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Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly
connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to
represent those graphs in the annealer’s hardware by means of the graph-minor embedding technique,
generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose
binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest,
the fully connected Sherrington-Kirkpatrick model with random �1 couplings is programmed on the
D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best
embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The
results indicate that the optimal choice of embedding parameters could be associated with the emergence of
the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal
parameter setting allows the performance of the quantum annealer to compete with (and potentially
outperform, in the absence of analog control errors) optimized simulated annealing algorithms.
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I. INTRODUCTION

One tantalizing approach to solve quadratic uncon-
strained binary optimizations (QUBOs), such as [1,2] in
their Ising formulation, is provided by programmable
quantum annealing. While the founding principles of the
technique have been investigated numerically [3], analyti-
cally [4,5], and experimentally [6] in the past decade, the
disordered, interacting, time-dependent, and open nature of
the many-body problem makes it very hard to draw
universal conclusions about the power of the technique [7].
One very recent development that boosted scientific

activity in this field has been the commercialization of
D-Wave TwoTM optimizers, which implement the annealing
approach by means of a solid-state architecture consisting of
hundreds of interlaced superconducting flux qubits [8].
While the manufacturing methods and the computing

technology are well documented, understanding the power
of the machine is a formidable challenge for the aforemen-
tioned reasons, with the additional hindrance that the heavy
integration of the circuitry entails the existence of static and
dynamical sources of noise that are in part unknown. For
these reasons, groups around the world have started to
experimentally benchmark the machine [9–11], nurturing
a lively discussion on whether the device is making func-
tional use of quantum mechanics for computation [12,13]
and how to properly measure speedups between different
computational or experimental algorithms [14,15]. On a
more pragmatic level, the chip was also tested to evaluate its
performance on toy-application problems in the fields of
network diagnostics [16], artificial intelligence [17,18],
computational biology [19], and mathematics [20,21]. One
typical occurrence in applied problems is when theQUBO to
be solved is derived from a linear binary optimization
problemwith a large number of constraints, such as enforced
equalities or inequalities between linear relations of varia-
bles. In this case, the resulting penalty terms in the objective
function form intersecting cliqueswhoseminimizationmight
be a hard computational problem for classical algorithms
such as simulated annealing [17].
Motivated by the great value of quantifying the power

of quantum optimization on valuable applications, in this
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work we report on the optimal programming guidelines and
performance expectation of the D-Wave TwoTM Vesuvius
chip, applied to problems defined on fully connected
graphs with random couplings in the absence of longi-
tudinal local fields. This Hamiltonian corresponds to the
Sherrington-Kirkpatrick (SK) model with couplings ran-
domized from a bimodal distribution of values �1 [22].
The SK model is directly related to the graph partitioning
problem [23], which is known to be NP hard, and supports
a spin-glass phase at finite temperature with transverse
fields. For these reasons, it represents one of the most
interesting benchmarks to evaluate the performance of the
optimizer on structured problems. Moreover, the encoding
of the SK model on the D-Wave hardware has very
interesting elegant symmetry properties, allowing us to
investigate general procedures common to all structured
optimizations on annealers, such as the parameter setting of
embedding and error correction, which in the general case
require heuristic numerical pre- or postprocessing.

II. THE MODEL

The D-Wave TwoTM Vesuvius chip hosted at NASA
Ames Research Center features 509 working flux qubits
connected by 1455 tunable composite qubits acting as
Ising-interaction couplings [24], arranged in a nonplanar
lattice known as a Chimera graph [25]. In order to imple-
ment general Hamiltonians that are defined on arbitrary
graphs, it is customary to employ the graph-minor embed-
ding [26] technique. This procedure consists of finding a set
of connected subgraphs [logical bits (LBs), corresponding
to different colors in Fig. 1] of the original graph such that
each LB can be associated to a node in the original graph.
This association needs to be such that for each two
connected nodes there exists at least one edge between
the qubits belonging to the associated LBs. While the
problem of finding an optimal graph minor (i.e., minimiz-
ing the number of required nodes) is itself NP hard [27]
and is typically tackled with heuristic approaches [28],
for many graphs with a regular structure an efficient
embedding can be found systematically.
Figure 1 shows an embedding of the SK model in a

triangular portion [29,30] of the Vesuvius processor: each
LB in the original problem of size N is represented by
ðN=4Þ þ 1 qubits connected in a line. This means that this
embedding procedure encompasses an overhead of N2=4þ
N hardware qubits for encoding fully connected graphs.
Note that a quadratic scaling of the embedding resources
for the SK model is expected for any hardware graph with
fixed degree. The embedding procedure is useful for the
encoding of the problem Hamiltonian into the hardware
processor as long as the qubits in each LB are collapsed on
the same z value at the end of the annealing. The basic idea
is to ferromagnetically couple all qubits with a negative
weight JF within a LB in such a way as to energetically
penalize discordant qubit states. The remaining couplings

can be assigned to reflect the logical Hamiltonian of the
problem to be solved.
With reference to the index convention illustrated in

