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In the quantum version of a Trojan-horse attack, photons are injected into the optical modules of a
quantum key distribution system in an attempt to read information direct from the encoding devices.
To stop the Trojan photons, the use of passive optical components has been suggested. However, to date,
there is no quantitative bound that specifies such components in relation to the security of the system.
Here, we turn the Trojan-horse attack into an information leakage problem. This allows us to quantify the
system security and relate it to the specification of the optical elements. The analysis is supported by the
experimental characterization, within the operation regime, of reflectivity and transmission of the optical
components most relevant to security.
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I. INTRODUCTION

Since ancient times, the Trojan horse has been known as a
stratagem for penetrating a securely protected space. It is
therefore essential to consider Trojan-horse attacks in deter-
mining the boundaries of any supposedly secure space. This
explains their ubiquitous presence in different fields where
privacy is required, ranging from cryptography to computing
and finance. In particular, for a cryptographic application like
quantumkey distribution (QKD) [1–4], aswell as for itsmost
recent developments showing full or partial independency
from the specific devices used [5–10], the existence of a
protected area is a fundamental assumption.
QKD allows two remote parties, usually called Alice

(transmitter) and Bob (receiver), to share a common secret
key with information theoretical security, over an insecure
quantum channel and an authenticated or broadcast
classical channel. QKD’s security derives from the laws
of quantum physics, and its implementation necessarily
makes use of physical systems, whose correct behavior
has to be characterized and guaranteed against unwanted
imperfections. Any ignored deviation from the expected
behavior can be exploited by an attacker (Eve) to com-
promise the system security. In Fig. 1, the Trojan-horse
attack (THA) against an optical QKD setup is sketched.
Eve uses the optical channel connecting Alice and Bob to
launch a bright light pulse containing Trojan photons into
Alice’s supposedly secure module. The light pulse reaches

the encoding device and is encoded with the same infor-
mation φ as the photon normally prepared by Alice and
then sent to Bob. The information φ is meant to be private.
However, some of the Trojan photons are reflected back,
and they deliver the information to Eve, thus compromising
the security of the system.
This eavesdropping strategy was initially described in

Ref. [11] and afterwards named “Trojan-horse attack” in
Ref. [12]. Because of its apparent simplicity, the THA has
often been considered easily tractable. However, to date,
there is no quantitative analysis to mitigate it, and there is
an increasing number of experiments showing its severity
instead [12–16]. For example, it was shown in Ref. [12]
that phase information can be extracted from a LiNbO3-
based encoding device using optical-frequency-domain
reflectometry. More recently, it has been demonstrated
that phase values from an encoding device can be dis-
criminated with 90% success probability using only three
photons [13].

FIG. 1. Representation of the Trojan-horse attack against an
optical QKD setup. Eve sends a large amount of Trojan photons
(thick arrow) against Alice’s defensive structure. Some of the
photons reach the encoding device, are encoded with the private
information φ, and are reflected back to Eve (thin arrow), who
retrieves the information by measuring the photons.
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To counteract the THA, different solutions have been
proposed. On the one hand, we have active countermeas-
ures, similar to the ones used to ensure the security of the
“plug-and-play” QKD setup [17–20]. Alice could be
endowed with an active phase randomizer [12,21] and a
watchdog detector [17,18] to remove the phase reference
from Eve’s hands and bound the energy of the incoming
light pulses. However, active components usually add extra
complexity to the setup and may offer more options to the
eavesdropper [14]. For instance, it has been shown recently
that a monitoring detector of a commercial QKD system
can be bypassed easily [15]. On the other hand, passive
countermeasures can be realized with much simpler ele-
ments, e.g., optical fiber loops, filters, and isolators, which
leave fewer degrees of freedom for the eavesdropper.
Furthermore, they are often inexpensive, and simple to
implement and to characterize experimentally. However, in
this case, powerful resources like the phase randomization
and the watchdog detector cannot be used to prove the
security of the system.
As a result, the security analysis of the THA remains

elusive, and no security-proof solution has been derived to
date. The only provably secure countermeasures are for
users endowed with a teleportation filter [22] or for the
receiver in a system running the BB84 protocol [1,11]. In
the former case, the solution is not practical, and it entails
considerable changes in the setup that could open addi-
tional loopholes. In the latter case, a delay line installed at
the entrance of Bob’s module prevents Eve from reading
the basis information before the qubit has entered Bob’s
protected territory. However, the same measure is ineffec-
tive in protecting the transmitting side of the QKD system,
nor does it apply to other protocols such as the B92 [23]
and the SARG04 [24]. Hence, it cannot be considered a
general solution against the THA.
In this work, we analyze an entirely passive architecture

to counteract the THA.We provide quantitative bounds that
connect the values of the passive optical components to the
security of the QKD system. The key element is interpret-
ing the THA as a side channel. Normally, Alice is unaware
of it and treats her preparation as ideal. This causes
undetected leakage of information from her module to
Eve’s territory. However, if Alice characterizes the relevant
optical components in her apparatus, she can bound the
information leakage and attain security through an
adequate level of privacy amplification.

II. THEORETICAL DESCRIPTION

Let us consider the transmitter module [25] in the
unidirectional, fiber-based, phase-modulated QKD setup
depicted in Fig. 2. In the THA, Eve injects light into Alice’s
apparatus through the same optical fiber that serves as a
quantum channel between the users (thick arrow in the
figure). The goal is to reach the phase modulator that
encodes the private information φA. A concrete possibility

for Eve is to use a laser emitting pulses with average photon
number μin, prepared in a coherent state j ffiffiffiffiffiffi

μin
p i [26]. The

pulses acquire the phase modulation information φA and
return to Eve as jeiφA

ffiffiffiffiffiffiffi
μout

p i (thin arrow in Fig. 2), where
μout ¼ γμin, with γ ≪ 1 the optical isolation of the trans-
mitting unit. The light pulse retrieved by Eve is correlated
to the phase φA, and this compromises the security of the
system.
To prevent the THA, Eve’s action has to be bounded by a

physical mechanism. In particular, it is clear that if the
intensity μin is unbounded, no solution can exist against
the THA. On the contrary, when μin is bounded, Alice can
adjust the value of the optical isolation γ to make μout, and
therefore Eve’s information, arbitrarily small. In this work,
we consider the laser induced damage threshold (LIDT) as
the main physical mechanism limiting Eve’s action. The
LIDT provides an estimate of the energy, thence of the
number of photons, that Eve can inject into Alice’s module
in a characteristic time interval without damaging it. Details
about the LIDT are given in Sec. III. For the moment, we
call N the maximum number of photons that Eve is allowed
to inject in the transmitter module in the time unit (1 second)
without violating the LIDT condition. This parameter will
be used to provide a security argument against the THA.

A. Preliminary quantities

In a THA, Eve first prepares M groups of photons and
then uses each group to probe a different value of Alice’s
phase modulator (PM). To fix ideas, we can imagine that
each group of photons physically corresponds to one pulse
of Eve’s light source and that each pulse is prepared in a
pure coherent state [27]. The resulting structure is a tensor
product of coherent states:

j ffiffiffiffiffi
μ1

p i ⊗ j ffiffiffiffiffi
μ2

p i ⊗ … ⊗ j ffiffiffiffiffiffi
μM

p i: ð1Þ

In Eq. (1), μi (i ¼ 1;…;M) is the mean photon number
of the ith coherent state. In order to not overcome the

FIG. 2. Schematics of the transmitting unit of a unidirectional
fiber-based QKD setup and Eve’s THA. LS is a generic light
source. The square with φA is the encoding device. It writes the
phase information φA on photons traveling in the short arm of the
interferometer. Eve injects a bright light pulse in the coherent
state j ffiffiffiffiffiffi

μin
p i into Alice’s module. A fraction of it is encoded by

Alice and back-reflected to Eve, emerging as jeiφA
ffiffiffiffiffiffiffiffi
μout

p i, i.e.,
attenuated by a factor γ (μout ¼ γμin) but containing the phase
information φA (dashed line).
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LIDT threshold N, Eve has to guarantee the following
condition:

XM
i¼1

μi ¼ Mμin < N; ð2Þ

where we have introduced the overall mean photon number
of Eve’s light μin. In general, it is possible for Eve to vary
each μi to enhance her strategy. However, it turns out that
this gives her no advantage, as we show later. The convexity
of the key rate as a function of μi makes it always better for
Eve to set μi equal to a constant value. Therefore, we have

μi ¼ μin: ð3Þ

It can be noted that Eq. (3) rules out a whole class of
attacking strategies by Eve, where she redistributes her
initial Trojan photons in a fewer number of pulses.
Intuitively, this could increase Eve’s information on a
subset of Alice’s states, but it can never increase her total
information about the whole key. It is beneficial to Eve to
distribute her photons evenly among the available pulses to
maximize her total information. We will reach the same
conclusion in Sec. III A, but from a physical point of view.
In that section, an even distribution of the Trojan photons
will allow Eve to keep the LIDT of an optical component
close to its minimum value.
Each of Eve’s Trojan pulses is sent in the transmitting

unit to probe a different phase value φA of Alice’s PM.
After that, the pulses are retrieved by Eve, and their mean
photon number amounts to μout ¼ γμin. Let us call fA the
total number of phase values encoded by Alice’s PM in
1 second. This is equal to the PM clock rate, expressed
in Hz. Because Alice knows fA, the maximum number of
Trojan photons per second N, and the optical isolation γ,
she can bound the mean photon number of the Trojan
pulses emerging from her module. We call μout the upper
bound. It amounts to

μout ¼
Nγ

fA
: ð4Þ

μout is a crucial parameter in the security argument because it
is directly controllable by Alice. It can be interpreted as the
mean photon number of the Trojan pulses retrieved by Eve.
In the next section, we proceed from these preliminary

observations to derive the secure key rate of the BB84
protocol, assuming that Alice is endowed with an ideal
single-photon source. Then, in Sec. II C, we extend the
security argument to the BB84 protocol implemented with
a laser source and decoy states.

