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Self-organization of active matter as well as driven granular matter in nonequilibrium dynamical states
has attracted considerable attention not only from the fundamental and application viewpoints but also as a
model to understand the occurrence of such phenomena in nature. These systems share common features
originating from their intrinsically out-of-equilibrium nature, and how energy dissipation affects the state
selection in such nonequilibrium states remains elusive. As a simple model system, we consider a
nonequilibrium stationary state maintained by continuous energy input, relevant to industrial processing of
granular materials by vibration and/or flow. More specifically, we experimentally study roles of dissipation
in self-organization of a driven granular particle monolayer. We find that the introduction of strong
inelasticity entirely changes the nature of the liquid-solid transition from two-step (nearly) continuous
transitions (liquid-hexatic-solid) to a strongly discontinuous first-order-like one (liquid-solid), where the
two phases with different effective temperatures can coexist, unlike thermal systems, under a balance
between energy input and dissipation. Our finding indicates a pivotal role of energy dissipation and
suggests a novel principle in the self-organization of systems far from equilibrium. A similar principle may
apply to active matter, which is another important class of out-of-equilibrium systems. On noting that
interaction forces in active matter, and particularly in living systems, are often nonconservative and

dissipative, our finding may also shed new light on the state selection in these systems.

DOI: 10.1103/PhysRevX.5.031025

I. INTRODUCTION

Despite the fact that self-organization of a system in an
out-of-equilibrium state plays a crucial role in dynamical
structural formation in nature, physical principles behind
such phenomena have remained elusive. Active matter [1]
and driven granular matter [2—4] are two important classes
of out-of-equilibrium systems. They share an intrinsic out-
of-equilibrium nature, and the only basic difference is that
the energy is injected locally for the active systems whereas
it is injected globally for the granular systems [1]. This
global nature of energy input makes granular matter
physically simpler than active matter. Thus, granular matter
is not only important for its own sake, but it is also regarded
as a model for understanding the physics of active matter.

Granular matter is an important class of materials,
distinct from thermal systems since the thermal energy is
negligible for its description. Granular matter is ubiquitous
in nature and its dynamical self-organization always takes
place in a strongly nonequilibrium situation as in active
matter, since energy input is essential for its occurrence
[2-4]. Its statistical yet athermal nature makes the physical
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description extremely difficult. From an experimental point
of view, the control of self-organization of granular matter
is also a difficult task. However, a notable exception is a
dynamic steady state, maintained by the balance between
energy input and dissipation, which allows us to perform
well-controlled experiments. The most idealized system
may be a quasi-two-dimensional driven granular particle
monolayer, where spherical particles are confined between
two parallel plates whose gap is narrow enough to avoid
particle overlap along the vertical direction and energy is
injected by vertically vibrating plates. This system allows
us to access all phase-space information at the particle
level. So the phase behavior of such a monolayer particle
system has played a crucial role in our understanding of the
fundamental nature of self-organization in a system far
from equilibrium.

This vibrated monolayer particle system has also attracted
considerable attention for its connections with fundamental
problems in the field of condensed matter and statistical
physics [5]. The liquid-solid transition in a 2D disk system,
the thermodynamic counterpart of a vibrated monolayer, has
been a hot topic since the discovery of the liquid-solid
transition for hard disks by Alder and Wainwright [6]. Two-
dimensional particle systems cannot crystallize at finite
temperature due to significant fluctuation effects associated
with the low dimensionality, yet the above work shows that
they may still form solids. There is a long-standing debate [ 7]
on the nature of this transition for a system of the simplest
interparticle interaction: hard disks. One scenario is that
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ordering takes place via two steps, liquid-to-hexatic and
hexatic-to-solid transitions, now widely known as the
Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) sce-
nario [5,8—10]. Here, each transition is continuous. The other
scenario is that ordering takes place in one step via a first-
order liquid-solid transition [11]. There have been hot
debates on which is the relevant scenario. Very recently, it
was shown [12] that the transition actually takes place by a
scenario different from both of them: It occurs with two steps
as the KTHNY scenario suggests, but the first transition is not
continuous but weakly discontinuous. However, the first-
order nature of the liquid-hexatic transition is very weak, and
the transition roughly obeys the KTHNY scenario. This basic
behavior is common to other systems including particles
interacting with soft repulsive potentials [13—16] and those
with attractive potentials such as the Lennard-Jones potential
[17], although it has recently be shown that the nature of the
transitions depends on the softness of the potential in a
delicate manner [16]. Monolayer granular matter has pro-
vided a model experimental system to study this fundamental
problem.

Some time ago, careful experiments were made on the
athermal counterpart of the above system. It was shown by
Shattuck and his co-workers that a driven monolayer
particle system continuously transforms from a liquid to
an intermediate hexatic, and then to a solid phase, with an
increase in the particle area fraction ¢ under a constant I
[18] (see Sec. II for the precise definitions of I" and ¢). A
similar meting transition behavior was also observed by
Olasfen and Urbach when increasing the dimensionless
acceleration I' at a fixed particle area fraction ¢ for a
granular quasimonolayer [19]. However, it was shown that
the thickness of the cell &, which is 1.6 times the particle
diameter d, plays a crucial role in the transition: height
fluctuations of particles may be a source of disorder. The
increase of their amplitude with an increase in the vibration
amplitude, or T, increases the number density of defects,
eventually leading to the melting of the solid phase. Thus,
the mechanism may be essentially different from the former
example, which does not involve any significant height
fluctuations due to a strong 2D confinement.

