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Work and quantum correlations are two fundamental resources in thermodynamics and quantum
information theory. In this work, we study how to use correlations among quantum systems to optimally
store work. We analyze this question for isolated quantum ensembles, where the work can be naturally
divided into two contributions: a local contribution from each system and a global contribution originating
from correlations among systems. We focus on the latter and consider quantum systems that are locally
thermal, thus from which any extractable work can only come from correlations. We compute the
maximum extractable work for general entangled states, separable states, and states with fixed entropy. Our
results show that while entanglement gives an advantage for small quantum ensembles, this gain vanishes
for a large number of systems.
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I. INTRODUCTION

Traditional, macroscopic thermodynamics is strikingly
robust to the underlying mechanics: its three laws hold true
while switching from classical to quantum mechanics [1].
On the other hand, one would hope for the opposite, since
thermodynamics is intimately connected to information
theory [2], and quantum phenomena, such as entanglement,
have a drastic effect on the latter, irrespective of the
scale [3].
Recently, much attention has been dedicated to the

problem of understanding thermodynamics of small quan-
tum systems. This has led notably to the development of a
resource theoretical formulation of quantum thermodynam-
ics [4–6] and, in a more practical vein, to the study of
quantum thermal machines [7–15]. The role and signifi-
cance of quantum effects to thermodynamics is still to be
fully understood, although progress has recently been
made [13–22].
A problem of particular importance in quantum thermo-

dynamics is to understand which quantum states allow for
the storage and extraction of work from quantum systems
[23,24]. Such states are called nonpassive, while states

from which no work can be extracted are referred to as
passive. Remarkably, the latter have the property of
activation: when considered as a whole, several copies
of passive states can become nonpassive. The only states
lacking this property are the thermal (also referred to as
completely passive) states [23,24].
The situation changes when considering ensembles that

can also be correlated. There, even a collection of locally
thermal states can be nonpassive [25–27]. The main goal of
the present work is to understand how to optimally make
use of correlations among quantum systems for work
storage. Specifically, we consider a quantum ensemble
composed of n subsystems (particles or modes). Each
subsystem is assumed to be in a thermal state, at the same
temperature T. The total system, however, is correlated,
because otherwise its state would also be thermal, hence,
passive. This is in fact the natural scenario to study the role
of correlations for work storage, as they become the only
source of nonpassivity.
First, we show that if no restriction on the global state is

made, then it is possible to store in the system the maximal
amount of work compatible with the requirement that the
reduced states are thermal. In other words, at the end of the
protocol, the system is left in the ground state and, thus, all
energy has been extracted. Notably, this is possible thanks
to quantum entanglement. It is then natural to ask if the
same amount of work can be stored using a separable or
even a purely classical state diagonal in the product energy
eigenbasis, that is, with no coherences among different
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energy levels. We show that, although the amount of work
that can be stored in unentangled states is strictly smaller
than the amount that can be stored in entangled states for
any finite n, the gain decreases with the size of the system
and in the thermodynamic limit (n → ∞) purely classical
states already become optimal. In fact, quantum resources
offer a significant advantage only for small n, while neither
entanglement nor energy coherences are needed for optimal
work storage in the thermodynamic limit. We also consider
additional natural constraints on the global state, such as
limiting the entropy or requiring the decohered (classical)
version of the state to be thermal, and investigate the role of
quantum coherence and entanglement in these cases.
Finally, we show that our results are also applicable in the

scenario where the system has access to a thermal bath.
There, the connection between work extraction and corre-
lations has been studied before [11,19,28–35]. Given access
to global operations on the subsystems, the extractablework
is proportional to the mutual information [28,31]. That is,
only the strength of the correlations is relevant, and not the
type (i.e., quantum or classical). Here, in contrast, we show
that when the bath (a macroscopic object) is not available
and one has only a few subsystems, quantum correlations do
provide a sizable advantage. This brings new insights in the
quantum-to-classical transition in thermodynamics.

II. FRAMEWORK

We consider an isolated quantum system that consists
of n d-level subsystems. The local Hamiltonian h ¼P

a Eajaihaj is taken to be the same for each subsystem
and, without loss of generality, it is assumed that the ground
state energy is zero. We consider the situation where there
is no interaction Hamiltonian between the subsystems, such
that the total Hamiltonian H is simply the sum of the
individual local Hamiltonians, H ¼ P

i hi.
The class of operations that we consider is the class of

cyclic Hamiltonian processes;, i.e., we can apply any time-
dependent interaction VðtÞ between the n subsystems for a
time τ, such that VðtÞ is nonvanishing only when 0 ≤ t ≤ τ.
The corresponding evolution can be described by a unitary
operator, UðτÞ ¼ exp�!f−i R τ

0 dt½H þ VðtÞ�g, where exp�!
denotes the time-ordered exponential. By varying over
all VðtÞ, we can generate any unitary operator U ¼ UðτÞ,
and, therefore, this class of operations can alternatively
been seen as the ability to apply any global unitary on the
system.
The task we are interested in is work extraction via a

cyclic Hamiltonian process. Since the system is taken to be
isolated, there are no other systems to exchange energy
with; therefore, the extracted work is the change in average
energy of the system under such a process [36]. More
precisely, we define the extracted work W as

W ¼ TrðρHÞ − TrðUρU†HÞ: ð1Þ

Within this framework, it is well known that work can be
extracted from a system if and only if the system is
nonpassive, where a passive system with Hamiltonian
H ¼ P

α Eαjαihαj (Eα ≤ Eαþ1) is the one whose state is
of the form

ρpassive ¼
X
α

pαjαihαj; with pαþ1 ≤ pα: ð2Þ

In other words, a system is passive if and only if its state is
diagonal in the energy eigenbasis and has eigenvalues
nonincreasing with respect to energy. Now it easily follows
that, given a nonpassive state ρ, the extracted work (1) is
maximized by [37]

Wmax ¼ TrðρHÞ − TrðρpassiveHÞ; ð3Þ

where ρ and ρpassive have the same spectrum and therefore
there exists a unitary operator taking the former to the latter.
Equation (3) defines the energy that can be potentially
extracted from the state via cyclic Hamiltonian (unitary)
processes. This quantity is the main focus of this
article, and we refer to it as extractable work, stored work,
or work content (the term ergotropy is also used in the
literature [37]).
Importantly, we see that passivity is a global property of

a system, and thus this raises interesting possibilities when
considering a system composed of a number of subsystems,
as we do here. Indeed, global operations are capable of
extracting more work than local ones, as a state can be
locally passive but globally not. Such an enhancing may
have two origins: activation or correlations between sub-
sytems. Activation occurs when ðρpassiveÞ⊗k becomes a
nonpassive state for some k. Interestingly, thermal states are
the only passive states that do not allow for activation, as any
number of copies of thermal states is also thermal [23,24].
On the other hand, states that are locally passive but have a
nonproduct structure (i.e., they are correlated) also offer the
possibility for work extraction. An extreme case, which is
the focus of this article, is a set of correlated locally thermal
states, as in such a case the global contribution uniquely
comes from correlations. Our goal, in fact, is to understand
how correlations allow for work extraction in systems that
are locally completely passive [38].
We therefore focus on the subset of all possible states of

the system, comprised by locally thermal states, that is, all ρ
such that the reduced state of subsystem i satisfies