B. Key rate of single-photon BB84 protocol

Let us suppose that Alice prepares ideal single-photon
BB84 states and that the only source of information leakage

from Alice’s system to Eve is from the THA on the PM.
Eve shall execute the THA using coherent states of constant
intensity as per Eqs. (1) and (3). We assume the worst-case
scenario where Eve can retrieve her states back from the
quantum channel with 100% fidelity, even though, in
practice, this may not be fully permitted by the laws of
physics. In this description, the THA can be executed
without adding any noise to the communication channel.
Despite this, secure keys can still be extracted if the QKD
system is well characterized. This is quite counterintuitive
as it challenges the common view of QKD as an eaves-
dropping detection system, while promoting it as an
eavesdropping prevention system [28].
The characterization of the QKD system proceeds as

follows. With reference to Alice’s interferometer (see
Fig. 2), we define the states in the computational basis
Z as j0Zi ≔ j1ilj0is, j1Zi ≔ j0ilj1is, where jnil (jnis) is
the n-photon state traveling in the long (short) arm of the
interferometer. Then, we write the four BB84 protocol
states as j0Xi, j1Xi and j0Yi, j1Yi for the X and Y bases,
respectively, corresponding to setting the phase φA equal to
f0; πg and fπ=2; 3π=2g, respectively, in the qubit state
ðj0Zi þ eiφA j1ZiÞ=

ffiffiffi
2

p
.

Eve’s task is to determine φA using the light back-
reflected from Alice’s apparatus. However, the states
prepared by Alice and sent to Bob (labeled below with
“B”) are single photons and do not give any phase reference
to Eve. Also, the states sent and retrieved by Eve (labeled
below with “E”) originate from an external independent
source. Therefore, the resulting states emerging from
Alice’s module can be written as tensor products:

jψ0XiBE ¼ j0XiB ⊗ j þ ffiffiffiffiffiffiffi
μout

p iE;
jψ1XiBE ¼ j1XiB ⊗ j − ffiffiffiffiffiffiffi

μout
p iE;

jψ0YiBE ¼ j1YiB ⊗ j þ i
ffiffiffiffiffiffiffi
μout

p iE;
jψ1YiBE ¼ j0YiB ⊗ j − i

ffiffiffiffiffiffiffi
μout

p iE: ð5Þ

The above states justify an alternative interpretation of μout,
i.e., an excess mean photon number exiting Alice’s module.
If μout ¼ 0, only true single-photon states leave the trans-
mitting unit, whereas if μout > 0, a hidden side channel,
created by the THA, provides Eve with additional infor-
mation via the excess photons contained in the states
of Eq. (5).
It is natural to ask how Eve can use the information

obtained in the THA. One possibility is for her to wait until
the basis reconciliation step of QKD, in order to measure
the back-reflected Trojan photons in the correct basis and
learn the bit encoded by Alice. In this case, Eve simply
prepares and retrieves the Trojan photons and causes no
disturbance on the quantum channel. However, she only
gains the information carried by the Trojan photons and
makes no use of the photons prepared by Alice. A more
powerful strategy is to use the Trojan photons during the
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quantum transmission, without waiting for the basis rec-
onciliation step. Eve could first measure the Trojan photons
and then decide whether to stop or transmit Alice’s qubits
conditional on the result from her measurement. Finally,
Eve could glean information about the basis chosen by
Alice and use it to measure Alice’s qubits, thus making
optimal use of all the sources of information available to
her. This is a convenient framework, as it allows us to prove
the security of QKD against the most general attack by Eve
[29–31]. We analyze all the above attacking strategies, from
the weakest one to the most general. The first and second
THA are analyzed in Appendixes C 1 and C 2, respectively,
while the third, most general, THA is outlined here and
detailed in Appendix B.
To bound the security in the general case, we resort to the

so-called “GLLP approach” [29]. More precisely, we use
the refinement of GLLP based on the qubit distillation
protocol by Koashi [30]. In Appendix B, we apply this
approach to the states in Eq. (5) and derive the secure key
rate of the efficient BB84 protocol [32,33]. There, it is
shown that if the key is distilled from the X basis and the
phase error rate is estimated in the Y basis, the asymptotic
key rate of a QKD system endowed with a single-photon
source is

R ¼ QX½1 − hðe0YÞ − fEChðeXÞ�: ð6Þ

In Eq. (6), QX is the single-photon detection rate in the X
basis, i.e., the joint probability that a single-photon pulse is
emitted by Alice and detected by Bob and both users
measure in the X basis; h is the binary entropy function,
fEC is the error correction efficiency [34], and eX is the
(single-photon) quantum-bit error rate (QBER) measured
in the X basis. The term e0Y is the (single-photon) error rate
estimated in a virtual protocol, where the users measure in
the Y basis and Alice announces the X basis [30]. It is given
by the following equations:

e0Y ¼ eY þ 4Δ0ð1 − Δ0Þð1 − 2eYÞ
þ 4ð1 − 2Δ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0ð1 − Δ0ÞeYð1 − eYÞ

p
;

Δ0 ¼ Δ
Y
;

Δ ¼ 1

2
½1 − expð−μoutÞ cosðμoutÞ�; ð7Þ

where we conservatively defined Y ≔ min½YX;YY �, with
YX and YY the single-photon yields in the X and Y bases,
respectively, i.e., the conditional probabilities that a single-
photon state emitted by Alice causes a click in Bob’s
detector, when the users measure in the same basis, X or Y.
The presence of μout in the last line of Eq. (7) shows how
the THA affects the key rate in Eq. (6).
The key rate R has been plotted in Fig. 3 as a function of

the distance between the users, for different values of the

output mean photon number μout, using parameters close to
existing real systems [35]. From the figure, it can be seen
that the key rate corresponding to μout ¼ 10−6 is indis-
tinguishable from μout ¼ 0 (no THA) over distances up to
100 km, i.e., about 60% of the maximum distance (170 km
in Fig. 3). For μout ¼ 10−8, the key rates in the presence and
absence of a THA overlap over nearly the whole range. In
this case, a negligible amount of additional privacy ampli-
fication is required to guarantee security against the THA.
The key rate remains positive also for μout ¼ 10−2, but the
maximum distance is limited to 9 km in this case and the
key rate is severely affected by the THA. The largest value
of μout showing a positive key rate is 0.015.
It is worth remarking that the entire effect of the THA

is condensed in the parameter μout, as it is apparent
from Eq. (7). Therefore, the obtained key rate is equally
applicable to any QKD setup capable of guaranteeing an
upper bound to the mean number of Trojan photons
reflected by the transmitter back to Eve.

C. Key rate of decoy-state BB84 protocol

The key rate in Eq. (6) has been derived assuming that a
single-photon source is available to Alice. However, it is
well known that security can still be guaranteed without a
single-photon source if a phase-randomized attenuated
laser [36] is combined with the decoy-state technique
[37,38]. Actually, such a solution is currently more efficient
than a single-photon source because of the limited gen-
eration rates of existing single-photon sources [39,40].
To extend the result to a decoy-state source, we assume

that the decoy-state execution is not affected by the THA.
This is equivalent to saying that Eve’s only target in the
THA considered here is Alice’s PM, and the devices used
by Alice to implement the decoy-state technique are not

FIG. 3. Asymptotic key rate R versus distance for the single-
photon efficient BB84 protocol under a THA. The rate is plotted
for different values of the output mean photon number μout. Other
parameters in the simulation are as follows: fiber loss coefficient
0.2 dB=km, total detection efficiency 12.5%, optical error rate
1%, dark count probability per gate 10−5, and error correction
inefficiency 20% above the Shannon limit.
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touched by the THA (see assumption 3 in Appendix A and
the accompanying discussion). Under this assumption, the
decoy-state key rate is a straightforward generalization of
Eq. (B5) along the lines described, e.g., in Ref. [38].
Indicating with a tilde the quantities to be estimated via the
decoy-state technique and with s the mean photon number
of the signal pulse in the decoy set of states, we obtain

~R ¼ ~Qð1Þ
X f1 − h½~e0ð1ÞY �g −QðsÞ

X fECh½eðsÞX �; ð8Þ

where

~e0ð1ÞY ¼ ~eY þ 4 ~Δ0ð1 − ~Δ0Þð1 − 2~eYÞ

þ 4ð1 − 2 ~Δ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Δ0ð1 − ~Δ0Þ~eYð1 − ~eYÞ

q
;