Fig. 1, the actual Hamiltonian that will be subjected to
annealing is then

HSK ¼
�
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FIG. 1. Illustration of the iterative embedding procedure of the
SK model in the Chimera graph. Different colors represent the N
logical bits, which are arranged in N=4 groups of colors (reds,
violets, and cyans, indexed by k). The corresponding images of
fully connected graphs on top show that logical bits in the same
group of colors have two different ways to be connected by a
physical coupling on the Chimera graph by having a thicker edge
between them. The arrows indicate two qubits with their
respective indices convention with reference to the labeling of
Eq. (2), where l indicates position within a given color group and
i is a running label of the position of the qubit in the chain starting
from the first (top left) i ¼ 1 to the last i ¼ N=4þ 1 (bottom
right).
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where S�i and σ�ðklÞi are, respectively, the LB and the Pauli
operators corresponding to the qubits along the * direction.
Since the maximum allowed energy coupling in the
D-Wave Hamiltonian is 1, increasing JF is equivalent to
rescaling the logical couplings by dividing BðtÞ by jJFj in
Eq. (2). In the actual Hamiltonian of the annealing machine,
the logical SK model couplings Jij have been explicitly
randomly chosen among the intercell couplings Jðkl;kl0Þ and
the couplings between different groups of colors Jðkl;k0lÞ,
and the bounds on the summed variables are implied. AðtÞ
and BðtÞ are the time-dependent coefficients that define the
annealing schedule performed by the machine [31]. It is
immediately apparent from the dynamical perspective that
the optimal prescription for the value of JF might be tricky
to evaluate despite the fact that it is always possible to set
its magnitude to be sufficiently high to make sure that the
target ground state still lies at the bottom of the embedded
classical spectrum [32].
Figure 2 shows the median probability Pg:s: for the

analog optimizer (run at fixed annealing time τ ¼ 20 μs) to
reach the ground state. For a given problem size N, it
depends significantly on JF and goes to zero for large and
small values of JF. For JF ≃ 1, the ferromagnetic couplings
are not energetically stronger than the logical couplings,
and we expect that the problem is not well encoded. Indeed,
many chains representing LBs are found in excited states
(i.e., having 1 or more kinks), as illustrated by the colored
bands of the plot which display the improvement on Pg:s:

obtained by a postprocessing procedure that tries to recover
logical states from broken chains by doing majority voting
(similarly to error-correcting repetition codes [33,34]).
Conversely, for sufficiently large JF, defects in the LBs

are suppressed, but the overall annealing success proba-
bility decreases after an optimal JF. The appearance of this
maximum can be connected to the expectation that the
annealing dynamics is more efficient when the ferromag-
netic LBs become correlated at the same time that the
described SK model enters the spin-glass phase. This is
because once the chains feel the ferromagnetic fixed point
[for a transverse field of AðtÞ≃ BðtÞ], their dynamics slows
down and might reasonably impede the adiabatic following
of the logical ground state, while in the paramagnetic state
they are more easily subjected to the formation of kinks.
This argument is also supported by the scaling of the
optimal coupling, which can be fit as a power law with an
exponent close to 1=2, which is consistent with the critical
transverse field of the embedded SK model, which goes
proportionally to BðtÞ ffiffiffiffi

N
p

=JF [35] (connected to Fig. 4
described later on). Comparisons with embedding and runs
on embedded 2D lattices also support the above theory.
However, other explanations that do not rely on quantum
mechanics (e.g., the breaking of the ferromagnetic chains)
are also plausible. [Details can be found in Supplemental
Material [36].]