ρi ¼ Trīρ ¼ τβ ð4Þ

for all i, where Trī denotes the partial trace over all
subsystems except subsystem i. Here, τβ is the thermal
state of the subsystem at (a fixed but arbitrary) inverse
temperature β ¼ 1=T,
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τβ ¼
1

Z
e−βh; ð5Þ

where Z ¼ Tre−βh is the partition function.
Now, if ρ is locally thermal [Eq. (4)], and since H is a

sum of local Hamiltonians, the first term on the right-hand
side of Eq. (3) is fixed and is given by TrðρHÞ ¼ nEβ,
where Eβ ¼ TrðτβhÞ is the average energy of the local
thermal state. Note also that given our convention that the
ground state has zero energy, the second term on the right-
hand side of Eq. (3), that is, the final average energy, is
always non-negative. This implies that the extractable work
is upper bounded by

Wmax ≤ nEβ: ð6Þ
This bound is attainable if and only if the final state is the
ground state, denoted by j0i⊗n.
Apart from understanding how to exploit the general

correlations to store work in the system, we also study the
particular role of entanglement and energy coherences in
these processes. We consider three natural sets of correlated
states: (i) arbitrary states, thus including entangled ones,
(ii) separable states and a subset of them, and (iii) states
diagonal in the product energy eigenbasis. We study work
extraction for these three different sets of correlated
quantum states.
Before proceeding further, we end by noting that in the

present context our quantity of interest is the average
extractable work. This allows us to obtain precise and
quantitative results about the relation between work and
quantum correlations in the initial state. The question of
how to obtain similar results, for example, about the full
work probability distribution, in general remains a difficult
open problem. Essentially, at the moment there is no
framework allowing us to obtain the full work distribution
function of the process without destroying the initial
coherences (and entanglement) of the state (see Ref. [39]
for a discussion on how to extend fluctuation theorems for
coherent states).

III. EXTRACTABLE WORK FROM
CORRELATIONS

We first show that within the above framework quantum
correlations are capable of making all the energy in the
system available for extraction in the form of work, as they
allow saturating the bound [Eq. (6)]. As mentioned above,
it can only be saturated if and only if UρU† is the ground
state. Now, observe that the state

jϕi ¼ 1ffiffiffiffi
Z

p
Xd−1
a¼0

e−βEa=2jai⊗n ð7Þ

is locally thermal, i.e., such that Trījϕihϕj ¼ τβ for all i.
Moreover, since it is pure, there exists a unitary matrix U

such that Ujϕi ¼ j0i⊗n. Thus, all the energy nEβ can be
extracted from state jϕi and Wmax ¼ nEβ.
However, it is clear that the state Eq. (7) is entangled.

Hence, it is natural to ask whether the amount of extractable
work would change if we restrict ourselves to separable, or
even classical, states. If this is the case, then entanglement
is necessary for optimal work extraction.

IV. EXTRACTABLE WORK FROM SEPARABLE
AND CLASSICAL STATES

A simple argument shows that separable states, contrary
to entangled, do not allow for maximal work extraction.
Separable states have the property that the global entropy is
greater than all the local entropies [40]. Now, if the system
is initially in a separable state ρ, then SðρÞ ≥ SðτβÞ. This
condition, first of all, indicates that the global state cannot
be pure [41], implying that the bound Eq. (6) cannot be
reached by separable states. So, what is the best that
classical correlations can do?.
In Appendix A, we show that the locally thermal

separable state with the highest extractable work is

ρsep ¼
1

Z

Xd−1
a¼0

e−βEa jaihaj⊗n; ð8Þ

which is simply the state Eq. (7) after being dephased in the
(global) energy eigenbasis. Notice that Eq. (8) saturates the
inequality SðρÞ ≥ SðτβðhÞÞ, and in Appendix A 2, we show
that it is the only separable state with thermal reduced states
that saturates it. The extractable work from Eq. (8),Wsep, is
found, as before, by finding its associated passive state, and
then computing the average energy difference; see Eq. (3).
Since ρsep is already diagonal (with d nonzero eigenvalues),
it is only necessary to rearrange these nonzero eigenvalues
to the lowest possible energy levels. Let us assume that
n ≥ d − 1 (i.e., that we are in the regime of sufficiently
many subsystems [42]). The d − 1 largest eigenvalues can
then simply be moved into the first excited subspace (with
energy E1), giving

Wsep ¼ nEβ − E1ð1 − Z−1Þ: ð9Þ

Note also that ρsep has no coherences, which means that
diagonal and separable states have the same capacity.
Moreover, as the number of subsystems n increases, we

see that Wsep and Wmax become essentially the same:
Wsep=Wmax ¼ 1 −Oðn−1Þ (see Fig. 1). This shows that,
in the thermodynamic limit (n → ∞), the difference
between the extractable work from an entangled state
and from a diagonal one vanishes; hence, quantum coher-
ences and entanglement play essentially no role here.
However, for finite n there will always be a difference.
In particular, in the regime of n relatively small, the ability
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to store work in entanglement offers a significant advantage
(see Fig. 1).
At this point, let us note that for diagonal initial states

[such as Eq. (8)], the (average) extractable work as given by
the definition Eq. (1) coincides with the first moment of
work distribution functions introduced in Refs. [43,44].

