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We study the dynamical melting of “hot” one-dimensional many-body localized systems. As disorder is
weakened below a critical value, these nonthermal quantum glasses melt via a continuous dynamical phase
transition into classical thermal liquids. By accounting for collective resonant tunneling processes, we derive
and numerically solve an effective model for such quantum-to-classical transitions and compute their
universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow
subdiffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a
continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our
approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization
transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics.
We discuss experimentally testable signatures of the predicted scaling properties.
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I. INTRODUCTION

Thelawsof thermodynamicscanbreakdownindisordered
quantum systems that are isolated from external heat sources
because of the localization of excitations that would
ordinarily transportenergyamongdistant regions toestablish
thermal equilibrium [1–4]. Such many-body localized
(MBL) systems have the remarkable property that almost all
high-energy excited states behave like zero-temperature
quantum ground states. Their spectrum can be labeled by
an extensive set of local conserved quantities [5,6], such that
eigenstatesexhibitboundary-lawscaling[7]ofentanglement
entropy, characteristic of gapped quantum ground states.
This raises the intriguing possibility that quantum coherent
phenomena, typically associated with zero-temperature
systems, can occur in arbitrarily “hot” matter. Examples of
suchquantumcoherentphenomena includesymmetrybreak-
ing below the equilibrium lower critical dimension [8],
topological edge states [8–12], and quantum criticality
[13–15]. MBL systems also host novel out-of-equilibrium
dynamical phase transitions, where thermodynamics breaks
down sharply at a critical point [16–19]. Cold atomic,
molecular, and trapped-ion systems offer a promising exper-
imental platform to explore these theoretical ideas. Indeed,

issues of thermalization and excited-state dynamics neces-
sarily arise in such systems, as they are inherently well
isolated from their surroundings and typically cannot be
cooled to low temperatures (compared to their characteristic
energy scales).
Theoretical investigations into these questions, however,

must tackle a daunting combination of out-of-equilibrium
quantum dynamics, interactions, and disorder. Consequently,
most existing theoretical work on MBL systems has been
confined to small-scale numerics and analysis of phenom-
enological models. Remarkably, because of the short
localization length and short-range entanglement structure
of MBL eigenstates deep within the localized phase, these
approaches have met with considerable success in gleaning
properties of the MBL phase itself. In contrast, these same
techniques are poorly suited to access the universal properties
of disordered criticality and dynamical phase transitions out
of the localized phase.
For example, whereas the ground states of disordered

one-dimensional (1D) systems are always localized, the
excited states are only many-body localized for sufficiently
strong disorder, and they melt into a self-thermalizing
incoherent classical fluid at weaker disorder. These two
dynamical phases are separated by an apparently continu-
ous many-body delocalization phase transition [4]. Such
excited-state delocalization transitions are neither classical
thermal phase transitions nor zero-temperature quantum
phase transitions but rather represent a novel class of
dynamical quantum-to-classical criticality. Such transitions
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are driven by long-distance properties whose characteristic
length scale diverges as the critical point is approached,
rendering traditional numerical methods increasingly unre-
liable near the critical point. For example, recent numerical
studies [18] of a many-body delocalization transition obtain
critical exponents that contradict fundamental bounds [20],
suggesting that small-scale numerics cannot access the true
long-distance scaling properties. New approaches are
clearly needed to understand the nature of this new class
of dynamical transitions.
To this end, we develop an effective model for the

formation of collective many-body resonances that desta-
bilize the MBL phase at weak disorder, in order to compute
the universal scaling properties of many-body delocaliza-
tion transitions. While the problem of identifying generic
many-body resonances is as hard as directly solving the full
quantum problem, at any continuous phase transition, one
expects a self-similar hierarchical scaling structure. This
suggests that the critical resonant cluster may be con-
structed hierarchically in the spirit of the renormalization
group (RG). We implement an efficient numerical pro-
cedure to identify the formation of such delocalizing
resonant clusters and study the critical properties of the
resulting effective model. Our construction is motivated
in part by the requirement that the MBL transition itself
must be thermal [21] and, thus, incoherent and classical.
Accordingly, the critical properties should be well
described by an effective classical statistical mechanics
model, which, e.g., ignores quantum interference effects
such as those responsible for weak localization of non-
interacting fermions in equilibrium settings.
We obtain scaling results for the critical properties of the

disorder-strength-tuned MBL transition in one dimension,
by numerical simulation of the resonance model. We find a
continuous dynamical phase transition characterized by a
diverging length scale ξ, in which a quantum MBL glass
melts into a classical thermal liquid. The predicted phase
diagram and crossover structure of this effective model are
summarized in Fig. 1.
The effective resonance percolation model also provides

insight into the dynamics of thermal transport and entan-
glement of the delocalized thermal liquid, near the melting
transition (see Fig. 1). In one dimension, we find that
transport on the delocalized side of the transition is
anomalously slow, characterized by power-law subdiffu-
sion with a continuously evolving dynamical exponent z,
which diverges in a universal fashion at the MBL transition.
We argue that this subdiffusion stems from tunneling
through rare insulating regions, in agreement with recent
numerical studies [16,17] and a phenomenological renorm-
alization-group approach [19], and we establish a scaling
relation between the correlation length exponent ν, char-
acterizing the divergence of the many-body localization
length ξ, and the exponent governing the divergence of z.
We explain how these experimental predictions can be

tested in cold-atom experiments such as those recently
reported in Ref. [22].
This 1D MBL transition was recently studied by mean-

field methods [23], exact diagonalization [16–18,24], and a
phenomenological renormalization-group procedure [19].
Exact diagonalization studies on 10–20 site chains observe
an apparently continuous transition, but they obtain a
correlation-length exponent that is incompatible with fun-
damental bounds [20], suggesting that the observed scaling
properties are likely finite-size artifacts that do not reflect
the true long-distance universal properties of the MBL
transition. In contrast, the critical exponents obtained in our
approach comply with the Harris-Chayes bounds [20].
Our results are broadly consistent with those of

Ref. [19], where available. We also comment on possible
extensions of our results to many-body delocalization tran-
sitions in higher dimensions or in systems with long-range
interactions—including critical analogs of MBL phases that
arise, for example, in random-bond spin chains [13–15,25].