III. COMPARISON WITH SIMULATED
ANNEALING

Figure 3 shows the median expected run time (in
seconds) Trun for the annealing device to find the ground
state with 99% probability, for different JF and the
experimentally shortest possible τ ¼ 20 μs. The thicker

FIG. 2. Bezier fit of median probabilities of finding the ground
state Pg:s: of the encoded SK model (independently checked with
exact enumeration code) after 400 000 runs on the D-Wave
TwoTM machine for every problem instance. The median is taken
over 80 instances per size, and runs are performed using 10
random gauges. The black line and the inset indicate the optimal
JF for a given size, which increases with N as a power law close
to

ffiffiffiffi
N

p
. Error bars are obtained through resampling.

FIG. 3. Blue curves: Each curve is the expected D-Wave
median run time for achieving 99% probability of finding the
ground state (Pg:s:), computed as Trun ¼ τR, with R being the
expected number of repeated annealing cycles R ¼ logð0.01Þ=
logð1 − Pg:s:Þ, at fixed JF. The result shown includes the error-
correction procedure, whose processing time is not considered.
The best possible result irrespective of JF for each problem size is
highlighted in the thicker blue line. Red curves: Simulated
annealing results for the bare logical problem (solid line) and
with the introduction with the respective noise model of the
D-Wave machine described in text (dashed line).
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blue line shows the scaling of complexity with the system
size assuming the optimization on JF with a precision
of ΔJ ¼ 0.25. This exponential scaling and the absolute
run time seem very similar (and correlates well, see
Supplemental Material [36]) to the performance of simu-
lated annealing (SA) on the same logical instance set
extended up to N ¼ 50 whose run time is equivalently
optimized over τ measured on Intel Xeon E5-2680v2
processors. However, it is well known that the
Hamiltonian parameters programmed on the analog opti-
mizer are subject to static and low-frequency noise that can
be modeled as a static Gaussian disorder realization for
each instance [37]. One could argue that this noise (whose
presence is not fundamental but rather an engineering
issue) introduces an artificial handicap in the evaluation
of the performance of the D-Wave machine, as the pro-
grammed problem might significantly differ from the target
objective function to be minimized (the robustness of a
problem to these perturbations is sometimes called “resil-
ience”). We introduce the noise effect in the logical instance
runs with SA in order to make a fair comparison. While on
the scale of the maximum physical energy programmed in
the problem Hamiltonian (i.e., 3.2 GHz) this model of noise
has a negligible effect [37], the rescaling of the absolute
energy of the logical parameters due to the introduction of
JF proportionally amplifies the relevance of the unwanted
disorders. The considered noise model spoils the Jðkl;k0l0Þ
couplings of Eq. (2) and introduces artificial longitudinal
local fields. Note that there is also an instance-dependent
artificial short-range coupling between the qubits due to
cross talks (background susceptibility [12]), but this con-
tribution is in principle correctable by preprocessing and
should be negligible in the classical limit. More specifi-
cally, as the logical couplings Jij are chosen to be �1, this
implies that the problem Hamiltonian to be compared
with D-Wave TwoTM runs at fixed JF must be spoiled
as follows:

Hdev ¼
HSK

jJFj
þ
�X

ij

ξijJ SiSj þ
X
i

ξihSi

�
; ð3Þ

where ξijJ and ξih are disorder realizations with Gaussian
distribution around zero of respective standard deviations
σξJ ¼ 0.035 and σξh ¼ 0.05 [37]. Results are averaged over
1000 realizations for every instance, and new optimal
speeds have been computed for the final scaling (see
Supplemental Material [36]). What is observed is that,
starting from N ¼ 12, the noise significantly affects the
probability for the spoiled system to find the ground state of
the ideal Hamiltonian. As detailed in the Supplemental
Material [36], for every fixed level of noise proportional to
JF, there is indeed a problem size above which the noise
tends to shift the ground state of the noisy Hamiltonian
outside the manifold of the degenerate ground states of the
ideal Hamiltonian, independently from the algorithm used

to compute the ground state. We note that this effect is
likely to be dominant over the slow-down of the LB
dynamics conjectured to be responsible for the sharp
decrease in performance of the device for large JF observed
in Fig. 2, and more analysis is needed to establish if this is
the case.
Unsurprisingly, the current limitations on the number of