V. EXTRACTABLE WORK FROM
STATES WITH FIXED ENTROPY

The previous results can be intuitively understood from
entropy considerations. When the correlations in the state
are not restricted, it is possible to satisfy the requirement of
local thermality with pure entangled states, therefore attain-
ing optimal work extraction.When the state is separable, the
global entropy of the state cannot be zero as it is lower
bounded by the local entropy and optimal work extraction
becomes impossible. Note also that the separable state
optimal for work extraction [Eq. (9)] has global entropy
equal to the local one, which means that its global entropy
does not scale with the number of subsystems. In other
words, its entropy per subsystem tends to zero with the
number of subsystems, which intuitively explains why the
state tends to be optimal in this limit.
In view of these considerations, it is important to under-

stand how one can store work in correlations when the
entropy of the state is fixed. On the one hand, having states
whose global entropy scales with the number of subsystems
seems more realistic. On the other hand, this allows a more
fair comparison between entangled and separable states. In
this section, we show that quantum coherences and entan-
glement enhance the work storage capacity even if the
entropy of the global state is fixed. This implies that the
entropy gap between separable and entangled states men-
tioned above is not the only factor making classical states
generically worse. However, as in the case of nonrestricted

entropy, the gain provided by entangled states or energy
coherences vanishes in the thermodynamic limit.
Stated otherwise, the question is whether locally thermal

quantum states subject to the constraint SðρÞ ¼ S can store
more work than Eq. (9) when S ¼ SðτβÞ. Now, keeping in
mind that local thermality fixes the initial energy to be nEβ,
finding the extractable work WmaxðSÞ amounts to minimiz-
ing the final energy TrðHσÞ over all σ ¼ UρU†, with U
being unitary and ρ satisfying the conditions above.
One can readily lower bound TrðHσÞ by relaxing all the

constraints except SðσÞ ¼ S. Then, as is well known from
standard statistical mechanics, the state with the least
energy compatible with a given entropy is the thermal
state [23,24]

ρth ¼ τ⊗n
β0 ; ð10Þ

with β0 ¼ β0ðSÞ being the (unique) [45] solution of the
entropy constraint Sðτβ0 Þ¼S=n. So, TrðHσÞ ≥ TrðHρthÞ ¼
nTrðhτβ0 Þ. This implies a bound on the extractable work:

WmaxðSÞ ≤ nEβ

�
1 − 1

Eβ
Trðτβ0hÞ

�
: ð11Þ

In principle, it is not clear if the previous bound is
attainable, as the way we find ρth does not guarantee it
to be unitarily achievable from any of the allowed initial
states. Nevertheless, as we show below, for any given S and
any number n of qubits [46] there always exists a locally
thermal quantum state that can be transformed to ρth by a
suitable unitary operator; i.e., the bound Eq. (11) is tight.
Before moving to explicit protocols, let us show a direct

consequence of the bound Eq. (11). As the maximal
extractable work from separable states, given in Eq. (9),
is obtained for S ¼ SðτβÞ, one can easily compare it to
Wmax½SðτβÞ�. The result is illustrated in Fig. 1, showing that
Wsep < Wmax½SðτβÞ�. Therefore, even if the entropy is
fixed, classical states are generically weaker than entangled
quantum states in terms of work storage as the states
deliveringWmax½SðτβÞ� are necessarily entangled. To under-
stand the reason for this difference, notice that the sepa-
rability condition restricts the set of locally thermal states
(see Appendix A 2), thereby limiting their possible spectra,
which, in turn, determine [according to Eq. (3)] the
extractable work.
Now, let us show an explicit protocol that delivers

Eq. (11). Since to reach the bound in Eq. (11) the system
has to necessarily end up in the state Eq. (10), we, for
clarity, construct the backwards unitary, which takes the
final state τ⊗n

β0 to an initial state ρ which is locally thermal,
at any temperature β ≤ β0. In what follows. it is convenient
to introduce the local parameter z ¼ h0jτβj0i − h1jτβj1i,
i.e., the “bias” of the local (qubit) subsystem in state τβ. It is
a monotonic function of the temperature: z ¼ tanhðβE=2Þ

0 10 20 30 40 50
n

W

nE

0.5

0.6

0.7

0.8

0.9

1.0

FIG. 1. Extractable work from entangled (blue line), separable
(red line), and entangled but having the same entropy as the
separable (green line) states in units of the initial total energy of
the system. Specifically, we take the states Eqs. (7), (8), and (11)
for d ¼ 2, βE1 ¼ 1. As n increases, classical states become able
to store essentially the same amount of work as quantum ones.
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(from now on, we concentrate on qubits and, therefore,
drop the index of E1).
We first consider the simplest case of two qubits. Define

the unitary transformationUα to be a rotation by an angle α,

�
cos α sin α
− sin α cos α

�
;

in fj00i; j11ig (the subspace spanned by j00i and j11i) and
an identity on the rest of the space.
If as an initial state we take ρ ¼ Uατ

⊗2
β0 U

†
α, then since Uα

only generates coherences in the subspace where both
qubits are flipped, it is clear that the reduced state of each
qubit is diagonal. A straightforward calculation shows that
under the action ofUα, the state τβ0 (with bias z0) transforms
to an initial state ρwith bias z ¼ cos ð2αÞz0. That is, we can
achieve any bias z such that jzj ≤ z0. As such, the local
temperature of the initial state, which is simply given by
β ¼ ð2=EÞtanh−1½cos ð2αÞz0�, can take any temperature β ≤
β0 by an appropriate choice of α.
The above protocol can be readily generalized to the case

of n qubits. Let us denote by i ¼ i1;…; in an n-bit string,
with jij ¼ P

kik being the Hamming weight (number of
1’s) of the string. The states jii ¼ ji1i…jini run over all 2n

energy eigenstates of H. We also introduce ī—the bit-wise
negation of i (i.e., jīi ¼ σ⊗n

x jii). As we show in
Appendix B, if we now apply an Uα in each of the
subspaces fjii; jīig with 0≤jij<n=2 [47], the resulting
state is locally thermal, and, exactly as in the case of two
qubits, the local bias z is given by z ¼ cos ð2αÞz0. Again,
any bias jzj ≤ z0 and therefore any temperature β ≤ β0 can
be reached.
Notice that the protocol exploits coherence in all two-

dimensional subspaces spanned by jii and jīi. We expect
these optimal states to be entangled in general, and, in fact,
they are entangled for the scenario depicted in Fig. 1.
Moreover, we can also show that in the limit of large n the
optimal states are necessarily entangled (see Appendix B 1).
Despite this result, in the thermodynamic limit, the

bound Eq. (11) can always be asymptotically reached by
(purely classical) diagonal states. To prove this, we dis-
tinguish two qualitatively different situations of the global
entropy S being macroscopic (S ∝ n) and submacroscopic
(S=n → 0). In the latter case, as is detailed in Appendix B 2,
the proof is conducted by analyzing a generalized version
of the state Eq. (8), whereas the former case of macroscopic
entropy can be treated by a simple adaptation of the above
protocol. Specifically, as the final state one chooses
ρth ¼ τ⊗n

β0 , with Sðτβ0 Þ¼ limn→∞S=n and, by applying Uπ
2
,

inverts the populations in one subspace fjii; jīig with
jij ¼ k≃ ne−β0E=Z0. This changes the bias from z0 to
z0 −Oð1= ffiffiffi

n
p Þ. So, by performing Oð ffiffiffi

n
p Þ population

inversions, one can approximate any jzj < z0 and, hence,
any temperature β < β0 (see Appendix B 3 for details).