II. MODEL AND RESONANCES

Though our effective model for the MBL transition is
largely insensitive to the microscopic choice of a particular
model, for concreteness,we phrase our discussion in terms of
a paradigmatic MBL model, the random-field XXZ chain:

FIG. 1. Phase diagram and finite-size crossovers for one-
dimensional many-body delocalization transitions. W parametr-
izes disorder strength. For strong disorderW > Wc, a nonergodic
many-body localized glass is obtained, which lacks thermal
transport but exhibits slow dephasing and entanglement dynam-
ics with length-time scaling L ∼ log τdeph (where the subscript
“deph” emphasizes that this is the dephasing time associated with
virtual quantum fluctuations rather than the energy transport time
scale, which is strictly infinite in the strong-disorder glass).
Below a critical disorder strengthWc, the MBL glass melts into a
thermal, energy-conducting liquid. The melting transition is
continuous (second order), characterized by a single diverging
length scale ξ ∼ jW −Wcj−ν, where ν ≈ 3.5� 0.3. Energy trans-
port (entanglement spreading) in the thermal liquid is charac-
terized by a subdiffusive (sub-ballistic) power-law scaling
between time and length τ ∼ Lz, with dynamical exponent z ∼
ξ that diverges continuously upon approaching the transition.
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Here, σx;y;z are Pauli matrices for spin-1=2 degrees of
freedom. This XXZ chain maps, via a standard Jordan-
Wigner transformation, into a chain of spinless interacting
fermions, where J is the hopping amplitude, V ≪ J is the
interaction strength, and μi is the chemical potential uni-
formly distributed on the interval ½0;W�, whereW serves as a
measure of disorder, and we use the spin and fermionic
languages interchangeably. We work in the Fock basis of
single-particle orbitals,ϕi, of the noninteracting part (V ¼ 0)
of (1), which have energy εi ≈ μi þOðJ2=WÞ and are
localized near site i. We then consider the interactions V
as a perturbation expressed in this basis, though we remark
that our method is not confined to low-order perturbation
theory but, rather, includes contributions from all orders inV.
We are interested in the properties of typical highly excited
states in the middle of the many-body spectrum. This
Hamiltonian has been considered as a prototypical example
of a MBL system (see, e.g., Ref. [26] for a recent review),
characterized by the absence of thermal transport and by a
slow, logarithmic spreading of entanglement due to dephas-
ing [6,27,28].WhenV ≠ 0, the system is believed to exhibit a
MBL-to-thermal dynamical phase transition as a function of
disorder strength [16–19], which separates a nonergodic
MBL quantum glass phase from a ergodic high-temperature
classical liquid.
To motivate the problem of delocalization, imagine

creating an energy wave packet initially localized near a
single site in the MBL system. How does such a packet
evolve with time? Deep in the localized phase, it is
extremely unlikely that it can tunnel from a given site
(bond) to another because of the wide variance of site
(bond) energies. More precisely, the amplitude to tunnel
through a distance x of the localized phase is

ΓðxÞ ≈ Ve−x=x0 ; ð2Þ

where x0 ≈ ½1
2
ln ð1þ ðW=JÞ2Þ�−1 is the single-particle

localization length (measured in units of the lattice
spacing), where we have chosen an expression that inter-
polates smoothly between the strong-disorder limit
x0 ≈ ln−1ðW=JÞ and the weak-disorder limit x0≈ðJ=WÞ2.
If the tunneling strength ΓðxijÞ between spin pairs i
and j separated by a distance xij is much smaller than
their energy difference δEij, then the true many-body
eigenstate is very close to a product state of independent
configurations of each bond. On the other hand, if
ΓðxijÞ≳ δEij, then the many-body eigenstate contains an
entangled superposition of the degrees of freedom on the
two sites, and we say that the two sites are resonantly
linked. We estimate the probability that a given site is
resonantly linked to at least one other as ð1 − e−λRÞ, with

λR ¼ νð0Þ R∞
0 dxΓðxÞ ≈ ðV=JÞx0, where νð0Þ ≈ 1=J is the

single-particle density of states.
For very strong disorder (x0 ≪ 1), the density of

resonantly linked pairs is very small, ρres ≈ λR ≪ 1, so
that the resonant links are well isolated from each other, and
they do not disrupt the properties of the surrounding
localized phase. As disorder is weakened, these resonant
links occur more frequently and eventually disrupt locali-
zation below a critical disorder strength Wc. Since, in a
thermal phase, all spins are highly interentangled, delocal-
ization and the recovery of thermalization at weak disorder
must occur via a highly collective resonance involving
every single spin. Identifying all possible generic many-
body resonances is a difficult problem, and in fact, it is as
difficult as exactly solving the full quantum many-body
problem. However, near the delocalization critical point, it
is natural to expect that the critical resonant cluster exhibits
scaling structure that is geometrically self-similar (in a
statistical sense) at different energy scales. Anticipating this
hierarchical structure motivates a simpler way of identify-
ing collective resonances by first identifying small resonant
clusters (e.g., resonant pairs as above) and then examining
whether groups of these small resonant clusters can
collectively resonate on some lower energy scale (longer
time scale), and so on. Using this perspective, we construct
an effective quantum percolation model for delocalization
by hierarchical collective resonances.

III. EFFECTIVE MODEL FOR THE
DELOCALIZATION TRANSITION

A cluster of m resonantly linked sites is characterized by
bands ofN ≈ 2m many-body energy levels and thus has an
exponentially small level spacing in m. Roughly speaking,
collective rearrangements among spins of two such clusters
containing m1;2 sites, respectively, and separated by dis-
tance L12 can occur resonantly if the effective tunneling Γ12

is larger than the level spacing of the combined cluster,
scaling as ∼2−ðm1þm2Þ. We therefore see that this exponen-
tial suppression of the level spacing will favor large, many-
spin resonant clusters. This motivates an effective model
for the delocalization transition, consisting of the following
iterative procedure:
(1) Examine a disordered chain to identify resonantly

linked pairs of spins and group them into two-spin
clusters.

(2) Identify the strongest resonantly coupled pair of
clusters (i.e., the one with the largest interaction Γij)
and merge them into a new, larger resonant cluster.

(3) Account for the reduction of level spacing on the
newly formed resonant cluster.

(4) Compute the effective interaction of the new cluster
with other clusters (as described in detail below).

(5) Examine whether the reduced level spacing enables
any of the newly formed clusters to resonantly
interact; if so, merge these clusters.
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Steps 2–5 can then be iterated (numerically) until all
possible clusters are formed.
Before giving a detailed account of this procedure, we

briefly sketch its potential outcomes and underlying phi-
losophy. For strong disorder, the resonance merging ceases
after a small number of steps, producing only dilute, well-
isolated, small resonant clusters embedded inside strongly
localized quantum glass. Upon weakening disorder, the
size of the resonant clusters increases, diverging continu-
ously at a critical value of disorderW ¼ Wc, where a single
cluster just barely percolates across the system (in the limit
of infinite system size). For weaker disorder (W < Wc), the
resonance-merging procedure continues until all degrees of
freedom are subsumed into a single percolating cluster (in
the infinite system limit), resulting in a delocalized thermal
phase. Nevertheless, we see that the near-critical transport
properties of the delocalized phase exhibit anomalously
slow dynamics, with an unusual scaling structure, because
of the proximity to the quantum glass phase.
While we have described the resonance-merging pro-

