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We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced
CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the
communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a
pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase
estimation and compensation based on the reference pulse measurement can be viewed as a quantum
analog of intradyne detection used in classical coherent communication, which extracts the phase
information from the modulated signal. We present a proof-of-principle, fiber-based experimental
demonstration of the protocol and quantify the expected secret key rates by expressing them in terms
of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent
uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which
the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator
transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD,
especially for potential integrated photonics implementations of transmitters and receivers, with minimum
sacrifice of performance. As such, it provides a pathway towards scalable integrated CV-QKD transceivers,
a vital step towards large-scale QKD networks.
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I. INTRODUCTION

Quantum key distribution (QKD), which enables the
generation of secure shared randomness between two distant
parties (Alice and Bob) [1], is the most advanced quantum
technology to date [2–4]. Discrete-variable QKD (DV-QKD)
is the term for well-established protocols that involve
generation and detection of extremely weak pulses of light
(ideally, single photons). Unfortunately, significant techno-
logical challenges still remain in generation and detection of
single photons, although important advances have been
made over the past three decades [4,5]. Protocols for an
alternative approach, continuous-variable QKD (CV-QKD),
were developed more recently [2,6]. CV-QKD utilizes
conjugate continuous degrees of freedom (field quadratures)
of a light pulse prepared in a Gaussian (coherent or

squeezed) state to transmit the signals that constitute the
shared randomness. At the receiver, the quadratures are
measured using shot-noise limited balanced homodyne or
heterodyne detectors, which have the advantage of not
requiring single photon detection and operating at extremely
high detection rates (on the order of GHz). In particular, the
coherent-state CV-QKD protocol has received much atten-
tion because of its promise of achieving information-theo-
retically secure key distribution with modest technological
resources [7–9]. The technical ease of CV-QKD is balanced
by more complex and less efficient -processing schemes for
distilling a shared secret key from the imperfect shared
randomness established during the quantum signal exchange
portion of the protocol. However, with the recent develop-
ment of higher efficiency error correction codes [10–12]
and more comprehensive security proofs [13–15] for
CV-QKD, it is becoming an attractive alternative to DV-
QKD. A particular reason for the appeal is the expectation
that the integrated photonics implementation of CV-QKD
will be easier than that of DV-QKD, and such implementa-
tions are critical for the next phase of QKD development that
is focused on practicality and wide-spread utilization.
A major obstacle to the implementation of CV-QKD,

especially in integrated photonics, is the requirement for
transmission of a local oscillator (LO) between Alice and
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Bob. Current fiber-based implementations co-transmit the
LO with the signal states using techniques that involve
combinations of time-division multiplexing (TDM),
wavelength-division multiplexing (WDM), and polariza-
tion encoding [10,16]. Free-space implementations of
CV-QKD also multiplex using the polarization degree
of freedom [17]. Since the LO intensity dictates the
quality of quadrature measurement at Bob’s receiver, it
is desirable to transmit a high-power LO that is many
orders of magnitude more intense than the signal pulse.
Due to this power disparity, multiplexing has to signifi-
cantly separate the two components in order to minimize
the contamination of the signal states by photons scattered
from the LO (for example, this is the reason for combining
polarization encoding with TDM, as in Ref. [10]). This
degree of separation in multiplexing (and associated
demultiplexing at Bob’s receiver) greatly complicates
the hardware required for CV-QKD and is even a road-
block for integrated photonics implementations of
CV-QKD since TDM and polarization manipulation and
maintenance are more difficult on chip [18–20]. Another
complication associated with the requirement of LO
transmission is that a relative phase shift arises between
the signal and LO due to the path separation during
demultiplexing at the receiver [16,21]. This shift can be
compensated by precise calibration of the separated paths,
which is however not a robust solution, or by dynamic
phase estimation at the receiver, in which case the speed at
which this estimation can be done becomes a practical
limitation on the rate of key generation.
In this work, we eliminate all of the issues outlined above

by developing a coherent-state CV-QKD protocol that
eliminates the transmission of a LO between Alice and
Bob. We achieve this by noticing that a common reference
frame between Alice and Bob can be established by a
method that, instead of transmitting the LO, uses regularly
spaced reference pulses whose quadratures are measured by
Bob to estimate Alice’s phase reference. This new protocol,
which we call self-referenced CV-QKD (SR-CV-QKD),
greatly simplifies the hardware requirements at Alice’s and
Bob’s stations since it enables them both to employ
independent (truly local) LOs. In addition, SR-CV-QKD
obviates a key assumption of most CV-QKD security
proofs [14]—namely, that the LO is trusted—and thus
provides a more secure implementation of CV-QKD.
We demonstrate the key elements of SR-CV-QKD using
a fiber-based setup utilizing fiber-pigtailed bulk-optics
components. However, we stress that this protocol is
manifestly compatible with chip-scale implementation
since it only requires (low-loss and low-noise) classical
optical communication components, as outlined in Fig. 1.
The remainder of the paper is organized as follows.

The SR-CV-QKD protocol is described in Sec. II. In
Sec. III, we use the entanglement-based theoretical descrip-
tion of SR-CV-QKD to analyze the secret key rate under

individual and collective Gaussian attacks. Section IV
presents the details of the experimental demonstration of
the protocol’s feasibility. Finally, our conclusions are
summarized in Sec. V.

II. DETAILS OF THE SR-CV-QKD PROTOCOL

In this section, we describe the prepare-and-measure
version of the protocol, which corresponds to the actual
physical implementation. The equivalent entanglement-
based description is presented in Sec. III.
In each round of SR-CV-QKD, Alice chooses two

independent Gaussian random variables ðqA; pAÞ, both
distributed as N ð0; VAÞ, and sends Bob the coherent state
jqA þ ipAi, which we refer to as the signal pulse. In
addition, she sends a coherent-state reference pulse in
the next time bin. The mean quadrature values of the
reference pulse in Alice’s reference frame, (qAR

, pAR
) [22],

are publicly known. The amplitude of the reference pulse
[23], V1=2

R ¼ ðq2AR
þ p2

AR
Þ1=2, is fixed and may be several

times larger than V1=2
A but much smaller than that of a

typical LO. Using reference pulses with a relatively small
amplitude is a practically important aspect of SR-CV-QKD,
which helps to reduce the interference with the signal pulse,
as compared to the effect of a large-amplitude (classical)
pulse, whose “long tail” cannot be completely suppressed
and hence would interfere with the signal if time multi-
plexed at the same rate.
In each round, Bob performs a homodyne measurement

of one of the quadratures (QB or PB) of the received signal
pulse to estimate its mean value (qB or pB, respectively),
where these quadratures are defined relative to his own
high-power LO. He also performs a heterodyne measure-
ment on the received reference pulse to obtain both of its
mean quadrature values, qBR

and pBR
(again, with respect to

his LO).