The former liquid-solid transition behavior as a function of
¢ [18] obeys the KTHNY scenario [5,8—10], although the
liquid-to-hexatic transition may be weakly first order [12,16].
This study suggests that a quasi-2D driven granular system
behaves very similarly to its thermal counterpart. A similar
conclusion was also derived for glass-transition-like phe-
nomena of driven binary mixtures [20] and polydisperse
systems [21,22]. The energy injected by mechanical vibra-
tion is converted to the kinetic energy of a system and the
effective (granular) temperature 7* is defined by this kinetic
energy. If this is high enough to overcome the gravity and the
energy loss originating from the friction and inelastic
collisions with the container [23], we may approximately
regard the system as a thermal equilibrium system as long as
interparticle collisions are almost elastic. However, the exact

mechanism responsible for this apparent thermal behavior of
an athermal system has remained elusive. We note that these
experiments were performed by using rather elastic balls
such as steel balls. Then, the natural question to ask next is
how the nature of the liquid-solid transition is affected by the
inelasticity of collisions, or internal dissipation.

There were pioneering works on liquid-solid transitions
of quasi-2D granular systems [24-29]. These studies
showed interesting monolayer liquid-bilayer solid coexist-
ence in a nonequilibrium steady state, in which the two
phases have different granular temperatures. These are
intriguing examples of phase ordering, more generally
self-organization, in a dynamic steady state of a non-
equilibrium open system, maintained by the balance
between energy input and dissipation.

Here, we study the effect of energy dissipation on the
liquid-solid transition of a quasi-2D driven granular matter
by comparing the behaviors of steel and rubber ball systems.
We note that steel and rubber balls have differences in the
restitution coefficient, the friction coefficient, and elastic
properties. Among these, the difference in elastic properties
may be less important compared to the others because forces
acting upon interparticle collisions are too weak to cause
nonlinear deformation of the balls and it is known that the 2D
melting behavior is not affected by the softness of the
interaction potential [16]. A situation we consider is a single
layer of monodisperse spheres, which is vibrated between
two horizontal plates [30], unlike the above-mentioned
previous works where bilayer formation is allowed
[24-29]. The control parameters in our experiments are
the energy input characterized by a dimensionless acceler-
ation I' and the area fraction of particles ¢. Here, we
demonstrate that the dissipation due to the inelasticity of
collisions and the friction can, if they are strong enough,
completely break the similarity between the athermal and
the corresponding thermal system and fundamentally change
the nature of the liquid-solid transition in a monolayer
from the KTHNY-like continuous transitional behavior
[18] to a strongly discontinuous transition. We discuss a
physical mechanism responsible for this unconventional self-
organization under energy dissipation. Our study reveals a
novel mechanism leading to the coexistence of two phases
with different granular temperatures, which is essentially
different from the mechanism previously found [24-29]. We
infer that a similar mechanism may be relevant to self-
organization of active matter including living systems.
Dissipative interactions, such as inelastic, hydrodynamic,
frictional interactions, may play a crucial role in the state
selection.

II. EXPERIMENT

A. Experimental systems

Our experimental apparatus is analogous to those used in
Refs. [18,19] and the same as that used in Refs. [21,22].
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A monolayer of noncohesive particles is vibrated sinus-
oidally in the vertical direction by an electromagnetic
shaker (Labworks ET-139) with frequency f=50Hz. We
change the dimensionless acceleration I' = A(2zf)?/g,
where A is the amplitude of vibration and ¢ is the
gravitational acceleration, by controlling A. The cell has
a circular shape and its inner diameter is L =
102.5 mm. The circular annulus made of duralumin is
used as the hard sidewall. When we make an experiment
with a soft sidewall (see Sec. III D), the inner sidewall of
the annulus is covered by a silicone rubber sheet of 0.2-mm
thickness. In our experiments, we use two types of
spherical particles: steel and fluorine-rubber balls. The
particle diameter is d = 3.0 mm for both stainless steel and
fluorine-rubber ball. The fluorine-rubber ball has four
important characteristics: (i) a noncohesive character, (ii) a
large stiffness (~1 GPa), which allows us to ignore non-
linear deformation upon collision, (iii)) a low dynamic
friction coefficient (< 0.4), and (iv) a low restitution
coefficient. The friction coefficient of the fluorine rubber
may be comparable to that of the steel. However, the
coefficient of rolling friction may be smaller for the steel
ball than for the rubber ball since the former has a smoother
surface than the latter.

