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We formulate a theory of the many-body localization transition based on a novel real-space
renormalization group (RG) approach. The results of this theory are corroborated and intuitively explained
with a phenomenological effective description of the critical point and of the “badly conducting” state
found near the critical point on the delocalized side. The theory leads to the following sharp predictions:
(i) The delocalized state established near the transition is a Griffiths phase, which exhibits subdiffusive
transport of conserved quantities and sub-ballistic spreading of entanglement. The anomalous diffusion
exponent α < 1=2 vanishes continuously at the critical point. The system does thermalize in this Griffiths
phase. (ii) The many-body localization transition is controlled by a new kind of infinite-randomness RG
fixed point, where the broadly distributed scaling variable is closely related to the eigenstate entanglement
entropy. Dynamically, the entanglement grows as ∼ log t at the critical point, as it does in the localized
phase. (iii) In the vicinity of the critical point, the ratio of the entanglement entropy to the thermal entropy
and its variance (and, in fact, all moments) are scaling functions of L=ξ, where L is the length of the system
and ξ is the correlation length, which has a power-law divergence at the critical point.
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I. INTRODUCTION

In his original paper on localization, Anderson postu-
lated that closed many-body systems undergoing time
evolution would not come to thermal equilibrium if subject
to sufficiently strong randomness [1]. Significant theoreti-
cal effort has been devoted in the last few years, following
Refs. [2,3], to understanding this phenomenon, the only
known generic exception to thermalization (see, e.g.,
Refs. [4,5] for recent reviews). The recent work led to
classification of many-body localization (MBL) as a dis-
tinct dynamical phase of matter, characterized by a remark-
able set of defining properties: (i) There are locally
accessible observables that do not relax to their equilibrium
values and hence can be related to a set of quasilocal
integrals of motion [6–10]; (ii) even after arbitrarily long
time evolution, retrievable quantum information persists
in the system and may be extracted from local degrees of
freedom [11,12]; (iii) entanglement entropy grows with
time evolution only as a logarithmic function of time
[6,13–15].
In spite of the progress in understanding the MBL phase,

very little is known about the dynamical phase transition
that separates it from the delocalized thermal phase. Part of

the difficulty lies in the fundamental difference between the
energy eigenstates found on either side of the transition.
Eigenstates in the thermal phase are expected to obey the
eigenstate thermalization hypothesis, which, in particular,
implies extensive (i.e., volume-law) entanglement entropy.
The nonlocality of quantum mechanics is fully exploited in
such states, where information resides in highly nonlocal
entities: the exponentially many expansion coefficients of
the wave function in terms of local basis states. On the other
hand, in the many-body localized phase, the eigenstates
feature area-law entanglement entropy akin to quantum
ground states. Hence, the dynamic quantum phase tran-
sition separating these two types of eigenstates is unlike
any other known phase transition. Ground-state quantum
critical points and dynamical critical points that occur
inside the localized phase mark transitions between area-
law states, whereas thermal critical points are transitions
between distinct states with extensive (i.e., volume-law)
entropy. The need to describe this critical point, where the
eigenstates change from area-law to volume-law entangle-
ment, and hence the quantum information in some sense
escapes from localized degrees of freedom to highly
nonlocal ones, calls for a new theoretical approach.
In thispaper,wedevelopastrong-disorder renormalization-

groupframeworkthat canaddress thismany-body localization
phase transition.We find a transition controlled by an infinite
randomness RG fixed point, where the broad distributions
are of a scaling variable directly related to the entanglement
entropy of the system’s eigenstates. Thus, using this RG
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scheme, we obtain finite-size scaling results for the
probability distribution of the entanglement entropy near
this phase transition. A corollary of the analysis is that the
phases adjacent to this critical point are Griffiths phases
[16], where some properties are dominated by rare regions
(see also Refs. [17,18]). On the delocalized side of the
transition, there is a thermal Griffiths phase showing
anomalous (subdiffusive) transport and sublinear entan-
glement growth under time evolution, due to rare, locally
insulating regions that impede the transport but do not
prevent thermalization.
Before proceeding, we mention the relation to recent

work on the MBL transition. Most of this work has relied
on exact diagonalization of very small systems [19–21]. In
particular, the numerical results of Ref. [20] suggested
an infinite randomness critical point. More recently, Kjall
et al. [21] identified a peak in the variance of the eigenstate
entanglement entropy as a sensitive variable for locating
and characterizing the transition. This indeed turns out to be
related to the main scaling variable in our theory. Grover
[22] showed that the eigenstates at this critical point have
volume-law entanglement of small subsystems. Recent
numerical work, which focused on the vicinity of the
transition, has identified and explored the subdiffusive
regime in the vicinity of the transition [17,23]. Finally, a
very recent work explores a different RG approach to the
MBL transition based on an assumed hierarchical structure
of the relevant many-body resonances, arriving at similar
conclusions to ours [24].
In this paper, we present a comprehensive theory that

naturally explains and unifies the different phenomena
associated with dynamics and entanglement near the
many-body localization phase transition. In Sec. II, we
define a minimal effective model, designed to capture the
essence of the many-body localization transition. We lay
out a strong-disorder renormalization-group approach that
is later used to analyze the universal properties of the
effective model. The RG flow of the coupling distributions
is characterized in Sec. III. There, we identify an infinite-
randomness fixed point that controls the flow near the
many-body localization transition. In Sec. IV, we show
that an eigenstate entropy variable, closely related to the
entanglement entropy, emerges as a natural scaling variable
at the critical point. The results indicate a universal scaling
of the probability distributions of this eigenstate entropy
governing the transition from an area law in the insulating
phase to the full thermal entropy in the delocalized phase
through a critical point where the entropy is broadly
distributed with a subthermal volume law. In Sec. V, we
use the RG flow to study the energy transport and
propagation of entanglement through the system, showing,
in particular, that the dynamical critical exponent z diverges
on approaching the critical point from the ergodic side. This
dynamical critical behavior is explained in Sec. VI within
an effective model of the Griffiths phase found on the

delocalized side of the transition. Finally, in Sec. VII, we
summarize and discuss the results.

II. RG SCHEME

A strong-disorder renormalization-group scheme has
been developed recently to describe the dynamics within
the many-body localized phase [6,25,26]. This approach,
however, neglects resonances, i.e., nonlocal modes involv-
ing many of the microscopic degrees of freedom. Because
these are the very processes that lead to delocalization, a
new approach, which incorporates the physics of resonan-
ces, is needed in order to describe the many-body locali-
zation transition.
The microscopic systems we have in mind include

disordered spin chains as well as interacting lattice particles
hopping in a random potential in one dimension. But in
order to capture the effect of resonances, we concede the
fully microscopic starting point and instead work with an
effective coarse-grained model of the system, which we
expect, nonetheless, provides a faithful description of the
system near the critical point. We are able to consider
within the same framework closed systems with energy
conservation as well as periodically driven (Floquet)
systems that lack any conservation laws other than the
unitarity and locality of their time evolution. For conven-
ience, we work at the energy density that corresponds to
infinite temperature when the system thermalizes.
Regardless of microscopic details, we assume that,

