b3 mode of the central nanobeam to the two
slot modes a1 and a2 are equal in magnitude but opposite in
sign, resulting in a vanishing linear coupling at the resonant
point where ω1 ¼ ω2 [cf. Eq. (5)]. Figure 1(b) shows a plot
of the dispersion of the optical resonances as a function of
the nanobeam’s in-plane displacement (x3), illustrating how
the linear dispersion of the slot modes (a1, a2) transforms
into quadratic dispersion for the upper and lower super-
mode branches (aþ, a−) in the presence of tunnel coupling
J. The mechanical modes of the outer slabs (b1, b2) provide
degrees of freedom for postfabrication tuning of the slotted

waveguide optical modes, i.e., to symmetrize the structure
such that ω1 ¼ ω2. This is achieved in practice by integrat-
ing metallic electrodes which form capacitors at the outer
edge of the two slabs of the structure as schematically
shown in Fig. 1(a).
The double-slotted photonic crystal cavity of this work is

realized in the silicon-on-insulator material system, with a
top silicon device layer thickness of 220 nm and an
underlying buried oxide layer of 3 μm. Fabrication begins
with the patterning of the metal electrodes of the capacitors
and involves electron-beam (e-beam) lithography followed
by evaporation and lift-off of a bilayer consisting of a 5-nm
sticking layer of chromium and a 150-nm layer of gold.
After lift-off we deposit uniformly a ∼4 nm protective layer
of silicon dioxide. A second electron-beam lithography step
is performed, aligned to the first, to form the pattern of the
photonic crystal and the nanoscale slots that separate the
central nanobeam from the outer slabs. At this step, we also
pattern the support tethers of the outer slabs and the cut
lines that define and isolate the outer capacitors. A fluorine-
based (C4F8 and SF6) inductively coupled reactive-ion etch
is used to transfer the e-beam lithography pattern through
the silicon device layer. The remaining e-beam resist is
stripped using trichloroethylene, and then the sample is
cleaned in a heated piranha (H2SO4∶H2O2) solution. The
devices are then released using a hydrofluoric acid etch to
remove the sacrificial buried oxide layer (this also removes
the deposited protective silicon dioxide layer), followed by
a water rinse and critical point drying.
A scanning electronmicroscope (SEM) image showing the

overall fabricated device structure is shown in Fig. 1(c).
Zoom-ins of the capacitor region of one of the outer slabs and
the tether region at the end of the nanobeam are shown in
Figs. 1(d) and1(e), respectively.Note that the geometry of the
capacitors and the stiffness of the support tethers determine
how tunable the structure is under application of voltages to
the capacitor electrodes. The outermost electrode of each slab
is connected to an independent low-noise dc voltage source,
while the innermost electrodes are connected to a common
ground, thereby allowing one to independently pull on each
outer slab with voltages V1 and V2. In this configuration, we
are limited to increasing the slots defining the optical modes
around the central nanobeam.

A. Photonic band structure

To further understand the optical properties of the
double-slotted photonic crystal cavity, we display in
Fig. 2(a) the photonic band structure of the periodic
waveguide structure. The parameters of the waveguide
are given in the caption of Fig. 2(a). Here, we show only
photonic bands that are composed of waveguide modes
with even vector symmetry around the “vertical” mirror
plane (σz), where the vertical mirror plane is defined by the
z-axis normal and lies in the middle of the thin-film silicon
slab. The fundamental (lowest lying) optical waveguide

(a)

(c) (d)

(e)

(b)

FIG. 1. (a) Double-slotted photonic crystal cavity with optical
cavity resonances (a1, a2) centered around the two slots, and
three fundamental in-plane mechanical resonances corresponding
to motion of the outer slabs (b1, b2) and the central nanobeam
(b3). Tuning the equilibrium position of the outer slabs b1 and b2,
and consequently the slot size on either side of the central
nanobeam, is achieved by pulling on the slabs (red arrows)
through an electrostatic force proportional to the square of the
voltage applied to capacitors on the outer edge of each slab.
(b) Dispersion of the optical modes as a function of x3, the in-
plane displacement of the central nanobeam from its symmetric
equilibrium position. Because of tunnel coupling at a rate J, the
slot modes a1 and a2 hybridize into the even and odd supermodes
aþ and a−, which have a parabolic dispersion near the central
anticrossing point (ω1 ¼ ω2). (c) SEM image of a fabricated
double-slotted photonic crystal device in the silicon-on-insulator
material system. (d) Zoom-in SEM image showing the capacitor
gap (∼100 nm) for the capacitor of one of the outer slabs.
(e) Zoom-in SEM image showing some of the suspending tethers
of the outer slabs which are of length 2.5 μm and width 155 nm.
The central beam, which is much wider, is also shown in
this image.
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bands are of predominantly transverse (in-plane) electric
field polarization, and are thus called TE-like. In the case of
a perfectly symmetric structure, we can further classify the
waveguide bands by their odd or even symmetry about the
“horizontal” mirror plane (σy) defined by the y-axis normal
and cutting through the middle of the central nanobeam.
The two waveguide bands of interest that lie within the
quasi-2D photonic band gap of the outer photonic crystal
slabs, shown as bold red and black curves, are labeled
“even” and “odd” depending on the spatial symmetry with
respect to σy of their mode shape for the dominant electric
field polarization in the y direction, Ey (note that this
labeling is opposite to their vector symmetry). The Ey
spatial mode profiles at the X point for the odd and even
waveguide supermodes are shown in Figs. 2(b) and 2(c),
respectively.