The restitution coefficient « is difficult to estimate accu-
rately and it is known to depend on the particle velocity. Here,
we measure the height ratio before and after a collision with a
steel wall by dropping a ball vertically. The restitution
coefficient a against a steel wall is estimated as ~0.8 and
~0.3 with a variance of 0.1 for the steel and the rubber ball,
respectively. We also estimate the a for collision between two
rubber balls as ~0.1. The value of « for steel balls coincides
well with the literature value [31]. By confining these
particles between two plates separated by an annulus with
a thickness 7 of 4.0 mm (i.e., 1/d = 1.33), we allow only
quasi-2D particle motion, i.e., no bilayer formation. We note
that in previous similar works on the liquid-solid transition of
driven granular matter [26,28] h/d = 1.74-1.95, which
allows particles to form bilayers (see Appendix A 1). This
difference in //d leads to a crucial difference in the nature of
a liquid-solid transition between our system and theirs, as
will be discussed later.

The top plate is a transparent glass plate so that we can
observe the particles through it. The bottom duralumin
plate is covered with a sandpaper by which the vertically
oscillating particles are scattered [18]. The use of a wall
with surface roughness is expected to randomize the
horizontal motion and realize Brownian-like motion of
particles. It was shown [32] that a large enough I" leads to
the velocity distribution function of a nearly Gaussian
shape for a driven monolayer system. This is because the
randomization of the energy injection due to particle
collisions and the wall roughness leads to realization of
a self-generated effective white bath in a long time scale.

For steel balls, we obtain the particle coordinates by
tracking the bright spots at the top of the particles reflecting

illuminating light. For rubber balls, on the other hand, we
obtain the particle coordinates simply by binarization of
particle images. We use a high-speed camera (VCC-H500,
DigiMo Co. Ltd.). The typical frame rate we use is
100 frame/s and the image resolution is 640 x 480.
Occasionally, we use the rate of 500 frame/s with a
resolution of 640 x 90. A pixel size corresponds to
0.25 mm. The position of each particle is tracked by a
particle tracking software, which fits a Gaussian function to
an image of each particle. The detection error is less than
0.05 mm for a steel ball and 0.1 mm for a rubber ball. We
measure a structure after attaining a steady state (typically
after 10 min from the initiation of vibrational driving).

In our system, the transition between a solidlike and a
liquidlike state occurs as a function of the area fraction
¢ = (Nd*)/L?, where d is the diameter of the particle, L =
102.5 mm is the inner diameter of the annulus, and N is the
total number of particles in the system. We note that this
definition of ¢ is often used in describing the phase
transition of (quasi-)2D hard particle systems (see, e.g.,
Ref. [18]). We note that the random close packing and the
closest packing in 2D occur at about 0.83 and 0.906,
respectively.

B. Finite-size effects

Because of the rather small size of our system, our
measurements may suffer from finite-size effects. The
effects may not be so serious for a discontinuous liquid-
solid transition in a rubber ball system, since there is no
diverging length scale. On the other hand, the results of a
steel ball system may suffer from finite-size effects.
However, the maximum correlation length we can attain
is 9 times the particle diameter d, which is still much shorter
than the cell diameter (~34d). So the finite-size effects may
not be so severe for our results, although there might be
slight shifts in the transition area fractions. This conclusion
is supported by the rather good agreement of the measured
¢ dependences of the correlation length of hexatic order &
and translational order £ with the theoretical predictions for
an infinite system (see below). However, the correlation
lengths, & and &£, may be bound by the cell size very near
the hexatic ordering point ¢, and the solidification point
¢, respectively, and the weak discontinuous nature of a
liquid-hexatic transition may be smeared out by the finite-
size effects [12]. In principle, we can use a cell with a larger
diameter, but what is most important in our measurements
is the homogeneity of the vertical vibration amplitude, so
we use only the rather small cell. We are planning to make a
large cell with high mechanical rigidity, but we leave this
for future investigation.

C. Characterization of structures

The 2D radial distribution function ¢(r) is calcu-
lated as
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&(r
9(r) = ZﬂrArp N-1) Z |r’k|

which is the ratio of the ensemble average of the number
density of particles existing in the region r ~ r 4+ Ar to the
average number density p = N/L>. Here, N is the number
of particles in the simulation box, whose side length is L,
and Ar is the increment of r. The spatial correlation of
translational order is characterized by the translational
correlation length & for ¢ < ¢ as follows:

Entlg(r) — 1] = exp(-r/¢),

where En"[f(x)] expresses an operation to extract the
envelope function of the positive part of a function f(x).

The hexatic order parameter is measured by z;/é =
(1/n;)> ;exp (i60;;) for each particle j, where the sum
runs over the n; nearest neighbors of particle j and 0 is the
angle between the bond 7, — 7; and a fixed arbitrary axis.
Here, the nearest-neighbor particles are detected by a
criterion r < 1.4d. We confirm that this criterion provides
the same nearest-neighbor identification as a method based
on Voronoi tessellation.

Then, the spatial correlation of wé is calculated as [5]

L2 .
D 5(r — 7 D
96 () = 3 ArN(N = 1)2#,( (r=Iriel v

The spatial correlation of the bond-orientational order can
then be characterized by g2°(r)/g(r). Here, the division by
g(r) is to remove the effect of translational ordering.

To characterize the fluctuations of v, we estimate the
spatial correlation length of yg, &, and the susceptibility,
26 = (s — (we))?). We obtain the spatial correlation
length & for ¢ < ¢, from the following relation:

En*[ggP(r)/g(r)] = exp(—r/&).