~Δ0 ¼ Δ
~Y
: ð9Þ

In Eq. (8), ~Qð1Þ
X is the decoy-state estimation of the single-

photon detection rate QX in Eq. (6), while QðsÞ
X is the

detection rate of the signal pulse measured in the X basis. In
Eq. (9), we conservatively defined ~Y ≔ min½ ~YX; ~YY �, with
~YX and ~YY the single-photon yields in the X and Y bases,
respectively, estimated via the decoy-state technique.
The key rate ~R is plotted in Fig. 4. Although rate and

maximum distance are smaller than in the single-photon
case (Fig. 3), as expected, it is remarkable that the key rate
corresponding to a value μout ¼ 10−7 remains indistin-
guishable from the ideal rate (μout ¼ 0) over nearly the
whole distance range. A 10 times larger value, μout ¼ 10−6,
which is easier to achieve in practice, generates a key rate
that closely follows the ideal one up to 100 km, i.e., 70% of
the maximum distance achievable (146 km in Fig. 4), and
remains positive up to 140 km, i.e., 96% of the maximum

distance. This motivates our choice of μout ¼ 10−6 for the
case study in Sec. IVA. Finally, it is worth noting that the
key rate remains positive even for larger values of μout, up
to 0.012.
Before concluding this section, a couple of remarks are

in order. First, it has been convincingly proven that the key
rate achieved with only three decoy states is very close to
that obtained with an infinite amount of decoy states [41].
We have run simulations that confirm this result. Therefore,
the key rate in Fig. 4 is achievable in a real system. Second,
the rate equations provided so far have been derived using
coherent states of constant intensity. Here, we show that
this setting is actually advantageous to Eve. Suppose that
Eq. (3) does not hold, i.e., μi ≠ μin. With this setting, Eve is
trying to distribute her N Trojan photons unevenly among
the M pulses, in an attempt to enhance her information
gain. Suppose that Eve distributes the N photons in only
two classes of pulses, such that the first (second) class
features an average photon number μ1 (μ2) and μ1 < μ2,
μin ¼ ðμ1 þ μ2Þ=2. Then, for each of the key rates given in
this work, represented by a generic symbol R, we have
numerically verified that

RðμinÞ ≤
Rðμ1Þ þRðμ2Þ

2
: ð10Þ

We have used the explicit expressions of the key rates
and their dependence on μout, which is related to the input
photon number by the linear equation μout ¼ γμin. In other
words, the key rates are convex functions of μout and thence
of μin. According to Eq. (10), the rate distilled by the users
under Eve’s new strategy (right-hand side) is larger than the
one pertaining to the old strategy (left-hand side), so the
new strategy is less effective and not advantageous to Eve.
More general strategies by Eve that account for more than
two classes of photons with different mean photon numbers
can be treated as a trivial extension of Eq. (10).

III. BOUNDS ON INPUT PHOTONS

In our security argument, the quantity N plays an
important role. Here, we provide more details about this
limiting threshold and describe a way to quantify it. We
adopt a pragmatic approach, motivated by the results of the
previous sections. In particular, we have established that
Eve conducts the THA using coherent states of constant
intensity. Therefore, we can conveniently think that such
states are generated by a single-mode laser operated well
above threshold [42]. This view naturally leads to consid-
ering the laser-induced damage threshold (LIDT). From a
security perspective, the LIDT can only provide a
general indication of the bounds to be used in a security
analysis. The actual response to thermal damage of the real
components of a QKD system should be experimentally
measured.

FIG. 4. Asymptotic key rate ~R versus distance for the decoy-
state efficient BB84 protocol under a THA, for various values of
the output mean photon number μout. Experimental parameters in
the simulation are as in Fig. 3. The average photon number of the
signal states in the decoy-state technique is s ¼ 0.5.
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A. Laser-induced damage threshold

A single-mode optical fiber is arguably the most
common component of a fiber-based QKD setup. It is
used mainly to transmit information in the third telecom
window (wavelength λ ¼ 1.55 μm) because of its small
attenuation coefficient. Its typical core diameter is
8–10 μm, corresponding to a core area of 50–80 μm2. If
the laser power used by Eve is sufficiently high, it creates
an accumulation of energy in this small region of the core
and increases the temperature of the medium beyond the
tolerance level, inducing fiber thermal damage [43,44].
Such a damage threshold is usually quantified by the

LIDT, defined in the 2011 international standard ISO
21254-1 as follows [45]: “the highest quantity of laser
radiation incident upon the optical component for which
the extrapolated probability of damage is zero, where the
quantity of laser radiation may be expressed in energy
density, power density or linear power density” [46]. The
smaller the LIDT of the component, the larger the prob-
ability of damaging it. This subject is well studied, and
values for the LIDT of a silica-based optical fiber, which is
the component we are interested in, can be obtained.
However, before discussing the absolute values, it is worth
examining the qualitative behavior of the LIDT, which is
determined by the underlying thermal damaging mecha-
nism. The purpose is to investigate how features of Eve’s
laser, like the repetition rate or the pulse width, can affect
the LIDT and, as a consequence, the system security. This
provides useful indications for setting a proper LIDT value.
One prominent feature of the LIDT is that it increases

with the pulse width of the incident laser; i.e., a wide light
pulse causes less damage to the optical component than a
narrow one. This result makes narrow pulses more detect-
able to Alice and Bob than wide ones. This can be
formalized using the well-known square-root dependence
of the LIDT on the pulse width [47–50]:

LIDTðτ1Þ
LIDTðτ2Þ

¼
ffiffiffiffi
τ1
τ2

r
: ð11Þ

Here, τ1 and τ2 are two different pulse widths for the same
pulse energy. Equation (11) suggests that Eve’s laser pulse
should be the widest possible, compatible with Alice’s
phase modulator.
A similar rule applies to the laser wavelength, resulting

in the shorter wavelength causing more damage to the
optical component than the longer one (see, e.g., Ref. [51]):

LIDTðλ1Þ
LIDTðλ2Þ

¼
ffiffiffiffiffi
λ1
λ2

s
: ð12Þ

Equation (12) suggests that Eve’s optimal laser’s wave-
length should be as large as possible, even larger, if
necessary, than the typical wavelength used in the QKD

setup. However, it also entails that the LIDT remains
reasonably constant for all the wavelengths possibly trans-
mitted in the fiber. A standard optical fiber cannot transmit
by total internal reflection beyond the so-called “bend-
edge” wavelength, which is only a few hundred of nano-
meters away from the fiber cutoff wavelength (see, e.g.,
Ref. [52]). As an example, we can consider a bend-edge
wavelength of 1850 nm for an optical fiber transmitting at
1550 nm [53,54]. According to Eq. (12), this would
increase the LIDT by less than 10%, showing that the
wavelength of Eve’s laser is not crucial in determining the
efficacy of the THA. To compensate for this effect in
the theory, it suffices to increase the LIDT value by 10%.
To upper bound the input photon number N used in the

security argument, we need to estimate the LIDT of Alice’s
optical module. This is arguably given by the LIDT of the
most fragile component in the module. However, we
consider the LIDT of just one of the components in
Alice’s unit, the one most exposed to Eve’s light. The
other components are assumed to either work in their
normal operation regime or fail in a way that is detectable
by the users (see assumption 1 in Appendix A and the
accompanying discussion). In Sec. IV, we describe the
architecture of Alice’s setup against the THA. The com-
ponent most exposed to Eve’s light is a loop of standard
optical fiber placed at the main entrance of the transmitting
box. Hence, we are interested in the LIDT of a standard
single mode optical fiber. One possible way to estimate it is
to consider the geometry of the fiber and the material it is
made of. As already mentioned, a typical fiber has a core
area of about 50 μm2 and is made of fused silica. The LIDT
of fused silica is determined by the softening point of the
material [47] and amounts to 1.1 × 107 J=cm2 [55]. For a
longer time, the silica-based medium starts dissipating heat
and the threshold increases linearly with the pulse width.
For a shorter time, the square root law in Eq. (11) applies,
decreasing the LIDT accordingly.
The above-cited LIDT value corresponds to an average

power of 5.5 × 104 W over 50 μm2. For a typical wave-
length of λ ¼ 1.55 μm, this means that 4.3 × 1023 photons
impinge every second onto the fiber core area. Before such
a large number of photons can damage the fiber core, other
highly detectable damages are likely to occur at the fiber
interfaces, causing, e.g., a net reduction of the transmission
or an increase in the noise figure. Also, the LIDT value
mentioned above relates to a homogeneous medium. In
reality, large temperature gradients can occur in the
proximity of a defect, or at the connection between two
segments of fiber, or at the interface between the fiber core
and the cladding. Some of these properties can even be
artificially enhanced by acting on the number of connec-
tors, the bending radius, and the doping levels of the fiber.
These considerations lead to the conclusion that the given
LIDT value is an overly conservative estimation of the real
LIDT of an optical fiber. In the next section, we obtain a
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different LIDT value by combining the findings of Sec. II
with the results from experiments performed on real optical
fibers.

B. Fiber thermal fuse-induced LIDT

In Sec. II, we have shown, from an information theory
point of view, that Eve’s optimal strategy is to distribute her
photons into a number of pulses M that is equal to Alice’s
PM clock rate (in Hz) fA, so as to maximize her total
information gain. In the description of Eve’s laser, the
above strategy translates into setting fE ¼ fA, where fE is
Eve’s laser repetition rate. Moreover, in the previous
section, we have shown that the LIDT depends only weakly
on the laser pulse width and that the larger the width, the
larger the damaging threshold. In the description of Eve’s
laser, this translates into having a laser pulse width τE as
large as possible, compatible with Alice’s PM. Let us call
τA the time window of Alice’s PM. If τE > τA, a fraction of
Eve’s photons fall outside the PM gate and deliver no
information to Eve. Therefore, the optimality condition for
Eve is τE ¼ τA. This condition on the pulse width repre-
sents an additional constraint for Eve and an extra param-
eter under Alice’s control. After γ and fA, Alice can now
act on τA to make Eve’s strategy less effective. In particular,
by reducing τA, Alice reduces the damaging threshold of
her module, hence N.
Let us draw a worst-case scenario from the above

considerations. We conservatively assume that Alice’s
PM is driven by a perfectly rectangular wave. This
assumption helps Eve match the condition τE ¼ τA and
simultaneously keep the damaging threshold high. As a
consequence, the amplitude of Alice’s PM is assumed to be
flat in time. The amplitude is selected at random among the
four equally spaced values of the BB84 protocol. The way
these values are selected depends on the logic driving the
PM. If a non-return-to-zero (NRZ) logic is used, the PM
duty cycle is 100%; i.e., the PM is always active, transiting
from a given phase value directly to the next one, and we
have, in this case, τA ¼ 1=fA. If a return-to-zero (RZ) logic
is used, the modulator is reset after each encoded phase
value. In this case, the duty cycle is less than 100% and the
PM time duration is τA < 1=fA. We note that in the
particular case where Alice’s PM is driven according to
a NRZ logic (100% duty cycle), Eve’s laser coincides with
a continuous-wave (CW) laser, as it emits a seamless
sequence of rectangle pulses, all of the same amplitude,
sitting one next to each other. A deeper thought reveals that
this is actually a worst-case scenario because, when the
condition τE ¼ τA is matched, τE takes on its maximum
value (1=fA), thus minimizing the risk of optical damage,
while leaving Eve’s information unchanged. Therefore, we
can always imagine that Alice’s PM is driven by a NRZ
logic, even if it is RZ and, accordingly, Eve uses a CW laser
to probe the PM.

