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Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have
been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD,
both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate
through the insecure quantum channel. This arrangement may open security loopholes and limit the
potential applications of CV-QKD. In this paper, we propose and demonstrate a pilot-aided feedforward
data recovery scheme that enables reliable coherent detection using a “locally” generated LO. Using
two independent commercial laser sources and a spool of 25-km optical fiber, we construct a
coherent communication system. The variance of the phase noise introduced by the proposed scheme
is measured to be 0.04 (rad?), which is small enough to enable secure key distribution. This technology
also opens the door for other quantum communication protocols, such as the recently proposed
measurement-device-independent CV-QKD, where independent light sources are employed by different

users.
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I. INTRODUCTION

Quantum key distribution (QKD) allows two authenti-
cated parties, normally referred to as Alice and Bob, to
generate a secure key through an insecure quantum channel
controlled by an eavesdropper, Eve [1-5]. Based on
fundamental laws in quantum mechanics, idealized QKD
protocols have been proved to be unconditionally secure
against adversaries with unlimited computing power and
technological capabilities [6—8].

Both discrete-variable (DV) QKD protocols based on
single photon detection [1,2] and continuous-variable (CV)
QKD protocols based on coherent detection [9-11] have
been demonstrated as viable solutions in practice. One
well-known CV-QKD protocol is the Gaussian-modulated
coherent state (GMCS) protocol [11], which has been
demonstrated through an 80-km optical fiber link recently
[12]. One important advantage of the GMCS QKD is its
robustness against incoherent background noise. The
strong local oscillator (LO) employed in coherent detection
also acts as a natural and extremely selective filter,
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which can suppress noise photons effectively. This intrinsic
filtering function makes CV-QKD an appealing solution for
secure key distribution over a noisy channel, such as a lit
fiber in a conventional fiber optic network [13—-15] or a
free-space optical link [16].

However, all existing implementations of CV-QKD
based on coherent detection contain a serious weakness:
To reduce the phase noise, both the signal and the LO are
generated from the same laser and propagate through the
insecure quantum channel [11,12,16,17]. This arrangement
has several limitations. First of all, it allows Eve to access
both the quantum signal and the LO. Eve may launch
sophisticated attacks by manipulating the LO, as demon-
strated in recent studies [18-21]. Second, sending a strong
LO through a lossy channel can drastically reduce the
efficiency of QKD in certain applications. For example,
to achieve a shot-noise-limited coherent detection, the
required photon number in the LO is typically above
10® photons per pulse at the receiver’s end [11,12,17].
With a 1-GHz pulse repetition rate and a channel loss of
20 dB, the required LO power at the input of the quantum
channel is about 1.2 W (at 1550 nm). If optical fiber is
used as the quantum channel, noise photons generated by
the strong LO inside the optical fiber may significantly
reduce QKD efficiency and multiplexing capacity. Third,
the LO is typically 7 or 8 orders of magnitude brighter
than the quantum signal; complicated multiplexing and
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demultiplexing schemes are required to effectively separate
the LO from the quantum signal at the receiver’s end. Note
that the second and third problems discussed above might
be mitigated by sending a weak LO from Alice and
applying optical amplification at Bob’s side. However, it
is important to take into account the noise introduced by the
optical amplifier in this case.

In brief, in CV-QKD, it is desirable to generate the LO
“locally” using an independent laser source at the receiver’s
end. Unfortunately, such a scheme has never been imple-
mented in practice. The main challenge is how to effec-
tively establish a reliable phase reference between Alice
and Bob. While various techniques, such as feedforward
carrier recovery [22], optical phase-locked loops [23], and
optical injection phase-locked loops [24], have been
developed in classical coherent communication, these
techniques are not suitable in QKD where the quantum
signal is extremely weak and the tolerable phase noise is
low. Furthermore, to prevent Eve from manipulating the
LO, the LO laser should be isolated from outside both
optically and electrically.

In this paper, we solve the above long-outstanding
problem by proposing and demonstrating a pilot-aided
feedforward data recovery scheme, which enables reliable
coherent detection using a “locally” generated LO. This
scheme is built upon the observation that in the GMCS
QKD, Bob does not need to perform the measurement in
the “correct basis.” In fact, Bob can perform the measure-
ment in an arbitrarily rotated basis as along as the basis
information (the phase reference) is available afterwards.
With this postmeasurement basis information, either Alice
or Bob can rotate data at hand and generate correlated data
with the other. We demonstrate the above scheme in a
coherent communication system constructed by a spool
of 25-km optical fiber and two independent commercial
laser sources operated at free-running mode. The observed
phase-noise variance is 0.04 (rad?), which is small enough
to enable secure key distribution. This technology also
opens the door for other novel quantum communication
protocols, such as the measurement-device-independent
(MDI) CV-QKD protocol [25-27], where independent
light sources are employed by different users.

This paper is organized as follows: In Sec. II, we conduct
a theoretical analysis of the proposed scheme. In Sec. III,
we present the details of proof-of-principle experiments.
We conclude this paper with a discussion in Sec. IV.

II. THEORETICAL ANALYSIS

In GMCS QKD, Alice draws two random numbers X 4
and P, from a set of Gaussian random numbers (with a
mean of zero and a variance of V,N), prepares a coherent
state |X,4 + iP,) accordingly, and sends it to Bob. Here,
Ny = 1/4 denotes the shot-noise variance. At Bob’s end,
he can perform either optical homodyne detection or optical
heterodyne detection.