III. RESULTS

A. Ordering in a steel ball system upon densification

Now, we show experimental data that provide informa-
tion on the nature of the phase transitions. For driven steel
balls, it was previously shown that the system transforms
from liquid to solid via the intermediate hexatic phase [18].
For comparing the behavior of steel and rubber ball systems
on the same ground, we perform experiments for the two
systems under the same experimental conditions.

Before showing results, we briefly review how the spatial
correlations of the positional and bond-orientational order
parameter are predicted to grow with an increase in the area
fraction ¢ in the framework of the KTHNY theory [5]. The
predicted behaviors are summarized in Fig. 1. The hexatic
ordering point ¢, and the crystallization point ¢, are

area fraction ¢ ¢
h s
type of quUId Crysta'
hase
P phase phase
Short range Quasi-long-range
positional translational order
PN e
order i s | (PeBORE @) ~ R
< eXp(“(]/‘»‘) o) ) Vasn, G=6,)=13
(¢— ¢, from above)
Short range Long-range bond-
bond- orientational order

orientationall - _.(c/1/6) (11" (ruwio) .,
order g(r)
(¢—¢, from below)

Free dislocations

Dislocations in pairs

topological
defect: Free disclinati Disclinations in quartets

FIG. 1. Phase behavior of 2D hard disks predicted by the
KTHNY theory. In this table, we summarize how the spatial
correlations of the positional and bond-orientational order
parameter should increase with an increase in ¢. The other
characteristics of each phase are also shown.

characterized by the power-law decays of the bond-orienta-
tional and positional order parameter, respectively. The
former should obey r~'/* at ¢, whereas the latter should
obey r~1/3 at ¢,.

We first describe the results of a steel ball system. We
show the ¢ dependence of g(r) and gg(r)/g(r) for a steel
ball system in Fig. 2. The spatial decays of both quantities
change from an exponential to a power-law decay; we
identify the ordering points by whether the decay is slower
than the predicted power-law decay or not. Because of the
limitation of our system size, a firm confirmation of the
exponent of asymptotic power-law decay of these correla-
tion functions is difficult, but the results are at least

—
Y

=

—

b) | gr

o

g{nig(r)

T T3
rld rld

4 567

FIG. 2. ¢ dependence of g(r) and gs(r)/g(r) for a steel ball
system for I' = 3.3. To visually confirm a decay slower than the
asymptotic decay for ordered phases, we plot the data in the log-
log plots, where only the points having positive values are
displayed. (a) ¢ dependence of ¢(r). The symbols are ¢ =
0.70 (dark blue), 0.71 (yellow), 0.72 (green), 0.73 (orange), and
0.74 (red) from the bottom to the top. The straight line has a slope
of —1/3. (b) ¢ dependence of gs(r)/g(r). The symbols are ¢ =
0.65 (bright blue), 0.70 (dark blue), 0.71 (yellow), 0.72 (green),
0.73 (orange), and 0.74 (red) from the bottom to the top. The
straight line has a slope of —1/4. From these results, we identify
¢ = 0.65, 0.70, and 0.71 as a liquid state, ¢ = 0.72 and 0.73 as a
hexatic state, and ¢ = 0.74 as a solid state.

031025-4



ROLES OF ENERGY DISSIPATION IN A LIQUID-SOLID ...

PHYS. REV. X 5, 031025 (2015)

consistent with the prediction of the KTHNY scenario (see
also below). As shown in Fig. 1, En*[g2P(r)/g(r)] should
decay slower than r~'/4 for ¢ > ¢;,, whereas En*[g(r)]
should decay slower than r~'/3 for ¢ > ¢,. In Figs. 2(a)
and 2(b), these lines with a slope of —1/4 and —1/3 are
drawn as guides to estimate ¢, and ¢, respectively.

In this way, we determine ¢, ~ 0.72 and ¢, ~ 0.735. The
determinations of ¢, and ¢, are further supported by the
divergence of the correlation length and the susceptibility of
the hexatic order parameter for the former and by the
divergence of the translational order correlation length for
the latter. The slight differences of the transition area
fractions from those of a hard disk system [12] may be
due to the quasi-2D nature of a system and finite-size
effects.

As examples of our analysis, here we show details of our
fittings of g¢(r)/g(r) for the steel ball system in Fig. 3. The
fittings to ¢(r) — 1 are basically the same. From these
analyses, we obtain the ¢ dependence of the spatial
correlation length of the hexatic order g, &g, and that of
the translational order &, although there are considerable
errors due to the small system size. The growth of these
lengths with an increase in ¢ is used to confirm the
prediction of the KTHNY theory in a quantitative manner
[see Figs. 4(a) and 4(b)]. We can also see indications that
the decays of the envelopes of gg(r)/g(r) and g(r) — 1
change from exponential to power law, respectively, around
¢, = 0.72 and ¢, = 0.735.