Experiments performed with CW lasers on real optical
fibers have demonstrated that an average power around
2–5 W causes catastrophic thermal damage in a standard
single-mode silica fiber [56–58]. This effect is known as
“self-propelled self-focusing” or “fiber thermal fuse”
[56,57,59–64]. The high power of the laser generates a
heating point in the fiber where the local temperature
overcomes the melting point of the medium. From there,
the damage propagates along the fiber, eventually making it
unusable. This effect has also been exploited to build an
“optical fuse” that breaks by 1.2–5.3 W of incident light at
wavelengths around 1500 nm [62]. For a wavelength of
λ ¼ 1550 nm, 2 W correspond to 1.6 × 1019 photons
crossing a 50-μm2-fiber core area (a50) every second. In
order to have an easy reference for the LIDT value, we set it
equal to N ¼ 1020 photons=s=a50. The new LIDT value is
4.3 × 103 smaller than the previous one. Still, it corre-
sponds to 12.8 W from a CW laser, which is much larger
than the power threshold reported in the fiber thermal fuse
experiments. We adopt this number to draw an example
where the values of the optical components in Alice’s
apparatus are connected to the security requirements.
However, the more conservative threshold for N could
be adopted instead to arrange a different use for an
application that requires a stronger bound, independent
of the fabrication details of the fiber and relying only on the
softening point of silica.

IV. EXPERIMENTAL CHARACTERIZATION

A. Passive architecture against the THA

An entirely passive architecture against the THA is
drawn schematically in Fig. 5. It is based on a sequence
of components that actualize the security argument
described so far. A silica-based optical fiber loop (OFL)
of length L defines the LIDT of the transmitter and is
followed by a filtering block F, an optical isolator I, and an
attenuator A. We also indicate with R the total reflectivity of
the optical elements to the left of the dot-dashed line [not to
be confused with the key rate R given in Eq. (6) and plotted
in Fig. 3]. The line for the reflectivity R is conservatively
drawn to also include the first beam splitter as seen by
Eve to allow an easier experimental implementation

FIG. 5. Architecture of a QKD transmitter to mitigate the THA.
LS is a generic light source and the square with φA is the encoding
device. OFL: optical fiber loop determining the LIDT; F: optical
filter; I: optical isolator; A: attenuator; R: total reflection from all
components to the left of the dot-dashed line.
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(Sec. IV B). In the figure, all the components are presumed
to either work as expected or fail in a way that is detectable
by the users.
The OFL acts as a regulator for high-power input light

and as a filter for wavelengths longer than the bend-edge
point. Together with the optical filter F, which is tuned to
let the wavelength of the quantum channel pass and stop all
the others, it limits the maximum number N of photons that
Eve can inject into Alice’s module in the chosen time unit.
In other words, it represents the optical component to which
the LIDT should apply. To fix ideas, we can imagine a
length for the OFL greater than 1 m, in line with what was
reported in the experiments about the fiber thermal fuse
effect. A longer OFL can only be beneficial to the users,
as it increases the probability of thermal damage, which
increases as well if a few interfaces are present in the OFL.
The optical isolator strongly attenuates the input light

from Eve, enforcing the unidirectionality condition in the
module. A typical dual-stage optical isolator features an
isolation value of 10−5 or smaller. It is convenient to measure
the isolation in decibels, or dB, rather than in absolute value.
If x is the absolute value of the optical isolation of a given
component, we use the following notation,

_x ¼ 10log10x; ð13Þ

to indicate its value in decibels. For example, the optical
isolator mentioned above would feature an isolation of
−50 dB.
The attenuator box in Fig. 5 is already present in the

schematics of various QKD systems using an attenuated
laser as a light source, while it is not present in systems
using a single-photon source, as it would entail major
losses in the system. If used, it helps to avert the THA, as it
contributes to the optical isolation of Alice’s module, γ. The
following equation quantifies the contributions of each
single conceptual block in Fig. 5 to γ:

γ ¼ F2 × In × A2 × R: ð14Þ

Equation (14) can be conveniently rewritten in dB:

_γ ¼ 2 _F þ n_I þ 2 _Aþ _R: ð15Þ

In Eqs. (14) and (15), the typical double pass of a THA
through Alice’s components has been considered, which
leads to explicit corrections for the filter and the attenuator
terms. For the isolator term, there is no such correction
because one direction of the double pass features zero
attenuation. However, there is a factor n that represents the
number of optical isolators present in the system.
To relate the isolation γ to the system security, we need to

connect it to the parameter μout via Eq. (4). Therefore, we
introduce the dimensionless ratio χ ≔ N=fA and rewrite
Eq. (4) in dB notation:

_μout ¼ _χ þ _γ: ð16Þ

To give an example of how Eqs. (15) and (16) can be used
to meet the security criterion, let us start by setting a target
value for the excess average photon number μout. We have
seen from Figs. 3 and 4 that a value μout ¼ 10−6 (i.e.,
_μout ¼ −60 dB) can guarantee security against the THA
with only a negligible (limited) amount of additional
privacy amplification over short-range and middle-range
(long-range) QKD transmissions. Therefore, we choose
this value as the target. We consider the threshold value
N ¼ 1020 photons=s=a50 discussed in Sec. III B and a
system clock rate fA ¼ 109 Hz. These values give
χ ¼ 1011 (_χ ¼ 110 dB). From Eq. (16), we then get
_γ ¼ _μout − _χ ¼ ð−60–110Þ dB ¼ −170 dB. This result is
the total optical isolation required in Alice’s module in
order to guarantee security. Alice can try and match this
value by using well-characterized components and then
applying Eq. (15).
Table I contains some possible combinations of fA, _R, _A,

and _I to match the target value _μout ¼ −60 dB. For
convenience, we report the absolute values of the compo-
nents. In the table, we set _F ¼ 0 because the filter insertion
loss is typically close to zero at its central wavelength, and
we assume that the filter is centered at the operational
wavelength of the QKD setup. In the first column, we have
considered three interesting and feasible regimes, 1 kHz,
1 MHz, and 1 GHz. The lines with the asterisk are for
situations where attenuation cannot be used, e.g., if the
transmitter uses a single-photon source or at the receiver
side. It is worth noting that single-photon sources up to the
MHz range are currently available (see, e.g., Refs. [39,40]).
In all cases, we have reported what we believe to be the
most practical combination of components. For the optical
reflectivity _R, we have considered a typical absolute value
of 40 dB, which comes from a common fiber connector.

TABLE I. Practical combinations of system components to
meet the target μout ¼ 10−6 when N ¼ 1020 photons=s=a50 and
_F ¼ 0 dB. All dotted quantities are in decibels and are given in
absolute value. Lines with the asterisk are cases in which
attenuation cannot be used, e.g., when the transmitter uses a
single-photon source or at the receiver side. The feasibility of the
values for 1-GHz clock rate has been confirmed experimentally
using the QKD setup described in Ref. [65].

Clock rate fA (Hz) j_γj j _Rj j _Aj j_IjðnÞ
1 GHz 109 170 40 35 60(1)
1 GHz* 109 170 50 0 60(2)
1 MHz 106 200 40 30 50(2)
1 MHz* 106 200 50 0 50(3)
1 kHz 103 230 40 35 60(2)
1 kHz* 103 230 50 0 60(3)
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However, an absolute value of 50 dB is possible if angled
connectors or splicing are used for the fiber-integrated
optics in the module. This latter option is worth consid-
ering, especially for the lines with the asterisks in Table I.
For the optical isolator, its absolute value is set in the
factory and cannot be varied by the users. We set it equal to
either 50 dB or 60 dB in Table I, according to the most
convenient configuration. The former value is common
in dual-stage optical isolators. The latter value is less
common, but it can be obtained by properly sampling a
set of isolators and selecting the best one (see Sec. IV B).
Finally, for the attenuator, we avoided using absolute values
larger than 35 dB, as that would commit the transmitter to
unusually high-power lasers.
From Table I, it can be seen that two or more optical

isolators might be necessary to meet the security target
μout ¼ 10−6. However, if the clock rate is high enough, a
single isolator is sufficient (first line of the table). In any
case, given the low cost and the low insertion loss of
filters, attenuators, and optical isolators, all the options
in Table I can be considered feasible and relatively
inexpensive.