sufficiently close to the critical point, the system can be
viewed as being composed of blocks i of varying lengths li,
which locally behave more like insulators or more like
thermalizing systems. We define the length l of a block as
the binary logarithm of the dimension N of its Hilbert
space, so N ¼ 2l. Thus, for a disordered spin-1=2 chain,
l is the number of spins in the block. When a block is
considered in isolation, if it is an insulating block, the
eigenstates of its Hamiltonian typically exhibit only short-
range entanglement on length scales shorter than the length
of the block. These insulating blocks, when isolated,
contain conserved operators with localization length
shorter than the block, and as a result, the many-body
spectra of such insulating blocks have nearly Poisson-level
statistics. On the other hand, in locally thermalizing blocks,
long-range resonances have proliferated enough that such
blocks, even when isolated, do not contain conserved
operators that are localized on scales shorter than the block
length. The eigenstates of these thermalizing blocks thus
exhibit entanglement that extends from one end of the
block to the other, and as a result, their spectra have nearly
Wigner-Dyson-level statistics. More generally, there is a
dimensionless coupling parameter gi for each block, with
g ¼ 0 being the insulating limit, g ¼ N being the fully
conducting limit, and the crossover between the insulating
and thermalizing regimes occurring near g ¼ 1.
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Our coarse-grained model consists of a chain of coupled
blocks, as shown in Fig. 1(a), where each single block and
each pair of adjacent blocks is characterized by a minimal
set of parameters, as described below. At the basis of the
RG scheme lies the assumption that this is the minimal set
of parameters required to capture the universal behavior at
the critical point. Note that the Hilbert space dimension N
of the coarse-grained model of a chain of L microscopic
spin-1=2 objects (or q-bits) is still 2L, exactly like the bare
model. Thus, we do not “integrate out” states. However, the
retained information is reduced because we now keep only
a few parameters for each block i of li spins. In the course
of renormalization, pairs of adjacent blocks are joined into
longer blocks, so the total number of retained parameters is
steadily reduced.
To identify the parameter gi for a given block i, it is

useful to consider the time and energy scales that character-
ize the block. Of course, each block is characterized by
a typical many-body level spacing Δi ∼W2−li , where W is
a microscopic bare energy scale. In addition, there is a
parameter Γi that we call the “entanglement thermalization
rate” (or simply entanglement rate), set by the time it takes
quantum information to propagate from one end of the
block to the other end. Then, gi ¼ Γi=Δi. Note, we are
using a “minimalist” RG, where the properties of each
block (and each pair of blocks) are described by just these
two energy scales, Γi and Δi. We are assuming that at least
some of the universal features of the phase transition can be
captured by such a RG.
Physically, τi ¼ Γ−1

i can be viewed as an “entanglement
Thouless time” for block i in the following sense: Initialize
block i in one of the eigenstates of its time evolution when
it is isolated. Then, put one end of block i in strong local
contact with a much longer block j that is a good conductor,
gj ≫ 1. Initialize this two-block system in a pure product
state with no entanglement between the two blocks. Under
the unitary time evolution of these two now-coupled (but
otherwise isolated) blocks, the entanglement entropy will
then grow and saturate on a time scale τi ¼ 1=Γi, with the

final value close to the thermal equilibrium entropy of the
smaller block i. Thus, we can call τi the entanglement-
thermalization time of block i; it is the time for entangle-
ment, and thus thermalization, to spread across the full
length of the block. In principle, with knowledge of the
microscopic couplings, one could attempt to compute this
time, but here the Γi of the blocks are taken as input for the
RG scheme.
It is noteworthy that τ is not the energy transport time.

The latter, denoted by τtr, is the time scale to relax an
extensive energy imbalance across the block. On the end-
to-end entanglement time scale τi, the amount of energy
transported across the block remains of order the micro-
scopic energy scale, so it is not extensive. To relax an
extensive energy imbalance, we need to transport an
extensive (in li) amount of energy; thus, we need of order
li entanglement times. Hence, τtr ∼ liτi. Note that the
entanglement time τi is well defined even in a system
subject to external, periodically time-dependent fields, such
as a Floquet system, where total energy is not conserved
and there is no extensive quantity that can be transported,
so the transport time is meaningless.
The two-block parameters, Γij, Δij and gij ¼ Γij=Δij,

are defined as the block parameters that would ensue if
the two adjacent blocks are treated as a single block.
For instance, Δij ∼W2−ðliþljÞ ∼ ΔiΔj=W. We call the link
between these adjacent blocks i and j “effective” if gij ≫ 1

and “ineffective” if gij ≪ 1. A general requirement to be
met by the initial distributions and retained throughout the
RG flow is that the smallest block rate miniΓi is larger than
the largest two-block rateΩ ¼ maxijΓij.Ω, the largest two-
block rate, serves as the running RG frequency cutoff scale.
In this way, all the fast rates (Γ > Ω) are intrablock, while
the slow rates, below the cutoff scale, are interblock.
We now frame the RG as a strong disorder scheme

operating on the chain in real space. At each RG step, the
cutoff scaleΩ is reduced by joining the two blocks with the
largest interblock rate Γij. Thus, the old two-block param-
eters become the new one-block parameters of this new
larger block. The nontrivial part of the renormalization is to
determine the new two-block parameters ΓL and ΓR, which
connect the new block to its left and right neighbors. To
compute these rates, we have to solve for the entanglement
rate of three coupled blocks. This calculation cannot be
done microscopically in the most general case, but the
structure of the solution is rather constrained by the known
behavior in limiting cases. These constraints allow us to
formulate a closed and self-consistent RG scheme.
Modifying details of the RG scheme within the allowed
constraints does not significantly change the outcome.
Suppose we are now joining blocks 1 and 2 with the

fastest two-block rate Γ12 and want to find the new rate ΓR
of the three-block system 1,2,3. There are two limits in
which we can obtain simple reliable expressions for this
rate. First, if both links are ineffective, g12 ≪ 1 and

FIG. 1. (a) Coarse-grained model for the many-body localiza-
tion transition. Each block represents a finite segment of the
one-dimensional system. The coupling parameters g and thermal-
ization rates Γ, which characterize single blocks and pairs of
adjacent blocks, are explained in the text. (b) The model after the
basic RG step of joining the pair of blocks with the fastest
interblock thermalization rate Γij.
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g23 ≪ 1, then we can compute ΓR by straightforward
perturbation theory in the weak dimensionless couplings
(see Appendix A) to obtain

ΓR ¼ Γ12Γ23=Γ2: ð1Þ

This case describes the process of making a bigger insulator
out of two insulating links. When applied repeatedly to a
long insulating chain, this rule indeed leads to the expected
exponential increase of the entanglement time with the
length of the insulator.
Second, if both links lead to effective coupling, g12 ≫ 1

and g23 ≫ 1, then the entanglement spreads sequentially
through the three-block chain and we must add the
entanglement times G−1 ¼ Γ−1:

1

ΓR
¼ 1

Γ12

þ 1

Γ23

−
1

Γ2

: ð2Þ

In a system with energy conservation, the above formula is
simply Ohm’s law for the thermal resistances.
The two RG rules given above lead to the correct scaling

of length and time in insulating regions (l ∼ log τ) and fully
conducting regions (l ∼ τ ∼ τtr=l). To complete the RG
scheme, we have to determine the behavior of boundaries
between insulating (I) and thermalizing (T) regions, where
we encounter three-block systems with one effective link
g12 ≫ 1 and one ineffective link g23 ≪ 1. We have to
distinguish the case in which the effective link is a link
between two metallic blocks from the case when it is a link
between a metallic and an insulating block.
First, consider the case in which the effective link is

between two conductors (the link between two conductors
is always effective, as explained in Appendix A). We test
the three-block system TTI by coupling a thermal reservoir
to the insulating end. At a time scale longer than Γ−1

3 , so
that the insulator has been thermalized, the reservoir has, in
effect, a direct coupling to the conducting blocks; hence,
the total (entanglement) propagation time is still sequential,
and rule (2) is in effect.
Now, we turn to the case in which the effective coupling

g12 ≫ 1 is between a thermalizing block and an insulating
block (or between two insulators). But although the
coupling g12 ultimately turns out to be effective, connecting
a conductor to an insulator leads to exponential suppression
of the relaxation rate with the length of the insulator.
Coupling this TI or IT structure to yet another insulator,
i.e., the sequences TII or ITI, would only lead to further
exponential suppression (see also Appendix A), hence
insulating-like scaling of ΓR as prescribed in RG rule
(1). Note that application of RG rule (2) to these cases
would lead to the unphysical situation in which a single
conducting block T embedded in an infinite insulating
chain would be able to thermalize the entire chain. On the
other hand, either rule (1) or (2) may be applied

consistently in the case TIT (when g12 ≫ 1). Since we
find that the structure of the critical flow is completely
unchanged no matter which of the two rules is applied in
this case, we choose to apply rule (1). The complete set of
RG rules is summarized in Table I.
We did not give expressions for intermediate regimes

where gij ∼ 1. Our approach will rely on having such a
wide distribution of g’s at the interesting fixed point that the
probability of having g ∼ 1 on a link vanishes. In practice,
we thus treat any g > 1 as g ≫ 1 and any g < 1 as g ≪ 1.
This approximation is asymptotically valid for an infinite-
randomness fixed point, so it should be correct near the
MBL phase transition, which we find is indeed governed by
an infinite-randomness fixed point.

III. FIXED POINTS AND FLOWS

Application of the RG rules to a chain with a random
distribution of coupling constants leads to a flow of
those distributions. Instead of trying to treat the rather-
complicated integro-differential equations for the scale-
dependent joint probability distributions of the parameters,
we simply simulate the RG process on an ensemble of
chains, each with up to 105 or more initial blocks. Each
block in the initial state is taken to be a 100 × 100 matrix
with uniform Δ ¼ W=100 and g ¼ 1, so the initial block
lengths are l0 ¼ log2ð100Þ. This immediately also implies a
uniform Δij. The randomness is introduced in the distri-
bution of the interblock couplings gij, which are generated
in the following way. First, a set ~gij is drawn from a
log-normal distribution with mean hlogðg0Þi and standard
deviation σg ¼ 1. The problem with the bare couplings
defined in this way, however, is that the link entanglement
times ~τij obtained from them do not necessarily satisfy the
requirement that all link times must be longer than the
individual block times τi ¼ τ0 (taken to be constant
initially). To guarantee this hierarchy, we adjust the link
times by adding to them the adjacent block times
τij ¼ ~τij þ 2τ0. The new dimensionless link couplings
gij are now obtained from the adjusted link times
gij ¼ 1=ðτijΔijÞ. We use the parameter hlogðg0Þi as the
tuning parameter for the many-body localization transition.
Although we start with moderate randomness, and only on
the links, near the critical point the RG flows rapidly to
strong randomness in all parameters.

TABLE I. Summary of RG rules. Derivations are given in
Appendix A.

g12 ≪ 1 g12 ≫ 1

g23 ≪ 1 Rule (1) Rule (2) if g1 & g2 ≫ 1
Rule (1) if g1 or g2 ≪ 1

g23 ≫ 1 Rule (2) if g2 & g3 ≫ 1 Rule (2)
Rule (1) if g2 or g3 ≪ 1
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Before proceeding to present the results, we note that
to test for universality, we also repeated the calculations
using different parameters σg in the bare distributions and
changing the initial matrix size to 10 × 10 (this affects the
distribution of the level spacings). While the precise
position of the critical point is changed, all the universal
aspects of the results presented below (i.e., all the scaling
exponents) remain exactly the same. We also tried using
box distributions in the initial conditions. However, we find
that, in this case, the distributions of coupling constants
take much longer to develop the correct tails, and therefore,
much longer systems are required to obtain converged
results.
Having described how the calculation is set up, we now

describe the results. In the course of renormalization,
blocks are joined together into larger ones so that the
typical block length lðΩÞ grows as the cutoff Ω decreases.
We study how the distributions of the block parameters are
behaving as a function of the length scale lðΩÞ.
Qualitatively, the system can flow to two simple fixed

points characterized by the scaling of the average value of
the dimensionless coupling g with l. If the system is in the
many-body localized phase, then gðlÞ vanishes exponen-
tially with the length scale l. If, on the other hand, the
system is in the delocalized phase, then gðlÞ increases
exponentially. Figure 2(a) shows how scaling of hlog gi
with l changes across the transition between the two phases
by tuning the characteristic bare coupling hlog g0i.
The observed transition calls for a more refined scaling

analysis to obtain the universal properties of the critical
point. It is natural to assume that the variable hlog gi has the
scaling form hlog giðlÞ ¼ ξfðl=ξÞ, where ξ ∼ 1=ðg0 − g0cÞν
is the diverging correlation length at the critical point.
Scaling the x and y axes accordingly does indeed lead to
collapse of the data on the delocalized side of the transition
on a single universal curve. This collapse is obtained if we
take hlog g0ci ¼ −1.73 to be the critical tuning parameter
and use the critical exponent ν ¼ 3.1. On the insulating
side, on the other hand, the variable hlog gi does not exhibit
universal scaling behavior. Instead, it appears to decrease
linearly with a slope set by a noncritical localization length
ξ� that depends weakly on the tuning parameter and
remains finite at the critical point.
In order to observe critical behavior also on the insulat-

ing side, we consider the scaling of the “average” variable
loghgi, instead of hlog gi, which represents the typical one
(i.e., gtyp ¼ exphlog gi). The behavior of loghgi versus the
length scale l is shown in Fig. 2(b). The inset indeed shows
data collapse with a nonlinear scaling function on the
insulating side with a scaling form loghgi ¼ ξFðl=ξÞ. From
the data collapse, we find the same exponent ν ¼ 3.1 as
obtained for the scaling function of hlog gi. Note that the
data for loghgi versus l is much more noisy than the curves
for hlog gi because hgi is highly sensitive to rare thermal-
izing clusters. The noisy data are the likely cause of the

small discrepancy in the critical value of hlog g0i ≈ −1.69
fitted from the scaling collapse of loghgi compared to
hlog g0i ≈ −1.73 obtained from scaling of hlog gi.
The fact that the critical behavior on the insulating side

of the transition is manifest only in the “average” variable
loghgi suggests that the critical fluctuations there consist of
rare long thermalizing clusters inside the insulator. The
contribution of such clusters can dominate loghgi, even
though it does not show up in hlog gi.
It is important to establish infinite-randomness scaling