In GMCS QKD protocol based on homodyne detection
[11], Bob randomly chooses to measure either the ampli-
tude quadrature (X) or phase quadrature (P) of the incom-
ing signal. Later on, he announces which quadrature he
measures for each incoming signal through an authenti-
cated public channel, and Alice only keeps the correspond-
ing data. In GMCS QKD based on heterodyne detection
[28], Bob first splits the incoming signal into two with a
50:50 beam splitter. He then measures X at one output
port and P at the other. In this case, Alice keeps all her
quadrature data.

After the quantum transmission stage, Alice shares a set
of correlated Gaussian random variables (called the “raw
key”’) with Bob. Alice and Bob compare a random sample
of the raw key through an authenticated classical channel to
estimate the transmittance and excess noise of the quantum
channel. If the observed excess noise is small enough, they
can further work out a secure key.

In the above description, we have implicitly assumed that
Alice and Bob share a phase reference, so Bob can perform
the required quadrature measurement. If the LO is gen-
erated for an independent laser source, how can Alice and
Bob establish a phase reference in this case?.

In this section, we present a pilot-aided phase estimation
scheme that allows Alice and Bob to measure the phase
relation between two independent lasers in real time. Using
this phase information, either Alice or Bob can rotate the
data at hand in the postprocessing stage (“‘quadrature
remapping”) and establish correlation with the other. In
principle, our scheme can be applied to both CV-QKD with
homodyne detection and the one with heterodyne detection.
In this paper, we focus on the case of heterodyne detection.
For an independent and related work, see Ref. [29].

A. CV-QKD using the quadrature remapping scheme

In a phase-coding DV-QKD protocol, it is also crucial to
control the phase between a signal pulse and a reference
pulse when performing interferometric measurement. In
fact, a DV-QKD protocol using a strong phase-reference
pulse has been proposed in Ref. [30]. In this scheme, Alice
sends Bob a quantum signal together with a strong phase-
reference pulse generated from the same laser. At Bob’s
side, he interferes the strong phase-reference pulse with a
sampling beam from his LO laser to determine the phase
difference between the two lasers, corrects this phase
difference by introducing a phase shift to his LO laser,
and then performs an interferometric measurement on the
quantum signal using the phase-corrected LO pulse.
However, the above scheme has not been demonstrated
yet, possibly because of the following reasons: First, the
phase difference between two remote independent lasers is
expected to fluctuate rapidly; this makes real-time phase-
feedback control very challenging. Second, different types
of detectors are required for phase measurement and
quantum signal detection; this increases the complexity
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of the overall system. As we show below, the above two
challenges can be overcome in a CV-QKD protocol.

Suppose in a CV-QKD system based on heterodyne
detection, both the signal laser and the LO laser are
operated in free-running mode. Without loss of generality,
for each transmission, we can choose the phase of the signal
laser as the phase reference (¢pg = 0). When Bob performs
conjugated homodyne detection, the phase ¢ of his LO
laser can be treated as a random variable. Bob’s measure-
ment results (X, Pp) are given by (after scaling with the
channel transmittance)

Xp=X,cos¢p+ Pysing + Ny,
PB:—XASin¢+PACOS¢+NP, (1)

where Ny and Np are assumed to be independent and
identically distributed (i.i.d.) Gaussian noises with
Zero mean.

If Alice and Bob can determine ¢ after Bob has
performed his measurement, one of them (for example,
Bob) can use this postmeasurement phase information to
correct his data by performing the following rotation:

Xy = Xpcos¢p — Pgsing,
Py = Xpsing + Pgcos . (2)

From Egs. (1) and (2), it is easy to show

Xy = X, + N,
P/B:PA+N/v (3)

where the noise terms in the rotated data are given by

Ny = Ny cos¢ — Npsing,
'» = Nysin¢g + Npcos ¢. (4)

Given Ny and Np are i.i.d. Gaussian noises, it is easy to
see that Ny and N, are also independent Gaussian noises
with the same variance as Ny and Np. This suggests that
the rotation process will not introduce additional noise if
the phase ¢ can be determined precisely.

The above “quadrature remapping” scheme allows Alice
and Bob to establish correlated data without using a
complicated phase-feedback-control system, thus removing
the first challenge listed at the beginning of this section.
Next, we present a scheme that allows Alice and Bob to
determine ¢ under realistic scenarios using the same
detector for quantum signal detection, thus removing the
second challenge listed above.

B. Pilot-aided phase recovery scheme

If the drift of phase ¢ is slow enough such that within a
frame time of AT (within which the phase ¢ can be treated

as a constant), many rounds of quantum transmission can
be conducted, then the following scheme can be applied to
estimate the phase ¢b. After the quantum transmission stage,
for each frame, Alice can randomly choose a subset of the
transmitted signals as calibration pulses and announce
the encoded data through an authenticated channel.
Using the corresponding measurement results at hand,
Bob can estimate phase ¢ for this frame using Eq. (1).
Since Alice’s signals are at quantum level, each individual
calibration pulse cannot provide a precise estimation of the
phase ¢. However, by averaging the results acquired from a
large number of calibration pulses, the phase noise can be
reduced effectively. This scheme was first proposed and
implemented in Ref. [17] to reduce the noise associated
with the slow phase drift of a fiber interferometer in
GMCS QKD.