B. Components characterization

To prove the attainability of the values reported in the
first line of Table I, we have experimentally characterized
reflectivity and transmission of the components most
relevant to security in the transmitting unit of a unidirec-
tional GHz-clocked QKD system [65], within their
operational range. A full-range characterization of the real
components in the setup is necessary to guarantee their
behavior against unwanted deviations, as required by the
security argument (see assumption 1 in Appendix A).
As a first step, we have used single-photon optical time-

domain reflectometry (ν-OTDR, Ref. [66]) to quantify the
reflectivity R of Alice’s apparatus. The measurement setup
and the resulting traces are shown in Fig. 6, on the top and
bottom diagrams, respectively. In the ν-OTDR setup, a
1-MHz pulsed laser at 1550 nm is connected to Alice via a
circulator. Polarization controllers are used to align the
pulses to the long or short path of Alice’s interferometer to
obtain the output patterns of the orthogonal polarizations.
These are shown as blue and red traces in Fig. 6. The two
patterns have been added together to upper bound the total
reflectivity, and this is indicated by the black trace in the
figure. The upper bound to R is obtained assuming the
linearity of the reflectivity, as follows: Rðajsi þ bjliÞ ¼
aRðjsiÞ þ bRðjliÞ ≤ RðjsiÞ þ RðjliÞ, where the vector jsi
(jli) represents the polarization traveling in the short (long)
arm and a, b are complex numbers with modulo squared
adding to 1. The traces are plotted from the entering point
of Alice’s module, which is connector J1 in Fig. 6.
However, only the peaks pertaining to the components
included in the shaded region of the top diagram have to be

considered in the estimation of R (see also dot-dashed line
in Fig. 5).
The sum of all the peaks relevant to R gives a total

reflectivity of −42.87 dB. This value meets the require-
ment _R < −40 dB set in the first line of Table I. Also, the
characterized QKD system includes an attenuator set to
−35 dB. To match the j_γj ¼ 170 dB condition, additional
optical isolation of at least −60 dB is needed. Dual-stage
isolators specifying typical isolation at this level are
commercially available from a number of manufacturers.
For demonstrative purposes, we tested isolators M-IS/M-II
from FOCI Fiber Optic Communications, Inc. One of the
isolators featured an absolute isolation larger than 65 dB in
the proximity of the main transmission wavelength of the
system, 1550 nm, as shown in Fig. 7. Across the S, C, and L
bands, the isolation value varies, until it reaches a minimum
of about 40 dB. However, in this regime, the optical filter
takes over and provides high optical isolation so that a
typical suppression of more than 80 dB is obtainable across
the entire C band. Because the filter is crossed twice by
Eve’s light, this leads to more than 160 dB additional
optical isolation to the system whenever the wavelength is
different from 1550 nm. This result demonstrates that the
values reported in the first line of Table I are feasible when
devices are operated in their working regime.

FIG. 6. Top panel: Schematics of the QKD transmitter module
and of the ν-OTDR setup used for characterizing its reflectivity.
Bottom panel: Reflection peaks of the transmitting unit. The
distance is measured from the connector J1 placed at the entrance
of the module. The traces are acquired for two orthogonal
polarizations, aligned to maximize the transmission through
the short (blue traces) and long (red traces) arms of the
interferometer. The peaks of the reflectivity are added to obtain
a worst-case estimation (black). Only the peaks from the
components included in the shaded region of the top diagram
have to be considered in the estimation of R.
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V. DISCUSSION

In the first part of the work, we derived our main result,
i.e., the secure key rate of a QKD system in the presence of
a THA, under reasonable assumptions (see Appendix A for
a summary and a discussion of the assumptions). The result
depends on Alice’s ability to limit the number of the
incoming photons N and to reliably upper bound the mean
number of Trojan photons μout exiting from her module.
However, the curves plotted in Figs. 3 and 4 are indepen-
dent of N and can be applied to different QKD systems,
provided that the assumptions in the theory are met. From
the key rates, we have shown that a value of the mean
output photon number μout ∼ 10−6 allows one to approach
the situation with no THA for nearly any distance between
the users. For distances up to 70% of the maximum
working distance, this can be achieved without any addi-
tional privacy amplification.
In Sec. III,we have drawn an example of how to set a value

onN using the thermal damage point of an optical fiber. The
most conservative value forN is on the order of 1023 photons
injected every second on the core area of the fiber. This value
has been obtained from the softening point of a homo-
geneous medium made of fused silica and is independent
of future advancements in technology, provided that the
composition of fused silica remains unchanged. A lower
value for N, equal to 1020 photons=s=a50, has been drawn
from recent experiments on the thermal damage of real
fibers, after taking into account the presence of inhomoge-
neities in the fiber and the qualitative behavior of the LIDT
in response to the laser pulse width. Using this lower value,
we showed the feasibility of our passive architecture in a
practical scenario. We related the key rate of a QKD system
to its clock, detection rate, and reflectivity and to the
properties of a sequence of fiber loop, filter, and optical
isolator, as depicted in Fig. 5. In Table I, we devised various

combinations of these components to meet the security
condition against the THA. According to the table, most of
the existing QKD systems can potentially be protected from
THA’s, provided that a sufficient number of optical isolators
are used and that the real components behave as expected.
Some elements in our security argument may appear

optimistic: for instance, the use of coherent states by Eve.
However, we believe that overall our analysis is
conservative. The considered LIDT threshold corresponds
to a light power of 12.8 W from a CW laser and is larger
than the power required to activate the fiber thermal fuse
effect in a standard single-mode fiber. It is reasonable to
think that before this large number of photons can melt
the fiber core, some other mechanism would make Eve
detectable. We also assumed a noise-free retrieval of
quantum states by Eve, while it is well known that the
retrieval is physically limited by Raman and Rayleigh
scattering. We decided not to consider the fact that other
QKD components, already present in Alice’s module, could
have a lower LIDT than the optical fiber. Finally, we
ignored the fact that monitoring detectors are already
present in most of the QKD systems, mainly for stabiliza-
tion purposes. Such devices additionally constrain Eve’s
action and can be beneficial to improve our solution.

VI. CONCLUSION

In this work, we studied the security of a fiber-based
QKD setup endowed with passive optical components
against the long-standing Trojan-horse attack. In the
framework of Ref. [29], we provided quantitative security
bounds, easily applicable in practice, against a general
THA. With the proof method of Ref. [67], we analyzed
two specific examples of a THA, giving useful insights into
the THA mechanism and the method employed to prove
security against it (Appendix C). In our analysis, we
focused on a particular unidirectional QKD setup, in which
light flows from the transmitter to the receiver and the
reverse direction is forbidden. This architecture is similar to
that of the transmitters used in Ref. [10] to guarantee the
measurement-device-independent security of the decoy-
state BB84 protocol. Hence, we expect that our results
can be applied to that system after minor modifications.
The unidirectional configuration allows the use of optical
isolators, whose proper behavior has to be tested against
undesired deviations. The resulting protection measure
against the THA is entirely passive, thus preventing the
loop holes inherent to active, more sophisticated counter-
measures. We believe it will become a standard tool in all
quantum-secured optical systems that need to guarantee the
protection of a private space.
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APPENDIX A: SECURITY-RELATED
ASSUMPTIONS

In the main text, we considered the unidirectional, fiber-
based, phase-modulated QKD setup depicted in Fig. 2 and
studied its resistance to the THA. We have made a number
of assumptions that we summarize in the following list:
(1) Alice has the ability to bound N, the number of

Trojan photons entering her setup. She can charac-
terize the components in her setup and test
whether they behave as expected under all relevant
conditions.

(2) Eve uses a tensor product of coherent states to
execute the THA. The intensity of the coherent states
does not need to be constant, but it is advantageous
for Eve to choose it to be constant.

(3) Alice’s light source emits either single-photon states
or phase-randomized coherent states that are per-
fectly encoded into the states of the BB84 protocol.
Imperfect encoding of the initial states as studied,
e.g., in Ref. [67] is excluded. The only side channel
in the QKD setup is the THA against Alice’s phase
modulator described in the main body of this work.

(4) The detection efficiency of the receiver is indepen-
dent of the basis choice, and the basis is randomly
chosen by the users.

(5) The key rate is worked out in the asymptotic
scenario, assuming that Alice and Bob have infi-
nitely many signals and decoy states to generate
the key.

(6) The reflectivity measured via the OTDR experiment
is a linear function of the input polarization.

Without assumption 1, it would be impossible to prove
security. If the quantity N cannot be bounded, there is no
private space for the encoding of the classical information
onto the quantum systems, and the quantum protection is
circumvented. In the main text, N was bounded using the
LIDT of the OFL in Fig. 5. It is natural to ask whether a
power monitor or a watchdog detector, placed at the
entrance of Alice’s unit to actively monitor the input power,
can provide an alternative, better, bound to N. There are
reasons this option might not work. First, an additional
detector would add extra cost and complexity to the setup,
opening up additional potential loop holes. For example, it
has been shown in Ref. [15] that a power monitor can be
easily bypassed if not properly engineered. Second, we
used Eq. (11) for the LIDT, according to which narrow
pulses of light create larger damage to the optical compo-
nent than continuous-wave light, so they are more easily
detectable by the users. This result let us draw a worst-case
scenario for Eve’s laser. We are not aware of a similar law

applicable to a power monitor. Finally, even if the power
monitor solution worked fine and allowed us to reduce
the input photon number N by several orders of magnitude,
it should still be compared to the 6 or more orders of
magnitude guaranteed by the addition of a single in-
expensive and nearly loss-free component like an optical
isolator.
As for the second part of assumption 1, if Alice cannot

characterize her components, she cannot work out the value
of the optical isolation γ to relateN and μout via Eq. (4). The
characterization should consider the physical limits
imposed on Eve’s laser. For example, Eve’s laser’s power
is constrained by the LIDT of the OFL in Fig. 5. Therefore,
the behavior of the components should be tested up to the
LIDT value of the OFL. This excludes hacking strategies
leveraging on an unexpected behavior of the real compo-
nents, passively or actively triggered by the eavesdropper.
The characterization step could be simplified if an optical
fuse with a LIDT value lower than the lowest tolerance
threshold of the components in Alice’s setup were
available [68].
Assumption 2 allows us to write the states leaving