An optical cavity is defined by decreasing the lattice
constant 4.5% below the nominal value of a0 ¼ 480 nm for
the middle five periods of the waveguide [see Fig. 2(d)].
This has the effect of locally pushing the bands toward
higher frequencies [35,36], which creates an effective
potential that localizes the optical waveguide modes along
the x axis of the waveguide. The resulting odd and even TE-
like cavity supermodes are shown in Figs. 2(d) and 2(e),
respectively. These optical modes correspond to the normal
modes aþ and a− in Sec. II, which are symmetric and
antisymmetric superpositions, respectively, of the cavity
modes localized around each slot (a1 and a2). Because of the
nonmonotonic decrease in the even waveguide supermode
as one moves away from the X band edge [cf. Fig. 2(a)], we
find that the simulated opticalQ factor of the even aþ cavity
supermode is significantly lower than that of the odd
a− cavity supermode. This will be a key distinguishing
feature found in the measured devices as well.

B. Optical tuning simulations

The slot width in the simulated waveguide and cavity
structures of Fig. 2 is set at s ¼ 100 nm. For this slot width
we find a lower frequency for the even (aþ) supermode
than for the odd (a−) supermode at the X-point photonic
band edge of the periodic waveguide and in the case of the
localized cavity modes. Figure 3 presents finite-element
method (FEM) simulations of the optical cavity for slot
sizes swept from 90 to 100 nm in steps of 1 nm, all other
parameters are the same as in Fig. 2. For the slot widths

(a)

(b)

(c)

(d)

FIG. 3. Tuning of the slot widths of the double-slotted photonic
crystal cavity showing (a) the mean wavelength shift and (b) the
splitting 2J ¼ ωþ − ω− of the even and odd cavity supermodes
versus slot width s ¼ s1 ¼ s2. (c),(d) Avoided crossing of the
cavity supermodes obtained by tuning s1 while keeping s2 fixed
at (c) s2 ¼ 90 nm and (d) s2 ¼ 95 nm. The red and black data
points correspond to the supermode branch with even and odd
symmetry at the center of the anticrossing, respectively. Note that
the upper and lower supermode branch switch symmetry between
small slots (s2 ¼ 90 nm) and large slots (s2 ¼ 95 nm). For all
simulations in (a)–(d) the parameters of the cavity structure are
the same as in Fig. 2, except for the slot widths. The simulations
are performed using the COMSOL FEM mode solver [34].

(a) (b)

(c)

(d)

(e)

FIG. 2. (a) Band structure diagram of the periodic (along x)
double-slotted photonic crystal waveguide structure. Here, we
show only photonic bands that are composed of modes with even
vector symmetry around the “vertical” (σz) mirror plane. The two
waveguide bands of interest lie within the quasi-2D photonic
band gap of the outer photonic crystal slabs and are shown as bold
red and black curves. These waveguide bands are labeled “even”
(bold black curve) and “odd” (bold red curve) due to the spatial
symmetry of their mode shape for the dominant electric field
polarization in the y direction, Ey. The simulated structure is
defined by the lattice constant between nearest-neighbor holes in
the hexagonal lattice (a0 ¼ 480 nm), the thickness of the silicon
slab (d ¼ 220 nm), the width of the two slots (s ¼ 100 nm), and
the refractive index of the silicon layer (nSi ¼ 3.42). The hole
radius in the outer slabs and the central nanobeam is r ¼ 144 nm.
The gray shaded region represents a continuum of radiation
modes which lie above the light cone for the air cladding which
surrounds the undercut silicon slab structure. (b) Normalized Ey
field profile at the X point of the odd waveguide supermode,
shown for several unit cells along the x guiding axis. (c) Ey field
profile of the even waveguide supermode. Waveguide simulations
of (a)–(c) are performed using the plane-wave mode solver MPB
[32,33]. Normalized Ey field profile of the corresponding
localized cavity supermodes of (d) odd and (e) even spatial
symmetry about the y axis mirror plane. The lattice constant a0 is
decreased by 4.5% for the central five lattice constants between
the dashed lines to localize the waveguide modes. Simulations of
the full cavity modes are performed using the COMSOL finite-
element method mode solver package [34].
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tuned symmetrically (s1 ¼ s2 ¼ s), the mean wavelength
of the even and odd cavity supermodes and their frequency
splitting 2J ¼ ωþ − ω− are plotted in Figs. 3(a) and 3(b),
respectively. As expected, the mean wavelength drops for
increasing slot width. The frequency splitting, however,
also monotonically decreases with slot width, going from a
positive value for s ¼ 90 nm to a negative value for s ¼
100 nm slots and crossing zero for a slot width of
s ¼ 95 nm. In Figs. 3(c) and 3(d), the symmetry is broken
by keeping s2 fixed and scanning s1; the cavity supermodes
are driven through an anticrossing with a splitting deter-
mined by the fixed slot width s2.
The spectral inversion of the even aþ and odd a− cavity