By running the above protocol backwards, one immedi-
ately notices that the work extraction from correlations is
related to the process of their creation from a product of
thermal states. In fact, the problem of correlating the latter
states as much as possible for a given amount of invested
work is considered in Refs. [48,49]. There, it is shown that
the process is optimal when the final state is locally
thermal, which is our starting point here. On the other
hand, work extraction becomes optimal when the final state
is (globally) thermal. That is, the two processes become the
reverse of each other only when they are both optimal. This
situation is in fact common in thermodynamics. For
example, a heat engine working at Carnot efficiency can
be seen as an optimal refrigerator running backwards [1].

VI. EXTENSION TO OTHER SCENARIOS

Before concluding, we show how our techniques can be
applied to other relevant scenarios again in the context of
optimal work storage in correlations. In particular, we
consider systems where (i) all moments of the energy
distribution are equal to those of a global thermal state and
(ii) one has access to a thermal bath.

A. Work from energy coherences

We first consider states whose diagonal (in the energy
eigenbasis) is set to be equal to that of a global thermal
state, together with the initial condition of local thermality.
More formally, this approach is equivalent to imposing that
all moments of the energy distribution are those of the
global thermal state: TrðHkρÞ ¼ TrðHkτ⊗n

β Þ, for all k. This
contrasts with the previous sections where only the first
moment (i.e., the average energy) is fixed by local thermal-
ity. Moreover, notice that the entropy of the initial state is
here unconstrained.
Focusing again first on the case of n qubits, we consider

states that are maximally entangled in every degenerate
subspace:

ρdeg ¼
Xn
k¼0

Ck
npkð1 − pÞn−kjDn;kihDn;kj; ð12Þ

where p ¼ e−βE=Z, and jDn;ki ∝
P

jij¼kjii is the normal-
ized Dicke state of n qubits with k excitations. It is
straightforward to verify that the above state satisfies
Eq. (4) and has the required diagonal elements.
The passive state associated with Eq. (12) is found as

follows. Notice that the state Eq. (12) is a mixture of nþ 1
orthogonal states. Therefore, the optimal unitary amounts
to rotating each of these states to the nþ 1 lowest energy
levels, one of which is the ground state with zero energy
and the other n have energy E. Therefore, the energy of the
transformed state is smaller than E, which means that it is
possible to extract all the energy contained in the initial
state up to a correction of Oð1Þ:
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Wdeg ¼ nEβ −Oð1ÞE: ð13Þ

A similar result holds for the general case of n qudits (see
Appendix C).
An interesting question is whether the state ρdeg features

entanglement. Intuition suggests that this may be the case,
as large coherences are crucial in this scenario. However,
using the techniques developed in Ref. [50], we have not
been able to witness entanglement for n ≤ 50. Based on this
evidence, it seems that in this case entanglement may not
provide an advantage for any number of subsystems.

B. Access to a bath

Finally, we consider an extended scenario in which the
system is no longer isolated and can be put in contact with a
bath at the same (local) temperature. Here, we ask what is
the maximal work that can be extracted via unitaries acting
jointly on the system and the bath. Then it is well known
that the extractable work is upper bounded by the difference
between initial and thermal free energies:

Wmax ≤ F½ρ� − F½τ⊗n
β �; ð14Þ

where F½ρ� ¼ TrðHρÞ − β−1SðρÞ and the inequality can be
saturated (e.g., via infinitely slow isothermal processes
[51]) [1,44,52,53].
In the present case, the extractable work from any locally

thermal state with entropy S is given by

Wβ;maxðSÞ ¼ β−1½nSðτβÞ − S�; ð15Þ

where the expression in square brackets is nothing other
than a multipartite generalization of the quantum mutual
information. This enforces our argument that the origin of
the extractable work is the correlations in the state. The
bound Eq. (15) is strictly bigger than Eq. (11), which is
natural, as we consider a larger set of operations. On the
other hand, the states Eqs. (7) and (8) maximize the right-
hand side of Eq. (15), i.e., the free-energy content is
maximal, for entangled and separable states, respectively,
and thus our previous considerations also hold in this
framework.
For the case of extracting work from energy coherences,

one can readily use Eq. (15) by computing the entropy of
Eq. (12). As ρdeg is a mixture of nþ 1 pure states, its
entropy cannot exceed (and, as can easily be shown,
actually scales as) lnðnþ 1Þ. Therefore, ρdeg allows for
storing all work in coherences except for a Oðln nÞ
correcting term. We note that this optimal state cannot
be expressed as a tensor product of many coherent states, a
situation that was considered previously in the litera-
ture [4,44].
Notice that, when given access to a bath, the extractable

work depends only on a single global property, namely,
the free energy of the state, which here reduces to the

generalized mutual information [Eq. (15)]. Therefore, the
strength of the correlations becomes the only important
property, and not whether they are quantum or not. This is
in contrast to our previous results in Sec. V. In order to
reconcile both results, imagine that a bath at temperature β0
is attached to our system. Then, the bound Eq. (14) (with β
substituted by β0) will reduce exactly to Eq. (11). Therefore,
we see that separable states can saturate Eq. (11) when a
macroscopic object, i.e., a bath, is available. This corrob-
orates our result in Sec. V, namely, that in the thermody-
namic limit [54] the difference between quantum and
classical correlations vanishes.
Our results in this section thus complement a previous

study [32] in a similar setting, and also the works [19,
28–31,33,55], which, although in a completely different
context, also deal with the problem of work extraction
from thermal environments utilizing correlations. Finally,
it is worth mentioning that when the correlations are not
present between subsystems but rather between the
system and the bath, they become a source of irrevers-
ibility [16].

VII. CONCLUSIONS

In this work, we investigate and compare the work
storing capacities of quantum and classical correlations. To
eliminate all sources of work except correlations, we
consider systems that are locally thermal. The latter
condition is both necessary and sufficient to ensure that
the system becomes passive once the correlations are
removed. This gives a new perspective on the problem
of passivity, in particular, for the case of composite
systems.
We first show that correlations are powerful enough to

allow for the extractable work to be equal to all the energy
present in the system (see Sec. III). For that to happen, the
state of the system must not only be entangled but also
pure, which is impossible for locally thermal separable
states due to an entropy constraint. Entanglement is also
useful when the state of the system is mixed, as in this case
we show that separable states cannot generically store the
maximal work compatible with the entropy of the system
and local thermality.
Furthermore, we prove that in all cases the quantum

advantage, significant for small ensembles, becomes irrel-
evant in the thermodynamic limit, thereby corroborating
that macroscopic thermodynamics is insensitive to the
microscopic mechanics underlying it. This “classical” view
is complemented by a previous result by some of us [18]
stating that maximal work can be extracted from diagonal
states without generating entanglement during the whole
process.
The considered scenario, a set of correlated yet locally