cedure as a static process to identify resonant structures in
the Hilbert space of the disordered problem, we can also
give a dynamical interpretation of the procedure (analogous
to the relation between equivalent Hilbert-space [14,15]
and dynamical [13] real-space RG approaches to describe
excited states of random critical systems). In this picture,
resonances arise from a small mismatch in energy scales,
corresponding to a slow beating frequency or long time in
dynamical processes. Over the coarse of iterations, the
dynamical time scales associated with the merging of
resonances steadily lengthen. In this way, the effective
model closely resembles a renormalization-group pro-
cedure—first accounting for fast degrees of freedom and
progressively proceeding to slower and slower modes.
We also remark that, in principle, the problem of identify-

ing generic many-spin resonances is factorially complicated
in system size and hence is no simpler than directly solving
the full quantum problem. From our analytic treatment of the
strong-disorder phase, we expect that the most likely type of
resonances are those between two bonds (orbitals) motivat-
ing our use of step 1) above to “seed” the iterative resonance-
merging procedure.Moreover, near the transition,whether or
not a resonant cluster percolates across the system is driven
byhighly collective resonances among large clusters ofmany
spins, andhence the low-energy, long time-scale dynamics of
the near-critical cluster are expected to be insensitive to the
details of early steps in the procedure (i.e., are universal).

A. Criterion for merging resonant clusters

To test if two clusters i and j can resonate (step 2), we
compare their coupling Γi;j to the energy mismatch δEi;j of
their energy levels. For two large clusters i; j, such that the
bandwidth of each cluster exceeds the level spacing of the
other (minfΛi;Λjg > maxfδi; δjg), we define an energy
mismatch δEi;j between two clusters i; j as follows:

ðδiδj=minfΛi;ΛjgÞ. In the other case, where one cluster’s
bandwidth is smaller than the other’s level spacing,we define
δEi;j ¼ maxfδi; δjg −minfΛi;Λjg (see Appendix A 1).
We take the bandwidth of the newly merged cluster to be
Λi∪j ¼ Λi þ Λj þ Γi;j, and the level spacing to be
δi∪j ¼ Λi∪j=ð2miþkj − 1Þ. We emphasize that the main
ingredient at this step is the exponential reduction of the
level spacing when two clusters are merged: We checked
numerically that the universal properties of the transition are
insensitive to the other details of the procedure.

B. Renormalization of intercluster couplings

After merging two clusters, one should, in principle,
compute a new set of intercluster couplings (step 4 above).
Consider merging two clusters i and j, with number of spins
mi;mj and bandwidths Λi;Λj, respectively, interacting with
coupling Γi;j. In order for a third cluster, k, to drive a
collective rearrangement of all 2miþmj levels of the merged
cluster, i∪j, and hence access the full many-body level
spacing of i∪j, k must interact separately with both i and j.
The effective interaction strength for such a process depends
on the energy mismatch between k and i; j, respectively, and
can occur by several different possible processes. For
instance, consider the process k → i → j, where k first
interacts with i and then i with j. If the energy mismatch
δEk;i=j between k and i or j is large compared to the couplings
Γk;i=j between k and i or j, then the interaction between k and
i∪j can be computed perturbatively:

Γðk→i→jÞ
k;i∪j ≈

Γk;iΓi;j

δEk;i
: ð3Þ

In the alternative case where all three clusters i, j, and k can
resonate, e.g., Γk;i > δEk;i, we may estimate the effective
coupling between k and i∪j by classically adding the time
taken for an excitation to transfer from k → i → j:

Γðk→i→jÞ
k;i∪j ≈ ðΓ−1

k;i þ Γ−1
i;j Þ−1: ð4Þ

There are a few possible routes for k to excite both i and j—
for example, k can first excite i, and then i excites j, or k can
excite both i and j, etc. We compute Γk;i∪j for each process
using the “perturbative” or “classical” rules above as appro-
priate, and choose their maximum as the new effective
coupling between k and i∪j.
Computing the renormalized intercluster couplings in step

4 is conceptually important to avoid a potential instability of
the strong-disorder phase (see Appendix A); however, in
practice, we find that this instability is absent for all numeri-
cally accessible system sizes, and we find identical scaling
independent of whether or not the intercluster couplings are
renormalized. We remark that the way the couplings are
renormalized is reminiscent of the approach of Ref. [19],
where metallic and isolating blocks are merged by using a
renormalization group scheme. However, we point out that
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we only merge “metallic” (resonant) clusters in our model,
thus avoiding the thorny issue of determining the proper
renormalized couplings after merging “mixed” insulating
and thermalizing blocks.

C. Validity of quantum percolation model

Before proceeding, we pause to comment on the
assumptions and approximations that have gone into
constructing the effective quantum percolation model of
the delocalization transition. Our key assumption is that the
critical resonant cluster has a self-similar structure in
energy and space, which allows us to hierarchically
construct the percolating resonance that drives delocaliza-
tion. This hierarchical construction clearly does not
describe the most general collective resonances and, in
particular, ignores generic unstructured resonant clusters
that do not decompose into a hierarchical tree of few-body
resonances. However, the assumption of self-similarity is
naturally expected for a continuous phase transition char-
acterized by a diverging length scale, based on knowledge
of more conventional disordered criticality. We therefore
expect our approach to accurately capture the universal
aspects of such a resonant structure close to the delocal-
ization transition.
Our approach also seeks to construct a delocalizing

resonance by merging metallic clusters. Such an approach
is known to be problematic for noninteracting Anderson
insulators in which the conductivity of blocks does not add
in a simple fashion because of coherent interference effects
[29]. However, in the present context, since the system
must be thermal at the MBL transition, we expect strong
dephasing to wash out any effects of quantum interference
(e.g., the time scale for dephasing is more rapid than that of
transport and does not diverge even in the MBL phase).
Lastly, we remark that while we are implicitly working at

infinite effective temperature (e.g., we assume, for sim-
plicity, that all 2n ¼ en log 2 many-body levels associated
with an n-spin cluster are equally accessible, equivalent to
having maximal entropy per spin of log2), we stress that
this assumption is purely a matter of convenience, and we
expect the same universal structure at any nonzero energy
density. Specifically, we have numerically checked that
changing the amount of thermal entropy per cluster does
not affect the critical exponents of the transition.