at the critical point as a posteriori justification of the RG
scheme, in which we have assumed that the links realize
extreme situations with either g ≪ 1 or g ≫ 1. The fact that
the critical point is characterized by broad distributions of g
is already apparent in the crucial differences, discussed
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FIG. 2. The many-body localization transition tuned by the bare
coupling g0 as seen in the RG flow of the dimensionless coupling
g ¼ Γ=Δ. In the thermal phase, g grows exponentially with block
length l (linearly with the dimension of the block’s Hilbert space),
whereas in the localized phase, g decreases exponentially. (a) Plot
of the “typical” variable hlog gi versus l. The data in the thermal
side show good scaling collapse with the critical exponent ν ≈ 3.1
(inset). On the insulating side, on the other hand, hlog gi
decreases linearly with a nonuniversal slope that depends weakly
on the value of log g0. (b) Plot of the “average” variable loghgi
versus l. This variable does collapse to a nontrivial scaling
function on the insulating side of the transition with the same
critical exponent obtained above on the metallic side. The fact
that the critical fluctuations affect only the average quantity
loghgi suggests that they consist of exponentially rare, long
thermal clusters inside the insulator. These fluctuations do not
contribute to hlog gi.

THEORY OF THE MANY-BODY LOCALIZATION … PHYS. REV. X 5, 031032 (2015)

031032-5



above, between the average and typical values of g at the
critical point. The precise flow of distributions to infinite
randomness is usually characterized [27] by how the
variance of the relevant scaling variables grows with the
RG flow parameter b ¼ logðΩ0=ΩÞ.
To justify the RG scheme, it is particularly important

to characterize the fluctuations in log g, i.e., δ log g≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðlog gÞ2i − hlog gi2

p
. An alternative scaling variable,

which can be more directly compared with those of
standard infinite-randomness fixed points, is a logarithmic
measure of the link rates Γ < Ω0, that is, β ¼ logðΩ0=ΓÞ.
The fluctuations in these variables, i.e., δ log g and δβ, are
both found to scale linearly with the flow parameter as is
characteristic of infinite-randomness fixed points [27] (see
Fig. 3). Note, however, that the scaling between length
and time that we find below is different than the known
ground-state infinite-randomness fixed points. Here, we
find logðτÞ ∼ lψ with ψ ¼ 1, compared to ψ ¼ 1=2 in the
random-singlet ground-state infinite-randomness fixed
point. Thus, in this sense, the flow to infinite randomness
is stronger at our new fixed point than it is at the ground-
state infinite-randomness fixed points, and this distinction
has important consequences. This scaling with ψ ¼ 1 is a
robust result of this type of RG since the level spacing
necessarily scales as Δ ∼ 2−l.

IV. SCALING OF EIGENSTATE ENTROPY

The many-body localization transition represents a novel
type of critical point at which the eigenstate entanglement
scaling changes from area law to volume law [21,22,28].
The real-space RG approach can lend information on how
this change takes place.
First, we explain the relation between the dimensionless

coupling g and the entanglement entropy in eigenstates.
Suppose we renormalized the chain all the way down to the
point where we have only two blocks remaining in the
system. If these two blocks were decoupled, then the exact
eigenstates would be nonentangled product states of the
two blocks. The rate Γij represents the lifetime of the

product states due to weak coupling between the blocks
(relative to intrablock coupling). The true eigenstates are
then a superposition of the ∼ðg12 þ 1Þ ¼ 1þ Γ12=Δ12

product states nearest in energy (one is added to correctly
match the decoupled limit g12 ¼ 0, where the superposition
still contains one state, the original product state). Hence,
S12 ¼ logð1þ g12Þ has the meaning of a “diagonal”
entropy [29] associated with a single energy eigenstate
when the corresponding density matrix is expressed in the
basis of product states. This entropy is related to entangle-
ment entropy but is defined without tracing out part of the
system; it can be as large as the full thermal entropy of the
two blocks.
The above definition might not reflect a bulk entropy in

cases where the last decimated link is a very weak link that
happens to be located far from the center and close to one of
the ends of the chain. To avoid this issue, we use a slightly
modified definition of the entropy. We keep track of the
coupling g associated with the block that spans the middle
of the original chain at each stage of the RG and record its
maximum over the entire flow. We denote the outcome as
gmax and define S ¼ logð1þ gmaxÞ.
The need for taking gmax rather than the last surviving g

is particularly important when there is a very weak link
somewhere in the chain. As a toy example, consider a chain
of three blocks, where blocks 1 and 2 are coupled and
together span the interface, whereas blocks 2 and 3 are
completely disconnected (i.e., Γ23 ¼ 0). In this case, we
first join blocks 1 and 2 to get a new block with g12 > 0,
which spans the interface. Obviously, there is entanglement
across the interface, which S12 ¼ logð1þ g12Þ represents.
However, if we now continue to renormalize, we would
obtain g ¼ 0 for the last remaining block, which of course
represents only the absence of entanglement across the
disconnected link.
The RG scheme is repeated on a large number of

disorder realizations allowing us to obtain a full distribution
of the eigenstate entropy. Examples of entropy distributions
found in the different states, including the localized state,
the critical point, the Griffiths phase, and the diffusive
regime, are shown in Appendix B. In Fig. 4(a), we present
the average and standard deviation of the entropy as a
function of the bare coupling hlog g0i calculated for varying
system sizes L (L in units of elementary blocks of l0 spins).
The entropy and its fluctuation are normalized by the
extensive thermal entropy ST ¼ Ll0 log 2. As expected, the
variation of S=ST and δS=ST as a function of hlog g0i
sharpens with increasing size in a way that suggests the
existence of a critical point in the limit L → ∞. In this case,
we anticipate that, near the critical point, the functions
Sðlog g0; LÞ=ST and δSðlog g0; LÞ=ST should collapse on
scaling functions of a single variable ðlog g0 − log g0cÞL1=ν.
Such data collapse is shown in Fig. 4(b). The entropy
scaling functions found here describe a universal transition
from entropy of order one on the insulating side of the

FIG. 3. Scaling of the coupling constants (averages and
standard deviations) with block length at the critical point.
The linear growth of the scaling variables with the length
indicates a flow to infinite randomness.
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transition to the full thermal entropy Ll0 log 2 on the
delocalized side.
The critical exponent ν extracted from this analysis

agrees with the values extracted in the previous section
from the RG flow of g versus l. This exponent ν ≅ 3.1
satisfies the Harris inequality ν ≥ 2=d required for stability
of the critical point [30,31]. It is interesting that a much
smaller exponent, which violates this inequality, was found
in recent finite-size scaling analysis of exact diagonaliza-
tion data [21,32]. This, as well as other differences from our
scaling form, may be due to the small system sizes studied
in Refs. [21,32], L < 18, which may be too small to
approach the scaling limit. Indeed, in our case, although we
start from a coarse-grained model, system sizes of 50 or
more blocks are needed.
It is important to note, on the other hand, that our starting

point is not microscopic as in exact diagonalization studies
but a coarse-grained phenomenological model. We do
make some assumptions in setting up the model and the
RG rules operating on it. For instance, we assume that
keeping the two parameters, Γ and Δ, in each block (and
link) is enough to capture the universal scaling at the critical

point. Thus, there remains the possibility that the precise
value of the exponent ν is sensitive to these assumptions.
More information on the critical point itself can be

gleaned from inspecting the full distribution of the entropy.
The results shown in Appendix B, Fig. 6(b), suggest that
the entropy distribution approaches a power law pðsÞ ∼
1=sζ with ζ very close to 1. If ζ < 1, the average and
standard deviation of the entropy density is expected to be
a nonvanishing constant. On the other hand, if ζ ¼ 1, then
the entropy density (and the scaling function) at the critical
point would approach zero as 1= logL, and its fluctuations
would vanish as 1=

ffiffiffiffiffiffiffiffiffiffiffi
logL

p
.