thermal states, is ideal to identify the role of quantum
effects in thermodynamics and naturally allows for exten-
sions. In this respect, first, we study the role of coherences
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by further restricting the diagonal of the state in the energy
eigenbasis to be identical to a thermal state. Interestingly, in
this case it turns out that, in the thermodynamic limit,
essentially all the energy can be stored in the off-diagonal
terms. Secondly, we discuss the situation when the system
is allowed to interact with a thermal bath at the local
temperature of the reduced states. Then, work is directly
related to the strength of the correlations as measured
by Eq. (15).
An interesting open question is to investigate the

scenario in which not only local marginals are thermal,
but so are k-body reduced states (in particular, the case of
nearest neighbors). This may give an insight into the role of
different types of multipartite entanglement in the context
of work extraction. Another interesting question is to derive
bounds in the other direction, i.e., correlated states with
minimal work content [56]. A promising line of further
research is to study the process of converting correlations
into work beyond average quantities, for example, from the
point of view of fluctuation theorems [43], or deterministic
work extraction [53,57,58].
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APPENDIX A: MAXIMAL WORK FROM
SEPARABLE STATES

In this Appendix, we find the maximal work that can be
stored in separable states subject to being locally thermal.

1. The set

In other words, we want to find the maximum of the
ergotropy Eq. (3),

WmaxðρÞ ¼ TrðHρÞ − TrðHρpassiveÞ; ðA1Þ

over all those ρ’s that belong both to the set of separable
states (we denote it as SEP) and to

LT H ¼ fρ∶Trīρ ¼ τβ; i ¼ 1;…; ng: ðA2Þ

Now observe that, along with SEP [59], LT H is a convex
set. Indeed, if ρ1 and ρ2 are two arbitrary states belonging to
LT H, then for ∀ t ∈ ½0; 1�,

Trī½tρ1 þ ð1 − tÞρ2� ¼ tτβ þ ð1 − tÞτβ ¼ τβ; ðA3Þ

for all i, immediately implying that tρ1 þ ð1 − tÞρ2 ∈
LT H for all t ∈ ½0; 1�, which, by definition, means
LT H is a convex set. Moreover, since the conditions
defining LT H are linear, it is also a closed set.
We also need the following set:

ENT ðSÞ ¼ fρ∶SðρÞ ≥ Sg: ðA4Þ

Because of convexity of the von Neumann entropy, ENT
is also convex and the non-strict inequality in the definition
ensures that it is also closed.
Another observation is that, since the entropy of the

separable states is greater than all the local entropies, we
have that if ρ ∈ SEP ∩ LT H, then SðρÞ ≥ SðτβÞ.
Otherwise,

SEP ∩ LT H ⊂ ENT ðSðτβÞÞ: ðA5Þ

Moreover, the intersection of the boundaries of all three sets
in Eq. (A21) is nonempty and consists of only one element,
which we find in the next section.

2. Maximally pure separable state

Here, we determine the separable state ρsep of N
systems (all having the same d-level Hamiltonian
h ¼ P

d−1
a¼0 Eajaihaj) such that it has the minimal entropy

compatible with marginals all being τβ (5):

τβ ¼
1

Z
e−βh ¼

P
d−1
a¼0 e

−βEa jaihajP
d−1
b¼0 e

−βEb
≡Xd−1

a¼0

pajaihaj: ðA6Þ

Considering, e.g., the first system (S1) versus the rest
(R ¼ S2 ⊗ … ⊗ SN) and keeping in mind that the partial
states of S’s are all τβ, we have

SðρsepÞ − SðτβÞ ¼ −S
�
ρsepjjτβ ⊗

IR
dR

�
þ ln dR: ðA7Þ
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Since ρsep is separable, it can be written in the following
form:

ρsep ¼
X
x

λxρ
S1
x ⊗ ρRx ¼

X
x

λxρ
S1
x ⊗ ρS

2

x ⊗ … ⊗ ρS
N

x ;

ðA8Þ
for some discrete index x, non-negative λx’s summing up
to 1, and some normalized states ρS

i

x over Si. Given the
condition that the state of S1,

P
xλxρ

S1
x , is equal to τβ and

the joint convexity of the relative entropy [60], we have

SðρsepÞ−SðτβÞ¼ lndR−S

�X
x

λxρ
S1
x ⊗ρRx jj

X
x

λxρ
S1
x ⊗

IR
dR

�

≥ lndR−
X
x

λxS

�
ρS

1

x ⊗ρRx jjρS1x ⊗
IR
dR

�

¼
X
x

λxSðρRx Þ≥0: ðA9Þ

So, the minimal possible value for SðρsepÞ is SðτβÞ; and to
find the purest ρsep, we have to saturate both inequalities in
the chain Eq. (A9). The second inequality is resolved
trivially, giving that ρRx ¼ ρS

2

x ⊗ … ⊗ ρS
N

x for all values of
x are pure. We denote these states as jRxi ¼ jS2xi ⊗ …
⊗ jSNx i. Doing the same with respect to, e.g., S2, we will get
that all ρS

1

x are also pure (and, as above, are denoted as jS1xi).
The equality conditions for the first inequality of

Eq. (A9) are less trivial [60]. If we consider only the
nonzero λx’s and denote their number by L, Theorem 8 of
Ref. [60] will give us

ðλxρS1x ⊗ ρRx Þit
�
λxρ

S1
x ⊗

IR
dR

�−it
¼ ρitsep

�
τβ ⊗

IR
dR

�−it

for ∀ t > 0 and x ¼ 0;…; L − 1; ðA10Þ

where the equality holds in the support of ρS
1

x ⊗ ρRx ¼
jS1x…SNx ihS1x…SNx j ¼ jSxihSxj ¼ Px (in this notation,
ρsep ¼

P
xλxPx). The latter is the projector onto that

subspace. Bearing in mind that we consider only nonzero
λx’s and doing the same procedure for all other N − 1
systems, we get from Eq. (A10):

PxρsepPx ¼ Pxðτβ ⊗ IS2 ⊗ … ⊗ ISN ÞPx ¼ � � �
¼ PxðIS1 ⊗ IS2 ⊗ … ⊗ τβÞPx: ðA11Þ

We now concentrate on the first equality and, for
simplicity, drop the index enumerating the subsystems.
With that, and taking into account that PxρsepPx ¼ λxPx

and Pxðτβ ⊗ IS2 ⊗ … ⊗ ISN ÞPx ¼ hSxjτβjSxiPx, we have

λx ¼ hSxjτβjSxi: ðA12Þ

Now we take fjaigd−1a¼0, the eigenbasis of τβ in the Hilbert
space of the subsystem Eq. (A6), and construct the matrix
mxa ¼ jhSxjaij2 ≥ 0. With this, we rewrite Eq. (A12) as