Unfortunately, the above scheme is not practical when
the quantum signals and the LOs are generated from
independent laser sources. On one hand, the phase differ-
ence between two practical lasers fluctuates rapidly
because of the laser frequency instability and the phase
noise associated with the finite laser linewidth; on the other
hand, the maximum transmission rate of CV-QKD is
limited by the bandwidth of the shot-noise-limited optical
coherent detector. As such, we cannot acquire an accurate
estimation of ¢ by measuring quantum signals.

To solve the above problem, we proposed a pilot-aided
feedforward data recovery scheme [31]. The basic idea is as
follows. For each quantum transmission, Alice sends out
both a quantum signal and a relatively strong phase-
reference pulse generated from the same laser. The quan-
tum signal carries Alice’s random numbers, as in the case
of conventional CV-QKD. The reference pulse, on the
other hand, is not modulated. These two pulses propagate
through the same quantum channel to the measurement
device, where Bob performs conjugate homodyne detection
on both of them using LOs generated from the LO laser.
Note, to avoid detector saturation, Bob can use a relatively
weak LO to measure the reference pulse.

The measurement results from the phase-reference pulse
(Xg, Pg) can be used to determine ¢ using

P
— _tan—1_R
¢ = —tan X, (5)

where the minus sign is due to the definition of phase
reference. By using a relatively strong reference pulse,
Bob can acquire an accurate estimation of ¢ and use this
phase information to implement the quadrature remapping
scheme.

In this paper, we study a simple implementation of the
above scheme, where Alice sends out quantum signals and
reference pulses alternately and periodically, as shown in
Fig. 1. We remark that if the drift of phase ¢ is slow enough
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FIG. 1. Distribution of quantum signals (S) and reference
pulses (R).

compared with the transmission rate of QKD, it is possible
to use fewer reference pulses to improve QKD efficiency.

In Fig. 1, a quantum signal S; and the corresponding
reference pulse R; are measured at different times with a
time delay of 7. If the frequency difference of the two
lasers (f; — f») is a constant and can be precisely deter-
mined, we can estimate phase ¢ ; at the time when S; is
measured from the phase measurement result of R; by
simply adding a constant phase shift of 2z(f| — f,)T,. In
practice, however, both lasers present slow frequency drift
over time. Here, we use a simple scheme to estimate ¢ ;.
Since the signal pulse S; is in the middle of two reference
pulses R; and R;,;, we can estimate ¢y ; from the phase
measurement results on R; and R;,; as

By, = Pr T Inis, (©

Note the above equation can also be written as

bsi = dri+2nfaT,, (7)

where fy = (¢pris1 — ¢r.i/47nT ) can be interpreted as the
frequency difference of the two lasers within the short time
interval between two adjacent reference pulses.

While similar to classical intradyne detection, a key
difference in our scheme separates phase recovery of a
quantum signal from that of a classical one. A phase
reference cannot be recovered reliably from a quantum
signal, while it can in the classical case, meaning that the
reference pulses here must be used to estimate that phase of
the LO and quantum signal during the time window in
which the quantum signal arrives. This places additional
stringent requirements on relative laser noise compared to
the classical case.

C. Security analysis

In this section, we show that the existing security
proofs of conventional CV-QKD [32-34] (built upon the
assumption that Eve can only access the quantum signals)
can be applied in our scheme directly.

First, the phase-reference pulses are only used to provide
(classical) phase information; they are not directly used in
the coherent detection of the quantum signals. In fact, in
our scheme, Eve can never access the LO itself. Note, a
standard assumption in CV-QKD is that Eve can have full

knowledge of the phase reference used in quantum state
preparation or coherent detection, so the reference pulses
will not give Eve any additional information. Eve can
certainly interfere with the phase recovery process by
manipulating the phase-reference pulses when they propa-
gate through the quantum channel. This could result in an
increased phase noise, and the secure key rate will be
reduced. This is one type of denial-of-service attack, which
can be applied to any QKD protocols. From Eve’s point
of view, whatever can be achieved by manipulating the
reference pulses can also be achieved by manipulating the
quantum signals directly. In brief, sending phase-reference
pulses through the quantum channel will not cause any
security problem.

Next, we show that the security of the CV-QKD protocol
using the quadrature remapping scheme is equivalent to
that of the conventional CV-QKD protocol. To illustrate the
essential ideas, it is convenient to represent the phase
recovery scheme by a separate classical communication
channel that can be fully controlled by Eve. Figure 2(a) is a
schematic diagram of Bob’s system in our new QKD
scheme. In this picture, Bob performs a heterodyne
measurement on the incoming quantum signal and then
rotates his measurement results using the phase ¢ estimated
through the classical communication channel. In Ref. [35],
the authors proved that a unitary phase rotation commutes
with heterodyne detection. More specifically, Bob can
either rotate the optical phase of the quantum signal first
and then perform heterodyne detection, or he can perform
heterodyne detection first and then rotate the classical
measurement results in the postprocessing stage. So, the
protocol shown in Fig. 2(a) is equivalent to the virtual QKD