Alice’s apparatus as in Eq. (5). It is possible, in principle,
that phase-sensitive states of light, e.g., squeezed states
[42], could provide Eve with more information than
coherent states. However, as Table I shows, the value of
the attenuation in Alice’s setup is at least 170 dB. It seems
unlikely that the fragile squeezed state can survive in this
lossy environment. The second part of this assumption
descends from the convexity of the secure key rate as a
function of μout, which has been verified for all the key rates
presented in this work.
Assumption 3 is necessary to remove additional side

channels that could, in principle, enhance the THA, e.g.,
encoding states that are different from the ideal ones
prescribed by the BB84 protocol. Also, it guarantees that
the rate equations derived for the decoy-state BB84 pro-
tocol hold because Eve’s tampering with Alice’s decoy
state estimation would represent an additional side channel
and would contradict the assumption. Extending the
security argument to decoy states without making use of
assumption 3 could be a trivial task, and a separate detailed
study is required. However, we would like to speculate on
this point further.
For simplicity, we assume that the light emitted by Alice

is phase randomized. In some cases, this is simple to
guarantee, e.g., when phase randomization is an intrinsic
feature of the light source [36]. In other cases, when phase
randomization is committed to a separate active component
[21], it could be more difficult to show that Eve cannot
access this extra component with a more refined THA.With
phase randomization on hand, the decoy-state technique
requires that the intensity of the emitted light is varied in a
random way, known to Alice. This can be achieved by
adding an intensity modulator (IM) to the setup of Fig. 2,
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between the interferometer and the laser source. If there is
no additional optical isolation between the IM and the
interferometer, the optical isolation γ that shields Alice’s
PM from Eve applies to the IM too, and the coherent state
sent by Eve to probe the IM returns to her with an average
photon number not larger than μout. However, if there is a
perfect optical isolator between the IM and the interfer-
ometer, then the Trojan photons retrieved by Eve are only
informative about Alice’s PM, whereas the IM is perfectly
shielded from Eve. This latter case is an example of how
assumption 3 can be enforced. However, because perfect
isolation is impossible in practice, we considered how the
key rates of the decoy-state BB84 would change if a single
real optical isolator, guaranteeing 50 dB isolation, were
used instead. In this case, the μout back-reflected to Eve
from the IM would be 5 orders of magnitude smaller than
the one back-reflected from the PM. Applying to this
realistic scenario an argument similar to the one described
in the forthcoming Appendix C 2, we found key rates that
are indistinguishable from the ones presented in this work.
Assumptions 4 and 5 are related to the proof methods

adopted by us to draw the key rates in the presence of a
THA [29–31,67]. There, security was proven in the
asymptotic scenario leveraging on the fact that the
measurement performed by the receiver is equivalent to a
basis-independent filter followed by a two-valued positive-
operator valuedmeasure (POVM). InRef. [69], it was shown
that this assumption can be enforced if Bob’s single-photon
detectors have equal efficiency and if their dark counts and
efficiencies are carefully modeled. The detectors can be
threshold detectors, and in this case, a specific value of the
key bit must be assigned whenever both detectors click to
guarantee the basis-independence condition.
Assumption 6 is necessary during the characterization

stage to upper bound the reflectivity of the transmitter,
as shown in Sec. IVA. To meet this assumption, we put
particular care into the OTDR experiment to avoid non-
linear effects [70] due to a high power from the laser, which
is the only source of light in the experiment. The intensity
of the laser was set to about 6 nW. Let us notice that Eve is
not playing any role here because the characterization of the
QKD setup is accomplished in a protected environment.
Therefore, we can safely assume that the reflectivity
depends linearly on the polarization, as in ordinary
Fresnel equations.

APPENDIX B: RATE EQUATIONS FOR THE
TROJAN-HORSE ATTACK-GENERAL CASE

With the assumptions of the previous section on hand, let
us describe the security argument in more detail. In the
GLLP-Koashi approach [29,30], an entanglement-based
description of the preparation stage is adopted. The states to
be prepared are given in Eq. (5). We rewrite them here for
convenience:

jψ0XiBE ¼ j0XiB ⊗ j þ ffiffiffiffiffiffiffi
μout

p iE;
jψ1XiBE ¼ j1XiB ⊗ j − ffiffiffiffiffiffiffi

μout
p iE;

jψ0YiBE ¼ j1YiB ⊗ j þ i
ffiffiffiffiffiffiffi
μout

p iE;
jψ1YiBE ¼ j0YiB ⊗ j − i

ffiffiffiffiffiffiffi
μout

p iE: ðB1Þ

The X basis states of Eq. (B1) can be prepared by Alice
by measuring in the basis fj0XiA; j1XiAg the following
entangled state:

jΨXi ¼
j0XiAjψ0XiBE þ j1XiAjψ1XiBEffiffiffi

2
p : ðB2Þ

Similarly, the Y basis states of Eq. (B1) can be prepared by
measuring in the basis fj0YiA; j1YiAg the state

jΨYi ¼
j0YiAjψ0YiBE þ j1YiAjψ1YiBEffiffiffi

2
p : ðB3Þ

If the state preparation stage was perfect, the two states
jΨXi and jΨYi would be indistinguishable, as can be
verified from the above equations in the limit μout → 0.
In this case, we know that the secure key rate of the single-
photon efficient BB84 protocol with data basis X and test
basis Y would be

Rideal ¼ QX½1 − hðeYÞ − fEChðeXÞ�; ðB4Þ
where QX is the single-photon detection rate in the X basis,
eY (eX) is the error rate measured from single photons in
the Y (X) basis, and fEC ≥ 1 is the inefficiency of error
correction [71]. Because we are considering a single-
photon source here, all the quantities in Eq. (B4) refer
to the single-photon case.
When the preparation is not perfect, or part of the basis

information leaks out of the transmitting unit, the states
jΨXi and jΨYi are different and the above key rate has to be
replaced by the following one [31]:

R ¼ QX½1 − hðe0YÞ − fEChðeXÞ�: ðB5Þ
In Eq. (B5), the phase error rate eY has been replaced by a
larger error rate, e0Y ≥ eY . It was shown in Ref. [30] that the
term e0Y is an upper bound to the error rate that the users
would find if they measured the X-basis state jΨXi in the
basis Y.
To find the relation between the error rates e0Y and eY ,

we can imagine that Alice owns a private bidimensional
quantum system, a “quantum coin” [29], and prepares the
following state:

jΦi ¼ j0ZiCjΨXi þ j1ZiCjΨYiffiffiffi
2

p ; ðB6Þ

where the subscript C refers to the quantum coin. The states
in Eqs. (B1) can then be prepared by Alice by first
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measuring the quantum coin in the basis fj0ZiC; j1ZiCg
and then, depending on the outcome, measuring the
resulting state jΨXi or jΨYi in the basis fj0XiA; j1XiAg
or fj0YiA; j1YiAg, respectively. Because Eve has no access
to the quantum coin, she cannot distinguish this virtual
preparation from the real preparation executed in the actual
protocol. Therefore, we are allowed to think that Alice
prepares her initial states using the quantum coin. Also, she
can delay her measurement until after Bob has measured
the states received from Alice. In this scenario, by noting
that Eve’s information about Alice’s key does not change if
Bob measures jΨXi in the basis Y, Koashi obtained e0Y from
eY using a complementarity argument, by applying the
“Bloch sphere bound” [72] to the quantum coin [30].
Let us quantify the basis dependence of Alice’s states in

terms of the quantum coin imbalance [29]. By rewriting
Eq. (B6) in the X basis of the quantum coin, we find

jΦi ¼ j0XiCðjΨXi þ jΨYiÞ þ j1XiCðjΨXi − jΨYiÞ
2

: ðB7Þ

To quantify the basis dependence of Alice’s states, we need
to evaluate the probability that the two states jΨXi and jΨYi
are different. From the above equation, it amounts to the
probability that Alice obtains the outcome X ¼ −1, asso-
ciated with the state j1XiC, when she measures the quantum
coin in the basis X. We call this probability Δ:

Δ ¼ ProbðXC ¼ −1Þ ¼ 1 − ReðhΨXjΨYiÞ
2

: ðB8Þ

Let us estimate this probability for the states prepared by
Alice. From Eqs. (B2) and (B3), we can calculate

Δ ¼ 1

2
½1 − expð−μoutÞ cosðμoutÞ�: ðB9Þ

When μout ¼ 0, Δ ¼ 0 and the states emitted by Alice are
basis independent. However, when μout > 0, Δ is positive
and the states carry some basis information out of Alice’s
enclosure. The basis information can be exploited by Eve to
enhance her strategy, acting on the channel losses, which
are entirely under her control. Specifically, she can replace
the real channel with another, loss-free channel. Then, she
selectively stops all the states that are not favorable to her,
until the loss rate measured by the users is matched. To
account for this possibility, the users must consider the
worst case, where all the nondetected events are coming
from X ¼ 1 eigenstates of the quantum coin, and renorm-
alize Δ accordingly:

Δ0 ¼ Δ
Y
: ðB10Þ

In Eq. (B10), Y ¼ minðYX;YYÞ, with YX and YY the
single-photon yields measured in the X and Y bases,

respectively. Finally, using the Bloch sphere bound [72]
and the effective coin imbalance Δ0, the relation between
the phase error rates e0Y and eY is obtained as [30,31]

e0Y ¼ eY þ 4Δ0ð1 − Δ0Þð1 − 2eYÞ
þ 4ð1 − 2Δ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0ð1 − Δ0ÞeYð1 − eYÞ

p
: ðB11Þ

When the single-photon source is replaced by a decoy-state
source, and under assumption 3 of Appendix A, the
resulting rate is a straightforward generalization of
Eq. (B5) along the lines described in Ref. [38].
Indicating with a tilde the quantities to be estimated via
the decoy-state technique, we have

~R ¼ ~Qð1Þ
X f1 − h½~e0ð1ÞY �g −QðsÞ

X fECh½eðsÞX �; ðB12Þ

where

~e0ð1ÞY ¼ ~eY þ 4 ~Δ0ð1 − ~Δ0Þð1 − 2~eYÞ

þ 4ð1 − 2 ~Δ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Δ0ð1 − ~Δ0Þ~eYð1 − ~eYÞ

q
;

~Δ0 ¼ Δ
~Y
: ðB13Þ

In Eq. (B12), ~Qð1Þ
X is the decoy-state estimation of the

single-photon detection rate QX [see Eq. (B5)], and

QðsÞ
X is the detection rate of the signal pulse measured in

the X basis. In Eq. (B13), we conservatively defined
~Y ≔ min½ ~YX; ~YY �, with ~YX and ~YY the single-photon
yields in the X and Y bases, respectively, estimated via
the decoy-state technique.