Xd−1
a¼0

mxapa ¼ λx: ðA13Þ

Also, from the normalization, we haveX
a

mxa ¼ 1 for ∀ x: ðA14Þ

Finally, the condition that all partial states are τβ:P
xλxjSxihSxj ¼ τβ leads us to

XL−1
x¼0

λxmxa ¼ pa: ðA15Þ

First, let us show that L > d cannot be true. Indeed,
substitute Eq. (A13) into Eq. (A15),

P
xbmxamxbpb ¼

pa, multiply the lhs by mxa and sum over a and useP
xλx ¼ 1 ¼ P

xamxapa:

X
x

�X
a

m2
xa

��X
b

mxbpb

�
¼ 1: ðA16Þ

Given that it must hold that
P

xamxapa ¼ 1, we see that
Eq. [(A16)] can be true only ifX

a

m2
xa ¼ 1 for ∀ x: ðA17Þ

But we have Eq. (A14) and that 0 ≤ mxa ≤ 1, so Eq. (A17)
can be true only if each row consists of zeros and only one 1.
Since none ofpa is zero, Eq. (A15) implies that theremust be
at least one 1 on each column of m. Let us arrange the x so
that the first d rows of m look like an identity matrix. Then
we get

λx ¼ px for x ¼ 0;…; d − 1: ðA18Þ

Since
P

xλx ¼ 1, we have that λx ¼ 0 for all x ≥ dþ 1.
Which is impossible because of Eq. (A13) and the fact that
there must be at least one 1 on each row.
With the same argument, also d > L is not possible. So,

d ¼ L and Eq. (A18) holds. Also, since now m ¼ I,
jSxi ¼ jxi, rendering

ρsep ¼
Xd−1
a¼0

paja…aiha…aj: ðA19Þ

Moreover, since ρsep is unique,

∂ENT ðSðτβÞÞ ∩ SEP ∩ LT H ¼ fρsepg; ðA20Þ

where ∂ denotes the boundary of the set.
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3. Convexity of ergotropy

In this section, we take another step towards finding the
maximum of the enrgotropy WmaxðρÞ [Eqs. (3) and (A1)]
over SEP ∩ LT H. To that end, we prove a general result
that does not depend on the particular structure of the
system we discuss in this article: on the set of states with
equal energy, ergotropy is a convex function.
So, say we are given the Hamiltonian H ¼ P

αEαjαihαj
with Eαþ1 ≥ Eα, α ¼ 0; 1;…. Now, for any ρ1 and ρ2 such
that TrðHρ1Þ ¼ TrðHρ2Þ and ∀ t ∈ ½0; 1�,

Wmax½tρ1 þ ð1 − tÞρ2� ≤ tWmaxðρ1Þ þ ð1 − tÞWmaxðρ2Þ:
ðA21Þ

To prove this, observe that Eq. (A21) is equivalent to

TrfH½tρ1 þ ð1 − tÞρ2�passiveg ≥ ðA22Þ

tTrðHρpassive1 Þ þ ð1 − tÞTrðHρpassive2 Þ ¼ ðA23Þ

TrfH½tρpassive1 þ ð1 − tÞρpassive2 �g: ðA24Þ

On the other hand, as is shown in Ref. [37], for two
diagonal states ρ and σ,

ρ ≺ σ ⇒ TrðHρÞ ≥ TrðHσÞ; ðA25Þ

where ρ ≺ σ is read as ρ is majorized by σ and means that

XA
α¼0

ραα ≤
XA
α¼0

σαα; for all A ¼ 0; 1;…: ðA26Þ

Now, as a direct consequence of Theorem G.1. of Chap. 9
of Ref. [61], we have

½tρ1 þ ð1 − tÞρ2�passive ≺ tρpassive1 þ ð1 − tÞρpassive2 ; ðA27Þ

which, in view of Eq. (A25), leads to Eqs. (A22) and (A24),
which prove Eq. (A21)—the main result of this section.

4. Maximization of work over SEP ∩ LT H

We are now ready to prove the main claim of this section,
namely,

max
ρ∈SEP∩LT H

WmaxðρÞ ¼ WmaxðρsepÞ; ðA28Þ

where ρsep is from Eq. (A19).
Consider the set

ΣðSÞ ¼ ENT ðSÞ ∩ SEP ∩ LT H: ðA29Þ

As a union of closed convex sets, Σ is a closed convex set.
Equation (A21) implies that ΣðSðτβÞÞ ¼ SEP ∩ LT H.

Also, obviously, when SðρÞ > nSðτβÞ, ρ cannot be in
LT H and, therefore, ΣðSÞ ¼ ∅ for all S > nSðτβÞ,
and ΣðnSðτβÞÞ ¼ fτ⊗n

β g.
A convex function has its maximum over a closed

convex set on the boundary (more precisely, on one of
the extremal points) of that set [62]. Now, since all ρ’s in
SEP ∩ LT H are by definition locally thermal, they all
have the same energy, TrðHρÞ ¼ nEβ, which, according to
the previous section, ensures that WmaxðρÞ is a convex
function on the whole set LT H. Moreover, it has its
maximum, WðSÞ, over ΣðSÞ on ∂ΣðSÞ. Also, since this
maximum changes with S, the point delivering it lies on
the boundary of ENT ðSÞ. On the other hand, since
ΣðS1Þ ⊂ ΣðS2Þ when S1 > S2, then WðS1Þ < WðS2Þ.
Finally, as WðSÞ is a monotonically decreasing function
of the global entropy, it has itsmaximal value atS ¼ SðτβÞ—
the minimal possible entropy. Furthermore, because
ΣðSðτβÞÞ ¼ SEP ∩ LT H,

W ðSðτβÞÞ ¼ max
ρ∈SEP∩LT H

WmaxðρÞ; ðA30Þ

and this maximum is attained on the boundary of
ENT ðSðτβÞÞ. Since the latter intersects SEP ∩ LT H at
only one point, ρsep [see Eq. (A20)], this means that the latter
is the point whereWmaxðρÞ attains its maximal value, which
proves Eq. (A28).