Quantum |
channel

Classical | p
channel | !
e e e Jd
LT Bob
(@
Quantum |~~~ T T T TR !
channel . !
Rotation |
! 1
Classical | !
channel | | '
R Bob
(b)
Quantum :_ __________ !
channel . ! '
Rotation (- i
Classical | .
channel ¢ | | !
_________________ |
Lo: Bob
©

FIG. 2. Security models. HD-heterodyne detection. (a) CV-
QKD protocol using quadrature remapping scheme. (b) A virtual
QKD scheme equivalent to (a). (c) Conventional QKD scheme.
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protocol shown in Fig. 2(b). Since the classical phase
estimation channel can be controlled by Eve, we can move
the phase rotation operator out of Bob’s secure station and
let Eve have full control of it, as shown in Fig. 2(c). Note
the QKD protocol shown in Fig. 2(c) is exactly the
conventional CV-QKD based on heterodyne detection,
where Eve is allowed to manipulate the quantum signals
transmitted through the channel at her will. So, the security
of our new QKD scheme is equivalent to that of the
conventional CV-QKD protocol.

While we do not need to develop a new security proof for
the proposed QKD scheme, to achieve a high secure key
rate, it is important to reduce the noise of the phase
recovery process. From Eq. (2), the uncertainty of ¢ will
be translated into an excess noise in (X%, Pj) (after scaling
with the channel transmittance) as

6‘¢ = VAU(/), (8)

where V4 is Alice’s modulation variance and o, is the noise
variance in determining phase ¢. This extra noise ¢, will
reduce the secure key generation rate. It is thus very
important to minimize the phase noise 6.

In the next section, we study the performance of the
proposed phase recovery scheme under a realistic scenario.

III. PROOF-OF-PRINCIPLE DEMONSTRATION

A. Noise model

There are two major noise sources in determining phase
¢ using Eq. (6). The first one is the measurement noise
when Bob tries to determine ¢y ; (¢ ;1) of the reference
pulses R; (R;, ). This noise could be significant when the
reference pulses become extremely weak; thus, the con-
tribution of shot noise cannot be ignored. However, in
practice, we can use a relatively strong reference pulse to
reduce the contribution of the shot noise. For example, if
the average photon number of the reference pulse (at Bob’s
heterodyne detector) is 1000, given the detection efficiency
of the heterodyne detector is 50%, the phase noise variance
due to the shot noise is about 0.001, which is negligible in
practice (see details in Appendix A). In this paper, we
simply ignore this noise contribution.

The second noise source is the quantum phase noise of
the laser, which originates from the amplified spontaneous
emission. More specifically, even if we know the phase of
the reference pulse, we still cannot determine the phase of
the signal pulse precisely since they are generated at
different times. The spontaneous emitted photons generated
within the above time interval contribute a fundamental
phase noise. Since the laser phase noise cannot be reduced
by simply increasing the amplitude of the reference pulse, it
is the main noise source in our scheme.

Define the laser phase at time t = 0 as ;. The phase
noise Af(t) quantifies the deviation of the laser phase at

time ¢ from 0, + 2z ft (the phase expected from an ideal
sine wave), where f is the central frequency of the laser.
A@(1) can be modeled as a Gaussian random variable with a
mean of zero and a variance of [36]

(a0 =2, 9)

Te

Here, 7. is the coherence time of the laser. For a laser
with Lorentzian line shape, 7. is related to its linewidth
Af by [36]

1

= A7 (10)

Te

As shown in Appendix A, given that the phase noise of
the signal laser and that of the LO laser are {(A8g(¢))?) and
(A0, (1))?), respectively, the noise variance of our phase
estimation scheme [Eq. (6)] is described by

op = %{<(A95(Td))2> +((A0,(Ta)*)}. (1)

where T, is the time delay between the signal pulse and the
reference pulse (see Fig. 1).

B. Experimental setup

We demonstrate the pilot-aided feedforward data
recovery scheme using commercial off-the-shelf devices.
The experimental setup is shown in Fig. 3. Two commercial
frequency-stabilized continuous wave (cw) lasers at
Telecom wavelength (Clarity-NLL-1542-HP from Wave-
length Reference) are employed as the signal and the LO
laser. Both lasers are operated at a free-running mode
with no optical or electrical connections between them. The
central frequency difference between the two lasers can
stay within 10 MHz without doing any feedback controls.
A LiNbO3 waveguide intensity modulator (EOSpace) is
used to generate 8-ns laser pulses at a repetition rate of
50 MHz. Since half of the laser pulses are used as phase
references, the equivalent data transmission rate in our
experiment is 25 MHz. A LiNbO3 waveguide phase

RisiRi+1
S

FIG. 3. Experimental setup. S is the signal laser, L is the LO
laser, IM is the optical intensity modulator, PM is the optical
phase modulator, AWG is the arbitrary waveform generator, SMF
is the 25-km single -mode fiber spool, PC is the polarization
controller, BD is the balanced photodetector, and OSC is the
oscilloscope.
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modulator (EOSpace) is used to modulate the phase of the
signal pulses.