FIG. 1. Hardware schematic for the SR-CV-QKD protocol. In
contrast to conventional CV-QKD implementations (e.g.,
Ref. [10]), the hardware requirements are dramatically simplified
due to elimination of LO transmission.
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The phase-space representation of Alice’s and Bob’s
misaligned reference frames is shown in Fig. 2. The phase
difference θ between Alice’s and Bob’s frames is a time-
dependent quantity since their individual LOs are free
running, and we assume that θ at any time is a random
variable distributed uniformly on ð−π; π� and that the
frequency of its fluctuations (i.e., the phase noise band-
width), fθ, which is measured and calibrated before the
protocol begins, is much lower than the rate of pulse
generation. In other words, letΔt be the time delay between
the signal and reference plus the duration of both pulses.
Then, we require that this duration is much shorter than the
inverse of the bandwidth fθ, i.e.,

Δt ≪ f−1θ : ð1Þ

Provided that condition (1) is satisfied, the θ value will be
the same for measurements on both pulses. We note that
Eq. (1) also places a restriction on the phase stability of
Alice’s laser source; specifically, this source should be
phase stable over the time period specified by Δt. The same
phase stability is required of Bob’s LO.
Estimation of the phase difference θ is the key element in

SR-CV-QKD. Since Bob knows the mean quadrature
values of the reference pulse both in Alice’s frame, (qAR

,
pAR

), and in his own frame, (qBR
, pBR

), he can calculate an
estimate θ̂ of the phase difference, via

�
qBR

pBR

�
¼

ffiffiffiffiffiffiffiffi
Teff

p �
cos θ̂ − sin θ̂

sin θ̂ cos θ̂

��
qAR

pAR

�
; ð2Þ

where 0 < Teff ≤ 1 is the effective channel transmittance
that can be eliminated to obtain

θ̂ ¼ tan−1
�
pBR

qAR
− qBR

pAR

qBR
qAR

þ pBR
pAR

�
: ð3Þ

In the following, we assume, without loss of generality, that
Alice’s reference pulse has pAR

¼ 0, in which case Eq. (3)
becomes

θ̂ ¼ tan−1
�
pBR

qBR

�
: ð4Þ

Since the reference pulse has a relatively small amplitude,
its quantum uncertainty cannot be ignored, and therefore
even in the case of a technically ideal measurement, there
will be an error in the phase difference estimate, i.e.,

θ̂ ¼ θ þ φ; ð5Þ

where the estimation error φ is a random variable distrib-
uted according to some probability distribution PðφÞ. We
assume that θ and φ are independent random variables
since they arise from separate physical processes. We see in
Sec. III that the error of phase difference estimation plays a
critical role in determining the expected secret key rate of
SR-CV-QKD.
As is standard in modern CV-QKD, our protocol

employs reverse reconciliation. Bob sends Alice his esti-
mate of the phase difference between their frames, θ̂,
and which quadrature of the signal pulse (QB or PB) he
measured. Then, Alice rotates her tabulated values for the
signal pulse by θ̂, to obtain an estimate (q̂B or p̂B) of Bob’s
measured quadrature value, via

�
q̂B
p̂B

�
¼

ffiffiffiffiffiffiffiffi
Teff

p �
cos θ̂ − sin θ̂

sin θ̂ cos θ̂

��
qA
pA

�
: ð6Þ

At this point, Alice and Bob share a partially correlated
Gaussian random variable, and the remainder of the
protocol is the same as conventional CV-QKD, which
proceeds by performing channel estimation, error correc-
tion, and privacy amplification after a large enough block of
(imperfect) shared randomness has been collected [9,10].
We mention a number of points about the new protocol

before examining it quantitatively. First, the occurrence
ratio of reference pulses to signal pulses does not have to be
1∶1. If the phase drift is significantly slower than the signal
pulse rate, then one can utilize fewer reference pulses to
estimate the slow drifting phase difference. In this situation,
condition (1) should hold for Δt being the period between
subsequent reference pulses.
Second, the frequency difference between Alice’s

source and Bob’s LO should be reasonably stable: This
stability can be accomplished through the use of
single-frequency lasers locked individually to a stable
reference frequency such as an atomic line. In case the
stable frequency reference is difficult to implement,

Reference pulse

Signal pulse

qAR

pAR
qA

pA
qBR

pBR

pB
qB

FIG. 2. The phase-space representation of Alice’s and Bob’s
misaligned reference frames. The reference pulse is assumed to
be on theQA axis for Alice in this example, and the signal pulse is
randomly placed.
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commercially available single-frequency lasers can still be
utilized. If the relative frequency drift is slow and the
linewidth is sufficiently narrow, the drift can be treated as a
phase noise, which the SR-CV-QKD scheme will handle.
However, if the relative frequency drift is fast, one should
consider frequency locking Bob’s LO by utilizing a
dedicated locking beam and the transfer cavity technique
[24,25]. We note that synchronizing separate laser sources
may turn out to be a particularly challenging task in
circumstances where practical limitations on laser proper-
ties exist (e.g., limited coherence properties of available on-
chip lasers for integrated photonics implementations).
Third, utilizing a heterodyne detector and a homodyne

detector in concert (heterodyne for reference pulses and
homodyne for signal pulses) can be challenging since
consecutive pulses need to be routed to the correct detector.
This can be accomplished by either actually having two
types of detectors and routing each pulse accordingly or,
more practically, by frequency detuning the local oscillator
from the carrier frequency when a heterodyne detection is
required. Such small detuning can be performed at GHz
rates, and thus this solution is valid if the pulses are
nanosecond separated. However, in some instances, Bob
may be restricted to performing homodyne measurements
only, for example, if it is desirable to simplify his receiver
hardware as much as possible. In this case, Alice can send
a pair of closely spaced twin reference pulses, and Bob
will perform orthogonal quadrature measurements on
them sequentially, obtaining qBR

from the measurement
on one reference pulse and pBR

from the measurement on
the other. In addition to hardware simplification, this twin-
reference-pulse mode results in a lower uncertainty of the
phase difference estimate, as quantified in Sec. III below,
but at the expense of a reduction in the number of time
bins available for signal pulses (which constitute the raw
data for the eventual key) for a fixed communication time.
Finally, we note that using reference pulses to perform

phase-drift estimation is not only useful for the SR-CV-
QKD protocol per se, but also for calibration purposes
before and during the protocol. This technical improvement
is discussed in more detail in Appendix B.

III. SECRET KEY RATE ANALYSIS

While claims of secure key distribution should be based
on empirically estimated correlations between Alice and
Bob [15], it is common to calculate an expected secret key
rate based on reasonable assumptions on the communica-
tion channel and detection apparatus. The usefulness of
such a theoretical analysis is in revealing the effects of
various design parameters on the achievable key rate. This
calculation is particularly important in our case since it
allows us to compare the expected performance of SR-CV-
QKD against the respective conventional protocol that
requires LO transmission.