V. ENERGY TRANSPORT AND
ENTANGLEMENT PROPAGATION

An obvious property to study in systems with energy
conservation is the behavior of thermal transport near
the many-body localization transition. Information on the
thermal transport can be gained directly from the RG flow
by inspecting how the typical transport time of a block
τtr ¼ l=Γ scales with the block size l. In the insulating
phase, we expect that τtrðlÞ grows exponentially with l, or
l ∼ log τtr. This scaling is indeed found in the insulating
regime, as shown in Fig. 5(a). In a normal “metallic”
thermal state, on the other hand, we expect to find diffusive
energy transport l ∼

ffiffiffiffiffiffiffiffiffi
Dτtr

p
, where D is the diffusion

constant. One might expect that D vanishes continuously
as the transition is approached. However, this is not the
result we find from the RG flow. Rather, the length-time
scaling shown in Fig. 5(b) follows a generalized power-law
scaling l ∼ ταtr with a continuously changing exponent α.
As shown in Fig. 5(c), the exponent α decreases from
α ¼ 1=2 (i.e., diffusive) deep in the thermal phase through
a subdiffusive regime. α vanishes continuously at the
critical point, where the length-time scaling becomes
logarithmic as in the localized phase.
From the anomalous diffusion exponent α, we can

immediately infer the rate of entanglement entropy growth
in a system undergoing time evolution from an initially
nonentangled product pure state. The bipartite entangle-
ment entropy across a link in our chain generated after time
τ is proportional to the number of degrees of freedom that
become entangled by that time, i.e., S ∼ lðτÞ. Substituting
τtr ¼ lτ into the relation l ∼ ταtr, we then find S ∼ τα=ð1−αÞ.
In particular, this scaling relation implies ballistic entan-
glement spreading (S ∝ t) in systems with diffusive energy
transport, as already noted in Ref. [33]. On the other hand,
the two exponents α and αent have the same asymptotic
behavior at the critical point as α and αent → 0.

VI. EFFECTIVE GRIFFITHS PHASE MODEL

We argue that the existence of a subdiffusive phase is a
natural precursor to the many-body localization transition
in one dimension. If the many-body localization transition
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FIG. 4. (a) Entanglement entropy of eigenstates (solid lines)
and its fluctuations (dashed lines) near the many-body locali-
zation transition computed from the RG as described in the
text for different chain lengths L. Both the entropy and its
fluctuation are normalized by the expected thermal entropy of L
elementary blocks ST ¼ Ll0 log 2. (b) Data collapse of hSi=ST
and δS=ST obtained with the fitted correlation length exponent
ν ¼ 3.1 (1=ν ¼ 0.32).
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is continuous, as suggested by the scaling analysis pre-
sented above, then it is accompanied by a diverging
correlation length, ξ ∼ jg0 − g0cj−ν. If we look at the system
at scales smaller than ξ, then it looks critical. Since this is a
critical point governed by an infinite-randomness fixed
point with ψ ¼ 1, regions of this critical system viewed at
this length scale ξ show a wide range of local behavior,
ranging from insulating to thermalizing, with blocks of
length ξ being critical or insulating with a probability of
order one. For a system that is globally delocalized
(g0 > g0c), on longer scales l than ξ, the system is typically
locally thermalizing, but longer locally critical or insulating
blocks of length l may exist with a probability that
behaves as pðlÞ ∼ exp ð−l=ξÞ. While they are exponentially
rare, such long critical or insulating regions lead to an
exponentially long delay of the entanglement time
τðlÞ ∼ τ0 expðl=ξ0Þ, where ξ0 and τ0 are microscopic length
and time scales, respectively. Hence, these rare critical
regions have a significant effect on the average; this is a
defining feature of a Griffiths regime [16].
In a long section of length L ≫ ξ, the typical length lm of

the longest locally critical block is given by pðlmÞ ∼ ξ=L,
which gives lm ¼ ξ logðL=ξÞ. Near enough to the critical
point, these rare, long critical blocks are the dominant
bottlenecks to entanglement spread and energy transport.

Substituting lm in the exponential for the time scale, we find
τ ∼ Lz and τtr ∼ Lzþ1, with the continuously variable
Griffiths dynamical exponent z ¼ α−1ent ≈ ξ=ξ0. The results
plotted in Fig. 5(d) indeed show that αent vanishes at the
critical point as ðlog g0 − log g0cÞν, with the same exponent
ν as determined from the finite-size scaling analyses above.
We note that the insulating inclusions of typical maximal
length ∼ logL would eventually be thermalized by the
metallic surroundings. Hence, the subdiffusive Griffiths
phase is also expected to be fully thermal. This is indeed
confirmed by the fact that the eigenstate entropy exhibits a
universal jump to the full thermal entropy as shown in
Fig. 4(b).
Near the transition, the Griffiths effects lead to a broad

distribution of the dimensionless coupling gðLÞ at large L
because of the variation in the severity of the slowest
bottleneck. This then matches nicely to the broad distri-
butions we find at the critical point. The Griffiths effects
dominate the long time transport as long as z > 1. Farther
from the transition, the system has “normal” transport,
where z “sticks” to the value z ¼ 1, which gives ballistic
entanglement spread and diffusive energy transport.
Before concluding this section, we note that if the critical

point was characterized by the exponent ψ < 1, as is the
case in the known ground-state infinite-randomness critical
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FIG. 5. (a) The relation between length scale and time obtained from the RG flow in the many-body localized phase is logarithmic, i.e.,
l ∼ S ∼ log t. (b) In the delocalized phase, the RG flows give a power-law scaling between length and entanglement thermalization time,
l ∼ tαent . As explained in the text, the corresponding transport exponent α ¼ αent=ð1þ αentÞ. (c) The transport exponent α as a function of
the tuning parameter reveals a continuous transition from a localized phase to a subdiffusive but thermal Griffiths regime, i.e., with
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points, then τðlÞ ∼ expðlψÞ, which would be too weak to
produce the subdiffusive behavior.