Both the signal pulses and the reference pulses propagate
through a spool of 25-km single-mode fiber before arriving
at the measurement device. A commercial 90 ° optical
hybrid (Optoplex) and two 350-MHz balanced amplified
photodetectors (Thorlabs) are employed to measure both X
quadrature and P quadrature of the incoming pulses. The
90 ° optical hybrid is a passive device featuring a compact
design. No temperature control is required to stabilize its
internal interferometers. The outputs of the two balanced
photodetectors are sampled by a broadband oscilloscope at
a 1-GHz sampling rate. For simplicity, the LO laser is
operated at the cw mode. A waveform generator with a
bandwidth of 120 MHz provides the modulation signals to
both the intensity and the phase modulator, as well as a
synchronization signal to the oscilloscope.

C. Experimental results

To evaluate the effectiveness of the phase recovery
scheme, we conduct a phase-encoding coherent commu-
nication experiment using a binary pattern of
“01010101...,” where bit O is represented by no phase
shift and bit 1 by a phase shift of 1.65 rad. The phase
modulator shown in Fig. 3 is used to encode binary
phase information on the signal pulses. The amplitude of
the signal pulse is the same as that of the reference pulse. At
the receiver’s end, the average photon number per pulse is
about 10°, which is significantly lower than that of the LO
used in a typical GMCS QKD experiment. Note, in this
experiment, to determine the noise of the phase recovery
scheme, strong signal pulses are employed to provide
“true” values of the phases to be estimated.

In total, 25000 signal pulses and 25000 reference pulses
are transmitted. For each pulse received by Bob, its phase is
calculated from the measured quadrature values {X, P}
using Eq. (5). The phase measurement results from the

signal pulses {d) ) G2, ...,25000} are shown in
Figs. 4(a) and 4(b). Because of the random phase change
between the signal laser and the LO laser, the measured
phases are randomly distributed within [0, 27), regardless
of the encoded phase information.

From the phase measurement results of the reference
pulses {¢g;. i =1,2,...,25000}, we recover a phase
reference ¢g; for each signal pulse using Eq. (6), and
we correct the raw measurement results by

955" = b7 + s (12)

The corrected phase measurement results {¢ Scf)r =

.,25000} are shown in Figs. 4(c) and 4(d). After the

phase correction, the measurement results for bit O and bit 1
are clearly separated.

||||||||||||||||||||||||||I|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||I|||||||

Uncorrected phase measurement results (bit 0)

2e-014

(b)
e e
-3 4

-4
Uncorrected phase measurement results (bit 1)

2 (c)
O‘ﬁﬁ"fﬂﬂmﬂmummm]mmh'\l””1""1""|""|""l

-1 -0.5 0 0.5 1 15 2 25 3
Corrected phase measurement results (bit 0)

2 (d)

-1 -0.5 0 0.5 1 15 2 25 3
Corrected phase measurement results (bit 1)

FIG. 4. Histograms of the phase measurement results. (a) The
measurement results corresponding to bit 0 (before phase
correction). (b) The measurement results corresponding to bit
1 (before phase correction). (¢c) The measurement results corre-
sponding to bit O (after phase correction). (d) The measurement
results corresponding to bit 1 (after phase correction).

The variances of the residual phase noise (the difference
between ¢ Scor) and the phase information encoded by Alice)
have been determined to be 0.040 4 0.001 (for bit 0) and
0.039 + 0.001 (for bit 1), respectively.

Note in the above experiment, relatively strong reference
pulses have been employed. While this will not introduce
any security problem, in practice, it may be more conven-
ient to use weak reference pulses. We conduct experi-
ments to determine phase noise variance o, using
reference pulses with different average photon numbers
(10000,1000,100). The measured phase noise variances
are (0.039 +0.001, 0.040 £ 0.001, 0.054 4 0.001). These
results show that the phase recovery scheme works well
even with reference pulses containing only a thousand
photons.

As we have discussed in the previous section, the main
noise source in our setup is laser phase noise associated
with its finite linewidth. We conduct experiments to
determine the phase noise of each laser. For 7; = 20 ns
(which corresponds to the 50-MHz pulse repetition rate in
the above experiments), the phase noise of the two lasers
has been determined to be 0.035+0.001 and 0.044 +
0.001 (see details in Appendix A). From Eq. (11), the
expected noise of the phase recovery scheme is
o, = 0.040 = 0.001, which matches with the experimental
results very well. To further reduce the noise oy, we can
either use a smaller time delay 7, (which is ultimately
limited by the detector bandwidth) or choose lasers with a
narrower linewidth.

As another demonstration of the phase recovery scheme,
we conduct an experiment by using the phase reference
recovered from the reference pulses to remap quadrature
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values measured with weak quantum signals. In this
experiment, no phase information is encoded on the signal
pulses. The average photon number of each reference pulse
at the receiver’s end is about 1000, while that of each signal
pulse is 66. Figure 5 shows the quadrature values (X, P) of
the signal pulses in phase space (sample size is 24000). The
figure on the left shows the raw measurement results, where
the phase is randomly distributed in [0, 27), as expected.
The figure on the right shows the results after performing
quadrature remapping. More specifically, we first recover a
phase reference (}S’i for each signal pulse using Eq. (6) and
then rotate the raw data using Eq. (2). The quadrature
values have been scaled by taking into account the 3-dB
loss due to heterodyne detection and the 50% overall
efficiency of the detection system. The noise variance in
the X quadrature (right figure) has been determined to be
1.83 in shot-noise units. This result suggests the excess
noise of the detector (including noise from the balanced
photodetector and the oscilloscope) is about 0.83 in shot-
noise units. Note, because of the residual phase noise of the
phase recovery scheme, the distribution shown in the right
figure is not symmetric: The variance of the P quadrature
(Ap) is larger than that of the X quadrature (Ay). The phase
noise o, in the above experiment can be estimated by
o, = (Ap — Ax)/XG, where X is the mean value of the X
quadrature. The experimental result is (0.034 £ 0.01),
which is consistent with the noise variance estimated with
strong signal pulses. This shows that the proposed phase
recovery scheme works well in both the classical and the
quantum domain. Note the uncertainty in this measurement
is higher than that in previous experiments since we
estimate a small quantity (6,4) from the difference of two
relatively large quantities (Ap and Ay).