The phase boundaries between liquid, hexatic, and solid
phases are determined by standard methods used to study a
thermal system, such as the nature of the decay of the
spatial correlation of bond-orientational and translational
order (see Fig. 1). We measure the correlation length of the
hexatic order parameter ¢, & as a function of the area
fraction ¢. First, the decay of the correlation in the hexatic
order parameter changes from an exponential to a power-
law decay at the liquid-hexatic transition point, ¢,
(2 0.72). Second, the density correlation changes from
an exponential to a power-law decay at the hexatic-solid
transition point ¢, (= 0.735) (see above). As shown in
Fig. 4(a), we observe the steep divergence of & towards ¢y,
which is consistent with the prediction of the KTHNY
theory, & = &) explc’|(1/¢y,) — (1/¢)|"/?]. We also fit the
relation of & = &y exp|c|(1/¢s) — (1/¢)|7*] to the data of
&, although the accuracy of the data is not so high. We also
observe a sharp peak in the susceptibility of wg¢, y¢ =
{(we — (we))?) at ¢y, [Fig. 4(c)]. In this way, we confirm the
presence of a liquid, hexatic, and solid state and determine
the phase-transition compositions ¢ and ¢,. However, the
estimation of ¢, may not be so accurate since the range of
the analysis of g(r) — 1 is limited by finite-size effects (see
Sec. II B). Furthermore, the short-range order developing
for r < 4d does not allow us to access an asymptotic
power-law decay of g(r) — 1 in a wide distance range. To
avoid finite-size effects, we need to perform experiments in

1 T 1F
$=0.65
4
T S
g 0.1 9
g S
s &
0.01
4
2h
9 2 3 4 5 67
1
rid
1 T
$=0.67
4
— 2 —
S =
-
5 o 5
OR S
ST &
0.01
4
2by !
9 2 3 4 567 91 2 3 4 567
1
rld rld
1T 7 1ET 7
$=0.69
4 4
— b — 2
< <
S 0.1F 4 S 01F 4
= =
S S
o B > 2
0.01 0.01
4 4 $=0.72
p) 2
9 2 3 4 5 6 7 9 2 3 4 567
1
! rld rld
1FT T 1FT
=0.70 DN AN
4 4 \/ \
ON < .
g 0.1 E E) 0.
< 4 = 4
> 2 S’D 2
0.01¢ E 0.01f E
4 9 ¢=0.73
2h

2 3 4 5 6 7 9 2 3 4 5 67

rid rid

°

FIG. 3. Examples of the analysis of the spatial decay of
96(r)/g(r) for a steel ball system for I' = 3.3. The blue points
are used for the fittings. The blue curves are exponential fittings,
whereas the orange lines have a slope of —1/4, which is expected
at ¢;,. From the above, we can judge that the liquid-to-hexatic
transition takes place between ¢p = 0.715 and 0.72. The accuracy
of this determination is limited by the discreteness of the area
fractions we employ.

a large cell. However, we can at least see the very slow
algebraic decay of g(r) — 1 above ¢,.

We note that, for steel balls, we do not observe any
indication of liquid-solid coexistence, also suggesting the
(nearly) continuous nature of the two transitions. The basic
phase-ordering behavior of a steel ball system is thus fully
consistent with the KTHNY scenario, as reported previ-
ously by Shattuck and his co-workers [18].

B. Ordering in a rubber ball system upon densification

Next, we focus on the liquid-solid transition in a rubber
ball system. Unlike in the above steel ball system, we
observe in this system the two-phase coexistence of the
liquid and solid phases separated by a rather sharp interface
at a certain range of ¢ (see Fig. 5). The two-phase
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)
T
1

&ld, &/d

FIG. 4. Continuous and discontinuous nature of the phase
transition, respectively, in steel and rubber ball systems. Blue
curves and symbols are for a steel ball system, whereas red ones
are for a rubber ball system. (a) The divergence of the correlation
length of the hexatic order &¢ (filled circle) towards the hexatic
ordering point ¢, and that of the translational order £ (open
circle) towards the solidification point ¢, for a steel ball system.
The solid and dashed curves are the prediction of the KTHNY
theory (see Fig. 1). (b) The ¢ dependence of & (filled circle) and
& (open circle) for a homogeneous liquid state of a rubber ball
system. (c) The susceptibility of the hexatic order parameter y¢
for steel (blue filled circle) and rubber ball systems (red filled
circle). The steep increase near ¢ is observed for a steel ball
system, reflecting the nearly continuous nature of the transition,
whereas there is no such behavior for a rubber ball system,
reflecting the strong discontinuous nature of the transition.
(d) The area fraction of the solid phase to the total area,
Ag/A, as a function of ¢. It starts to increase from ¢, until
¢s in proportion to ¢ — ¢;, indicating the validity of the lever
rule. We also confirm the similar relation between the number of
particles of the solid phase Ng and the total number of particles N.
This means that each coexistence phase retains the same number
densities irrespective of ¢ in the coexistence region. The error
bars in (a)—(c) represent the standard deviations of the fittings. For
all the data, I' = 3.3.

coexistence can also be clearly seen from the bimodal
shape of the probability distribution function of the hexatic
order parameter P(y), as shown in Fig. 6. Below ¢;, the
spatial correlations of hexatic and translational order are
both short range and decay nearly exponentially, as shown
in Fig. 7. As can be seen in Fig. 4(b), neither the trans-
lational nor the orientational correlation length, & and &,
exhibit any growth with an increase in ¢, unlike the case of
a steel ball system. There is also no increase in the
susceptibility around the phase-transition points, as shown
in Fig. 4(c). Since the analysis of the decay of the spatial
correlation functions is not useful in the coexistence region,
we distinguish a liquid state, a solid state, and a coexistence