We follow the approach in Refs. [2,26] and compute the
asymptotic expected key rate in the presence of a lossy,
noisy passive Gaussian process E that models channel
transmittance, channel excess noise, detection inefficiency,
and electronic detector noise. The entanglement-based
description of the conventional protocol begins with the
density matrix for the state shared between Alice and Bob
before they perform any measurements: ρAB ¼ EðρSVÞ,
where ρSV is the ideal two-mode squeezed vacuum state.
Since ρSV and E are Gaussian, one can equivalently express
the state ρAB in terms of its covariance matrix (represented
in the basis fQA; PA;QB; PBg) [2,26]:

γAB ¼
�

V1 Cσz
Cσz TηðV þ χÞ1

�
ð7Þ

with

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TηðV2 − 1Þ

q
; ð8Þ

where 1 ¼
�
1 0

0 1

�
and σz ¼

�
1 0

0 −1
�
. In Eqs. (7) and

(8), T is the channel transmittance, η is the detector
efficiency (so the overall effective transmittance is
Teff ¼ Tη), χ is the channel noise (referred to the input
of the channel), and V is the variance of both quadratures of
Alice’s output state, i.e., V ¼ VA þ 1, where VA is the
variance of Alice’s Gaussian modulation of the signal pulse.
The noise can be modeled as a sum of three terms [2]:

χ ¼ 1 − Tη
Tη

þ Vel

Tη
þ ε; ð9Þ

where the first term is the loss-induced vacuum noise, the
second term is the contribution of the detector electronic
noise with the variance Vel, and ε is the excess noise in the
channel. Note that this noise model treats channel and
detector contributions on equal footing, thus resulting in a
conservative estimate of the expected key rate. Some works
[9,21,27,28] use a more nuanced model that assumes that
Eve cannot benefit from the noise added by Bob’s detector,
therefore resulting in a more optimistic key rate estimate. In
this work, we use the conservative noise model of Ref. [2],
which corresponds to a stronger security scenario.
In SR-CV-QKD, in addition to the process E, we need to

take into account the effect of phase-space rotations due to
the reference frame mismatch, including averaging over
distributions of random variables θ and φ. The resulting
density matrix for the state shared between Alice and Bob
before they perform any measurements is

ρ̄AB ¼ ρABðθ̂; θÞ ¼
Z

π

−π
dφPðφÞ

Z
π

−π
dθ
2π

ρABðθ̂; θÞ ð10Þ

with
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ρABðθ̂; θÞ ¼ UAð−θ̂ÞUBðθÞρABU†
Að−θ̂ÞU†

BðθÞ; ð11Þ

where UAðBÞðϕÞ is the operator of a phase-space rotation of
Alice’s (Bob’s) mode by angle ϕ. The interpretation of this
state is that Bob’s mode undergoes a rotation by the angle
equal to the actual phase difference θ, and Alice attempts to
compensate for this by applying a rotation of her mode by
the angle −θ̂. Note that in the ideal case where θ̂ ¼ θ, these
rotations describe an orthogonal transformation of Bob’s
state and the conjugate orthogonal transformation [29] of
Alice’s state, whose combination leaves the bipartite state
invariant, i.e., ρABðθ; θÞ ¼ ρAB and, consequently, ρ̄AB ¼
ρAB in the ideal case. Thus, in the entanglement-based
description, the SR-CV-QKD protocol can be seen as an
attempt to restore the imperfect Einstein-Podolsky-Rosen
(EPR) correlations in the state UBðθÞρABU†

BðθÞ by com-
pensating for the random rotation experienced by
Bob’s mode.
The state ρ̄AB is also Gaussian, and its covariance matrix

can be expressed as

γ̄AB ¼ γABðθ̂; θÞ ¼
Z

π

−π
dφPðφÞ

Z
π

−π
dθ
2π

γABðθ̂; θÞ ð12Þ

with

γABðθ̂; θÞ ¼ ½UAð−θ̂Þ ⊕ UBðθÞ�γAB½UT
Að−θ̂Þ ⊕ UT

BðθÞ�;
ð13Þ

where UAðBÞ is the symplectic representation of a phase-
space rotation operator UAðBÞ [6]. Computing these rota-
tions and integrals yields

γ̄AB ¼
�
V1 CΦ̄

CΦ̄ TηðV þ χÞ1

�
; ð14Þ

with

Φ̄ ¼
�
cosφ sinφ

sinφ −cosφ
�
; ð15Þ

cosφ ¼
Z

π

−π
dφPðφÞ cosφ;

sinφ ¼
Z

π

−π
dφPðφÞ sinφ: ð16Þ

Comparing the covariance matrix γ̄AB of Eq. (14) to γAB of
Eq. (7), we see that the effect of the reference frame
alignment in SR-CV-QKD is to replace σz by Φ̄ in off-
diagonal blocks. In the following, we assume that the
phase-estimation error is dominated by the quantum
uncertainty of the reference pulse(s), in which case the
distribution PðφÞ is symmetric around φ ¼ 0 and, con-
sequently, sinφ ¼ 0. Then,

Φ̄ ¼ cosφσz; ð17Þ

and the effect of the reference frame alignment is to
simply rescale the hQAQBi and hPAPBi correlations by
the factor cosφ. Therefore, we can carry over the analysis
in Refs. [2,26] for the respective conventional CV-QKD
protocol and simply replace the off-diagonal blocks in the
covariance matrix by the scaled versions.
A more visual way for evaluating variances and corre-

lations in SR-CV-QKD is by using the Heisenberg picture,
i.e., applying the phase-space rotations to the quadrature
operators,

�
QAðθ̂Þ
PAðθ̂Þ

�
¼

�
cos θ̂ − sin θ̂

sin θ̂ cos θ̂

��
QA

PA

�
; ð18aÞ

�
QBðθÞ
PBðθÞ

�
¼

�
cos θ sin θ

− sin θ cos θ

��
QB

PB

�
; ð18bÞ

and evaluating quantum expectation values over the unro-
tated state ρAB, as well as averaging over distributions of
random variables θ and φ. Using elements of the covariance
matrix γAB, it is straightforward to obtain

hQ2
Ai ¼

Z
π

−π
dφPðφÞ

Z
π

−π
dθ
2π

Tr½ρABQ2
Aðθ̂Þ� ¼ V; ð19aÞ

hQ2
Bi ¼

Z
π

−π
dθ
2π

Tr½ρABQ2
BðθÞ� ¼ TηðV þ χÞ; ð19bÞ

hQAQBi ¼
Z

π

−π
dφPðφÞ

Z
π

−π
dθ
2π

Tr½ρABQAðθ̂ÞQBðθÞ�

¼ Ccosφ; ð19cÞ

and analogously for other variances and correlations, thus
reproducing the elements of γ̄AB in Eq. (14).
Alice’s preparation of Gaussian-modulated coherent

states in the prepare-and-measure description corresponds
to her performing a heterodyne measurement on the state
of mode A in the entanglement-based description. This
heterodyne measurement is equivalent to mixing mode A
with vacuum on a balanced beam splitter and performing
homodyne measurements on conjugate quadratures of
two output modes A0 and A00. Because of the symmetry
between the two quadratures, it is sufficient to consider the
measurement of the Q quadrature of mode A0, which is
given by