supermodes predicted in Fig. 3(b) originates in the unequal
overlap of each mode with the air slots separating the two
outer slabs from the central nanobeam. The odd supermode
tends to be pushed farther from the middle of the central
nanobeam, having slightly larger overlap with the air slots.
An increase in the air region for increased slot size leads to a
blueshift of both cavity supermodes. The odd mode having a
larger electric field energydensity in the air slots than the even
mode is more affected by a change in the slot widths.
Therefore, upon equal increase of the slot widths, the odd
mode experiences larger frequency shifts than the evenmode,
which results in a tuning of the frequency splitting. For
particular geometrical parameters of the central nanobeam, a
change in the slot widths is sufficient to invert the spectral
ordering of the supermodes. This means that arbitrarily small
splittings can potentially be realized, which is important for
applications in x2 detection where the splitting enters
inversely in the coupling (for the quasistatic case).

IV. EXPERIMENTAL MEASUREMENTS

Optical testing of the fabricated devices is performed in a
nitrogen-purged enclosure at room temperature and pressure.
A dimpled optical fiber taper is used to locally excite and
collect light from the photonic crystal cavity, details of which
can be found in Ref. [37]. The light from a tunable, narrow-
bandwidth laser source in the telecom 1550-nm wavelength
band (New Focus, Velocity series) is evanescently coupled
from the fiber taper into the device with the fiber taper
guiding axis parallel with that of the photonic crystal
waveguide axis, and the fiber taper positioned laterally at
the center of the nanobeam and vertically a few hundreds of
nanometers above the surface of the silicon chip. Relative
positioning of the fiber taper to the chip is accomplished
using a multiaxis set of encoded dc-motor stages with 50-nm
step resolution. The light in the fiber is polarized parallel
with the surface of the chip in order to optimize the coupling
to the in-plane polarization of the cavity modes.
With the taper placed suitably close to a photonic crystal

cavity (∼200 nm), the transmission spectrum of the laser
probe through the device features resonance dips at the
supermode resonance frequencies, as shown in the intensity
plots of Figs. 4(a)–4(c). The resonance frequencies of the

cavity modes are tuned via displacement of the top and
bottom photonic crystal slabs, which can be actuated
independently using their respective capacitor voltages V1

and V2. The capacitive force is proportional to the applied
voltage squared [36], and thus increasing the voltageVi on a
given capacitor widens the waveguide slot si and (predomi-
nantly) increases the slot mode frequency ai (note the other
optical slot mode frequency also increases slightly). For the
devices studied in this work, the slab tuning coefficient with
applied voltage (αcap) is estimated from SEM analysis of the
resulting structure dimensions and FEM electromechanical
simulations to be αcap ¼ 25 pm=V2.
We fabricate devices with slot widths targeted for a range

of 75–85 nm, chosen smaller than the expected zero-
splitting slot width of s ¼ 95 nm so that the capacitors
could be used to tune through the zero-splitting point.
While splittings larger than 150 GHz are observed in the
nominal 85-nm slot width devices, splittings as small as
10 GHz could be resolved in the smaller 75-nm slot
devices. As such, in the following we focus on the results
from a single device with an as-fabricated slot size
of s ≈ 75 nm.