3 o o
200 300 400 500 100 200 300 400 500
¢ =0.70 ¢ =072

200 300 400 500
¢ =074

FIG. 5. Liquid-solid coexistence for rubber ball systems
observed at ¢ = 0.70, 0.72, and 0.74, which are between
¢ (=0.695) and ¢pg(= 0.775), as ' = 3.3. The two-phase coex-
istence can be seen by binarization by using the following three
quantities. (a) The hexatic order parameter y of each particle [here,
the threshold is chosen as ' = 0.6, and the pattern is insensitive to
the choice for ¢p = 0.6-0.7 (see Fig. 6)]. Yellow (solid) and black
(liquid) particles correspond to particles having w4 >y and
We < l[/gl, respectively. (b) The local density p, which is calculated
from the Voronoi area of each particle (the threshold
1/p" = 9.4 mm?). Blue-green (solid) and pink (liquid) particles
correspond to particles having p > p and p < p'", respectively.
(c) The displacement over 10 s of each particle (the threshold
8" = 3.4 mm). Blue (solid) and green (liquid) particles correspond
to particles having § < " and § > 8™, respectively. We can see that
the solid regions identified by these three quantities are well
correlated with each other. We can also see the monotonic increase
of the solid fraction with an increase in ¢.

state on the basis of measurements of the local orientational
order, the local density (or area fraction), and the local
mobility, which has a link to the granular temperature (see
Fig. 5). We can see that these three different quantities,
including both static and dynamical ones, can identify the
two-phase coexistence in a consistent manner, although the
analysis of an instantaneous structure leads to some
inaccuracy due to short-time fluctuations of the interface
(see below on a possible origin). We can also clearly see
that the fraction of the solid phase monotonically increases
with an increase in ¢b. The area fraction of the solid phase
determined from the hexatic order parameter is shown in
Fig. 4(d), which indicates the validity of the lever rule (see
below). A discontinuous first-order-like phase transition
often accompanies hysteresis and metastability. We make
all of the observations after attaining a steady state
(typically after 10 min from the initiation of vibrational
driving) and the behavior is very reproducible. We do not

031025-6



ROLES OF ENERGY DISSIPATION IN A LIQUID-SOLID ...

PHYS. REV. X 5, 031025 (2015)

3.5 T T
| ¢ =0.70

2.5F
] ;:;2.0 L
1< 18}

3.0

1.0
0.5F

0.0 1 L L
1.0 0.0 0.2 0.4 0.6 0.8 1.0

We
oL 6 =074 1 2fg=078
ol 1 ast
I~ 5
< 4t 1< 10}
U U
2 5
0 . . 0
00 02 04 06 08 1.0 00 02 04 06 08 10
We Vs

FIG. 6. ¢ dependence of the probability distribution function of
the hexatic order parameter yg, P(yg), at T’ = 3.3. Blue curves
are for a steel ball system, whereas red curves are for a rubber ball
system. For a steel ball system, P(y) always has a unimodal
shape, whereas for a rubber ball system it has a clear bimodal
shape for ¢ between ¢; and ¢s. The long tails of P(y) toward
low w6 in homogeneous solid phases come from defects.

observe any indication of hysteresis mainly because mea-
surements are always done after a steady state is reached
and there is no way to change the area fraction continu-
ously. So we identify ¢; and ¢ as the lower and upper
boundary of the solid and liquid phase, respectively.

Here, we show examples of our fittings of g(r) and
96(r)/g(r) for the rubber ball system at ¢ = 0.69 in Fig. 8.
We find no systematic ¢ dependences for g(r) and
gs(r)/g(r) [see Fig. 4(b)]. We can see in Fig. 8 that even
at ¢ = 0.69, which is very near ¢p; = 0.695, the decays of
density correlation and hexatic order correlation are both
exponential and much faster than the power-law decays of
exponents —1/3 and —1/4, respectively.

(a) (b) 1E7

4R T

0.1F

2(r)-1
g(r/g(r)

rld

FIG. 7. ¢ dependence of g(r) and gg(r)/g(r) for a rubber ball
system at I' = 3.3. (a) ¢ dependence of g(r). The symbols are
¢ = 0.65 (blue), 0.69 (yellow), 0.70 (green), 0.74 (orange), and
0.80 (red) from the bottom to the top. (b) ¢ dependence of
9e(r)/g(r). The symbols are ¢p = 0.65 (bule), 0.69 (yellow), 0.70
(green), 0.74 (orange), and 0.80 (red) from the bottom to the top.

Above ¢g, we see a homogeneous solid phase. For
¢ < ¢ < g, we observe the coexistence of the liquid and
the solid phases. We confirm that the former has its upper
bound at ¢b5 and the latter has its lower bound at ¢;. We
determine ¢; = 0.695 and ¢pg = 0.775. The area fraction
of each phase obeys the lever rule in the coexistence region,
as shown in Fig. 4(d).