QA0 ¼ 1ffiffiffi
2

p ðQA þQvacÞ: ð20Þ

Since the vacuum noise is not correlated with any other
mode, it is easy to obtain
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hQ2
A0 i ¼ 1

2
ðhQ2

Ai þ 1Þ ¼ 1

2
ðV þ 1Þ; ð21aÞ

hQA0QBi ¼
1ffiffiffi
2

p hQAQBi ¼
1ffiffiffi
2

p Ccosφ: ð21bÞ

A. Individual attacks

The asymptotic secret key rate against individual attacks
for reverse reconciliation is given by

Kind ¼ βIA0B − IEB; ð22Þ

where 0 < β ≤ 1 is the reconciliation efficiency, IA0B is
the mutual information between Alice’s and Bob’s mea-
surements, and IBE is the mutual information between
Eve’s and Bob’s measurements. These mutual informations
are

IA0B ¼ 1

2
log2

�
VB

VBjA0

�
; ð23aÞ

IEB ¼ 1

2
log2

�
VB

VBjE

�
; ð23bÞ

where VB ¼ hQ2
Bi is the variance of the quadrature QB

measured by Bob, and

VBjA0 ¼ hQ2
Bi − hQA0QBi2

hQ2
A0 i ð24Þ

is the conditional variance that quantifies Alice’s uncer-
tainty onQB after the measurement ofQA0 . Using Eqs. (19)
and (21), we obtain

VBjA0 ¼ Tη½χ þ 1þ ðV − 1Þξ� ð25Þ

and

IA0B ¼ 1

2
log2

�
V þ χ

χ þ 1þ ðV − 1Þξ
�
; ð26Þ

where

ξ ¼ 1 − ðcosφÞ2: ð27Þ

We see from Eq. (25) that the effect of using the
reference pulse is the increase in the conditional variance
by the additional term

ΔVBjA0 ¼ VBjA0 − ½VBjA0 �ξ¼0
¼ TηðV − 1Þξ: ð28Þ

If the distribution PðφÞ is tight, then cosφ ≈ 1 − 1
2
φ2 and

ξ ≈ φ2. Also, if condition (1) is satisfied, the θ value is
constant during each θ̂ estimation, and the variance of the

estimated value is V θ̂ ¼ Vφ ¼ φ2 [recall that we assume

symmetric PðφÞ, which implies φ̄ ¼ 0]. If PðφÞ mono-
tonically and rapidly decreases with jφj from the maximum

value at φ ¼ 0, the variance V θ̂ ¼ φ2 is a tight upper bound
on ξ, i.e., ξ⪅V θ̂, and, consequently,

ΔVBjA0⪅TηðV − 1ÞV θ̂: ð29Þ

We can evaluate V θ̂ by expressing it as

V θ̂ ¼
Z

π

−π
dθ
2π

��∂θ̂
∂z

�2

Vz

�
θ̂¼θ

; ð30Þ

where z ¼ tan θ̂ ¼ pBR
=qBR

, ∂θ̂=∂z ¼ cos2 θ̂, and

Vz ¼
�VQBR

þ δR

q2BR

þ
VPBR

þ δR

p2
BR

�
z2 ð31Þ

is the dimensionless variance of the measured value of z.
In Eq. (31), δR ¼ 1 in the single-reference-pulse mode (a
heterodyne measurement is performed on a single reference
pulse) and δR ¼ 0 in the twin-reference-pulse mode
(sequential homodyne measurements are performed on a
pair of twin reference pulses). In general, the value of Vz
depends on the modulation used by Alice to generate
reference pulses. In particular, for fixed mean quadrature
values qAR

¼ V1=2
R and pAR

¼ 0, we find

VQBR
¼ VPBR

¼ Tηðχ þ 1Þ; ð32aÞ

q2BR
¼ TηVR cos2 θ̂; ð32bÞ

p2
BR

¼ TηVR sin2 θ̂: ð32cÞ

By substituting these expressions into Eqs. (31) and (30),
we obtain

V θ̂ ¼
χ þ 1

VR
þ δR
TηVR

: ð33Þ

Correspondingly, the tight upper bound on the conditional
variance increase due to the use of the reference pulse,
given by Eq. (29), can now be expressed in terms of
experimental parameters:

ΔVB0jA0⪅
ðV − 1Þ½Tηðχ þ 1Þ þ δR�

VR
; ð34Þ

which scales as VA=VR. The corresponding lower bound on
the mutual information between Alice and Bob is
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IA0B⪆
1

2
log2

�
V þ χ

ðχ þ 1Þð1þ V−1
VR

Þ þ ðV−1ÞδR
TηVR

�
: ð35Þ

Now, to evaluate the mutual information between Eve
and Bob, one can apply the Heisenberg uncertainty relation
to the pure state held by Bob conditioned on Alice’s and
Eve’s measurements, to obtain [2]

VBjEVBjA ≥ 1; ð36Þ

where, because of the symmetry between Q and P quad-
ratures, B stands for any quadrature of Bob’s mode. By
substituting inequality (36) into Eq. (23b), we obtain

IEB ≤
1

2
log2ðVBVBjAÞ

¼ 1

2
log2

	ðTηÞ2ðV þ χÞ
V

½Vχ þ 1þ ðV2 − 1Þξ�



⪅
1

2
log2

	ðTηÞ2ðV þ χÞ
V

�
Vχ þ 1

þðV2 − 1Þ
�
χ þ 1

VR
þ δR
TηVR

��

; ð37Þ

where in the last line we have used ξ⪅V θ̂ to express the
bound on mutual information in terms of experimental
parameters.
Finally, putting together the bounds in Eqs. (35) and

(37), we obtain the minimum key rate that is secure against
individual attacks, Kind ≥ Kmin

ind , expressed in terms of
experimental parameters:

Kmin
ind ¼ β

2
log2

�
V þ χ

ðχ þ 1Þð1þ V−1
VR

Þ þ ðV−1ÞδR
TηVR

�

−
1

2
log2

	ðTηÞ2ðV þ χÞ
V

�
Vχ þ 1

þðV2 − 1Þ
�
χ þ 1

VR
þ δR
TηVR

��

: ð38Þ

Note that all terms associated with the reference pulse’s
quantum uncertainty reduce the key rate and scale inversely
with VR. In the limit of a large-amplitude (classical)
reference pulse, VR → ∞, the theoretical key rate of SR-
CV-QKD is the same as that for the respective conventional
CV-QKD protocol that requires LO transmission [2,26].
However, even in this limit, SR-CV-QKD could still be
practically advantageous since it avoids many technical
difficulties associated with LO transmission, as detailed
in Sec. I.