qubits do not allow us to draw final conclusions on whether
the machine has a sound limited speedup with respect to
simulated annealing; the scaling results are encouraging.
While it is now established that speedup might emerge
artificially due to suboptimal annealing speed [14]
(τ ¼ 20 μs would supposedly become optimal only for
larger N), as well as due to correlation between different
subsequent runs [11], we show evidence that this is likely to
be masked by the detrimental effect of the noise (which is
expected to be significantly reduced in future generations
of the device). Most importantly, our work elucidates how
evaluating the comparative performance of analog optimi-
zation with respect to algorithmic methods on necessarily
embedded problems is more delicate than it is on natively
structured problems. This is largely because the correct
representation of the target problem requires an optimal
tuning of the analog optimizer, which is dependent on the
hardware architecture and the programmability precision.
The benchmarks [14,38] on natively structured problems
need to be complemented by considering that in embedded
problems the number of LBs does not reflect the number of
qubits for the comparison of required resources. Moreover,
the fact that the logical Hamiltonian is emergent from a
coarse graining of the hardware Hamiltonian compounded
by ferromagnetic chains has potentially profound conse-
quences regarding the expected complexity of the annealing
procedure on the logical problem. In the SK model this also
means that the shape and the location of the critical region
associated with the spin-glass phase is dependent on the
internal representation parameters, such as embedding top-
ology and optimal JF.

IV. SPIN-GLASS PHASE OF THE
EMBEDDED PROBLEM

In order to gain insights on these issues, as shown in
Fig. 4, we examine, by means of Monte Carlo simulations,
the emergence of the spin-glass phase of the embedded SK
model [Eq. (2)], i.e., the appearance of a critical (normalized)
spin-glass temperature TSG as a function of αF ¼ JF=

ffiffiffiffi
N

p
.

We compute the universal spin-configuration overlap Binder
ratio g [38] for different αF, T, then estimates of the critical
temperature are obtained by looking at the intersection of
Binder ratios for a series of different sizes and then
extrapolating the results using a scaling ansatz [39,40]. To
improve equilibration, we develop a variant of a Monte Carlo
procedure that combines the best properties of the Wolff
cluster method and theMetropolis update. Parallel tempering
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is used to enhance it further by performing replica swaps in a
two-dimensional space (in T and αF=T). Our findings are
compatible with an increase of TSG with αF towards the
theoretical value of the unembedded model 1=αF. This
means that embedded problems are likely to belong to a
different universality class than random Chimera problems,
answering a question at the center of the current discussion
in the quantum annealing community [38].
These results support the intuition that the ferromagnetic

couplings need to increase as
ffiffiffiffi
N

p
(up to logarithmic

corrections) in order to properly represent the SK model
for large sizes. Interestingly, the experimentally optimal αF
(see Fig. 3) in our runs is close to 1.0, meaning that the
machine performs better optimizing the spectrum of an
embedded representation of the SK model whose TSG is
significantly less than that of the logical problem, which is
nevertheless faithfully represented by the embedding. Still,
the critical temperature of the embedded problem at an
optimal parameter setting is larger than the experimental
one of the D-Wave chip, which might have profound
consequences on the asymptotic computational complexity
of quantum annealing on the embedded SK model.
Details on the numerics for the calculation of the

classical phase diagram for the embedded SK model are
provided in the following section.

V. NUMERICAL METHODS

A. Equilibration of the embedded SK Hamiltonian

The embedding of the SK model creates long ferromag-
netic chains of physical spins, which correspond to a single

logical spin. When the intrachain ferromagnetic coupling
JF becomes comparatively very large, the whole chain
behaves like a true logical two-level system and then we
expect the embedded SK model to show the same thermo-
dynamic properties of the logical SK model. Unfortunately,
due to the presence of these long ferromagnetic chains,
equilibration of the embedded SK Hamiltonian happens
to be extremely long when the standard single spin-
flip Metropolis-Harris procedure is used to perform
Monte Carlo simulations. Indeed, for low temperature
and JF ≫ jJijj, where Jij are the couplings of the original
logical SK model, spins belonging to the same chain prefer
to stay aligned. Since the probability of creating a defect in
a polarized chain is proportional to expð−2βJFÞ, where
β ¼ 1=T is the inverse of the temperature, a large part of the
equilibration time is spent trying to flip a whole chain. In
order to reach equilibration more quickly for the embedded
SK model, we propose a variant of the Wolff cluster
method [41] (a generalization of the original Swendsen-
Wang cluster method [42]), which takes into account the
existence of the logical superstructures.
As described in Refs. [41,42], the Wolff cluster method