APPENDIX B: PROTOCOL FOR MAXIMAL
WORK EXTRACTION GIVEN AN ENTROPY

CONSTRAINT

In this appendix, we show that the unitary Uα, with
α ¼ α…α, given by

Uαjii ¼ cos αjii þ sin αjīi; hijH0jii <
n
2
;

Uαjīi ¼ − sin αjii þ cos αjīi; hijH0jii <
n
2
;

Uαjii ¼ jii; hijH0jii ¼
n
2
; ðB1Þ

produces a state ρ ¼ Uατβ0 ðHSÞ⊗nU†
α that is locally thermal

with local bias z and temperature β given by

z ¼ cos ð2αÞz0; β ¼ 2

E
tanh−1½cos ð2αÞz0�; ðB2Þ

where z0 ¼ h0jτβ0 j0i − h1jτβ0 j1i ¼ Trðσzτβ0 Þ is the bias of
τβ0 [where, for the sake of brevity, we now write τβ0 in place
of τβ0 ðHSÞ since no confusion should arise]. To see that this
is the case, we note first that ρ is symmetric under
permutations, since both the initial state τβ0 ðHSÞ⊗n and
Uα are symmetric. Therefore, it suffices to calculate
z1 ¼ h0jρ1j0i − h1jρ1j1i. We note first that this can be
rewritten as follows:
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z1 ¼ Trðσzρ1Þ ¼ Trðσz ⊗ 1n−1ρÞ
¼

X
i1…in

hijð−1Þi1ρjii: ðB3Þ

Now, it is straightforward to see that

hijρjii ¼ hijUατ
⊗n
β0 U

†
αjii

¼ cos2αhijτ⊗n
β0 jii þ sin2αhījτ⊗n

β0 jīi ðB4Þ

holds for all jii, and furthermore that hijτβ0 jii ¼
1
2
½1þ ð−1Þiz0�, which follows from the definition of z0

as the bias. Put together, this allows one to reexpress z1 as

z1 ¼
X

i1;…;in

ð−1Þi1
�
cos2α
2n

Y
k

½1þ ð−1Þikz0�

þ sin2α
2n

Y
k

½1þ ð−1Þikð−z0Þ�
�
; ðB5Þ

which, upon interchanging the order of the product and
sum, becomes

z1 ¼
cos2α
2n

Y
i1;…;in

X
ik

ð−1Þi1 ½1þ ð−1Þikz0�

þ sin2α
2n

Y
i1…in

X
ik

ð−1Þi1 ½1þ ð−1Þikð−z0Þ�: ðB6Þ

For k ≠ 1,
P

ikð−1Þi1 ½1þ ð−1Þikz0� ¼ 2, while for k ¼ 1,P
ikð−1Þi1 ½1þ ð−1Þikz0� ¼ 2z0, from which we finally

obtain

z1 ¼ cos2ðαÞz0 þ sin2ðαÞð−z0Þ
¼ cosð2αÞz0: ðB7Þ

1. Presence of entanglement in the state

Consider the state ρ ¼ Uατ
⊗n
β0 U

†
α. As it has an X-like

shape, applying the criterion of positivity under partial
transposition (PPT) [63,64] with respect to a bipartition
AjĀ to ρ will yield an independent positivity condition for
each pair of coherences hijρjīi, hījρjii, given by

jhijρjīij −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hijhījΠAjĀρ⊗2ΠAjĀjiijīi

q
≥ 0; ðB8Þ

where ΠAjĀ is the permutation operator acting on the two-
copy Hilbert space exchanging partition A between the two
copies. Focusing on jii ¼ j0…0i, jīi ¼ j1…1i and on the
bipartition ðn=2jn=2Þ, the condition for nonseparability
reads:

sinð2αÞð1 − e−β0ϵnÞ − 2e−β0ϵn=2 ≥ 0: ðB9Þ

For sufficiently large n, entanglement will be present in the
state for any α. Indeed, when SðρÞ ∝ n, β0 is a constant,
and so is α. So, for n large enough, the lhs of Eq. (B9)
will be ≈ sinð2αÞ, which is ≥ 0. In all other cases, i.e.,
when SðρÞ∝n, which means Sðτβ0 Þ ¼ ðSðρÞ=nÞ → 0

(with n→∞), e−β0ϵ decreases, so z0¼ð1−e−β0ϵ=1þe−β0ϵÞ
increases, so cosð2αÞ ¼ ðz=z0Þ decreases, so sinð2αÞ
increases. All in all, the lhs of Eq. (B9) increases with n,
becoming positive starting from some value of n.

2. Maximal work extraction from states with
submacroscopic entropy

Here, we show that when the entropy of the global state
SðρÞ is submacroscopic, i.e.,

xn ¼
SðρÞ
n

→ 0; when n → ∞; ðB10Þ

the maximal work extractable from locally thermal sepa-
rable states,Wsep½SðρÞ�, and from general entangled locally
thermal states, Wmax½SðρÞ� [Eq. (11)], asymptotically
coincide:

lim
n→∞

Wsep½SðρÞ�
Wmax½SðρÞ�

¼ 1: ðB11Þ

First, we observe that, trivially,

Wsep½SðρÞ�
Wmax½SðρÞ�

≤ 1: ðB12Þ

We then start by asymptotically expanding Wmax½SðρÞ�.
For that we need the asymptotics of Eβ0 when Sðτβ0 Þ ¼ xn.
Denotep0¼e−β0E=Z0. Then,Eβ0 ¼ p0E. Now, since xn → 0,
p0 also has to → 0. Therefore,

xn ¼ −p0 lnp0 − ð1 − p0Þ lnð1 − p0Þ ¼ p0 ln
1

p0 þOðp0Þ:

Hence,

p0 ¼ xn
ln 1

xn

�
1þO

�ln ln 1
xn

ln 1
xn

��
: ðB13Þ

And since the final energy is simply nEβ0 ¼ np0E, we have

Wmax ¼ nEβ − S
ln n − ln S

½1þ oð1Þ� ∼ nEβ: ðB14Þ

Let us now consider the following three-parameter
family of diagonal states:
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Ωðϵ;δ;γÞ¼ ϵj0ih0j⊗nþδj1ih1j⊗nþ γ

CD
n

X
jij¼D

jiihij; ðB15Þ

whereD is the smallest number satisfying lnCD
n ≥ S, and ϵ,

δ, and γ are non-negative and, from the normalization
condition,

ϵþ δþ γ ¼ 1: ðB16Þ

Furthermore, the local thermality requires

δþ γ
D
n
¼ e−βE

Z
≡ p: ðB17Þ

And finally, the entropy must be S:

−ϵ ln ϵ − δ ln δ − γ ln γ þ γ lnCD
n ¼ S: ðB18Þ

Resolving Eqs. (B16) and (B16), we reformulate
Eq. (B18) as

fðγÞ ¼ S; ðB19Þ

where

fðγÞ ¼ −
�
1 − p − γ

n −D
n

�
ln

�
1 − p − γ

n −D
n

�

−
�
p − γ

D
n

�
ln

�
p − γ

D
n

�
− γ ln γ þ γ lnCD

n :

Now, fðγÞ is a continuous function on [0,1], and fð0Þ¼
−plnp−ð1−pÞlnð1−pÞ¼SðτβÞ≤S and fð1Þ ¼ lnCD

n ,
which, by the very definition of D, exceeds S. So, S ∈
½fð0Þ; fð1Þ� and, due to the continuity of fðγÞ, ∃ γ such that
Eq. (B19) is satisfied. We denote that value of γ via γ0, and
the state Ω it (uniquely) determines via Ω0.
Finally, we note that since the rank of Ω0 is at most