B. Collective attacks

The expected secret key rate against collective attacks for
reverse reconciliation is given by

Kcol ¼ βIA0B − χBE; ð39Þ

where the lower bound on IA0B is given by Eq. (35) and χBE
is the Holevo quantity for Eve’s maximum accessible
information. For Gaussian protocols, the Holevo quantity
is [21,26]

χBE ¼ Sðρ̄ABÞ − Sðρ̄qBA Þ; ð40Þ

where SðρÞ is the von Neumann entropy of the state ρ, ρ̄AB is
the state shared between Alice and Bob before they perform
any measurements, and ρ̄qBA is the state of Alice’s system
conditional on Bob’s measurement outcome qB. Since these
states are Gaussian, the entropy is evaluated in terms of
symplectic eigenvalues of the covariance matrices of the
corresponding states [6]. This procedure results in [26]

χBE ¼ G

�
λ1 − 1

2

�
þ G

�
λ2 − 1

2

�
−G

�
λ3 − 1

2

�
; ð41Þ

where GðxÞ ¼ ðxþ 1Þ log2ðxþ 1Þ − x log2ðxÞ, and the
eigenvalues λi are obtained from

λ21;2 ¼
1

2

�
Δ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − 4D2

p �
; ð42aÞ

Δ ¼ V2ð1 − 2TηÞ þ ðTηÞ2ðV þ χÞ2
þ 2Tη½1þ ðV2 − 1Þξ�; ð42bÞ

D ¼ Tη½Vχ þ 1þ ðV2 − 1Þξ�; ð42cÞ

λ23 ¼ V
Vχ þ 1þ ðV2 − 1Þξ

V þ χ
: ð42dÞ

Furthermore, we find that χBE monotonically increases as ξ
increases, and therefore, we can upper bound χBE using
ξ ≤ V θ̂. Thus, replacing ξ in Eqs. (42) with expression (33)
for V θ̂ completes the derivation of the minimum expected
key rate that is secure against collective attacks,Kcol ≥ Kmin

col ,
in terms of experimental parameters. We note that since
SR-CV-QKD is a Gaussian protocol, security against col-
lective attacks is sufficient for asymptotic unconditional
security (i.e., security against coherent attacks) with some
processing overhead [30,31].
Figure 3 shows the expected minimum key rates secure

against individual and collective attacks, as expressed by
Kmin

ind andKmin
col , respectively. Each plot shows the key rate as

a function of the effective transmittance Teff ¼ Tη, for a
number of reference-pulse amplitude values (VR=VA ¼
f10; 20; 50; 100; 200; 500g with VA ¼ 40) and also for
ξ ¼ 0 (which results in the same key rate as the respective
conventional CV-QKD protocol with LO transmission).
We see that as VR increases, the performance of SR-CV-
QKD approaches that of conventional CV-QKD, and at
VR ∼ 500VA, the achievable key rates are very similar for
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the two protocols. Figure 3 shows results for the single-
reference-pulse mode (δR ¼ 1); the results for the twin-
reference-pulse mode (δR ¼ 0) are very similar, except that
smaller values of VR=VA are required to approach the ξ ¼ 0
curve, which is a result of the higher accuracy of the phase
difference estimation possible in this mode of operation.

IV. EXPERIMENTAL CHARACTERIZATION
AND DEMONSTRATION

The primary benefit of the SR-CV-QKD protocol is the
reduction in hardware that it enables at the transmitter and
receiver. A schematic of our proof-of-principle experimen-
tal implementation of the SR-CV-QKD protocol is shown
in Fig. 4. Since our purpose is to demonstrate the feasibility

of the SR-CV-QKD protocol, the channel fiber length
between Alice and Bob in all of the experiments reported
below was only 5 m. Also, as shown in Fig. 4, we used a
single laser for both Alice’s and Bob’s stations, which sat
on the same optical table. We note that this was purely a
matter of experimental convenience in a situation with
limited resources, while any practical implementation of
the protocol will definitely require separate laser sources
for Alice and Bob. In addition, the use of a common laser
source obviates the need to frequency lock Alice’s and
Bob’s lasers, an additional experimental challenge that
would have to be tackled in a practical setup as discussed in
Sec. II. Nevertheless, crucial to this demonstration, due to
the difference between the paths from the laser source
to Alice’s modulation component and from the laser source
to Bob’s detection apparatus, the phase difference between
Alice’s and Bob’s frames was random and fluctuating (as
shown below in Fig. 5).
Extending the SR-CV-QKD operation to practical dis-

tances and including the use of separate laser sources in
Alice’s and Bob’s stations are part of ongoing work in our
laboratory. Further details of the current experimental setup
are given in Appendix A.

A. Signal retrieval under strong phase noise

We first demonstrate the ability of the protocol to detect
the phase drift and compensate for it. For this purpose, we
let Bob compensate his measured quadrature values rather
than send the phase estimate to Alice. Each signal pulse is
prepared in a constant coherent state and is accompanied by
a reference pulse that is also prepared in a constant coherent
state with mean quadrature values ðqAR

; pAR
Þ ¼ ð30; 0Þ.

Bob measures both Q and P quadratures of signal and
reference pulses using his own LO, and the measured data
are shown in Figs. 5(a) and 5(b). The fluctuations of
measured mean quadrature values of both signal and
reference pulses indicate the phase drift happening in the
setup. Bob’s estimate of the drifting phase, calculated using
measurements of reference pulses’ quadratures, is shown in

FIG. 3. Expected minimum key rates for the SR-CV-QKD
protocol, secure against (a) individual attacks and (b) collective
attacks, as functions of the effective transmittance Teff ¼ Tη. The
parameter values used are VA ¼ 40, ε ¼ 0.01, Vel ¼ 0.01 (all in
shot-noise units), β ¼ 0.95, δR ¼ 1. As shown in the legend,
different curves correspond to different values of the reference-
pulse amplitude V1=2

R (specifically, VR=VA ¼ f10; 20; 50; 100;
200; 500g), along with the curve for ξ ¼ 0, in which case the key
rate is the same as that for the respective conventional CV-QKD
protocol with LO transmission. The curves terminate on the left
at values of Teff below which the expected secret key rate is zero.

FIG. 4. Schematic of experimental setup for a proof-of-principle
demonstration of SR-CV-QKD. The only difference between this
schematic and Fig. 1 is the use of a shared laser source between
Alice and Bob for experimental convenience.
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Fig. 5(c), and mean quadrature values of signal pulses,
compensated in accordance with the estimated phase, are
shown in Fig. 5(d). The compensation successfully recov-
ers the constant signal that Alice sent despite the variation
of the phase difference between Alice’s and Bob’s frames.
The phase-space representation of Bob’s compensated
signal is shown in Fig. 6. The variance of the reconstructed
signal data is 1.16.

We note that in this setup, Bob was restricted to
performing homodyne measurements and therefore could
measure only one quadrature per pulse. Therefore, Alice
sent two identical signal pulses and two identical reference
pulses in succession (the twin-pulse mode). The time taken
for Bob to perform homodyne measurements on all four
pulses (16 μs) is much shorter than the characteristic time
of phase fluctuations (f−1θ ∼ 200 μs).