is effective for low temperatures, βJ ≫ 1, where the usual
Metropolis rule has very low acceptance probability. One of
the main characteristics of the cluster method is that it
always flips clusters. Therefore, it works well in the
presence of many domain walls. However, although it
works well for low-dimensional systems, for highly con-
nected models, clusters tend to include almost all the spins,
so that most of the time the cluster algorithm flips the
largest part of the spins back and forth, failing to equili-
brate. To overcome this limitation, we design a hybrid
method that combines the best aspects of the Metropolis
and the Wolff methods. Because the equilibration within
ferromagnetic chains is the true limit of the Metropolis
update, the thermalization of the ferromagnetic chains is
obtained by using the Wolff update. More specifically, the
basic idea of our hybrid method is to grow a Wolff cluster
only within chains and to flip those clusters by using a
Metropolis update. In contrast to the standard procedure
that always flips the clusters, clusters are flipped by using a
probability given by the Metropolis rule. Since couplings
inside the chains are already taken into account by creating
the Wolff clusters, the Metropolis probability is therefore
computed by using only couplings between chains.
Domain wall energies inside the ferromagnetic chains
are excluded: indeed, those energy have already been
considered as the cluster is built.
More formally, we rewrite the embedding Hamiltonian

for the SK model in the following form:

HðσÞ ¼ −
X
hα;α0i

Jαα0σα;iαα0σα0;iα0α
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

HLðσÞ

− JF
X
α;i

σα;iσα;iþ1

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
HFðσÞ

; ð4Þ

FIG. 4. The estimate of the critical temperature is obtained from
finite-size scaling of intersections of Binder ratio curves gðTÞ ¼
ð1=2Þ½3 − hqðTÞ4i=hqðTÞ2i2� related to spin-configuration over-
laps q ¼ ð1=NÞPiS

A
i S

B
i between two replicated runs A and B at

various temperatures T for each αF in the figure. The red band
around data points corresponds to the error over the intersecting
region, and the dashed black line to the spin-glass temperature of
the logical problem. See Supplemental Material [36] for more
details.

QUANTUM OPTIMIZATION OF FULLY-CONNECTED SPIN … PHYS. REV. X 5, 031040 (2015)

031040-5



where the chains (which correspond to the logical spins)
and the spins within each chain are indexed, respectively,
by α and i. Here, Jαα0 ¼ �1 corresponds to the original
couplings of the logical model. The index iαα0 is a shorthand
notation to indicate the spin in chain α which is interacting
with the spin in chain α0. The first term of HðσÞ describes
the interaction between chains while the second term
describes the ferromagnetic couplings within the chains.
Given the Hamiltonian in Eq. (4), the entire procedure can
be described as follows.
(1) Choose a spin with indices ðα; iÞ, where α labels the

chain (logical spin) and i the spin’s index within a
chain. This can be done at random or in nested loops,
with the outermost one being over i.

(2) Grow the cluster C (starting from the spin above)
along the ferromagnetic chains in one direction: add
spins one by one, stopping with probability
expð−2βJFÞ (or probability 1 if the new spin fails
to have the same value as σα;i).

(3) Repeat (growing the cluster) in the other direction
along the chain.

(4) Flip the cluster with probability

paccðσ; CÞ ¼ min

�
1; exp

�
−2βσα;i

X
α0jiαα0∈C

Jðα;iαα0 Þ;

ðα0; iα0αÞσα0;iα0α
�	

: ð5Þ

The last expression is similar to the Metropolis formula,
but, in this case, only interactions between different chains
are taken into account. “Logical” coupling between chains
α and α0 is via bond-connecting spins with indices ðα; iαα0 Þ
and ðα0; iα0αÞ. The sum in the exponent is only over chains
“interacting” with a cluster. Note that σα;i has been taken
outside the sum as all spins within the cluster must have the
same value by construction. As better detailed in the
Supplemental Material [36], it is straightforward to show
that the above procedure still satisfies the detailed balance;
indeed, the limitation that a cluster can grow only inside a
logical spin (chain) is balanced by adding the probability
paccðσ; CÞ of flipping the cluster, which involves only
interchain couplings. Equilibration analyses are reported
in Supplemental Material [36].