A. Anticrossing measurements

Figure 4 shows intensity plots of the normalized optical
transmission through the optical fiber taper when evan-
escently coupled to the photonic crystal cavity of a device
with nominal slot width s ¼ 75 nm. Here, a series of
optical transmission spectrum are measured by sweeping
the probe laser frequency and the voltage V1, with V2 fixed
at three different values. The estimated anticrossing split-
ting from the measured dispersion of the cavity supermodes
is 2J=2π ¼ 50, 12, and−25 GHz for V2 ¼ 1, 15, and 18 V,
respectively. In order to distinguish between the odd and
even cavity supermodes at the anticrossing point, we use
the fact that both the coupling rate to the fiber taper κe and
the intrinsic linewidth κi depend on the symmetry of the
cavity mode. First, the odd supermode branch becomes
dark at the anticrossing because it cannot couple to the
symmetric fiber taper mode. Second, from numerical FEM
simulation we find that in the vicinity of the anticrossing
point the linewidth of the odd supermode branch narrows
while the linewidth of the even supermode branch broad-
ens. Far from the anticrossing region, the branches are
asymptotic to individual slot modes and their linewidths
and couplings to the fiber taper are similar.
These features are clearly evident in the optical

transmission spectra of Figs. 4(a)–4(c), as well as in the
measured linewidth of the optical supermode resonances
shown in Figs. 4(g) and 4(h). Figure 4(a) was taken with a
small voltage V2 ¼ 1 V, corresponding to a small slot
width at the anticrossing point, and is thus consistent with
the even mode frequency being higher than the odd mode
frequency for small slot widths [cf. Fig. 3(b)]. The exact
opposite identification is made in Fig. 4(c), where
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V2 ¼ 18 V is much larger, corresponding to a larger slot
width at the anticrossing point. Figure 4(b) with V2 ¼ 15 V
is close to the zero-splitting condition. For comparison, a
simulation of the expected anticrossing curves is shown in
Figs. 4(d)–4(f) for s2 ¼ 93, 95, and 97 nm, respectively.
Here, we take the even superposition of the slot modes to
have a lowerQ factor than the odd superposition of the slot
modes, and the coupling of the fiber taper to be much
stronger to the even mode than the odd mode, consistent
with results from numerical FEM simulations. Good
qualitative correspondence is found with the measured
transmission curves of Figs. 4(a)–4(c).
An estimate of the x2-coupling coefficient g0b3 can be

found from the simulated value of αcap and a fit to the
measured tuning curves of Fig. 4. Consider the anticrossing
curve of Fig. 4(b) with the smallest discernable splitting.
Far from the anticrossing point the tuning of the a1 and a2
slot modes is measured to be linear with the square of V1:
ga1;V2

1
=2π ¼ 3.9 GHz=V2 and ga2;V2

1
=2π ¼ 0.5 GHz=V2.

Figure 5(a) shows a zoom-in of the measured tuning curve
near the anticrossing point. A double Lorentzian curve is fit
to each measured spectrum, with the resonance frequency

(a) (b) (c)

(d) (e) (f)

(g)

(h)

FIG. 4. (a)–(c) Optical transmission measurements versus the wavelength of the probe laser showing the cavity mode anticrossing and
tuning of the photon tunneling rate. In these measurements the probe laser wavelength (horizontal axis) is scanned across the optical
cavity resonances as the voltage across the first capacitor V1 is swept from low to high (vertical axis shows V2

1 in V
2, proportional to slab

displacement). The second capacitor is held fixed at (a) V2 ¼ 1 V, (b) V2 ¼ 15 V, and (c) V2 ¼ 18 V. The color scale indicates the
fractional change in the optical transmission level ΔT, with blue corresponding to ΔT ¼ 0 and red corresponding to ΔT ≈ 0.25. From
the three anticrossing curves we measure a splitting 2J=2π equal to (a) 50 GHz, (b) 12 GHz, and (c) −25 GHz. (d)–(f) Corresponding
simulations of the normalized optical transmission spectra for the slot width s1 varied and the second slot width held fixed at
(d) s2 ¼ 93 nm, (e) s2 ¼ 95 nm, and (f) s2 ¼ 97 nm. The dispersion and tunneling rate of the slot modes are taken from simulations
similar to that found in Fig. 3. Panels (g) and (h) show the measured linewidths of the high-frequency upper (black) and low-frequency
lower (red) optical resonance branches as a function of V2

1, extracted from (a) and (c), respectively. The narrowing (broadening) is a
characteristic of the odd (even) nature of the cavity supermode, indicating the inversion of the even and odd supermodes for the two
voltage conditions V2 ¼ 1 V and V2 ¼ 18 V. The lines are guides for the eye.