2þ CD
n , the passive state associated with it will occupy the

first 2þ CD
n < CDþ1

n energy levels. Therefore, the energy
of Ω0 is < ðDþ 1ÞE. Hence,

Wsep > nEβ − ðDþ 1ÞE: ðB20Þ

On the other hand, D<S. Indeed, due to the general
inequality Ck

n ≥ ðn=kÞk, we have lnCS
n ≥ S ln n

S. Since
S=n→0, for sufficiently big n, we will have n=S > e,
which leads to lnCS

n > S, implying that D < S. Thereby,
we end up with

Wsep > nEβ − SE; ðB21Þ

which, taking into account Eq. (B14), leaves us with

1 − S
n
E
Eβ

1 − S
n

1þoð1Þ
ln n−ln S

<
WsepðSðρÞÞ
WmaxðSðρÞÞ

≤ 1: ðB22Þ

In view of S=n → 0, Eq. (B22) finalizes the proof
of Eq. (B11).

3. Maximal work extraction from states with
macroscopic entropy

In what follows, we show that in the asymptotic limit it is
possible to approximately achieve maximal work extraction
given an entropy constraint from a state that is classical. To
do so, we apply the unitaryUα with α chosen appropriately.
Consider that αk is nonzero (and equal to π=2) only for
k ¼ np0 − μ≡ l, i.e., between the subspaces with jij ¼
np0 − μ and jīj ¼ nð1 − p0Þ þ μ, where p0 ¼ h1jτβ0 j1i ¼
1
2
ð1 − z0Þ is the excited state probability in τβ0 . That is, we

consider the unitary V:

Vjii ¼ jīi; Vjīi ¼ −jii if jij ¼ np0 − μ

Vjii ¼ jii if jij ≠ np0 − μ:

Obviously, after applying V the state is still diagonal and
symmetric. This means that the transformed state is again
locally thermal, but now with the new bias z00 ¼ 1 − 2p00.
To find it, we observe that the energy of the global state is
given by nEp00. On the other hand, V swapped the
population of the level lE, Cl

nðp0Þlð1−p0Þn−l, with
Cn−l
n ðp0Þn−lð1 − p0Þl, the population of ðn − lÞE. As a

result, the initial energy np0E increased by
Cl
n½ðp0Þlð1 − p0Þn−l − ðp0Þn−lð1 − p0Þl�ðn − 2lÞE. This

implies, that

p00 ¼ p0 þ Cl
n½ðp0Þlð1 − p0Þn−l − ðp0Þn−lð1 − p0Þl�

× ð1 − 2l=nÞ;

or, equivalently,

z00 ¼ z0 − 2Cl
nðz0 þ 2μ=nÞ½ðp0Þlð1 − p0Þn−l

− ðp0Þn−lð1 − p0Þl�: ðB23Þ

Now, let us focus on μ ≤ Oð ffiffiffi
n

p Þ (we show that this set is
enough for our purposes). We then have the asymptotic
expansion

ðp0Þnp0−μð1 − p0Þnð1−p0ÞþμCnp0−μ
n ¼ e−½μ2=2p0ð1−p0Þn�þOðμ=nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πnp0ð1 − p0Þp ;

ðB24Þ

using which it is straightforward to obtain from
Eq. (B23) that
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z00 ¼ z0 − z0
e−½μ2=2p0ð1−p0Þn�þOðμ=nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πnp0ð1 − p0Þp ð1 − e−β0ðnz0þ2μÞEÞ:

Clearly, for μ ≤ Oð ffiffiffi
n

p Þ,

z00 ¼ z0 −Oð1= ffiffiffi
n

p Þ: ðB25Þ

On the other hand, observe that the left-hand side of
Eq. (B24) is the population of the level np0 − μ, and the
summation of these values over all μ ≤ Oð ffiffiffi

n
p Þ will

produce 1 −Oð1= ffiffiffi
n

p Þ. Hence, if we apply the inversions
described by V on all levels with μ ≤ Oð ffiffiffi

n
p Þ, we will arrive

at a state with local bias being −z0 þOð1= ffiffiffi
n

p Þ. Now, since
each inversion changes the initial bias by Oð1= ffiffiffi

n
p Þ

[Eq. (B25)], we conclude that by conducting a sequence
Oð ffiffiffi

n
p Þ steps, one can change the initial local bias z0 to any

jzj < z0, with the precision increasing with n. Therefore, in
the thermodynamic limit there exist diagonal states that
asymptotically saturate the thermodynamic bound Eq. (11).

APPENDIX C: CORRELATIONS IN
DEGENERATE SUBSPACES

Consider the total Hamiltonian

H ¼
Xn
i¼1

hi ¼
Xnl
i¼1

EiΠi; ðC1Þ

where each hi ¼ h ≔
P

d−1
a¼0 ϵajaihaj (with ϵ0 ¼ 0) has

local dimension d, which we assume to be finite. The
number of different global energies nl is found to be

nl ¼ Cd−1
nþd−1 ¼

ðnþ d − 1Þ!
n!ðd − 1Þ! ; ðC2Þ

which corresponds to the number of nonzero eigenvalues of
Eq. (12). In order to find the passive state associated with
Eq. (12), one has to move such eigenvalues to the lowest
energy levels. This operation requires knowledge of the
spectrum of hi. Nevertheless, it suffices for our purposes to
move them to a sufficiently degenerate energy. The

degeneracy of a global energy Ei ¼
P

jk
ðiÞ
j ϵj is equal to

C
kðiÞ
1
;kðiÞ

2
;…;kðiÞd

n . The point is then to find the lowest energy,

Emin, satisfying C
kmin
1

;kmin
2

;…;kmin
d

n ≥ Cd−1
nþd−1, so that the work

extracted after such a transformation is simply given by

Wdeg ≥ Eρdeg − Emin: ðC3Þ

Now, notice that for large n,

lim
n→∞

Cd−1
nþd−1

C
n−d;k0

2
;…;k0d

n

¼ 0;
Xd
j¼2

k0j ¼ d; ðC4Þ

with E0 ¼ P
d
a¼2 k

0
aϵa. Observe that E0 is of the order of the

energy of one subsystem (for instance, choosing k02 ¼ d
and k0j ¼ 0 for j > 2, we obtain E0 ¼ dϵ2). Therefore, we
can take Emin ¼ E0, obtaining the desired result.
In the case of d ¼ 2, the expression for Emin is

particularly simple:

Wmin ¼ ½1 − Cpn
n pnpð1 − pÞð1−pÞn�E: ðC5Þ
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