The strong discontinuous nature of the transition is also
confirmed by the fact that there is neither the divergence of
&q [Fig. 4(b)] nor the sharp increase in y [Fig. 4(c)] at the
phase boundary. We also show the distribution function of
s, P(ps), in Fig. 6. We can see a clear bimodal
distribution for the coexistence region of ¢, which is
another clear indication of the liquid-solid coexistence.
Such a signature of the strongly first-order transition is
absent for a system of steel balls.

We find that the coexistence can be seen not only by the
local packing symmetry characterized by the hexatic order
parameter [Fig. 5(a)], but also by the area fraction ¢
[Fig. 5(b)] and the in-plane displacement amplitude
[Fig. 5(c)]. The last point indicates that the effective
(granular) temperature 7* defined by the kinetic energy
is spatially inhomogeneous for the liquid-solid coexisting
state. Thus, the solidity is linked not only to the static
quantities, such as the area fraction and the bond-
orientational and translational order, but also to the effec-
tive temperature. This is a very unique feature of this
nonequilibrium steady state, which is maintained by
continuous vibrational energy input and dissipation due
to inelastic interparticle collisions. This phenomenon has
some similarity to the inhomogenization of a granular gas
due to inelastic collisions [2,4,33,34]. The coexistence of
phases with different granular temperatures was also

(a)

g(r)

0.01 E

d M PR
4 567 9 2 3 4 567

r/d r/d

FIG. 8. Examples of the analysis of the spatial decay of g(r)
and gg(r)/g(r) for a rubber ball system at I' = 3.3. Here, we
show the analysis of (a) g(r) and (b) ge(r)/g(r) at ¢ = 0.69,
which is very close to ¢, = 0.695. The blue points are used for
the fittings. The blue curves are exponential fittings, whereas the
red and orange lines have a slope of —1/3 and —1/4, respectively.
In a one-phase region, the correlation of the bond-orientational
order decays exponentially and there is no indication of a power-
law decay even near ¢;. The extracted correlation lengths in this
manner are plotted as a function of ¢ in Fig. 4(b). We note that in
the two-phase coexistence region, this type of analysis is not
meaningful.
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reported for a quasi-2D system where bilayer formation is
allowed [24-29]; however, the underlying mechanism may
be quite different, as we discuss later. The link between the
solidity and the effective temperature indicates that the
interfacial profile may be related to the spatial gradient of
not only the area fraction and the hexatic order but also the
temperature (i.e., the kinetic energy). This possible depend-
ence of the interfacial profile on the mobility, or the
effective temperature, is unique to nonequilibrium open
systems and absent in thermal equilibrium systems (see,
e.g., Ref. [35]) .

C. State diagrams

On the basis of these results, we draw the phase (more
strictly, state) diagrams for steel and rubber balls, which are
shown in Fig. 9. Here, we include the dependence of the
phase behavior on I'. In general, we need I" larger than a
critical value I'. to maintain a dynamical steady state.
Below I',, the energy injection becomes inhomogeneous.
The gray region labeled “inhomogeneous excitation” in
Fig. 9(b) is in such an inhomogeneous state. This is because
a well-defined dynamical steady state can be maintained
only when the energy injected by vertical vibration over-
comes the effects of the gravity and the energy loss due to
inelasticity of collisions of balls and the walls [23,36,37]
(see also Appendixes A 2 and B). We find that the critical
value of " to maintain a dynamical steady state is higher for
the rubber ball system (I'. ~2.7) than for the steel ball
system (I'. ~ 1.3), reflecting the stronger inelastic nature of
collisions of the former with the confining plates. We note
that the transition area fractions, ¢,,, ¢, ¢, and ¢g, are all
independent of I" within the accuracy of our measurements.

The insets of Figs. 9(a) and 9(b) show the local orienta-
tional order in the solid phases formed in a steel and a
rubber ball system at ¢ = 0.78, respectively. We clearly
notice that the amount of defects is much larger for a rubber
ball system than for a steel one. This can also be seen in the
shape of P(y), which has a larger tail toward low y for a
rubber ball system than for a steel one. This may be just a
consequence of the difference in the lower stability limit ¢
of the solid phase between a steel and a rubber ball system,
but there might be other fundamental reasons.

D. Dissipation-induced wetting

We also note that the solid phase is always formed in the
middle part of the container far from the sidewall [see
Figs. 5 and 10(a)]. This may be explained by a larger
restitution coefficient of a particle-sidewall collision than a
particle-particle one. The hard sidewall prefers the liquid
phase with high T*. We confirm that a softer sidewall
(covered by a silicone rubber film) is statistically more
wettable to the solid phase [Fig. 10(b)], although wetting is
rather modest, likely because the curved wall inevitably
induces elastic distortion of the solid phase. Thus, this

(a) Steel ball system

0.72 0.74

¢
(b) Rubber ball system

3.3
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0.695 0.