(a) (b)

(c)

FIG. 5. (a) Fine-tuning scan around the anticrossing point of the
measured dispersion curve of Fig. 4(b). Black circles are the
resonance frequencies obtained from fitting a double Lorentzian
curve to each measured spectrum. (b) Plot of the linewidth versus
ΔV2

1 around the anticrossing point from the double-Lorentzian fit
to the measured spectra of (a). Again, black (red) data points
correspond to the upper (lower) frequency optical supermode.
(c) Plot of the resonance frequency splitting versus ΔV2

1. The
solid black curves correspond to the fit curves for the 95%
confidence interval of the fit value of the tunneling rate,
2J=2π ¼ 12.2� 1.1 GHz.
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of each Lorentzian indicated as a black circle. The
corresponding linewidths are shown in Fig. 5(b). A fit to
the splitting of the resonance frequencies versus ΔV2

1

around the center of the anticrossing curve [shown in
Fig. 5(c)] yields a best fit to the tunneling rate of
2J=2π ¼ 12.2� 1.1 GHz. Because of the finite linewidth
of the measured cavity modes near the anticrossing, much
smaller splittings were not accurately discernable. For the
simulated value of αcap ¼ 0.025 nm=V2, the corresponding
linear dispersive coefficients versus the first slot width are
ga1;δs1=2π ¼ 156 GHz=nm and ga2;δs1=2π ¼ 20 GHz=nm.
Noting that a displacement amplitude x3 for the funda-
mental in-plane mechanical mode of the central nanobeam
is approximately equivalent to a reduction in the width of
one slot by −x3 and an increase in the other slot by þx3,
the linear optomechanical coupling coefficient between
optical slot mode a1 and mechanical mode b3 is estimated
to be ga1;b3 ≈ ðga1;δs1 þ ga1;−δs2Þ ¼ ðga1;δs1 − ga2;δs1Þ ¼
2π½136 GHz=nm�, where by symmetry ga1;−δs2 ¼ −ga2;δs1.
Along with a measured splitting of 2J=2π ¼ 12 GHz, this
yields through Eq. (6) an estimate for the x2-coupling
coefficient of g0b3=2π ≈ 1.54 THz=nm2.

B. Transduction of mechanical motion

Figure. 6 shows the evolution of the optically transduced
mechanical noise power spectral density near the

anticrossing region of Fig. 4(a). In this plot, s2 is fixed
and s1 is varied over an estimated range of δs1 ¼ �0.3 nm
around the anticrossing. Mechanical motion is imprinted as
intensity modulations of the probe laser, which is tuned to
the blue side of the upper frequency supermode. Here, we
choose the detuning point corresponding to ΔL ≡ ωL−
ωþ ≈ κ=2

ffiffiffi
3

p
, where ωL is the probe laser frequency and κ

is the full width at half maximum linewidth of the optical
resonance. This detuning choice ensures (maximal) linear
transduction of small fluctuations in the frequency of the
cavity supermode, which allows us to relate nonlinear
transduction of motion with true nonlinear optomechanical
coupling [21,23]. A probe power of Pin ¼ 10 μW is used in
order to avoid any nonlinear effects due to optical absorp-
tion, and the transmitted light is first amplified through an
erbium-doped fiber amplifier before being detected on a
high-gain photoreceiver (transimpedance gain 104 V=A,
NEP ¼ 12 pW=Hz1=2, bandwidth 150 MHz). The resulting
radio-frequency (rf) photocurrent noise spectrum is plotted
in Fig. 6.
To help identify the measured noise peaks, numerical

FEM simulations of the mechanical properties of the
double-slotted structure are performed. Taking structural
dimensions from SEM images, the simulated mechanical
frequency for the fundamental in-plane resonances of the
two outer slabs (b1 and b2) is found to be ωm=2π ¼
8.4 MHz. An effective motional mass for the slab modes of
m ¼ 35 pg is determined by integrating, over the volume of
the structure, the mass density of the silicon slab weighted
by the normalized, squared displacement amplitude of the
slab’s motion [38]. The corresponding estimate of the
zero-point amplitude of the slab modes is given by
xzpf ≡ ðℏ=2mωmÞ1=2 ¼ 5.6 fm. The resonance frequency,
effective motional mass, and zero-point amplitude for the
fundamental in-plane resonance of the central nanobeam
(b3) are simulated to be ωm=2π ¼ 10.7 MHz, m ¼ 3.6 pg,
and xzpf ¼ 15.4 fm, respectively.
Comparing to Fig. 6, the two lowest frequency

noise peaks are thus identified as due to the thermal motion
of the b1 and b2 modes of the outer slabs, with ωb1=2π ¼
5.54 MHz and ωb2=2π ¼ 6.34 MHz. The identification of
the b1 mode with the lower frequency mechanical reso-
nance is made possible due to the increasing signal trans-
duction of this resonance as s1 is increased above the
anticrossing point. Since we are probing the upper fre-
quency optical supermode, for s1 > s2 (δs1 > 0) the super-
mode is approximately a1, which is localized to slot 1 and
sensitive primarily to the motion of b1. We see an opposite
trend for the b2 resonance, with larger transduction gain for
s1 < s2 (δs1 < 0). The frequencies of both these modes is
lower than found in numerical simulations, likely due to
squeeze-film damping effects not captured in the FEM
analysis [39].
The noise peak at ωm=2π ¼ 8.73 MHz behaves alto-