IV. SCALING STRUCTURE OF THE
MBL TRANSITION

To identify the scaling structure of the transition pre-
dicted by the effective resonance percolation model
described above, we examine the dependence of the size,
ξloc (number of spins), of the largest resonant cluster as a
function of disorder strength W for various system sizes L.
Disorder-averaged results for V ¼ 0.3 are shown in Fig. 2.
For W ≪ Wc, one obtains a percolating cluster with
ξloc ≈ L with probability close to 1. In the finite-size

systems simulated, ξloc=L crosses over from 1 (W≪Wc)
to zero (W ≫ Wc) as disorder is increased.
The curves for different system sizes cross at the same

value of disorder strength, which we identify as the critical
disorder strength Wc. Moreover, the data for different
system sizes collapse to a universal scaling form
ξloc ¼ LΞððW −WcÞL1=νÞ, with correlation length expo-
nent ν ¼ 3.5� 0.3, as shown by plotting ξloc=L against the
scaling variable ðW −WcÞL1=ν (Fig. 2). Here, ΞðxÞ is a
universal scaling function interpolating between 1 ðx ≪ 0Þ
and zero ðx ≫ 0Þ.
This scaling collapse indicates the existence of a

length scale ξ that diverges when the transition is
approached from either side as ξ ∼ jW −Wcj−ν, signaling
a sharp continuous delocalization phase transition. The
diverging length scale ξ can be interpreted as the locali-
zation length for W > Wc and, as we will see below,
characterizes the length of insulating gaps in the transport
path for W < Wc.
We remark that the (universal) value of the scaling

function at criticality, Ξð0Þ ≈ 10−2, is anomalously low
compared to ordinary percolation [for which Ξð0Þ
would be ≈0.5]. This strong asymmetry indicates that
the transition is driven by rare resonant clusters that are
quite sparse and widely separated (e.g., clusters of size l
are separated by typical distance ≈ Ξð0Þ−1 × l ≫ l at
criticality).
We also performed simulations of a simpler model that

ignores the renormalization of the couplings when merging
clusters. As claimed above, despite the potential stability
issues of the strong-disorder phase within that simplified
model, we find essentially identical universal percolation
curves using these simplified rules, compatible with the

FIG. 2. Finite-size scaling for the disorder-averaged localiza-
tion length ξloc (defined as the size of the longest resonant cluster
for a given disorder realization). ξloc=L collapse to a universal
form (main panel) when plotted against the scaling variable
ðW −WcÞL1=ν, with correlation length exponent ν ≈ 3.5� 0.3.
Insets show the unscaled ξloc=L curves. Results are averaged
over ∼104 disorder realizations.
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same universal exponent ν ≈ 3.5 within error bars (see
Appendix A).

V. NEAR-CRITICAL DYNAMICS IN THE
DELOCALIZED PHASE

We now turn to the task of computing the scaling of
transport and entanglement dynamics, in the delocalized
phase near the critical point (W ≲Wc). Our goal is to
understand the scaling structure underpinning the critical
slowing down of energy transport as W approaches Wc
from below. Since the delocalized phase is thermal and at
high temperature [21], transport occurs via the thermally
incoherent transfer of energy among bonds in the resonant
cluster. Hence, we model the spread of excess energy
(initially localized near position x as a function of time) as a
classical random walk across the resonant cluster, with a
time scale τAB ¼ 1=ΓAB to transfer excitations between
resonantly coupled clusters A and B. Namely, we can write
a stochastic transition matrix Mij ¼ Γij − δij

P
k Γik and

compute the time evolution of the mean-square displace-
ment of a wave packet (averaged over initial position)
as δr2ðtÞ ¼ ð1=LÞPij ðeMtÞijðxi − xjÞ2.
The iterative merging procedure yields detailed infor-

mation about the connectivity structure and the coupling
strengths for each participating link in the resonant cluster.
Here, it is important to note that, while all degrees of
freedom are part of the percolating resonant cluster for
W < Wc, not all spins contribute equally to transport and
dynamics. Rather, dynamical properties are dominated by a
subset of efficiently connected spins that form the “back-
bone” of the transport path through the resonant cluster.
Then, using standard Green’s function methods, we com-
pute the time evolution of an initially well-localized energy
wave packet spreading across the resonances network via a
random walk. Our main result is that the delocalized phase
exhibits a broad regime of anomalously slow subdiffusive
equilibration dynamics and energy transport. We observe
this subdiffusive behavior in our model using both renor-
malized and nonrenormalized couplings, but find that
finite-size effects are much weaker for the simplified
model that ignores renormalization, thus allowing us to
extract much cleaner data. Specifically, the renormalization
produces a numerically large separation of scales for
short-distance (weakly renormalized) and long-distance
(heavily renormalized) intercluster couplings that exacer-
bate numerical precision limits for exponentiating the
stochastic time evolution matrix eMt at large times.
Since these two results give apparently identical scaling
results on accessible system sizes (recall that they repro-
duce equally well the universal scaling curves for ξloc=L
described in the previous section), we instead focus on this
simplified model [30].
Averaging over initial position x, and over disorder

configurations, we find that the mean-square displacement
of an excitation grows as a power law in time (Fig. 3),

jδrðtÞj ≈ t1=zðWÞ: ð5Þ

For ordinary classical diffusion, z ¼ 2. In contrast, we find
that zðWÞ diverges in the glassy phase, indicating an
absence of energy transport and a breakdown of thermal
equilibration. On the delocalized side of the critical point,
1=zðWÞ increases continuously from zero as a function of
detuning from the critical disorder strength:

zðWÞ ≈ z0
ðWc −WÞζ ðW ≲WcÞ; ð6Þ

where z0 is a nonuniversal constant. Though seemingly a
distinct universal exponent, ζ is related by a general scaling
relation to the log-dynamical exponent ψ of the localized
phase and the correlation length exponent ν. To see this,
note that at the critical point, transport along the critical
resonant chain occurs by tunneling through arbitrarily long
localized regions; hence, energy scales with length as ∼e−L
at the critical point, just as in the localized phase. This
scaling must cross over smoothly to the power-law scaling
of Eq. (5) on length scales L ≈ ξ, implying the scaling
relation

ζ ¼ ν: ð7Þ

Using this scaling relation and the definition of the
correlation-length exponent, we may rewrite Eq. (6) as z ∼
ξ (ignoring logarithmic corrections and nonuniversal pre-
factors). Accessing the scaling regime (6) to measure ζ
numerically is difficult because of the form of the finite-size
percolation curves (Fig. 2): Close to the critical point with
W < Wc, ξloc > L, even for moderately large systems.

FIG. 3. Energy transport near the transition. In the delocalized
phase (W < Wc), excess energy initially localized near the origin
spreads to a distance δr ∼ t1=z in time t (bottom inset). The
dynamical critical exponent z diverges continuously from the
delocalized side of the transition and vanishes inside the quantum
critical glass phase (main panel). The numerical results are
consistent with z diverging as jW −Wcj−ζ with ζ ¼ ν (top inset).
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In particular, in our finite-size simulations, about 1% of
samples have a percolating transport path even on the
localized side of the transition,W ≳Wc, consistent with the
observed z−1 ∼ 10−2. In contrast, no configurations will
percolate for W > Wc in an infinite system. Since long-
distance transport requires a percolating transport path, z−1

will vanish for W > Wc, indicating that the small residual
z−1ðW ≥ WcÞ observed is a finite-size artifact. Upon
subtracting the value of zðWcÞ−1, we find critical behavior
compatible with the expected scaling relation ζ ¼ ν
(Fig. 3, upper inset). We caution that, since the transport is
sensitive to whether or not the cluster percolates, and given
the small percolation probability at criticality, ξloc=L ∼
10−2 (a universal number insensitive to model details),
transport generally suffers more severe finite-size correc-
tions than, say, ξloc.