Given the noise of the phase recovery scheme, we
can use Eq. (8) to determine the additional excess noise
contributed by this scheme and estimate the secure key
rate using the existing security proof of GMCS QKD.
In Appendix B, we present simulation results based on
practical system parameters. Under the “realistic” model
[11] where Eve cannot control the noise and loss of Bob’s

8 8
6 ¥ 6
44 4
2 24
P 04 P 04
2] 2]
] 4]
6] 5
-8 -8
-8 6 4 2 0 2 4 6 8 -8 6 -4 2 0 2 4 6 8
X
FIG. 5. The measured quadrature values in phase space. Left

panel: before quadrature remapping; right panel: after quadrature
remapping (no phase information is encoded in this experiment).

detector, the secure key could be generated over a distance
of 120 km through telecom fiber in the asymptotic case,
where the finite-data-size effect is ignored. To estimate the
finite-data-size effect, we also conduct simulations using
the most recent composable security proof of CV-QKD
[34]. We remark that the above realistic model has been
widely adopted in CV-QKD experiments [11,12,15,17].

IV. DISCUSSION

A long-outstanding problem in CV-QKD based on
coherent detection is how to generate the LO “locally.”
In all the existing implementations of CV-QKD, both the
quantum signal and the LO are generated from the same
laser and propagate through the insecure quantum channel.
This arrangement may open security loopholes and also
limit the potential applications of CV-QKD.

In this paper, we solve the above problem by proposing
and demonstrating a pilot-aided feedforward data recovery
scheme that allows reliable coherent detection using a
locally generated LO. This scheme also greatly simplifies
the CV-QKD design by getting rid of the cumbersome
unbalanced fiber interferometers and the associated phase
stabilization system. Proof-of-principle experiments based
on commercial off-the-shelf components show that the
noise due to the proposed scheme is tolerable in CV-QKD.
To further reduce the noise, laser sources with a smaller
linewidth can be applied.

We remark that the measurement device employed in our
experiment is essentially an intradyne detection scheme
that has been applied in classical coherent communication
for carrier phase recovery [37,38]. It is thus convenient to
name our new scheme “intradyne” CV-QKD, while the
conventional scheme is called “self-homodyne” CV-QKD
[39]. However, there are several important differences
between the classical and the quantum case. First, in
classical communication, the signals are strong and the
modulation scheme (such as BPSK and QPSK) is relatively
simple. This allows carrier phase recovery from the signals
directly. In GMCS QKD, the quantum signals are
extremely weak (typically contain a few photons or less),
and the modulation scheme is more complicated; the carrier
phase cannot be recovered from the quantum signals
reliably. As shown in Appendix A, the contribution of
shot noise becomes significant when the photon number is
below 100. Thus, it is necessary to employ relatively strong
reference pulses. Second, the transmission rate of a
classical communication system can reach 100 GHz, while
the transmission rate of a state-of-the-art GMCS QKD
system is below 100 MHz. This places a more stringent
requirement on laser phase noise in the quantum system.
Third, a classical digital communication system can tolerate
higher phase noise than the CV-QKD. In brief, it is much
more challenging to recover the carrier phase in quantum
communication.
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Although a complete CV-QKD experiment using the
proposed scheme is not presented in this paper, all the
components required to implement such a system, includ-
ing broadband shot-noise-limited homodyne detectors
[40-42], have been well developed. In fact, the structure
of the proposed QKD system is much simpler compared to
the conventional scheme [12].

We remark that a similar CV-QKD scheme has been
independently proposed by Soh et al. [29]. In Ref. [29],
Soh et al. study the expected secure key rate of their
protocol under a passive channel, taking into account the
effects of quantum noise on the reference pulse; they show
in what limit the reference pulse scheme achieves the
same performance as the standard scheme (where a LO is
transmitted). They further conduct a proof-of-principle
QKD experiment in the presence of strong phase noise
between Alice’s signal pulses and Bob’s LO pulses
generated from the same laser. Note in Ref. [29], the
authors adopt a more conservative “paranoid” model [11],
where the imperfections inside Bob’s system can be
controlled by Eve. Security analysis based on this model
leads to more pessimistic predictions on the QKD perfor-
mance, as in the case of conventional CV-QKD [11]. In our
study, we establish the security of the proposed QKD
protocol by showing that it is equivalent to the conventional
GMCS QKD protocol; thus, the well-established security
proof can be applied directly. Our proof-of-principle
demonstration focuses on establishing a reliable phase
reference between two independent lasers over a 25-km
optical fiber link, a practical scenario that the proposed
protocol is designed for. We expect that our scheme will be
widely adopted in CV-QKD. This technology also opens
the door for other quantum communication protocols, such
as the MDI-CV-QKD protocol.
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APPENDIX A: NOISE IN PHASE
RECOVERY SCHEME

In this Appendix, we first derive Eq. (11), which
quantifies the contribution of laser phase noise to the noise
variance of the phase recovery scheme. Then, we present
details of experiments where the phase noise of each laser is
measured. Finally, we consider the case when the shot noise
associated with the reference pulses cannot be ignored.