gether differently than the b1 and b2 resonances, and is

FIG. 6. rf photocurrent noise spectrum for the optically trans-
mitted light past the double-slotted photonic crystal cavity. Here,
the applied voltage V2 ¼ 1 V is held fixed and V1 is swept from
just below to just above the anticrossing point of Fig. 4(a). In
these measurements the probe laser power is 10 μW at the input
to the cavity, the probe laser frequency is set on the blue side of
the upper frequency supermode resonance, ΔL ≈ κ=2

ffiffiffi
3

p
, and the

fiber taper is placed in the near field of the photonic crystal cavity
resulting in an on-resonance dip in transmission of approximately
ΔT ¼ 15%. The vertical axis in this plot is converted to a change
in the slot width δs1 using the numerically simulated value of
αcap ¼ 0.025 nm=V2. The color indicates the magnitude of the rf
noise power spectral density (PSD) in dBm=Hz, where the color
scale from 0 to 14 MHz is shown on the left of the scale bar and
the color scale from 14 to 20 MHz is shown on the right of the
scale bar (a different scale is used to highlight the noise
out at 2ωb3 ).
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identified with the b3 mode of the central nanobeam
(although again at a lower frequency than expected from
FEM simulation). This noise peak is transduced with
roughly equal signal levels for δs1 > 0 and δs1 < 0, but
significantly drops in strength for δs1 ≈ 0 near the anti-
crossing. This is the expected characteristic of the b3 mode,
where the dispersive linear optomechanical coupling to the
b3 should vanish at the anticrossing point. Also shown in
Fig. 6 is the noise at 2ωb3=2π ≈ 17.5 MHz, which shows a
weakly transduced resonance with signal strength peaked
around δs1 ¼ 0. The suppression in transduction of the
noise peak at ωb3 concurrent with the rise in transduction of
the noise peak at 2ωb3 is a direct manifestation of the
transition from linear (ga1;b3 or ga2;b3) to position-squared
(g0b3) optomechanical coupling.

C. Static and dynamic optical spring measurements

Our previous estimate of g0b3 from the anticrossing curves
relied on the approximate correspondence between the
static displacement of the outer slabs and the fundamental
in-plane vibrational amplitude of the b3 mode of the central
nanobeam. A more accurate determination of the true
x2-coupling coefficient to b3 can be determined from
two different optical spring measurements. Far from the
anticrossing one can determine the linear optomechanical
coupling coefficient between the optical slot modes and the
b3 mechanical mode from the dynamic backaction of the
intracavity light field on the mechanical frequency, which
in conjunction with the measured anticrossing splitting
yields g0b3 via Eq. (6). A direct measurement of ~g0b3 can also
be obtained from the static optical spring effect near the
anticrossing point as indicated in Eq. (9).
Figure 7(a) shows the dependence of the mechanical

resonance frequency of the b3 mode of the central nano-
beam versus the laser detuningΔL when the device is tuned
far from the anticrossing point in Fig. 4(a) (V1 ¼ 1 V and
V2 ¼ 1 V). In these measurements the probe laser power is
fixed at Pin ¼ 10 μW and the laser frequency is scanned
across the upper optical supermode resonance, which away
from the anticrossing point in this case is the slot mode a2.
In the sideband unresolved regime (ωm ≪ κ), the dynamic
optical spring effect has a dispersive line shape centered
around the optical resonance frequency, with optical soft-
ening of the mechanical resonance occurring for red
detuning (ΔL < 0) and optical stiffening occurring for
blue detuning (ΔL > 0).
A fit to the measured frequency shift versus ΔL is

performed using the linear optomechanical coupling rate
~ga1;b3 as a fit parameter. The resulting optomechanical
coupling rate that best fits the data is shown in Fig. 7(a) as a
red curve, and corresponds to ~ga2;b3=2π ¼ 1.72 MHz.
Using xzpf ¼ 16 fm for the b3 mechanical mode, this
corresponds to ga2;b3=2π ¼ 107 GHz=nm. Note that this
is slightly smaller than the value measured indirectly
from the dispersion in the anticrossing curve of Fig. 4;

however, that value relied on the simulated value for αcap,
which is quite sensitive to the actual fabricated dimensions
and stiffness of the structure. For the smallest splitting
measured in this work (2J=2π ¼ 12 GHz), we get an
estimated value for the x2 coupling to the b3 mode from
the dynamic optical spring measurements of ~g0b3=2π ¼
245 Hz (g0b3=2π ¼ 0.96 THz=nm2).
An entirely different dynamics occurs at the anticrossing