A. Structure of transport path

Subdiffusive transport arises from the broad distribution
of effective tunneling links, Γij, in the resonant backbone,
corresponding to a power-law distribution of time scales
[17,31], τij ∼ 1=Γij:

pðτÞ ∼ 1

τα
; ð8Þ

with 1 < α ≤ 2 such that the meanwaiting time
R
∞ τpðτÞdτ

is divergent. To see the relation between this power-law
distribution and subdiffusive transport properties, note
that energy transport occurs as a random walk on a one-
dimensional chain whose “sites” are two-spin bonds in the
resonant cluster and whose links are weighted by a waiting
time τ corresponding to the inverse effective coupling
between “sites.” (In principle, the bonds also have variable
lengths, l ∼ log τ. However, unlike the waiting times, the
bond lengths have a finite mean l̄, and in the following, we
approximate the length of each step as l̄). In N steps, a
random walker traverses ∼Oð ffiffiffiffi

N
p Þ different bonds, revisit-

ing each approximately
ffiffiffiffi
N

p
times and moving a total

distance L ≈
ffiffiffiffi
N

p
(in units of the average step size). For a

broad distribution of waiting times, the time taken for N
steps is dominated by the longest waiting time T encoun-
tered. The probability of encountering a bondwith a waiting
time of at least T is Pðτ ≥ TÞ ¼ R

∞
T pðτÞ ≈ T1−α. We can

reasonably expect to find a link with waiting time τ ≳ T
among L ≈

ffiffiffiffi
N

p
different bonds if LPðτ ≥ TÞ ≈ 1, and

therefore, the slowest link in a region of size L has waiting
time TðLÞ ≈ L1=ðα−1Þ. Since this weak link is revisited orderffiffiffiffi
N

p
≈ L times, the total time to move distance L scales as

tenergyðLÞ ≈ Lα=ðα−1Þ. Comparing to Eq. (5), we identify the
dynamical exponent for energy transport as

z≡ zenergy ¼
α

α − 1
; ð9Þ

implying that α approaches 1 near the transition as
αðWÞ − 1 ∼ jW −Wcjζ.
Note also that the broad distribution of waiting times (8)

corresponds to a probability of encountering a link of
length l ¼ log τ in the transport path along the resonant
backbone, near the transition, given by

PðlÞ ∼ eð1−αÞl ∼ e−l=z ¼ e−ðl=ξÞ: ð10Þ

Hence, the typical spacing between “vertebrae” in the
resonant backbone is ≈ξ, corresponding to an energy
scale e−ξ. However, in a region of length L ≫ ξ, it is
extremely unlikely to avoid encountering an atypically
long gap of length l⋆, defined by ðL=ξÞPðl⋆Þ ∼ 1, i.e.,
l⋆ ∼ ξ½logðL=ξÞ�. Such long rare links involve a waiting
time τ ∼ el⋆ ∼ Lξ, which dominates the time required to
traverse a segment of size L.

B. Entanglement dynamics vs thermal transport

We note that the dynamics of energy transport scale
differently than those of entanglement since energy is a
conserved quantity that can only be transferred among
subregions, whereas entanglement can be freely generated
[19,32]. Hence, whereas energy transport can be viewed as a
random walk of conserved particlelike excitations, entropy
spreads deterministically in all directions simultaneously
[32]. In order to entangle regions separated by distance L,
entanglement must spread across orderL links, only visiting
each once (in the same spirit as the second law of thermo-
dynamics, once a bond is entangled with many others, it is
extremely unlikely to later disentangle itself). Therefore, the
time scale for entanglement spread is dominated by the
longest typical waiting time encountered, tent ≈ TðLÞ ≈
L1=ðα−1Þ. In comparison, we find a different effective
dynamical exponent for the spread of entanglement:

zent ¼
1

α − 1
¼ zenergy − 1; ð11Þ

with zent ∼ z ∼ ξ near the transition.

C. Scaling of optical conductivity

So far, we have discussed transport from the perspective
of the propagation of an initially well-localized energy
wave packet. While this is natural in ultracold atomic
systems (see, e.g., Ref. [33]), in solid-state contexts one
frequently thinks of dynamics in terms of frequency-
dependent conductivity. The power-law distribution of time
scales also implies an anomalous power-law frequency
dependence for ac conductivities. For systems with a
conserved spin component or particle number, one can
compute the scaling of the optical number conductivity via
the Einstein relation σðωÞ ≈DðωÞχ, where DðωÞ is the
(frequency-scale-dependent) diffusion constant, and χ is
the static compressibility (which will be constant
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throughout the phase diagram). The diffusion constant
scales like D ∼ ωL2 ∼ ω1−2=z, where z ¼ zenergy is the
dynamical scaling of energy; hence, the optical conduc-
tivity will also scale as

σðωÞ ∼ ω1−2=z: ð12Þ

This expression interpolates between constant conductivity
in the diffusive limit (z ¼ 2) for weak disorder, to σðWcÞ ∼
ω at the MBL transition z ¼ ∞. This scaling argument
agrees with the recent rare-regions analysis and numerical
results of Ref. [17].

VI. SUMMARY AND EXTENSIONS

A. Phase diagram

Let us summarize our results in the thermal phase
(W < Wc). Near the critical point, the system exhibits
anomalously slow subdiffusive dynamics τ ∼ Lξ. Inside the
critical regime (i.e., on length scales L ≪ jW −Wcj−ν), the
critical resonant cluster mediates coherent transport of
energy with characteristic scaling of length and time
log τ ∼ L. This scaling relation is reminiscent of the one
governing the dynamics of dephasing and entanglement
growth in the localized MBL phase, with the important
distinction that dynamics in the strong-disorder MBL phase
describe only virtual (“off-shell”) transitions rather than
real (“on-shell,” or resonant) processes required for thermal
transport. Hence, whereas the MBL glass is nonergodic, the
energy eigenstates at the glass-melting critical point are
ergodic and thermal, with volume-law scaling of entangle-
ment in every eigenstate (consistent with general entangle-
ment monotonicity requirements [21]). However, while the
pure eigenstates at the delocalization transition exhibit
thermal behavior, starting from a superposition of energy
eigenstates (the only initial conditions that can be prepared
experimentally in finite time), the system will take a
superpolynomially long time (in system size) to equilibrate
and thermalize. The resulting phase diagram and crossover
scales are shown in Fig. 1.