APPENDIX C: RATE EQUATIONS FOR TWO
SPECIFIC TROJAN-HORSE ATTACKS

1. Trojan-horse attack with passive use
of the Trojan photons

We analyze the security of the BB84 protocol against a
different, less general THA. This serves a twofold purpose:
It provides an upper bound to the key rate achievable in the
presence of a THA and gives us a chance to use a different
proof method to study the THA.
In the specific THA of this section, Eve uses the

information leaked from Alice in a passive way. She
extracts from the quantum channel the states labeled with
E in Eq. (B1) and stores them in a perfect quantum
memory. This causes no disturbance in the quantum
channel connecting Alice and Bob. Then, during the basis
reconciliation stage of the BB84 protocol, Eve learns the
basis information communicated by the users on a public
channel. This information allows her to measure the stored
states in the same bases as the users and learn the resulting
key bit every time the result of her measurement is
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conclusive. The conclusiveness of her results depends on
the magnitude of the parameter μout in the stored states.
We analyze this situation using the loss-tolerant proof

method described by Tamaki et al. in Ref. [67]. We can use
the equations of the previous section up until Eq. (B5). The
difference starts with the estimation of the phase error rate
in the virtual protocol, e0Y , which is more direct than in the
GLLP-Koashi approach.
We consider a real protocol, in which Alice prepares the

state in Eq. (B1) and sends it to Bob (and Eve), and a virtual
protocol, in which an entanglement-based view is adopted.
In both cases, we assume that Bob’s measurement does
not depend on the basis choice. This is guaranteed by
assumption 4 discussed in Appendix A.
In the virtual protocol, Alice prepares the states to be sent

to Bob by measuring her half of an entangled state. This is
the same state as in Eq. (B2), which we rewrite here both in
the X and in the Y basis:

jΨi ¼ j0XiAjψ0XiBE þ j1XiAjψ1XiBEffiffiffi
2

p ; ðC1Þ

jΨi ¼ j0YiAjϕ1YiBE þ j1YiAjϕ0YiBEffiffiffi
2

p : ðC2Þ

In Eqs. (C1) and (C2), we have defined

jϕ1YiBE ≔
−ij0YiBjϵ−iE þ j1YiBjϵþiEffiffiffi

2
p ; ðC3Þ

jϕ0YiBE ≔
j0YiBjϵþiE þ ij1YiBjϵ−iEffiffiffi

2
p ; ðC4Þ

jϵ�i ≔
j ffiffiffiffiffiffiffi

μout
p i � j − ffiffiffiffiffiffiffi

μout
p iffiffiffi

2
p : ðC5Þ

Notice that when μout→0, jψ0XiBE→j0XiBjviE, jψ1XiBE →
j1XiBjviE, jϕ1YiBE → j1YiBjviE and jϕ0YiBE → j0YiBjviE,
where jvi is the vacuum state, thus recovering from
Eqs. (C1) and (C2) two maximally entangled states in a
two-dimensional Hilbert space tensor product with the
vacuum state. This situation is secure against the THA
and constitutes a reference for our later argument in
Appendix C 2. However, when μout > 0, the effective
Hilbert space’s dimension becomes larger than two, favor-
ing the THA. Note also that the states in Eq. (C5) are
orthogonal but not normalized, while the states in Eqs. (C3)
and (C4) are normalized. More specifically, hϵ�jϵ�i ¼
1� expð−2μoutÞ, hϵ�jϵ∓i ¼ 0, hϕwY jϕwYi ¼ 1, with
w ¼ f0; 1g.
Let us assume for the moment that the system E is not

accessible either to Alice or to Eve. Under this assumption,
the proof method in Ref. [67] applies. The reason for this is
twofold. First, the security argument in Ref. [67] is based
on the description given in Refs. [30,31], which allows for

an enlarged dimension of Alice’s Hilbert space. Second,
Eve cannot perform a basis-dependent selection of the
states emitted by Alice because the basis information is
contained in the system E, which is not accessible to her.
Therefore, as shown in Ref. [67], she cannot modify the
transmission rates of Alice’s states using the basis infor-
mation potentially leaked from Alice’s module. We notice
that, also in the specific THA considered here, Eve has no
chance of modifying the transmission rates during the
quantum transmission due to the fact that Eve is allowed to
access the system E only after the basis information has
been publicly disclosed by the users.
Suppose that Alice measures the ancillary states of jΨi in

the Y basis. Because the states in Eqs. (C3) and (C4) are
normalized, she will obtain with probability 1=2 the state
j0Yi and with probability 1=2 the state j1Yi, thus projecting
jΨi into one of the following two states, respectively:

ρð0ÞB ¼ TrEðjϕ1YiBEhϕ1Y jÞ
¼ c−j0YiBh0Y j þ cþj1YiBh1Y j

¼ 1

2
½σ̂0 − expð−2μoutÞσ̂2�; ðC6Þ

ρð1ÞB ¼ TrEðjϕ0YiBEhϕ0Y jÞ
¼ cþj0YiBh0Y j þ c−j1YiBh1Y j

¼ 1

2
½σ̂0 þ expð−2μoutÞσ̂2�; ðC7Þ

where we have defined c� ≔ hϵ�jϵ�i=2 and introduced the
identity operator in the two-dimensional Hilbert space σ̂0
and the Pauli matrix σ̂2 ¼ ½ð0;−iÞ; ði; 0Þ�. These operators
are necessary to connect the Y-basis states of the virtual
protocol, Eqs. (C3) and (C4), to the Y-basis states of the
real protocol, contained in the third and fourth lines of
Eq. (B1). Because any qubit state can be written as a linear
combination of identity and Pauli matrices, its transmission
rate can be obtained directly from the Pauli matrices’
transmission rates [67]. Accordingly, we define the trans-
mission rate of σ̂k, k ¼ f0; 2g, as qsY jk ≔ TrðD̂sY σ̂kÞ=2,
with D̂sY ≔

P
lÂ

†
l M̂sY Âl, Âl an arbitrary operator associ-

ated with Eve’s action and M̂sY the operator representing
Bob’s POVM in the Y basis associated with the bit value s.
We can then obtain the transmission rates in the virtual and
real protocols as combinations of the qsY jk’s.
Let us call py the probability that Alice and Bob both

select the Y basis. In the real protocol (superscript r),
the joint probability PjY ;iY that Alice sends out the state
jiYi and Bob detects jjYi (i; j ¼ 0; 1) is for each pair of
states:
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PðrÞ
0Y ;1Y

¼ p2
y

2
ðq0Y j0 þ q0Y j2Þ;

PðrÞ
1Y ;1Y

¼ p2
y

2
ðq1Y j0 þ q1Y j2Þ;

PðrÞ
0Y ;0Y

¼ p2
y

2
ðq0Y j0 − q0Y j2Þ;

PðrÞ
1Y ;0Y

¼ p2
y

2
ðq1Y j0 − q1Y j2Þ: ðC8Þ

The corresponding probabilities in the virtual protocol
(superscript v) are

PðvÞ
0Y ;1Y

¼ p2
y

2
ðq0Y j0 þ e−2μoutq0Y j2Þ;

PðvÞ
1Y ;1Y

¼ p2
y

2
ðq1Y j0 þ e−2μoutq1Y j2Þ;

PðvÞ
0Y ;0Y

¼ p2
y

2
ðq0Y j0 − e−2μoutq0Y j2Þ;

PðvÞ
1Y ;0Y

¼ p2
y

2
ðq1Y j0 − e−2μoutq1Y j2Þ: ðC9Þ

In order to define the phase error rate, we need to identify
the error event in the virtual protocol. This can be done
using Eqs. (B1), (C2), (C3) in the limit μout → 0. When
there is no THA on the channel, Bob obtains the correct
state j1Yi (j0Yi) when Alice measures j0Yi (j1Yi) on her
ancillary states. Hence, we associate an error with both
Alice and Bob obtaining the same state, j0Yi or j1Yi. So the
phase error rate can be written as

e0Y ¼ PðvÞ
0Y ;0Y

þ PðvÞ
1Y ;1Y

PðvÞ
0Y ;0Y

þ PðvÞ
0Y ;1Y

þ PðvÞ
1Y ;0Y

þ PðvÞ
1Y ;1Y

: ðC10Þ

From Eqs. (C8) and (C9), we can rewrite the phase error
rate in terms of the rates measured in the real protocol. The
result is

e0Y ¼ 1

2
½1 − aðrÞP expð−2μoutÞ�; ðC11Þ

where we have set

aðrÞP ¼
P

i;j¼f0;1gð−Þiþjþ1PðrÞ
jY ;iYP

i;j¼f0;1gP
ðrÞ
jY ;iY

: ðC12Þ

The secure key rate is obtained by replacing the phase error
of Eq. (C11) in Eq. (B5):

R� ¼ QX½1 − hðe0YÞ − fEChðeXÞ�: ðC13Þ

The key rate in Eq. (C13) applies to slightly more general
THA than the specific one considered in this section.