point where x2 optomechanical coupling dominates.
Optical pumping of the supermode resonances near the
anticrossing point gives rise to an optical spring shift which
depends on the static (i.e., not how it modulates with
motion) value of the intracavity photon number. Because of
the opposite sign of the quadratic dispersion of the upper
and lower optical supermode branches, optical pumping of
the upper branch resonance leads to a stiffening of the
mechanical structure, whereas optical pumping of the lower
branch leads to a softening of the structure [23,40]. The
measured frequency shift of the b3 mechanical resonance
for optical pumping of the upper branch cavity supermode
(the even aþ mode in this case) is shown in Fig. 7(b) for a
voltage setting on the capacitor electrodes of V1 ¼ 10.8 V
and V2 ¼ 1 V. This position is slightly below the exact
center of the anticrossing point of Fig. 4(a) so as to allow
weak linear transduction of the b3 resonance. A rather large
supermode splitting of 2J=2π ¼ 50 GHz is also chosen to
ensure that only the even aþ supermode is excited, and that
the contribution to the optical trapping (antitrapping) by the
lower branch a− resonance is negligible.

(a) (b)

FIG. 7. (a) Dynamic optical spring effect measured by exciting
the upper frequency supermode resonance far from the anticross-
ing point (∼a2 mode) (V1 ¼ V2 ¼ 1 V, Pin ¼ 10 μW, κ=2π ¼
12.5 GHz, ΔT ≈ 10%). (b) Static optical spring shift of the b3
resonance frequency versus laser detuning ΔL from the upper
(∼aþ) supermode resonance near the anticrossing point (V1 ¼
10.8 V, V2 ¼ 1 V, Pin ¼ 50 μW, κ=2π ¼ 26 GHz, ΔT ≈ 25%).
In both (a) and (b) V2 is fixed at 1 V [see Fig. 4(a)] and the
measured data (circles) correspond to a Lorentzian fit to the
resonance frequency of the optically transduced thermal noise
peak at ωb3 . In (a) the red curve is a fit to the data using a
dynamical optical spring model [38] with linear optomechanical
coupling coefficient ~ga2;b3=2π ¼ 1.72 MHz. In (b) the red curve
is a fit to the data using a static spring model [cf. Eqs. (8) and (9)]
with x2-coupling coefficient ~g0b3=2π ¼ 46 Hz. In both the spring
models of (a) and (b) the intracavity photon number versus
detuning nðΔLÞ is calibrated from the known input laser power,
cavity linewidth, and on-resonance transmission contrast.
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As per Eqs. (8) and (9), the mechanical frequency shift is
approximately given by ΔωmðΔLÞ ≈ 2~g0b3nþðΔLÞ, where
nþðΔLÞ is the average intracavity photon number in the aþ
supermode. Fitting this model to the data measured in
Fig. 7(b) yields a value of ~g0b3=2π ¼ 46 Hz. This is slightly
lower than the 60-Hz value expected for a splitting
of 2J=2π ¼ 50 GHz and the linear coupling rate of
~ga2;b3=2π ¼ 1.72 MHz determined from the dynamical
optical spring effect, but consistent with our slight detuning
of the structure from the exact center of the anticrossing.

V. DISCUSSION

The quasi-two-dimensional photonic crystal architecture
as presented here provides a means of realizing extremely
large dispersive x2 coupling between light and mechanics.
This is due to the ability to colocalize optical and acoustic
waves in a common wavelength scale volume, resulting in
inherently large linear optomechanical coupling. Combined
with an ability to engineer the optical mode dispersion to
allow for a tunable degree of optical mode splitting, the x2

coupling can be even further enhanced. It is interesting to
consider then just how far this technology could be pushed
given recent technical advances made in the area of
photonic crystals and optomechanical crystals.
We consider here the feasibility of a QND measurement

of phonon number, although similar parameters would
enable a measurement of phonon shot noise [15], a QND
measurement of photon number [14], and the cooling and
squeezing of mechanical motion [16–18]. In the quasistatic
limit as realized in this work (jJj ≫ ωm), the optical
resonance shift per phonon is Δω ¼ 2~g0 ¼ ~g2=J. If the
lower frequency optical resonance (a− in the case J > 0) is
used to probe the system, then roughly the photons emitted
per unit time from the a− cavity mode would change by
ðn−κ−ÞðΔω=κ−Þ upon a single phonon jump in the
mechanical resonator. Assuming shot-noise-limited detec-
tion over a measurement time τ, the signal-to-noise ratio
(SNR) for a phonon jump is given approximately by