B. Experimental signatures

The scaling structure of the MBL transition predicted by
our approach has observable consequences testable with
currently existing ultracold atom technology. First, the
subdiffusive transport for W < Wc is directly observable
inwave-packet expansion experiments, such as those used to
diagnose Anderson insulators from speckle disorder [34].
In addition, recent experiments [22] observe signs of

many-body localization by measuring the decay of an
initial density imbalance I0 between even and odd sites
[35]. Whereas in a thermalizing system I0 decays to zero at
long times, because of the absence of spontaneous sym-
metry breaking at finite temperatures in 1D, in MBL
systems, the density imbalance saturates to a nonzero

steady state value I∞. The saturation value I∞ is given
by the overlap of the initial imbalance with the local
conserved quantities of the MBL phase. For W ≳Wc,
the spatial extent of these conserved quantities is ∼ξ; i.e.,
the conserved quantities are highly entangled products of
degrees of freedom within a distance ξ, and hence their
overlap with a generic product state of local operators is
∼2−ξ=2. Thus, the saturation value decays as

I∞ ∼ I0e−ξ ∼ I0e−jW−Wcj−ν ; ð13Þ

as W → Wc from above (omitting nonuniversal constant
prefactors in the exponentials), enabling an experimental
measurement of the correlation-length exponent ν.
Moreover, the exponential sensitivity of I∞ to ξ provides
a way to distinguish the interacting many-body localized
insulator from a noninteracting localized insulator, for
which I∞ ∼ 1=ξ2 [22].
On the thermalizing side of the transition, I∞ ¼ 0 as

required by ergodicity; however, one may examine the
time-dependent decay of IðtÞ near the transition. At long
times, t ≫ eξ=x0 [see Eq. (2)], the initial imbalance I0 is
washed out in typical portions of the system. However,
since there is a broad distribution of thermalization times,
the imbalance persists in rare strongly disordered regions
that thermalize much more slowly than average—these are
the same regions that serve as bottlenecks for transport,
producing subdiffusion. We have seen, from transport
simulations, that the probability of finding an insulating
region of size l and thermalization time τðlÞ ∼ el=x0 is
PðlÞ ∼ e−l=ξ [see Eq. (10)]. Hence, the imbalance after
long time t decays as (up to logarithmic corrections and
nonuniversal prefactors)

IðtÞ ∼
Z

∞

x0 log t
PðlÞdl ∼

1

t1=z
ð14Þ

(recall z ∼ ξ). Therefore, we see that the dynamics of
population-imbalance decay enables a direct observation
of the subdiffusive dynamics of the system. We note that,
while we have focused on population imbalance because of
its connection with Ref. [22], the above discussion pertains
to any generic sum of local observables (e.g., magnetiza-
tion) that decays to zero in a thermalizing system.

C. Extension to higher dimensions and
long-range interactions

In addition to the 1D MBL transition studied here,
our approach can be adapted to treat a variety of other
many-body delocalization transitions, including higher-
dimensional MBL transitions, MBL transitions with
long-range interactions [36], and critical analogs of
MBL with stretched-exponential interactions [13–15].
While each of these deserves its own detailed study, our
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analysis of the 1D MBL transition enables us to make
several conjectures about their scaling properties.
Similar to the 1D transition, we still expect the higher-

dimensional MBL transition to be characterized by a single
diverging length scaleξ ∼ ð1=jW −WcjνdÞ,with correlation-
length exponent νd that depends on dimensionality d, and
z ¼ ∞ (tunneling-like) dynamics at criticality associated
with a fractal structure to the critical resonant cluster. One
cleardistinction is that thesubdiffusive transport forW < Wc
is almost certainly special to one dimension. Specifically, in
one dimension, subdiffusion arises from rare bottlenecks in
the transport path. In contrast, in two and higher dimensions,
transport can simply go around such bottlenecks. Hence, in
higher dimensions, we expect a nonzero diffusion constant
(z ¼ 2) and finite dc conductivity in the entire region
W < Wc. Then, repeating the arguments leading to the
scaling relation ζ ¼ ν above, onewould expect the diffusion
constant to vanish as D ∼ e−ξ=x0 upon approaching the
higher-dimensional MBL transition.
Regarding long-range interacting or nonergodic critical

localized models, one might intuitively expect spatially
extended interactions to dramatically modify the scaling of
the MBL transitions compared to the short-range inter-
actions studied here. However, simple-minded arguments
(see Appendix B) suggest that the long-range two-body
interactions are strongly renormalized to produce short-
range many-body interactions between large resonant
clusters. This suggests that the scaling properties of the
MBL transition may be insensitive to longer-range inter-
actions (so long as the interactions are not sufficiently long
range to destabilize the MBL phase [36]). We leave a
detailed study of these issues to future work.

VII. DISCUSSION

To summarize, we have developed an effective model for
the many-body delocalization transition of a one-dimen-
sional MBL phase. This model can be efficiently simulated
for very large system sizes (with computational cost scaling
polynomially in system size), and we argue that it gives an
accurate description of its long-distance, low-energy, uni-
versal critical properties.
This transition represents a novel form of nonequilibrium

excited-state criticality, distinct from classical, thermal
phase transitions and zero-temperature quantum criticality.
We find that this excited-state transition is continuous
(second order), characterized by a single diverging length
scale. We describe the set of universal critical exponents
that characterize this melting transition, which are con-
nected by scaling relations. In particular, we find an
unusual scaling structure of the critical slowing down of
dynamics and thermal transport characterized by a con-
tinuously evolving dynamical exponent z, which diverges
in a universal fashion upon approaching the quantum
critical point. This unusual, universal divergence of a
critical exponent z stems from a sparse structure to the

transport path through the critical percolating cluster. It is
natural to expect that this sparsity corresponds to a (multi)
fractal structure of the critical cluster. While our approach
makes many simplifying approximations, and is clearly not
exact, we believe the general scaling structure it predicts
(Fig. 1) is correct and, moreover, expect to obtain a
reasonable (though possibly approximate) value for the
correlation-length exponent, ν. In particular, it is encour-
aging that the scaling data of Fig. 1 are closely compatible
with the renormalization-group approach of Refs. [19,37],
despite the marked differences between these approaches.
Testing these results using standard numerical techniques
may be challenging. In particular, a direct frontal assault via
exact diagonalization is unlikely to give accurate scaling
results in systems of only a few tens of sites.
We anticipate that these methods can be extended to treat

a variety of other out-of-equilibrium dynamical phase
transitions in disordered quantum systems. For instance,
our analysis in terms of quantum percolation of resonant
clusters can be straightforwardly adapted to treat higher-
dimensional delocalization transitions, which are so far
inaccessible by other methods.
Another unanswered question regarding one-dimensional

systems concerns the fate of subdiffusion deep in the
delocalized phase at weak disorder, far from the MBL
transition. One possible scenario is that subdiffusion persists
to arbitrarily weak disorder, such that diffusion is only
asymptotically recovered in the clean limit. This would
imply that any amount of disorder in one-dimensional
systems leads to subdiffusive dynamics. The alternative
would be a second finite-disorder-strength excited-state
phase transition separating diffusive and subdiffusive
regimes. We leave a detailed investigation of such issues
for future work.
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APPENDIX A: DETAILS OF EFFECTIVE MODEL
OF THE DELOCALIZATION TRANSITION