For simplicity, we consider the case where the phases of
two reference pulses measured at times 7, and ¢, are used to

0] o a
) i Ty i Ty i
Signal le ple »  time
1 1 1 »
1 1 1 =
o b P i 2
1 1 1
1 1 1
Bo B, B,

FIG. 6. Phase noise analysis.

estimate the phase difference of the signal laser and the LO
laser at time ¢, as shown in Fig. 6.

Assume that the phases of the signal laser and the LO
laser at time {#o, 1,1, } are {ag, a1, ;Po, f1, P2}, corre-
spondingly. The phase differences of the two lasers at the
above times are given by

o = Po — o,
d1 =P —a,
by = Pr — . (A1)

The phases of the signal laser at different times are
related by

ay =ayg+2nfsTy+ Ng,

a =ay +2xfTq+ Ny, (A2)
where f is the central frequency of the signal laser. N
and N, are independent Gaussian noises with a mean of
zero and a variance of ((Afg(T,))?).

Similarly, the phases of the LO laser are related by

Pr=Po+2nf Tq+ Ny,

Pr=P +2nf Tqg+ Ny, (A3)
where f is the central frequency of the LO laser. N ; and
N, , are independent Gaussian noises with a mean of zero
and a variance of (A0, (T,))?).

We assume that ¢, and ¢, can be determined precisely
by using strong reference pulses. From Eq. (6) and using
Eqgs. (A1)—(A3), phase ¢, can be estimated by

—:¢0+¢2:

Ngi+Npr—Ngr—Np
=" .

¢ + 5

(A4)
Since all the above noise terms in Eq. (A4) are

independent from each other, it is easy to show that the
noise variance of the phase recovery scheme is given by

oy, = ((¢1 = $1)*) = %{<(A‘9S(Td))2> +((A0,(T4))*)}-
(AS)

This result is Eq. (11) in the main text.
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BD
e }D.
BS 90° |ip®
4»-{ optica osc
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Delay
)

FIG.7. Experimental setup for determining laser phase noise. L
stands for laser, BS is for fiber beam splitter, PC is for
polarization controller, BD is for balanced photodetector, and
OSC is for oscilloscope.

We conduct experiments to determine the laser phase
noise ((A0g(T,))?) and ((A8,(T,))?). The experimental
setup is shown in Fig. 7. The cw output of a laser is split
into two beams by a symmetric fiber splitter. After the two
beams pass through two separate fiber links, the phase
difference between the two beams is measured with a 90 °
optical hybrid, two balanced photodetectors, and an
oscilloscope.

Given that the time delay difference between the two
fiber links is T, we can determine the phase noise
((AO(T,))?) of each laser directly. The phase noise of
both the signal laser and the LO laser are measured at time
delay T; = (5 ns, 20 ns, 25 ns). The experimental results
are shown in Fig. 8. As expected from Eq. (9), the observed
laser phase noise linearly depends on 7,;. At T, = 20 ns,
the phase noises of the two lasers have been determined to
be 0.035 £ 0.001 and 0.044 £ 0.001.

Finally, we consider the case when the shot noise
associated with the reference pulses cannot be ignored,
so ¢ and ¢, in Eq. (A4) cannot be determined precisely.
Assume that the average photon number of the reference
pulse (at the receiver’s end) is n,; and the overall detection
efficiency is #. Then, the noise variance in ¢ and ¢, due to
the shot noise is given by

7e-02
6e-02 -
o 5e-024
2
2
o 4e-02-
(2]
[
£
2 3e-02
Q
%]
©
— 2¢-02
16-02 1
0e00 +——+———+————————T 1T
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Td(ns)
FIG. 8. Measured laser phase noise at different time delay

T,. The “open circle” shows the LO laser, and the “plus” is the
signal laser.

0.060

0.055

0.050

0.045

total phase noise

0.040 - . \?

0.035

0.030 T T T T
10’ 10 10° 10°* 10°
reference photons

FIG. 9. Dependence of the phase noise variance on the average
photon number of the reference pulse. The solid line shows
simulation results using Eq. (A7). The square dots are exper-
imental results.

2N,

- ’
NNyef

6{/,0 = G¢2 (A6)

where Ny = 1/4 denotes the shot-noise variance and the
factor 2 is due to heterodyne detection.

Using Egs. (A4) and (A5), the overall noise variance of
the phase recovery scheme is given by

2N,

MMyet

o4, = 5 {(AOS(TI)P) + (80, (T,)2)} + (A7)

The dependence of the phase noise variance on the
average photon number of the reference pulse is plotted in
Fig. 9. When the photon number is above 1000, the overall
noise is dominated by the laser phase noise; when the
photon number is below 100, the shot noise plays a
significant role.