SNR ≈
ðn−κ−Þ2ðΔω=κ−Þ2τ2

n−κ−τ
¼

�
n−Δω2

κ−

�
τ: ð12Þ

The corresponding phonon jump measurement rate
follows from the term in the bracket of Eq. (12), Γmeas ¼
½ðΔωÞ2=κ−�n− ¼ ½4ð~g0Þ2=κ−�n−.
This measurement rate should be compared against the

decoherence rate of the mechanical resonator. The thermal
decoherence rate is Γth ¼ ðn̄th þ 1Þγi, where n̄th is the Bose
occupation factor depending on the bath temperature (Tb)
and γi is the intrinsic mechanical damping rate to the bath.
At Tb ¼ 4 K similar silicon photonic crystal devices have
been operated with intracavity photon numbers of 103

and mechanical Q factor as large as 7 × 105 [11]. For the
device studied here (ωm=2π ≈ 10 MHz, ~g0=2π ¼ 240 Hz,
κ−=2π ¼ 5 GHz), the phonon jump measurement rate

would be Γmeas=2π ≈ 46 mHz, while the thermal
decoherence rate at Tb ¼ 4 K and for Qm ¼ 7 × 105 is
Γth=2π ≈ 125 kHz. Significant improvements in the meas-
urement rate can be realized with improved optical Q
factor. Recent work by Sekoguchi et al. [41] has shown that
optical Q factors of order 107 can be realized in similar
planar 2D silicon photonic crystals in the telecom band,
corresponding to a minimum cavity decay rate of
κ=2π ¼ 20 MHz. By proper tuning of the double-slotted
photonic crystal structure, the optical mode splitting
2J could be reduced down to a minimum resolvable value
equal to κ, yielding an x2-coupling value of ~g0=2π ≈
100 kHz and a phonon jump measurement rate of
Γmeas=2π ≈ 2 MHz.
In order to realize a sideband-resolved system,

higher mechanical resonant frequencies must also be
employed. Numerical simulations indicate that higher-
order modes of the central nanobeam can maintain sig-
nificant optomechanical coupling, with ~g=2π ≈ 0.4 MHz
for the seventh-order in-plane mechanical resonance at
ωm=2π ¼ 225 MHz. Tuning the structure such that the
mode splitting is nearly resonant with the mechanical
frequency, ~g ≪ jδ≡ j2Jj − ωmj ≪ ωm, j2Jj, greatly
enhances the frequency shift per phonon as per Eq. (11),
Δω ¼ ~g2=δ. For similar cavity conditions as above
(n− ¼ 103, κ−=2π ¼ 20 MHz), and assuming δ ¼ 10~g, a
measurement rate of Γmeas=2π ≈ 80 kHz is realized. This is
comparable to the thermal decoherence rate at Tb ¼ 4 K
assuming a similar mechanical Q factor for these higher
frequency modes. Recent measurements at bath temper-
atures of Tb ≲ 100 mK, however, have shown that
mechanical Q factors in excess of 107 can be realized in
silicon using phononic band gap acoustic shielding pat-
terned in the perimeter of the device [42]. At these
temperatures we can expect a bath occupancy of
n̄th ≈ 10, and with an acoustic band gap shield, a much
smaller thermal decoherence rate of Γth=2π ≈ 300 Hz. A
comparable measurement rate could then be employed with
a much weaker optical probe corresponding to an intra-
cavity photon number of n− ≈ 10.
The most challenging aspect of a QND phonon number

measurement, however, is the optically induced mechanical
decay due to residual backaction stemming from the linear
(in x̂) cross-coupling of the cavity supermodes [13,14].
This parasitic backaction damping of the mechanical
resonator occurs through a process, for example, in which
a photon is scattered from the driven a− mode into the aþ
mode where it decays into the optical bath, absorbing a
phonon in the process. The optically induced mechanical
decay rate for a nb-phonon Fock state is given by Γopt ≈
ð~g=δÞ2nbn−κþ [¼ ½ð~g0Þ2=j2Jj�nbn−κþ in the quasistatic
limit] [14]. Comparing to the phonon jump measurement
rate, we see that only in the vacuum strong-coupling limit
(~g=κ ≳ 1) can one realize a continuous QND measurement
of phonon number:
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Γmeas

Γopt
≈

~g2

nbκþκ−
≲
�
~g
κ

�
2

: ð13Þ

Note that a more careful analysis [13,14] indicates that a
limit of ~g≳ κi need only be met, where κi is the intrinsic
damping of the optical cavity excluding loading of the
cavity by measurement channels. A ratio of ~g=κi ≈ 0.007
has previously been realized in silicon optomechanical
crystals [43]. In the case of the double-slotted photonic
crystal structure studied here, fabrication of nanoscale slots
as small as s ¼ 25 nm [44] would increase the linear
optomechanical coupling between a� cavity supermodes
to ~g=2π ∼ 10 MHz. With this advance, and in conjunction
with an increase of the optical Q factor to 107 [41], it does
seem feasible in the near future to reach the vacuum strong-
coupling limit which would enable QND phononic and
photonic measurements as proposed in Ref. [14].
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