A. Resonance merging procedure

In the first stage of resonance formation, we check for
pairwise resonances between two spin pairs i and j for
which ΓðxijÞ > δEij, where ΓðxÞ ≈ Ve−x=x0 is the typical
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effective coupling through the intervening strong-disorder
phase given by Eq. (2). Here, xij is the distance separating
the spin pairs i; j and δEij is their energy difference. As we
iterate this procedure, we generate larger clusters and check
whether excitations can resonantly tunnel between any two
clusters. Specifically, at any stage in the iterative process,
we have a collection of N resonant chains labeled by
j ¼ 1;…; N, each comprised of ðmj þ 1Þ bonds. Each
resonant cluster has ≈2mj energy levels, spread over
bandwidth Λj equal to the sum of couplings J for the
resonant links inside the cluster, and hence, they have
typical level spacing δa ≈ Λj=2mj . The energy levels within
a given resonant chain are all strongly admixed and exhibit
level repulsion.
If the residual coupling ΓðxijÞ between two clusters i; j

can resonantly drive transitions among the levels, then we
merge these two resonances into a new, larger one. The
precise rule for whether or not to merge two resonances
depends on the relative size of the bandwidths and level
spacings for each. Consider two resonant clusters, labeled
j ¼ 1; 2. Without loss of generality, assume that cluster 1
has larger bandwidth Λ1 > Λ2. There are two distinct cases
to consider. If the level spacing of the first cluster exceeds
the bandwidth of the second, δ1 > Λ2 [Fig. 4], then the
minimum energy difference associated with changing the
states of both resonances is δE1;2 ¼ δ1 − Λ2. On the other
hand, if δ1 < Λ2 [Fig. 4], then the minimum energy cost for
transitions is of order δE1;2 ≈ δ1δ2=Λ2 ¼ Λ1=2m1þm2.
If Γðx12Þ ≪ δE1;2, then the residual coupling between

the two resonant clusters merely weakly perturbs the
energy levels of each. In this case, the combined energy
levels of both clusters are well described by the tensor
product of the independent levels associated with each
cluster, indicating that energy excitations are well localized

independently in each cluster. On the other hand, if
Γðx12Þ ≫ δE1;2, then the energy levels of both resonances
are strongly admixed such that excitations are spread
throughout both clusters, and energy can resonantly shuttle
between them. In our numerical procedure, we take δE as a
sharp cutoff, merging resonances coupled by ΓðxijÞ > δEij.

B. Renormalization of intercluster couplings

In this appendix, we explain the conceptual necessity of
renormalizing the intercluster couplings in the effective
resonance percolation model for the MBL transition.
Perhaps surprisingly, we find that even though the renorm-
alization steps are conceptually necessary to obtain a
well-defined transition in asymptotically large systems,
in practice, they may be omitted without changing the
universal scaling properties obtained from finite-size
scaling in moderately large systems.
If one omits the renormalization of intercluster couplings

and simply takes bare couplings, Γij ¼ Ve−xij=x0 , where xij
is the distance between clusters i and j, there is, in
principle, a rare-event-driven breakdown of the strong-
disorder phase, which rounds the transition in the effective
resonance percolation model [37,38]. Namely, consider the
case where one finds a resonant cluster of N� spins, such
that the bandwidth of this cluster ΛN� is larger than the
maximal energy mismatch between two spins (≈W). Then,
with simple geometrically dictated couplings that depend
only on the interspin distance, this N0 size cluster will
deterministically absorb its neighbors and continue to grow
in this fashion until it encompasses all spins. Such an
“avalanche” style breakdown occurs even for arbitrarily
large disorder, as there is always a nonzero probability of
finding such an N� spin “seed” cluster.
Specifically, for very strong disorder, N� ≈ ðW=VÞ ≫ 1

spins are required to form a cluster whose bandwidth,
ΓN� ≲ N�V, exceeds the energy mismatch W. The proba-
bility of finding such an N�ðWÞ spin resonant cluster is
Pavalanche ≈ e−W=V , indicating that an avalanche will occur
for systems larger than Lavalanche ≈ eW=V . While this system
size is extremely large for strong disorder W ≫ V, it
nevertheless indicates that the nonrenormalized couplings
lead to the unphysical prediction that the MBL phase will
always be unstable to such an avalanche-style breakdown,
and it shows that the intercluster renormalization steps are
necessary to obtain an asymptotically well-defined phase
transition. This avalanche instability is eliminated by
proper renormalization of intercluster couplings. Again
working in the limit of strong disorder, we observe that,
as the “seed” cluster is formed, its couplings to neighboring
spins will be typically renormalized downward by a factor
of V=W for each spin in the “seed” cluster. Hence, barring
an extensive set of accidental resonances, which has
vanishing probability for large systems, the avalanche will
be suppressed for ðV=WÞ ≪ 1.

(a)

(b)

FIG. 4. Two cases for merging resonances. The energy cost for
changing the state of one cluster (blue circle to open circle
connected by black arrow) can be partially compensated by
changing the state of another cluster. The reduced energy penalty,
δE12, for such “flip-flop” transitions is either δ1 − Λ2 or δ1δ2=Λ2

depending on whether δ1≷Λ2, as shown in panels (a) and (b),
respectively.
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On the other hand, simply omitting the renormalization
steps and proceeding with the bare couplings, we obtain
essentially identical finite-size scaling results compared to
the case with renormalized couplings (Fig. 5). In particular,
we obtain finite-size scaling curves for ξloc=L that cross
nicely at an apparent critical disorder strength ðWc=VÞ ≈
17 with V ¼ 0.3. While the precise (nonuniversal) value of
Wc differs in the absence of renormalization steps, the
universal scaling structure such as the crossing value
ðξloc=LÞjWc

≈ 2 × 10−2 and correlation-length exponent
ν ≈ 3.5� 0.4 agree within error bars with those results
presented in the main text.
Thus, the theoretically predicted avalanche phenomenon

appears to be completely absent even for relatively large
(L ≈ 103) system sizes. In fact, at the MBL transition point
ðWc=VÞ ≈ 17, from the arguments above, the avalanche
instability would only be visible for system sizes of L≳ e17

spins, which is completely unaccessible by either numerical
simulations or, for that matter, cold atom experiments.
Hence, while the renormalized couplings are in principle
crucial for obtaining a well-defined transition, in practice
one may omit the computationally expensive renormaliza-
tion step and still observe universal critical finite-size
scaling behavior in large systems. This situation is some-
what analogous to accessing critical properties of a conven-
tional quantum critical point at very small, but finite
temperature, T ≈ e−WC=V , which cuts off the flow towards
the universal scaling regime, but only above a very large
length scale, below which it is possible to accurately
identify the universal scaling exponents.