APPENDIX B: SIMULATION OF SECURE
KEY RATE

The security of one-way GMCS QKD has been well
established. Here, our simulations are based on secure key
rate formulas given in Ref. [43].

The secure key rate under the optimal collective attack,
in the case of reverse reconciliation, is given by

R = fl p — XBE (B1)
where [, is the Shannon mutual information shared
between Alice and Bob, f is the efficiency of the recon-
ciliation algorithm, and yzg is the Holevo bound of the
information between Eve and Bob.

The mutual information between Alice and Bob is
given by
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\%4
1,5 = log, 0 :::j:tm.
tot

(B2)

The Holevo bound of the information between Eve and
Bob is given by

2 5
Ai—1 Ai—1
)(BEZZG(2>_ G< ) >’ (B3)
i=1 i=3

where G(x) = (x + 1) logy(x + 1) —xlog, x

1
3, = 5 [A+ VA% —4B], (B4)
where
A=V21=2T)+2T +T*(V + yiine)®.  (B5)
B =T?(Viine + 1)%, (B6)
1
Bay= 5 [C +\/C*—4D], (B7)
where
C ! Ayl +B+1+2
e S — /}// o Z
(T(V +)(tot))2 et et
X (VVB+T(V+ jine)) +2T(V2—1)],  (B8)
V + VB 2
- (Lt B’ (89)
T(V +){tot)
ds = 1. (B10)

System parameters in the above equations are defined as

follows.

(1) Vv=V,+1, where V,
variance.

(2) The total noise referred to the channel input
Yiot = Xiine + (Ynet/T), where T is the channel trans-
mittance. If we assume the quantum channel be-
tween Alice and Bob is optical fiber with an
attenuation coefficient of a, then the channel trans-
mittance is given by 7 = 10~*/10, where L is the
fiber length.

(3) The total channel-added noise referred to the chan-
nel input yy. = (1/7) —1+¢, where & is the
excess noise outside of Bob’s system. We assume
that ¢ is mainly due to the imperfection of the LO
phase recovery scheme

is Alice’s modulation

€=V, 04, (B11)

where o, is the noise variance associated with the
LO phase recovery scheme.

(4) The detection-added noise referred to Bob’s input
Inet = [1 + (1 —7n) + 2v,]/n, where v,; and n are
detector noise and detector efficiency, respectively.

We conduct numerical simulation using realistic param-

eters as summarized below: « = 0.2 dB/km, v,; = 0.1,
0, =004, =05, f=095, and V, = 1. Figure 10
shows the simulation result in the asymptotic case. The
simulation result shows that the proposed LO phase
recovery scheme can be applied to achieve efficient QKD.

Note that the secure key rates depicted in Fig. 10 are

obtained under the assumption of an infinite number of
pulses sent from Alice to Bob. However, experimentally
one is always limited to a finite-size data sample. To
estimate the effect of finite data on the secure key rate, we
also conduct simulation using the most recent composable
security proof [34]. It can be shown [see Eq. (C13) in
supplemental materials of Ref. [34]] that the secure key rate
under the optimal collective attack is

R = (1—érp) (/HAB — [T, 2, )

1 1
o |:AAEP — Agy — 2log, 2—4 )

where [, is the Shannon mutual information shared
between Alice and Bob given in Eq. (B2), p is the
efficiency of the reconciliation algorithm, f is the upper
bound of the Holevo information y 35 between Eve and Bob
calculated in the supplemental materials of Ref. [34]
[Egs. (B2), (C9)—(C11)], €, is the protocol robustness

Aeni = logy(1/€) — \/Bnlog(am)logs(1/€).

(B12)

parameter,

Secure key rate (bits/pulse)

10-7 T T T T T T 1
0 20 40 60 80 100 120 140

Distance (km)

FIG. 10. Simulation results based on the security analysis given
in Ref. [43]. Simulation parameters are as follows:
a=02dB/km, v, = 0.1, 6, =0.04, = 0.5, f =0.95, and
V4 = 1. We consider the asymptotic case where the finite data
size effect is ignored.
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FIG. 11.
of pulses.

Secure key rate simulation results for a finite number

and Agy = V2n[(d + 1)* + 4(d + 1)log,(2/e5n) +
2log,(2/€*€gm)] — 4egmd/e. For our simulations, follow-
ing Ref. [34], we choose protocol parameters such that
the protocol is e secure against collective attacks with
€ =107 and e, correct with e, <1072 by setting
€ =€ = 10721, epp = €cor = €y = 10741, We also
assume that the discretization parameter d = 5; i.e., each
measurement result is placed in one of five bins. Similarly
to the asymptotic secure key rate simulations, we set the
physical parameters as a = 0.2 dB/km, o, = 0.04, and
V4 =1 and the reconciliation efficiency as f = 0.95. In
Fig. 11, we plot the simulated secure key rate as a function
of the number of pulses transmitted for a fixed fiber length
L =10 km assuming noiseless detectors (v,; =0,
n = 0.5). The simulation results indicate that a usable
secure key can be generated by sending ~10'' pulses,
which is achievable with a CV-QKD system operated at a
rate of tens of MHz.
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