B. Replica exchange Monte Carlo method
in “two dimensions”

The standard replica exchange method [43] (more com-
monly known as parallel tempering) improves equilibration
by simultaneously simulating different replicas of the
system, each of them at a different temperature. More
specifically, the replica exchange method is based on “local”
updates, namely, single-spin Metropolis updates of each
replica, and “global” updates, namely, swaps between two
replicas at different temperatures. We implement a natural

extension of this approach by considering a two-dimensional
parameter space. It is instructive to write the embedded SK
Hamiltonian [see Eq. (2)] in the following form:

−βHðσÞ ¼ KL

X
hα;α0i

Jαα0σα;iαα0σα0;iα0α
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

HLðσÞ

þ KF

X
α;i

σα;iσα;iþ1

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
HFðσÞ

;

ð6Þ
where the notation is the same as used in Eq. (4).
The “dimensionless” coupling constants are KL ≡ β and

KF ¼ βJF. The convention of using integer values Jαα0 ¼
�1 for the logical couplings implies that the energy of the
logical Hamiltonian scales like E ∼ N3=2. In the limit of
large JF, when the embedding is traced out and the
thermodynamics of the whole system corresponds to the
thermodynamics of the logical system, the relevant inverse
temperature must scale as β ¼ β0=

ffiffiffiffi
N

p
, with β0 > 0.

Consequently, to have the correct scaling of the embedding
Hamiltonian in Eq. (6) in the paramagnetic phase, JF must
properly scale as JF ¼ αF

ffiffiffiffi
N

p
, where αF > 0. Observe that

the scalings of β and JF are consistent with the choice of
the grid; indeed, at the critical temperature βSG ¼ 1=TSG ¼
1=

ffiffiffiffi
N

p
, KF ¼ βSGJF ¼ αF maintains a finite value, inde-

pendently of the system size.
Replica swaps are attempted between nearest neighbors

on a square lattice spanned by ðKL;KFÞ and are accepted
with probability

pðKL ↔ KL
0Þ ¼ minf1; eðKL−KL

0Þ½HLðσÞ−HLðσ0Þ�g ð7aÞ
or

pðKF ↔ KF
0Þ ¼ minf1; eðKF−KF

0Þ½HFðσÞ−HFðσ0Þ�g; ð7bÞ

depending on the axis. Here, σ and σ0 represent spin
configurations of the replicas. It is straightforward to verify
that this maintains Gibbs equilibrium for the combined
system.
Figure 5 shows an example of the intersection of two

Binder ratios for the embedded SK model with, respec-
tively, N ¼ 64 and N ¼ 32 logical spins [T64

SGðαFÞ]. As
expected, the logical SK model is recovered for sufficiently
large αF. Further details on the calculation of the finite-size
critical temperatures by using Binder ratio crossings and
the parameters we use in the simulations are presented in
Supplemental Material [36].

C. Calculation of the critical temperature in the
thermodynamic limit

The calculation of the critical temperature TSG in the
thermodynamic limit can be done by fitting the finite-size
estimations of the critical temperature TN

SG while increasing
the system size N. More specifically, since TN

SG scales like
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TN
SG ¼ TSG þ aN−1=ν þ oðN−1=νÞ; ð8Þ

where ν is the critical exponent that identifies the univer-
sality class of the system, the analysis of the scaling of TN

SG
by varying N allows for the extrapolation of both TSG and ν
of the system (αF dependence is implied). However, the
expected scaling behavior as in Eq. (8) can be observed
only for very large systems [44]. In particular, for the
logical SK model, it is necessary to study systems with
more thanN ¼ 512 spins to correctly identify both TSG and
ν. Therefore, for smaller system sizes, subleading terms
cannot be neglected and the functional form of the scaling
of TN

SG must be properly adjusted. Unfortunately, the
addition of subleading terms also introduces new fitting
parameters, which makes the proper fit of both TSG and ν
hard to find.
To avoid the introduction of new fitting parameters, we

incorporate the subleading terms as an effective critical
exponent, leaving the critical temperature unchanged,
namely, using the ansatz

TN
SG ¼ TSG þ a0N−b0 þ oðN−b0 Þ; ð9Þ

where b0 > 0. The above approximation, which converges
to the exact extrapolation for largeN, allows the calculation
of the spin-glass critical temperature TSG without intro-
ducing any further fitting parameter. Scalings of TN

SG by
varying the system size can be found in Supplemental
Material [36].

VI. CONCLUSIONS

To summarize, we show that random fully connected
spin glasses are solvable on Chimera-graph-based

annealers through the embedding procedure. The resulting
Hamiltonian belongs to a different universality class with
finite spin-glass temperature, unlike the random problems
on the Chimera graph. Moreover, when the embedding
parameters are scaled with

ffiffiffiffi
N

p
, an optimal performance is

achieved for the device we test. This prescription allows the
D-Wave device to match the performance of optimized
simulated annealing on the same problems, despite the
presence of analog control errors. Should these precision
errors be mitigated in future hardware, it is expected that
the comparative performance of the quantum annealer with
simulated annealing will improve significantly.
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