C. Construction of transport path

Since we have seen that the potential avalanche insta-
bility is absent for computationally accessible system sizes
at the critical point (W ¼ Wc), we omit the inconvenient

renormalization steps in computing transport properties.
However, in this case, some care is required to properly
construct the transport path through the resonant cluster and
to avoid a related avalanche-style breakdown of the trans-
port calculation for W < Wc. Namely, despite the absorp-
tion of all bonds into the resonant cluster for W < Wc, not
all bonds contribute equally to transport, and some care is
required to properly identify the transport path through the
resonant cluster. An illustrative example is shown in Fig. 6.
At some intermediate step, i − 1, in the resonance-

merging process, small resonantly linked clusters of spins
(blue rectangles) of various sizes have been identified. At
step i, smaller clusters merge to form two large resonantly
linked clusters, C1; C2. In the next step, iþ 1, after
accounting for the reduced level spacing of the newly
formed clusters, one may find that C1 and C2 can
resonantly exchange energy via the black link, and they
are merged into a single larger cluster C1∪C2. It frequently
happens that, at step iþ 1, the level spacing of C1 (or C2)
alone is too large to facilitate the resonant exchange of
energy between smaller clusters, e.g., C3, between C1

(or C2), but the combined level spacing of C1∪C2 is small
enough to resonate with C3. Then, in the subsequent step,
iþ 2, C1∪C2 will absorb the intervening spins. However, it
is crucial to note that C3 cannot (in this example) resonantly
exchange energy with C1 or C2 alone but rather only by
collectively exciting both C1 and C2. Hence, resonantly
transferring energy between C3 and C1∪C2 takes at least
as long as the time τðL12Þ to tunnel between C1 ↔ C2

(long black link).
If we account for the renormalization of intercluster

couplings, this effect is automatically taken into account.
However, the renormalization of couplings leads to a large
separation of scales in the stochastic matrixM (see Sec. V),
which exacerbates numerical precision limits on simulating

FIG. 5. Finite-size scaling for the disorder-averaged localiza-
tion length ξloc (see Fig. 2) using a simplified model that ignores
the renormalization of the couplings. Results are averaged over
∼104 disorder realizations.

FIG. 6. Transport path through resonant cluster (W < Wc).
Schematic depiction of the sequence of resonance-merging steps
(i; iþ 1; iþ 2) that produces a gap in the transport path through
the resonant cluster. See text for a detailed explanation. Blue
rectangles are resonantly linked clusters of spins. Black and gray
lines indicate resonant links between previously formed clusters.
The dashed crossed-out red line indicates a spurious connection
that should not be added to the transport path of the cluster.
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the random walk for long times upon exponentiating eMt

(this constraint becomes increasingly detrimental near the
critical point because of the critical slowing down of
dynamics). To minimize these precision issues, we simply
omit the renormalization, bolstered by the observation that
the other universal properties are insensitive to this
renormalization in the accessible system sizes. However,
if we omit the renormalization steps and just blindly
connect C3 to both C1 and C2 (e.g., including the
crossed-out red line in Fig. 6) in the transport path through
the resonant cluster, then wewould spuriously allow energy
to hop from C1 → C3 → C2 in time τðL13Þ þ τðL32Þ ≪
τðL12Þ, whereas in this example we have seen that trans-
ferring an excitation from C3 to C1∪C2 must take at least
τðL12Þ. A minimal trick to avoid this unphysical “shorting
out” of such insulating gaps in the transport path is to
record only a single connection between the closest pair of
bonds on C3 and C1∪C2 (gray lines in Fig. 6).

APPENDIX B: RENORMALIZATION
OF LONG-RANGE INTERACTIONS

In this appendix, we flesh out the argument alluded to in
the main text, regarding the generalization of our results to
systems with long-range interactions and critical analogs of
MBL systems, dubbed quantum critical glasses (QCGs) in
Ref. [15]. Examples of QCGs include phase transitions
between MBL phases with different (discrete) symmetry or
topological order [13–15,25], as well as stable excited-state
critical phases [15]. At strong disorder, QCGs are charac-
terized by a stretched exponential tunneling in which
energy E scales with distance x as E ∼ e−ðx=x0Þψ , with
universal exponent ψ < 1 whose value depends on the
universality class of the QCG in question. As for the MBL
case, upon weakening disorder, one expects a continuous
delocalization transition from QCG to thermal liquid in
which resonant clusters percolate.
Whereas the renormalization of intercluster couplings

plays a small role in the scaling properties of the MBL
transition, we expect it may play a more crucial role in the
QCG delocalization transition. Loosely speaking, two clus-
ters with number of spins n1;2, respectively, can inter-
resonate if their coupling Γ12 exceeds the many-body level
spacing on the clusters, ≈2−ðn1þn2Þ. As the clusters are
formed, the bare coupling between them, Γ0ðx12Þ ≈
e−ðx12=x0Þψ (where x12 is the intercluster distance), is pertur-
batively reduced by a factor of ≈ðe−ðxtyp=x0Þψ=ΔtypÞn1þn2 ,
where xtyp is the typical spacing of spins in the clusters and
Δtyp is their typical energy mismatch. At the delocalization
transition, one expects the clusters to just barely resonate,
i.e., n1 þ n2 ≈ x12, giving effective intercluster coupling
Γ12 ≈ e−x12= ~lΓ0ðx12Þ, where ~l−1 ≈ ðxtyp=x0Þψ − logΔtyp.
As the exponential prefactor dominates over the stretched
exponential bare coupling Γ0, this indicates that the renorm-
alization of couplings gives effective exponential-in-distance
interactions between large resonant clusters in QCGs

near their delocalization transition, in contrast to their
longer-range stretched-exponential-in-distance interactions
between individual spins. This suggests that the QCG
delocalization transition is actually in the same universality
class as the MBL transition. The above scenario contrasts an
alternative picture of the QCG-delocalization transition as
being driven by chunks of perfect metal interacting through
QCG regions via stretched-exponential-in-distance cou-
plings, which would predict an absence of subdiffusion in
the delocalized phase [19]. The above considerations instead
suggest that the “metallic” clusters in this picture are better
thought of as “critical” clusters and that they interact with
highly renormalized exponential-in-distance interactions.
We note that similar arguments can be used to suggest

the stability of QCGs with stretched exponential inter-
actions, MBL phases with (short-ranged) power-law inter-
actions, VðxÞ ∼ 1=xp, and MBL in higher dimensions for
strong disorder. Loosely speaking, though the two-spin
interaction VðLÞ between spins of scale L is much larger
than the many-body level spacing δðLÞ ∼ 2−L

d
(where d is

the number of spatial dimensions) for large L, in order to
access the small many-body level spacings, ∼Ld powers of
the two-spin interactions must be used. For strong disorder,
each two-body transition is energy mismatched such that
the many-body matrix element ΓðLÞ corresponding to
transitions with level spacing δðLÞ also scales as ΓðLÞ∼
ðV=WÞLd

, allowing for a MBL phase for W ≫ V. Similar
arguments to those above suggest that the MBL transition
with extended interactions will be of the same universality
class as that with strictly short-ranged interactions because
of the renormalization of the interactions between resonant
clusters. We leave a more detailed study of these issues for
future work.
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