VII. CONCLUSIONS

We presented a new renormalization-group framework,
which provides a description of the many-body localization
transition in one-dimensional systems. The dynamical
scaling between length and time l ∼ tα within the thermal
phase extracted from the RG calculation shows that the
transition occurs at a critical point, where α vanishes
continuously. Hence, the delocalized phase near the critical
point displays subdiffusive transport and sub-ballistic
entanglement growth in time evolution. This behavior is
understood in terms of a Griffiths phase dominated by rare
critical inclusions in a conductor.
We pointed out a connection between dynamical proper-

ties and the entanglement entropy associated with individual
eigenstates near the critical point. Using this relation, we
show how eigenstates with area-law entanglement in
the localized phase transition to ones with volume-law
entanglement entropy characteristic of thermal states. This
occurs through an infinite-randomness critical point at which
the distribution of entanglement entropy becomes broad,
spanning the entire range from S ∼ 0 to the full thermal
value S ∼ L. The RG flow to infinite randomness is as strong
as possible, with exponent ψ ¼ 1. In the delocalized
Griffiths phase, on the other hand, the entanglement entropy
density is peaked near the thermal value with fluctuations
that vanish in the limit of large L, indicating that this
delocalized Griffiths regime is fully thermal in spite of its
anomalous transport properties. More generally, the varia-
tion of the entropy and its fluctuations across the transition is
expressed in terms of finite-size scaling functions from
which we extract an estimate of the critical exponent ν ≅ 3
associated with the diverging correlation length.
It is interesting to understand our result in view of the

constraints set on the many-body localization transitions
by the strong subadditivity property of the entanglement
entropy [22]. The constraint relevant to the situation we
describe is that the critical point marking a direct transition
to a thermal delocalized state must itself obey the eigenstate
thermalization hypothesis and show thermal behavior of the
entanglement entropy. At first sight, this may appear to
contradict our finding of strongly fluctuating, nonthermal
entanglement entropy at the critical point. However, we
note that strong subadditivity requires only thermal behav-
ior of the entanglement entropy associated with a sub-
system of size l much smaller than the full system size L.
In other words, Sðl; LÞ in the thermal phase must behave
as the thermal entropy with vanishing fluctuations in the
appropriate thermodynamic limit L → ∞ while l=L → 0,
so by continuity, this must remain true also at the critical
point, provided we take the limit L → ∞ first and only then
approach the critical point. Thus, we conclude that the
critical point represents a weaker class of thermal states

than the delocalized Griffiths phase. In the latter, the
entanglement entropy density for up to half of the system
(l=L < 1=2) is thermal, with vanishing relative fluctuations
in the L → ∞ limit, while for the former, only the limit of
small subsystems (l ≪ L) may be fully thermal. Our results
also seem to permit the possibility that in the limit of an
infinite system (L → ∞), the entanglement entropy of a
finite region of length l has a discontinuity at the transition,
which becomes continuous only for finite L. Whether or
not this happens is an interesting open issue that we leave
for future work.
Finally, we remark on the connection between this paper

and a very recent preprint that develops a different RG
approach to the MBL transition [24]. This work uses the
dynamical real-space RG [6,25,26] on the microscopic
model to identify and characterize the emergence of a
critical thermalizing backbone. It is interesting that in spite
of the different starting points and analyses, the universal
features of the transition appear to be the same or very
similar to our findings.
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APPENDIX A: DERIVATION OF THE RG RULES

In this section, we derive the RG rules, which are used in
the main text. At each step of the RG, we join the pair of
blocks connected by the fastest link rate Γi;iþ1 into a single
block, thereby making the link variables of this pair into
the new block variables. The nontrivial part of the trans-
formation prescribes what the new link rates ΓL and ΓR are
connecting the newly joined block to its left and right
neighbors. Before explaining how to compute these rates, we
discuss the physical meaning of the input two-block rates.

1. Two-block relaxation

The “bare” two-block relaxation rates Γij are given as
input and not directly calculated. However, we need to
know how they depend on the microscopic coupling matrix
elements between blocks in order to understand how these
rates enter the calculated three-block rates. In general, we
want to consider a situation of two neighboring blocks 1
and 2 characterized by internal rates Γ1 and Γ2 and level
spacings Δ1 and Δ2. Recall that these blocks are really
chains of microscopic constituents, e.g., spins. Therefore,
for a Hamiltonian system with energy conservation, the
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bandwidth that captures almost all of the many-body
spectrum grows with the block length as W

ffiffi
l

p
, where W

is a microscopic energy scale and l is the block length.
Correspondingly, the typical many-body level spacing for
the block is Δ ∼W

ffiffi
l

p
=2l. In a Floquet system, on the other

hand, the bandwidth remains constant W, and therefore,
the mean level spacing Δ ∼W=2l. In practice, this differ-
ence is subleading to the exponential dependence and will
make no difference for the critical point.
In the absence of coupling between the blocks, the

eigenstates of the two-block system are, of course, products
of the single-block eigenstates. We now introduce coupling
between the two blocks through a local operator Ĵ12 that
changes microscopic degrees of freedom on the two
neighboring edges of the blocks. It can be written as

Ĵ12 ¼ J12ðA†
1A2 þ H:c:Þ; ðA1Þ

where A1 operates on the edge of block 1 and A2 operates
on the edge of block 2.
If the system is prepared in a product of the single-block

eigenstates, the coupling leads to decay of the state by
inducing transitions to other product states. The Fermi
golden-rule expression for this decay rate is

Γ12∼ jJ12j2
X
n1;n2

jhi1jÂ1jn1ij2jhi2jÂ2jn2ij2δðω1þω2Þ; ðA2Þ

where ji1; i2i is the initial state and the summation is over
the possible final states jn1; n2i. Here, ω1 ¼ En1 − Ei1 and
ω2 ¼ En2 − Ei2 are the energy changes due to the tran-
sitions in blocks 1 and 2, respectively.
The nature of the transition matrix elements hnbjAbjmbi,

relevant for relaxation from one side of the block to the
other, depends on whether the block b under consideration
is delocalized or localized. If it is a strongly localized block,
we can write the block eigenstates as mutual eigenstates of
quasilocal integrals of motion τzi (“l-bits”), jni ¼ jτ1;…τli.
The local operator A†

b at the edge of the block can be written
in terms of these l-bits as

A†
b ¼ Zτþ1 þ

Xl

r¼1

e−r=ξb
X
n

anrÔnr; ðA3Þ

where the operators Ônr are nonlocal operators that flip
multiple l-bits extending up to a distance r from the first
site. anr are random coefficients of order one and random
sign, and ξb is a microscopic length scale (ξb ≤ 1). Since
we are interested in the end-to-end relaxation, we only
consider transitions that change the state of the integrals
of motion τzi all the way to the other side of the block.
For typical matrix elements of interest, we have
hnjAbjmi ¼ e−l=ξbanm, where anm are random numbers
of order one drawn from a state-independent distribution
as long as the two states jmi and jni differ by an energy of

up to order W. amn essentially vanish for larger transition
energies (e.g., for transitions of the order of the band-
width W

ffiffi
l

p
).

On the other hand, when dealing with a delocalized
block, the single-block integrals of motion are the projec-
tors on single-block eigenstates jnihnj, which are highly
nonlocal operators. We take the transition matrix elements
of the local operator Ab between these states to be functions
of the energy difference between them alone:

jhnjAbjmij2 ¼ FbðωnmÞ: ðA4Þ
These matrix elements are directly related to the
temporal decay of the autocorrelation function fbðtÞ ¼
hnjA†

bðtÞAbð0Þjni through a Fourier transform

FbðωÞ ¼
1

ρb

Z
dte−iωtfbðtÞ; ðA5Þ

where ρb ∼ 1=Δb is the density of states of block b. For
example, if the block is diffusive and the system is energy
conserving, then fbðtÞ ∼

ffiffiffiffiffiffiffiffi
τ0=t

p
. Note that we can unify

the notations for the different cases if in the insulating side
we use FbðωÞ ¼ e−2lb=ξbθðW − jωjÞ.
We are now ready to evaluate the relaxation rates by

converting the sums in Eq. (A2) into integrals over the
respective density of states and plugging in the appropriate
matrix elements,

Γ12 ¼ J212ρ1ρ2

Z
W

−W
dωF1ðωÞF2ð−ωÞ

¼ J212

Z
τ
dtf1ðtÞf2ðtÞ: ðA6Þ

The upper cutoff is set by the minimum of the decay times
of the two blocks, τ ¼ minðΓ−1

1 ;Γ−1
2 Þ.