B. Signal constellation reconstruction and
noise estimation

Next, we report reconstruction of a constellation of
signal pulses, which demonstrates the effectiveness of
the self-referenced technique for signals over a large area
in the phase space. In this experiment, we used a square
grid in Alice’s phase plane, with tiles of size 5 × 5 and
centers of tiles spanning from −15 to 15 in both quadrature
axes (for a total of 49 tiles). Alice generated 1000 identical
signal pulses prepared in a coherent state centered on each
tile and sent them to Bob. Each pair of signal pulses was
accompanied by a pair of reference pulses; all reference
pulses were identical with mean quadrature values
ðqAR

; pAR
Þ ¼ ð30; 0Þ. Bob performed homodyne measure-

ments of Q and P quadratures on each pair of twin signal
pulses (resulting in 500 paired data points for each grid
tile), as well as on each pair of twin reference pulses. In the
same manner as described in Sec. IVA above, Bob used
quadrature measurements on reference pulses to estimate
the fluctuating phase difference between his and Alice’s
frames and then compensated for estimated phase values to
recover signal pulses sent by Alice. Figure 7 shows the
reconstructed constellation of signal pulses. The distribu-
tion of Bob’s reconstructed signals is quite uniform in both

(a) Reference pulses (b) Signal pulses

(c) Estimated phase angle (d) Compensated signal

FIG. 5. Phase-drift estimation and compensation for constant
signal pulses. Bob’s measured voltages proportional to mean
values ofQ quadrature (blue dots) and P quadrature (red dots) for
(a) reference pulses and (b) signal pulses. (c) Estimated values θ̂
of the phase difference between Alice’s and Bob’s frames. Each
data point is calculated as in Eq. (4) using mean quadrature values
qBR

and pBR
obtained from sequential homodyne measurements

on a pair of twin reference pulses. (d) Mean values of Q
quadrature (blue dots) and P quadrature (red dots) for signal
pulses, after a rotation by the angle −θ̂ to compensate for the
phase drift.

FIG. 6. The phase-space representation of reconstructed signal
pulses after phase-drift compensation.

FIG. 7. The phase-space representation of signal pulses recon-
structed using quadrature measurements on reference pulses and
phase difference estimation.
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quadratures for each of the grid tiles. However, one can
notice the known “zero anomaly” [32,33], which is
manifested as a skewed distribution of reconstructed values
near the vacuum, arising because of a finite extinction ratio
of Alice’s electro-optic modulator (EOM) used for ampli-
tude modulation. This undesirable effect can be mitigated
by using a EOM with a higher extinction ratio or chaining
multiple EOMs to achieve greater extinction.
Typical Gaussian-modulated coherent-state pulses used

as signals in CV-QKD have the modulation variance
VA ∼ 40, and the purpose of the presented example is to
demonstrate that such signals can be accurately recon-
structed using reference pulses and phase difference esti-
mation. We emphasize that during this entire experiment
(which involved transmission of 49,000 signal pulses and
reconstruction of 24,500 pairs of mean quadrature values),
we did not have to concern ourselves with the stability of
Bob’s LO since the random phase drift was compensated at
all times using the self-referenced technique.
Next, we extended the characterization of signal pulses

to the evaluation of the excess noise in the combined
system, including Alice’s encoding and Bob’s decoding
apparatuses. In this experiment, we used the same
reconstruction procedure for a constellation of coherent-
state signal pulses as described above but applied it to a
different sample. With a finer grid tiling (2.5 × 2.5), the
number of tiles was 4 times greater (for a total of 196 tiles),
but only 250 identical signal pulses were generated for each
tile. After performing the reconstruction of the signal’s
mean quadrature values, we calculated the variance of the
reconstructed data for each grid tile. Figure 8 shows this
variance as a function of the location on the phase-plane
grid. Any variance in excess of 1 is the excess noise
introduced by the experimental apparatus, channel, or
phase-estimation procedure. We note that the variance

distribution is quite uniform (0.95–1.2) over much of the
considered phase-plane region. The average variance value
over the entire constellation is 1.16. Thus, the entire
apparatus, including the phase compensation step, has a
total excess noise of 0.16. This excess noise is due to
several experimental imperfections, including nonuniform
performance and calibration of EOMs across the phase
plane and electronic noise in detectors.

C. Demonstration of SR-CV-QKD with
Gaussian modulation

In addition to the above experiments that utilized the
self-referenced technique for reconstruction of signal
pulses in the presence of phase fluctuations and for
characterization of the excess noise, we also performed
the quantum components of an experimental secret key
distribution using the SR-CV-QKD protocol. The QKD
experiment was performed under a strong phase noise
between Alice’s signal-generating laser and Bob’s LO.
We used a pseudo-random number generator based on the

Mersenne twister for Alice’s signal modulation and Bob’s
measurement axis selection. Each communication block
consisted of 24,500 data points. Alice’s pulse-generation
rate was 250 kHz; two-thirds of these were identical
reference pulses (used in the twin-reference-pulse mode),
and one-third were signal pulses prepared in random
Gaussian-modulated coherent states. Alice’s Gaussian
modulation variance was VA ¼ 34, and mean quadrature
values of reference pulses were ðqAR

; pAR
Þ ¼ ð30; 0Þ, cor-

responding to VR=VA ≈ 26.47 [34]. Since the transmission
was only across an optical table, T ¼ 1. Accounting for
detector efficiency, homodyne visibility, and imperfections
in homodyne arm balancing, Bob’s homodyne efficiency
was estimated to be η ¼ 0.719 on average; however, because
of fluctuating mode-matching and homodyne-arm-balancing
conditions, this efficiency can fluctuate �0.1.
At each round (consisting of two reference pulses and

one signal pulse), Bob estimated the phase difference
between his and Alice’s frames and communicated this
estimate to Alice, who performed the compensation rota-
tion on the tabulated random values of the signal pulse
quadratures.
In each session, among the 24,500 pulses exchanged,

2000 were randomly selected for estimation of the covari-
ance matrix between Alice’s and Bob’s measurements
during the parameter estimation stage. An example of such
an estimated covariance matrix is

γ̄pm;exp
AB ¼

0
BBB@

33.9637 −0.9647 31.1408 −0.0763
−0.9647 34.3744 −1.0830 30.7054

31.1408 −1.0830 29.4003 −0.2307
−0.0763 30.7054 −0.2307 28.2540

1
CCCA:

ð43Þ

FIG. 8. The variance of the reconstructed signal data as a
function of the phase-space location.
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Note that this covariance matrix corresponds to the prepare-
and-measure version of the protocol and thus differs from
γ̄AB of Eq. (14). The theoretical form of γ̄pmAB is

γ̄pm;theor
AB ¼

�
VA1

ffiffiffiffiffiffi
Tη

p
VAcosφ1ffiffiffiffiffiffi

Tη
p

VAcosφ1 TηðVA þ 1þ χÞ1

�
; ð44Þ

where we used the assumption of symmetric PðφÞ to set
sinφ ¼ 0. We can achieve reasonably good agreement
between this theoretical form and the experimentally
reconstructed covariance matrix using the above values
for VA, VR, and T, along with the calibrated values ϵ ¼
0.01 and Vel ¼ 0.01, and a value of homodyne efficiency at
the upper limits of our calibrated range, η ¼ 0.8, which
yields the theoretical covariance matrix