It applies to all THA in which Eve cannot interact with the
auxiliary Trojan-horse states [labeled with E in Eq. (B1)]
during the transmission of the qubit states [labeled with B
in Eq. (B1)]. We already noted that if Eve cannot access the
auxiliary system E during the quantum transmission, she
cannot selectively modify the transmission rates P. Here,
we additionally note that even if Eve changed her action,
described by the operators Âl, according to whether or not
she will own the auxiliary system E after the basis
reconciliation step, she would not gain more information
about the final key. This descends from Koashi’s proof
method [30], upon which the proof described in Ref. [67] is
built. There, it was shown that irrespective of who owns the
auxiliary system, whether it is Alice or Eve, if the users can
obtain a faithful estimation of the phase error rate e0Y , they
can, in principle, distill a perfect qubit in a Y eigenstate.
When measured by Alice in the data basis X, the Y
eigenstate always provides her with a fully random key
bit, not predictable by Eve. Therefore, even if Eve tunes her
choice of the operators Âl on the auxiliary system E, her
knowledge of the final key does not increase. The only
condition required is that Eve accesses the auxiliary system
E after the quantum transmission has been completed by
the users.
To adapt the key rate in Eq. (C13) to the decoy-state

estimation technique, we exploit assumption 3 in
Appendix A, according to which Eve cannot use the
THA to modify the decoy-state estimation. Then, we need
to show which quantities have to be estimated using decoy
states. We use the tilde to explicitly indicate such quantities
in the key rate:

~R� ¼ ~Qð1Þ
X f1 − h½~e0ð1ÞY �g −QðsÞ

X fECh½eðsÞX �; ðC14Þ

where s is the mean photon number of the signal in the

decoy-state set; ~Qð1Þ
X is the overall single-photon detection

rate in the X basis; estimated using the decoy-state

technique; and QðsÞ
X and eðsÞX are, respectively, the measured

detection and error rates for the signal in the X basis.
Furthermore, we have set

~e0ð1ÞY ¼ 1

2
½1 − aðrÞ~P expð−2μoutÞ�;

aðrÞ~P ¼
P

i;j¼f0;1gð−Þiþjþ1 ~PðrÞ
jY ;iYP

i;j¼f0;1g ~P
ðrÞ
jY ;iY

; ðC15Þ

which gives a straightforward generalization of Eqs. (C11)
and (C12).
The key rates R� and ~R� are plotted in Figs. 8 and 9.

Neither of the resulting key rates shows strong dependence
on the mean Trojan photon number μout. The key rates are
coincident with the ideal rate corresponding to no THA for
all values of μout smaller than ∼10−2, and they remain
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positive up to values 0.5 (0.38) in the case of a single-
photon (decoy-state) source. This represents an improve-
ment of several orders of magnitude over the key rates for
the general THA presented in Sec. II and suggests that the
power of a THA comes from Eve’s capability of selectively
introducing losses in the transmission channel, conditional
on the information gained from the THA. This observation
motivates the study of a more involved THA, in which the
shield system E is actively used.

2. Trojan-horse attack with active unambiguous
state discrimination of the Trojan photons

We consider a particular THA in which Eve can access
the ancillary system E, generated by the THA, during the
quantum transmission, i.e., before the bases are revealed by
the users. However, she can only measure it using a specific
measurement described later on. This is more powerful than
the THA considered in the previous section, but it is less

powerful than the most general THA discussed in Sec. II
and Appendix B.
In this THA, Eve accesses the space E of the Trojan

photons during the quantum transmission stage. She then
uses unambiguous state discrimination (USD) [73] to
distinguish j þ ffiffiffiffiffiffiffi

μout
p iE from j − ffiffiffiffiffiffiffi

μout
p iE. These states

correspond to Alice’s states in the data basis (X), as per
Eq. (B1). Therefore, whenever the USD succeeds, Eve
knows the key bit without measuring, and hence per-
turbing, Alice’s qubit.
However, the USD measurement does not always pro-

vide Eve with a conclusive result, and Eve’s strategy can be
improved as follows. When the result is conclusive, Eve
transmits Alice’s pulse to Bob without modification; when
it is inconclusive, Eve stops Alice’s pulse and introduces a
loss in the communication channel. Later, during the basis
reconciliation step, Eve will learn the bases chosen by Alice
and Bob. After discarding the outcomes of the USD
performed on Alice’s Y-basis states, Eve will be left,
ideally, with the same key bits as the users, distilled from
the X basis, without having caused any noise in the
communication channel.
Let us add more details to this scenario. When Alice

prepares a Y-basis state, Eve’s retrieved Trojan pulse is in a
state j � i

ffiffiffiffiffiffiffi
μout

p iE. This state cannot helpEve decide between
the two outcomes related to the X basis because it is equally
likely to be projected on either of the two X basis states
j � ffiffiffiffiffiffiffi

μout
p iE. Therefore, Eve’s decision to retain or transmit

Alice’s state is not related to an increased information gained
by Eve and does not require an increase of the privacy
amplification performed by the users. On the contrary, when
Alice prepares a X-basis state, Eve can modify the trans-
mission rates in a way that affects the security of the system.
In a worst-case scenario, we then assume that all the counts
detected byBob come from theX basis and froma conclusive
outcome of Eve’s USD measurement.
Let us call pcon and pinc ¼ 1 − pcon the probabilities of a

conclusive and inconclusive outcome, respectively, from
the USD of X-basis states. A lower bound on pinc is given
by the Ivanovic-Dieks-Peres bound [73–75]:

pinc ≥ jh ffiffiffiffiffiffiffi
μout

p j − ffiffiffiffiffiffiffi
μout

p ij
¼ expð−2μoutÞ: ðC16Þ

Then, according to the above-described THA, the fraction
of detected events in the X basis that have been transmitted
conditional on a conclusive result by Eve is at most

δ ≤
1 − pinc

YX
≤
1 − expð−2μoutÞ

Y
; ðC17Þ

with Y ≔ min½YX;YY � and YX (YY) the single-photon
yield in the X (Y) basis. The fraction δ (respectively
1 − δ) contains insecure (secure) bits distilled by the users
because they come from Eve’s conclusive (inconclusive)

FIG. 8. Asymptotic key rate R� versus distance for the single-
photon efficient BB84 protocol, under a passive THA. The rate is
plotted for various values of the parameter μout. Parameters in the
simulation are as in Fig. 3.

FIG. 9. Asymptotic key rate ~R� versus distance for the decoy-
state efficient BB84 protocol, under a passive THA. The rate is
plotted for various values of the parameter μout. Parameters in the
simulation are as in Fig. 4.
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measurement. When the USD is inconclusive, Eve cannot
selectively modify Alice’s pulses using the system E.
Therefore, following the same reasoning as in the previous
section, we can apply the proof of Ref. [67] to this fraction
of pulses to estimate the key rate.
In the present THA, whenever the USD provides a

conclusive outcome, Eve forwards Alice’s pulse to Bob
without perturbing it. Therefore, only a fraction 1 − δ of the
counts provide a faithful estimation of the error rate. After
bounding the phase error rate as e0Y=ð1 − δÞ, we can follow
similar steps as in Ref. [29] to show that secure key bits can
be extracted from the single-photon efficient BB84 proto-
col in the presence of the THA described here at a rate

R�� ¼QX

�
ð1−δÞ

�
1−h

�
e0Y
1−δ

��
−fEChðeXÞ

�
: ðC18Þ

Equations (C17) and (C18) can be easily generalized to
the case of a decoy-state source under assumption 3 of
Appendix A:

~R�� ¼ ~Qð1Þ
X ð1 − ~δð1ÞÞ

�
1 − h

�
~e0ð1ÞY

1 − ~δð1Þ

��
−QðsÞ

X fECh½eðsÞX �;

~δð1Þ ¼ 1 − expð−2μoutÞ
~Yð1Þ ; ðC19Þ

with ~Yð1Þ ¼ min½ ~Yð1Þ
X ; ~Yð1Þ

Y �. In Eq. (C19), the tilde indicates
quantities to be estimated via the decoy-state technique.QðsÞ

X

and eðsÞX are the same as in Eq. (C14). The expression of the

phase error rate ~e0ð1ÞY is the same as in Eq. (C15) because it is
estimated in theY basiswhich, in this specific THA, does not
allow Eve to selectively modify the transmission rate
conditional on her information on Alice’s state.
The key rates in Eqs. (C18) and (C19) are plotted in

Figs. 10 and 11, respectively. Even though they are better

than the key rates in Figs. 3 and 4, drawn for the most
general THA from the GLLP proof method [29], there is no
wide gap between the two situations. This suggests that the
particular THA described here catches the main features of
the general attack described in Sec. II. It also suggests that
the real-time use of the auxiliary system E is the main
source of trouble in a THA. This seems to be particularly
detrimental in the framework of Ref. [67], which heavily
relies on Eve’s inability to change the transmission rates of
the states emitted by Alice.
It would be interesting to extend the proof method of

Ref. [67] to more general Trojan-horse attacks than the one
described in this section. However, such a generalization is
not straightforward, and a separate analysis is required [76].
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