Let us pause to consider the relaxation rate in different
cases, i.e., when we couple (i) two insulators, (ii) two
conductors, or (iii) an insulator and a conductor. In case (i),
taking for simplicity ξ1 ¼ ξ2 ≡ ξ0 and J12 ≈W, the micro-
scopic energy scale, we have

Γ12 ¼
W3

Δ1Δ2

e−ðl12Þ=ξ0 : ðA7Þ

Now, using Δb ¼ W
ffiffiffiffi
lb

p
=2lb and Δ12 ¼ W

ffiffiffiffiffiffi
l12

p
=2ðl12Þ, we

can express the dimensionless coupling as

g12 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

l1l2l12
p exp ½ðln 2 − ξ−10 Þl12� ≪ 1: ðA8Þ

This must be smaller than 1 because a similar expression,
with the same exponential factor, holds for g1 and g2 of the
individual blocks; for the latter to be much smaller than 1,
as assumed, we must have ln 2 < ξ−10 .
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In case (ii), when both blocks are conducting, perturba-
tion theory is not valid, but at least it can indicate that
the coupling must be effective and the blocks thermalize.
Substituting fbðtÞ ¼ 1=

ffiffiffiffiffiffi
Wt

p
in Eq. (A6), we obtain

Γ12 ≈W logðWτbÞ ≫ Δ12: ðA9Þ
In this case, we expect that the end-to-end entanglement
time is simply the sum of the times to entangle across each
block: Γ−1

12 ¼ Γ−1
1 þ Γ−1

2 .
Finally, in case (iii) of a conductor coupled to an

insulator, we find Γ12 ¼ Γ−1
1 þ ðW2=Δ2Þe−2l2=ξ2 . In the

case of a fast conductor (Γ1 ≫ Γ2), we have for the
dimensionless coupling,

g12 ∼ e2l2ðln 2−ξ−12 Þel1 ln 2: ðA10Þ
If the length l2 of the insulator is long enough, the incipient
conductor of length l1 is not able to thermalize it.

2. Two-block entanglement rate

If the two-block relaxation rate Γ12 calculated above
turns out to be smaller than the two-block level spacingΔ12

(g12 < 1), then the coupling is deemed ineffective and the

two blocks do not exhibit end-to-end relaxation. However,
there is still a physical rate, which describes the rate at
which the degrees of freedom at the furthest ends of the
blocks get entangled with each other. We will see that the
expression for the entanglement rate of two blocks that end
up insulating turns out to be identical to the expression (A6)
for the relaxation rate.
The fact that the coupling between the blocks is

ineffective means that operators that were integrals of
motion of the individual blocks map continuously to
integrals of motion of the two-block system. In
particular, the projectors on single-block eigenstates
jn1ihn1j ⊗ 1 and 1 ⊗ jn2ihn2j are continuously con-
nected to integrals of motion of the coupled two-block
system. The coupling between the two blocks generates
a diagonal interaction between these conserved quan-
tities, which can lead to generation of entanglement
in the course of time evolution. We want to find the
effective diagonal coupling generated between degrees
of freedom that, if localized, are located at opposite ends
of the two-block system.
The diagonal interaction we are interested in is generated

by the second order of perturbation theory in the local (off
diagonal) interblock coupling:

Vðn1; n2Þ ¼ J212
X
m1;m2

jhn1jA1jm1ij2jhn2jA2jm2ij2
E1ðm1Þ þ E2ðm2Þ − E1ðn1Þ − E2ðn2Þ

¼ J212ρ1ρ2

Z
dω1dω2

F1ðω1ÞF2ðω2Þ
ω1 þ ω2 þ iη

¼ J212

Z
dt1dt2dω1dω2e−iω1t1−iω2t2

f1ðt1Þf2ðt2Þ
ω1 þ ω2 þ iη

¼ J212

Z
τ

0

dtf1ðtÞf2ðtÞ: ðA11Þ

This is exactly the same expression we obtained for the
relaxation rate. It is important to note here that matrix
elements hmbjAbjnbi, which lead to generation of end-to-
end interaction (and through this, end-to-end entangle-
ment), are only those that involve end-to-end couplings
between degrees of freedom at the far ends of the two-block
system. Hence, as in the previous section, we are interested
in the nonlocal tail of the operator Ab, when written in terms
of the block integrals of motion (A3). For this reason,
the function FbðωÞ in an insulating block involves a
suppression factor of order e−2lb=ξb.

3. Perturbative three-block relaxation

Suppose we are now joining blocks 1 and 2 with the
fastest link rate Γ12. We must then find the new rate ΓR
needed for thermalization (or end-to-end entanglement in
the insulating case) through the three-block system 1,2,3.
We see that this rate can be expressed in terms of the two-
block and single-block rates.
The simplest case to treat is when both of the links

are ineffective, i.e., g12 ≪ 1 and g23 ≪ 1. In this case, the

decay rate from initial state jii to final state jfi is obtained
using the generalized Fermi golden rule,

Γ ¼ 2π
X
f

jhfjTjiij2δðEf − EiÞ; ðA12Þ

with the T matrix given by

T ¼ Ĵ þ Ĵ
1

Ei −H0 þ iη
Ĵ

þ Ĵ
1

Ei −H0 þ iη
Ĵ

1

Ei −H0 þ iη
Ĵ þ � � �

¼ Ĵ þ Ĵ
1

Ei −H0 þ iη
T; ðA13Þ

where H0 is the Hamiltonian of decoupled blocks (i.e.,
contains only the intrablock interactions) and Ĵ is the
coupling between the blocks. In our case, Ĵ ¼ Ĵ12 þ Ĵ23.
Clearly, to lowest order in Ĵ, we recover the usual Fermi
golden rule.
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A crucial point is that the relaxation process we calculate
involves a decay from an initial state ji1; i2; i3i to a final
state jf1; f2; f3i, which is different from the initial state in
at least the first and the last labels (i.e., i1 ≠ f1 and

i3 ≠ f3). Otherwise, it would not correspond to full end-
to-end relaxation of the three-block system.
The matrix elements of the T matrix now take the