γ̄pm;theor
AB ¼

0
BBB@

34.000 0.000 30.389 0.000

0.000 34.000 0.000 30.389

30.389 0.000 28.218 0.000

0.000 30.389 0.000 28.218

1
CCCA: ð45Þ

Using the above parameter values, we also calculate
mutual information bounds: IA0B⪆2.37 bit=round, IEB ≤
1.492 bit=round, and χBE⪅1.742 bit=round (a round con-
sists of three pulses, two reference and one signal).
Assuming the reconciliation efficiency value of β ¼ 0.95,
the expected minimum key rates secure against individual
and collective attacks are Kmin

ind ≈ 0.759 bit=round and
Kmin

col ≈ 0.509 bit=round, respectively. Taking into account
that SR-CV-QKD in the twin-reference-pulse mode utilizes
three pulses per round, the key rates per physical pulse
would be 3 times lower. Finally, with the pulse-generation
rate of 250 kHz, the expected minimum key rates are Kmin

ind ≈
63.26 kbit=s and Kmin

col ≈ 42.45 kbit=s.
It should be noted that the primary factor that dictates

the key rate in our setup is the pulse-generation rate. We
had to maintain this at the low rate of 250 kHz because the
data acquisition hardware we used (National Instruments,
PCIE-6363) supports only 250-kHz signal generation and
measurement rates (taking into account rise and fall times
of pulses).
This demonstration is a proof-of-principle of the SR-CV-

QKD protocol and the feasibility of phase difference
estimation and compensation using reference pulses.
Therefore, we choose a negligible transmission distance.
In Fig. 9, we plot the achievable key rates as a function of
transmission distance using this experimental setup for a
range of postprocessing efficiencies. The next generation of
this experiment will include an upgrade of this hardware to
increase pulse-generation rates and focus on increasing the
key rate and extending the key distribution distance using
SR-CV-QKD.

V. CONCLUSIONS AND DISCUSSION

We have developed a new protocol, SR-CV-QKD, that
eliminates the need to transmit a LO. The removal of this
demand dramatically simplifies the hardware required to
perform CV-QKD and removes the most significant
obstacles to developing integrated photonics implemen-
tations of CV-QKD transceivers. We thus believe that
this new protocol will play a key role in enabling the
miniaturization of CV-QKD hardware, which has the
potential to significantly enhance the applicability of
quantum communications.
In the reported experiments, we characterized the core

new element of SR-CV-QKD, signal reconstruction
through compensation of the drifting phase, and performed
a proof-of-principle demonstration of key distribution
using the new protocol. On the theory side, we computed
expected key rates, secure under a passive Gaussian
channel assumption. A principal feature of our security
analysis is the incorporation of the inherent quantum
uncertainty of reference pulses. We showed that as the
reference pulse amplitude increases, the key rate of
SR-CV-QKD approaches that of conventional CV-QKD
with LO transmission, but this rate can be achieved with
much simpler hardware. Our analysis has focused on
asymptotic key rates as a first step in understanding the
new protocol, but we expect that recent results that
calculate secure key rates with finite-size effects included
[13–15] can be adapted to SR-CV-QKD.
Away to view the difference between SR-CV-QKD and

conventional CV-QKD is that while the latter physically
transmits a reference frame (in the form of the LO), the
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FIG. 9. Expected key rates as a function of transmission
distance for the current experimental setup and a range of
postprocessing efficiency values (β). The parameters used are
VA ¼ 34, VR ¼ 900, δR ¼ 0, ϵ ¼ 0.01, Vel ¼ 0.01, and pulse
rate of 250 kHz. The homodyne efficiency was taken to be the
average value (this quantity fluctuates in our setup—see main
text) of η ¼ 0.719. The transmission loss was taken to be
0.2 dB=km.
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former only transmits information about the reference
frame. As a result, SR-CV-QKD is immune to many of
the recently identified side-channel attacks that exploit
detection using a publicly shared high-power LO [35,36].
Of course, it remains to be seen whether new side-channel
attacks that target SR-CV-QKD are possible.
In this work, we focused on a version of SR-CV-QKD, in

which Alice prepares signal and reference pulses in coherent
states and Bob performs a homodyne measurement on the
signal pulse. More generally, it is possible (in analogy with a
variety of conventional CV-QKD protocols [26]) to consider
alternative versions of SR-CV-QKD. For example, Alice can
prepare the signal pulse in a squeezed state, Alice can
prepare a pair of reference pulses in orthogonal squeezed
states, Bob can perform a heterodyne measurement on the
signal pulse, Bob can perform a homodyne measurement of
a random quadrature, and so on.
It should be noted that in classical optical communica-

tion based on coherent detection, reference laser pulses
have been used as a direct phase reference for signal
generation and phase noise cancellation and stabilization.
In particular, in formats involving quadrature phase-shift
keying and quadrature amplitude modulation, the self-
homodyne detection (SHD) approach [37–39] makes use
of dedicated pilot carrier pulses that are multiplexed with
the signal pulses from the same laser to enable homodyne
detection at the receiver. SR-CV-QKD is in the same spirit
as these techniques, except that, unlike SHD, our protocol
enables absolute amplitude and phase measurement in the
low-photon-number regime with encoding and decoding
capabilities across a continuous amplitude and phase
variation in real time. The method of phase estimation
and compensation underlying the SR-CV-QKD protocol
can be considered a close quantum analog of intradyne
detection [40], another approach used in classical coherent
communication, which digitally estimates phase (and
frequency) drifts using measurements on part of the
modulated signal pulse. An important aspect of adapting
this technique to CV-QKD is that the measurement for
phase estimation should be performed on a dedicated
reference pulse rather than directly on the signal pulse
because at the intensity levels used for CV-QKD, detection
of any portion of the signal pulse would severely decrease
achievable key rates. As a matter of fact, the precision of
phase estimation achieved via the direct measurement on
the signal pulse would correspond to SR-CV-QKD with
VR=VA < 1. According to Fig. 3, such a low VR=VA value
would not be practical (this is because QKD operates near
shot-noise levels). Therefore, dedicated reference pulses
with sufficiently large amplitude are required as prescribed
by SR-CV-QKD.
Previous CV-QKD experiments have made use of strong

calibration pulses to compensate for phase drifts created by
the signal and LO having different propagation paths at the
receiver [41–43]. However, it should be noted that these

experiments co-transmitted the signal and LO and hence do
not use the phase compensation to its full extent. Also, in
the context of the B92 DV-QKD protocol [44], Koashi has
constructed a modified scheme whereby Bob estimates the
phase difference between his and Alice’s lasers [45].
However, unlike in SR-CV-QKD where this estimate is
used to modify Alice’s classical data, Koashi’s scheme uses
the estimate to phase shift a weak field that interferes with
Alice’s signal. The SR-CV-QKD protocol is practically
much simpler since no dynamic tuning of optical compo-
nents conditioned on the phase estimate (optical feed
forward control) has to be performed.
We note that this new CV-QKD protocol was independ-