explicit form

hfjTjii ¼ hfjĴ þ Ĵ
1

Ei −H0 þ iη
Ĵ þ � � � jii

¼ hfjðĴ12 þ Ĵ23Þjii þ hfjðĴ12 þ Ĵ23Þ
1

Ei −H0 þ iη
ðĴ12 þ Ĵ23Þjii þ � � �

¼
X
m

hfjðĴ12 þ Ĵ23Þjmi 1

Ei − Em þ iη
hmjðĴ12 þ Ĵ23Þjii þ � � � : ðA14Þ

The first-order term was dropped because jii and jfi
are not connected by a single application of Ĵ12 or Ĵ23. We
also introduce a sum over complete intermediate states
jmi ¼ jm1; m2; m3i. At this point, the summation ofm runs
over the combinations of all the states of all the blocks.
However, since eventually the intermediate states enter
matrix elements of the form hfjĴ23jmihmjĴ12jii, most
of the combinations give zero contribution. Only when
m1 ¼ f1 and m3 ¼ i3 is the matrix element nonzero. We
are left with one summation over the label m2 associated
with the energy levels of the middle block.
For the summation over intermediate states of the second

block, we choose a basis of block eigenstates that is not the
eigenstate basis. Rather, to take advantage of our knowl-
edge of the intrablock rate Γ2, we divide the middle block
into two halves and take a basis of product states of the two

halves. These states are broadened by Γ2 (by the definition
of this internal block rate); in other words, their energy can
be effectively taken to be Em þ iΓ2. In particular, this will
give rise to an imaginary part of the energy denominator
η ¼ Γ2 when evaluating the T-matrix element (A14).
We are now in the position to compute the decay rate

using Eqs. (A12) and (A14) to obtain

Γ ¼
X
f;m2

jhfjĴ23jmij2jhmjĴ12jiij2
ðEi − EmÞ2 þ Γ2

2

δðEf − EiÞ: ðA15Þ

Plugging in Eq. (A1), defining the energy shifts within the
blocks ω1¼Ef1 −Ei1 , ω2L ¼ Em2

− Ei2 , ω2R ¼ Ef2 − Em2
,

and ω3 ¼ Ef3 − Ei3 , and converting the sum into an
integral over the density of states, we get

Γ ¼ J212J
2
23ρ1ρ

2
2ρ3

Z
dω1dω2Ldω2Rdω3

F1ðω1ÞF2Lðω2L þ iΓ2ÞF2Rðω2R þ iΓ2ÞF3ðω3Þ
ðω1 þ ω2LÞ2 þ Γ2

2

δðω1 þ ω2L þ ω2R þ ω3Þ

¼ J212J
2
23ρ1ρ

2
2ρ3

Z
dωdϵLdϵR

F1ðϵL þ ω
2
ÞF2Lð−ϵL þ ω

2
þ iΓ2ÞF2Rð−ϵR − ω

2
þ iΓ2ÞF3ðϵR − ω

2
Þ

ω2 þ Γ2
2

: ðA16Þ

In the second line, we changed variables to ω¼ω1þω2L, ω0 ¼ ω3 þ ω2R, ϵL ¼ ðω1 − ω2LÞ=2, and ϵR ¼ ðω3 − ω2RÞ=2,
and integrated over ω0. We now transform the integral over ϵL and ϵR to integrals over time,

Γ ¼ J212J
2
23

Z
dωdtLdtReiωðtL−tRÞe−Γ2ðjtLjþjtRjÞ f1ðtLÞf2LðtLÞf2RðtRÞf3ðtRÞ

ω2 þ Γ2
2

¼ J212J
2
23

Γ2

Z
dtLdtRe−Γ2jtL−tRje−Γ2ðjtLjþjtRjÞf1ðtLÞf2LðtLÞf2RðtRÞf3ðtRÞ; ðA17Þ

where in the second step we integrated over ω using the Fourier transform of a Lorentzian. Now, because there is an
independent cutoff Γ−1

2 on each of the integration times, set by the second exponential factor above, we can drop the cutoff
on the time difference set by the first exponential. Hence, up to multiplicative constants that would be irrelevant in the RG
for strong disorder, we have

Γ ≈
1

Γ2

�
J212

Z
dtLe−Γ2jtLjf1ðtLÞf2LðtLÞ

�
·

�
J223

Z
dtRe−Γ2jtRjf3ðtRÞf2RðtRÞ

�
≈
Γ12Γ23

Γ2

: ðA18Þ
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In the last step, we used the result (A6) for the two-block
relaxation.
We now consider the generalization of the result (A18) to

the case where one link is effective, g12 ≫ 1, and the other
is ineffective, g23 ≪ 1. Strictly speaking, each two-block
rate entering the formula (A18) represents the true two-
block rate only when that link is ineffective. However, if the
link is between a metal and an insulator (or two insulators),
then the perturbative rate (A6) nevertheless scales correctly
with the length of the insulator. Formally, to obtain the
quantitatively correct rate, we can take the perturbation
series to infinite order in the coupling J12, which amounts
to replacing the bare matrix element with the renormalized
T-matrix element T12 in Eq. (A18) above.
The above generalized Fermi golden-rule calculation

of a three-block rate is, in principle, valid as long as the
outcome rate is much larger than the three-block level
spacing. Otherwise, there are no irreversible transitions.
Nonetheless, we expect the same result to hold based on
the known behavior in the localized state. Indeed the three
block system represents, in this case, a long localized
insulating region, for which we know that the length time
scaling is logarithmic. Taking the log of the RG rule
Γ ¼ Γ12Γ23=Γ2, we have log τ ¼ log τ12 þ log τ23 − log τ2.
Now, multiplying by the bare localization length that
characterizes the length time scaling in the insulator
l ¼ ξ0 log τ, we see that the RG rule is equivalent, in this
regime, to adding up the lengths of the three blocks:
ltot ¼ l12 þ l23 − l2.
One can also attempt to derive the entanglement rate

directly in this case by computing the effective diagonal
interactions (i.e., energy shifts) generated by the off-
diagonal interactions between the blocks, as we did for
the two-block system. However, in the three-block system,
the interactions that produce end-to-end entanglement are
generated only in fourth order of perturbation theory and
are more complicated to compute than the generalized
Fermi golden-rule rates. A simpler way to obtain the three-
block entanglement rate is to connect the chain of three
blocks to two auxiliary thermalizing blocks to the left
and right with rates ΓL and ΓR so that Γ12 ≫ ΓL;R ≫ Γ123,
where Γ12 is the fast link being eliminated and Γ123 is
the above Fermi golden-rule result. In this way, coupling of
the system to the leads does not change the RG hierarchy,
but it provides the system with an effective continuum of
states which allows the three-block entropy to be generated
through an irreversible process.

APPENDIX B: ENTANGLEMENT
ENTROPY DISTRIBUTIONS

In this appendix, we show examples of the entanglement
entropy distributions computed using the RG flow applied
to an ensemble of disorder realizations. Figure 6 shows
four distributions taken, respectively, from the localized
phase, the critical point, the Griffiths phase, and the

diffusive regime for long chains with L=l0 ¼ 10000. In
the localized phase, the entanglement entropy follows an
area law; therefore, the distribution of the specific entropy
s ¼ S=ST is concentrated near zero, with the tail of the
distribution consistent with a simple exponential. At the
critical point, the entanglement entropy shows a broad
distribution that is consistent with a power law PcðsÞ ∼
1=sζ with ζ ≅ 0.9. In the Griffiths phase, the distribution
has a relatively narrow peak near the thermal value. Finally,
in the diffusive phase, the distribution becomes essentially
a delta function at the thermal value minus a tiny finite-size
correction.
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