ently discovered by Qi et al., as recently reported in
Ref. [28]. Qi et al. present a complementary study of
the protocol, including its implementation to perform key
distribution over a 25-km link, which goes beyond our
proof-of-principle demonstration. In contrast, in this work,
we focused on a comprehensive analysis of the fundamen-
tal limits of the protocol (expected secret key rate calcu-
lations taking into account the quantum uncertainty of
reference pulses and accuracy of the phase estimation, in
Sec. III) and characterization of the performance of the
central new element in the protocol: phase-drift compen-
sation using reference pulses (in Sec. IV). Note that the
expected key rates calculated by Qi et al. are larger than
those calculated in this work because while we use the
strictest security criterion [2], Qi et al. use the relaxed
criterion where calibrated noise and loss at Bob’s receiver
are assumed to be out of Eve’s control. Our results, along
with the demonstration in Qi et al. [28], establish SR-CV-
QKD as a practical protocol with significant benefits in
terms of hardware simplification and potential compati-
bility with integrated photonics.
Finally, while this manuscript was under review Huang

et al. reported on an implementation of CV-QKD over a 25-
km link without transmission of a local oscillator, which
utilizes a protocol that is essentially the same as SR-CV-
QKD [46].
Ongoing work in our laboratory is focused on increasing

the key rate and transmission distance of the SR-CV-QKD
link and increasing the stability and robustness of the
transmitter and receiver components.
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APPENDIX A: EXPERIMENTAL DETAILS

In this appendix, we provide the details of our exper-
imental setup.
The laser source was a fiber-pigtailed New Focus

single-frequency laser at 1550 nm, with an optical
bandwidth of around 100 kHz and a maximum output
power of 7 mW. After an in-line polarizer, the polarization
extinction ratio was 35 dB (all fiber used in the experiment
was polarization-maintaining Panda PM1300 fiber). An
acousto-optic modulator (Brimrose) modulated the output
of the laser at 250 kHz with individual pulse duration of
200 ns. The amplitude and phase of the light were
modulated through 10-GHz fiber-pigtailed amplitude
and phase EOMs (Thorlabs).
At Bob’s station, the light pulses received were detected

using a homodyne setup, as shown in Fig. 1. Although, in
practice, Bob will use an independent laser as a LO for
homodyne measurements, in our experiment, for simplicity,
Alice and Bob shared the same single-frequency laser
source. However, it is critical to note that, because of the
difference between the paths from the laser source to
Alice’s modulation component and from the laser source
to Bob’s detection apparatus, the phase difference between
Alice’s and Bob’s frames was random and fluctuating (as
shown in Fig. 5). Bob’s LO power was 0.1 mW. For
homodyne detection, we used a polarization-maintaining
fiber beam splitter with an approximately 51:49 splitting
ratio (Thorlabs). We attached a mechanical variable optical
attenuator to each leg after the beam splitter to balance
the power between the two legs. For the balanced detector,
we used a commercially available, switchable-gain, fast
InGaAs detector (Thorlabs PDB450C). The detection
bandwidth was set at 45 MHz, where we observed that
the dark current noise was approximately 25 dB lower than
the shot noise from Bob’s LO. Accounting for detector
efficiency, homodyne visibility, and imperfections in
homodyne arm balancing, Bob’s homodyne efficiency
was estimated to be η ¼ 0.719 on average; however,
because of fluctuating mode-matching and homodyne
arm-balancing conditions, this efficiency can fluctuate
�0.1. We are currently making progress in understanding
the root causes of this uncertainty and how to stabilize it.
For data collection and analog voltage generation for the

EOMs, we used a commercially available data acquisition
card (NI PCIE-6363), capable of reliably collecting multi-
channel data at 250 kHz. Since the analog output of this
card has 1-MΩ impedance while the EOM’s RF modulation
input has 50-Ω impedance, we built in a fast unity-gain
voltage follower to match the impedances. All data gen-
eration and collection were performed through Matlab’s
data acquisition toolbox-based codes.

APPENDIX B: DEVICE CALIBRATION WITH
REFERENCE PULSES

The technique of using reference pulses and phase
estimation to compensate for phase drifts is valuable not
only for running the CV-QKD protocol per se but also for
the calibration of Alice’s and Bob’s apparatuses. Since
CV-QKD operates at the limits of detection, it is vital to
calibrate, and maintain calibration of, the modulators and
homodyne detectors in the setup. Typically, this calibration
is done locally by Alice and Bob to minimize security
loopholes, and for this reason, Alice’s station should have
homodyne or heterodyne detection capabilities and Bob’s
station should have pulse-generation capabilities. In this
appendix, we present a calibration task that Alice and Bob
need to perform and show that it benefits greatly from the
use of reference pulses and phase estimation.
It is critical that the phase induced by Alice’s and Bob’s

phase EOM is well calibrated against the applied voltage;
i.e., the actual phase modulation should correspond accu-
rately to the random numbers generated by Alice, or the
measurement axis chosen by Bob. In a long-running
CV-QKD implementation, this calibration may have to
be performed repeatedly since EOM characteristics can
drift over time. The calibration requires performing a test
phase modulation and measuring its value. The measure-
ment is performed using a homodyne setup that utilizes a
LO generated from the same master laser as the modulated
pulse. As a result, this calibration requires precise knowl-
edge of the path difference (which results in a relative phase
shift) between the modulation path and the LO path. This
path difference can fluctuate because of thermal effects, and
tracking it requires a considerable effort.
Noting that the calibration problem in the presence of a

phase drift is very similar to the problem of establishing a

(a) Raw data (b) Calibration curve after phase
drift compensation

FIG. 10. In situ calibration of a phase EOM using reference
pulses and phase-drift compensation. (a) Raw data collected
while the modulation voltage is swept from −3.5 V to 3.5 V
within the time window (5–58 ms). Red line: In-phase value of
the reference pulse. Magenta line: Quadrature value of the
reference pulse. Blue line: In-phase value of the phase-modulated
pulse. Cyan line: Quadrature value of the phase-modulated pulse.
(b) The calibration curve between the applied voltage and the
induced phase after phase-drift compensation. Blue dots: Cali-
bration data. Red line: Polynomial fit.
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common phase reference in CV-QKD, it is clear that we can
alternatively use reference pulses to perform the EOM
phase calibration. In other words, during the calibration
stage, each phase-modulated pulse is accompanied by a
reference pulse (with no phase modulation). The procedure
of heterodyne measurement and phase estimation on this
reference pulse tells us what the reference zero phase
modulation value is, and this can be used to recover the
actual phase of the modulated pulse.
Figure 10(a) shows raw measured values for the phase-

modulated pulse when the EOM voltage is swept from
−3.5 V to 3.5 V, along with those for the accompanying
reference pulse. Within this voltage range, the EOM
response is reasonably linear. The raw voltages show that
the phase does drift over the time scale of the sweep.
However, Fig. 10(b) shows that by estimating the drifting
phase and compensating for it, one can obtain a clean
calibration map between the applied voltage and the
induced phase.
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