FIG. 9. Phase diagram of driven monolayer sphere systems.
Filled circles represent state points where the measurements are
made (blue, disordered liquid; orange, hexatic phase; pink, solid;
green, a coexistence of liquid and solid; gray, no well-defined
stationary state due to inhomogeneous excitation). (a) Steel ball
systems, which obey the KTHNY-like scenario. In this case, the
state behavior does not depend on I' in the range studied.
(b) Rubber ball systems, which show the distinct discontinuous
transition between liquid and solid states. In this case, the
dynamical steady state is realized only above I' = 2.7. This
higher threshold value of I" is presumably due to the inelastic
nature of collisions of rubber balls with the confining plates. The
images in (a) and (b) are configurations in the solid phase at
¢ = 0.78 for steel and rubber ball systems, respectively. Green,
blue, and red particles have local hexagonal, pentagonal, and
heptagonal structures, respectively. The inner part surrounded by
the red dashed circle has less order (i.e., more defects) for the
rubber ball system than for the steel one.

wetting phenomenon may be regarded as dissipation-
induced wetting.

E. Inelasticity-induced demixing

Finally, we briefly mention a related interesting phe-
nomenon we observe in a mixture of steel and rubber balls.
There are some studies on inelasticity-induced demixing
[31,38-42]; however, there is no example associated with a
liquid-solid transition. Here, we report inelasticity-induced
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FIG. 10. Wall effects on the liquid-solid coexistence at I = 3.3.
(a) A coexistence of the liquid and solid phase confined by a
circular steel wall for ¢» = 0.74. The liquid phase preferentially
wets the wall. (b) The same as (a) for a softer wall whose surface
is covered by a silicone rubber film. In this case, the solid phase
partially wets the wall (see the regions surrounded by the
red lines).

demixing, which is linked to the formation of an ordered
solid phase. When we mix a small amount of steel balls
with rubber balls, we observe that the steel balls are
completely expelled from the solid region and included
in the liquid region [see Fig. 11(a)]. We note that the solid
phase is made of only rubber balls: dissipation-induced
demixing. Here, we stress that in such a mixture the energy
input rate to steel balls is higher than that to rubber balls.
On noting that steel balls have a larger kinetic energy due to
its larger restitution coefficient, the above argument natu-
rally explains the preferential inclusion of steel balls into
the liquid phase. If the fraction of steel balls is too large, the
coexistence conditions cannot be satisfied simultaneously,
and thus the formation of the macroscopic ordered solid
phase is largely prohibited even at the same area fraction ¢.
As a result, a rather random mixed liquid state is realized
[see Fig. 11(b)].
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FIG. 11. Phase behavior of mixtures of rubber and steel balls.
(a) Snapshot of a 1:7 mixture of steel and rubber balls (the total
area fraction of ¢p = 0.72) driven at I' = 3.3. Here, we can see a
coexistence of the solid phase purely made of rubber balls and the
liquid phase which is a mixture of steel and rubber balls.
(b) Snapshot of a 1:1 mixture of steel and rubber balls (the
total area fraction of ¢) = 0.72) driven atI" = 3.3. The color of the
outer shell of each particle represents the type of the particle
(blue, steel ball; red, rubber ball), whereas the color of the inner
core represents the degree of the hexatic order (black, low yy;
yellow, high ).

IV. DISCUSSION

A. Comparison of our study with previous works
on driven quasi-2D systems

Here, we consider the relationship of our results with
those of pioneering works on phase orderings in quasi-2D
driven granular systems [24-29], in which bilayer forma-
tion is allowed. We note that there is a crucial difference in
the dependence of the phase behavior on the strength of
inelasticity: For systems, where a bilayer can be formed,
ordering (towards bilayer solid) is suppressed by inelas-
ticity [26,27,29]. We emphasize that this is completely the
opposite of our case: inelasticity helps ordering (towards
monolayer solid). See Appendix A 1 for a more detailed
discussion, including an intuitive explanation of the cause
of the difference. We also note that the monolayer-bilayer
formation can take place as a function of I [24,43], whereas
our transition cannot be induced by changing I', as we can
see from the phase diagrams in Fig. 9. Near I',, we see a
crossover from an inhomogeneous excitation to a homo-
geneous one, but this transition as a function of I" has an
origin essentially different from the transition as a function
of ¢ (see Appendixes A 2 and B for details). The above-
mentioned fundamental differences between our work and
previous studies strongly indicate that the underlying
physics is essentially different between the two cases even
on a qualitative level. In Appendix A 3, we also mention
another type of inhomogenization in driven inelastic
particles: gas-liquid coexistence [44].

Finally, we mention the 2D melting of a solid phase with
an increase in I" [19]. As described in the Introduction, this
melting is induced by the increase in the defect density,
which is caused by the increase in hight fluctuations of
particles. Since our 2D constraint s/d ~ 1.3 is much
stronger than the one used in this work (2/d = 1.6), we
do not see any indication of I'-induced melting. It will be
interesting in the future to study how and at which %/d the
behavior changes.

B. Roles of inelasticity and friction in
phase-ordering behavior

First, we qualitatively consider what is the origin of the
difference in the phase-transition behavior between the
steel and rubber ball systems. Steel and rubber balls differ
not only in the inelasticity and friction upon interparticle
collisions but also in the softness of interparticle inter-
actions. It is rather well established that the KTHNY-like
behavior, or a transition from liquid to solid via the
intermediate hexatic phase, is very robust for 2D “thermal”
systems, irrespective of the types of interparticle inter-
actions: Essentially the same behavior was observed not
only for hard disks but also for particles interacting with
soft repulsive potentials and attractive (e.g., Lennard-Jones)
potentials (see, e.g., Refs. [13—15]), although it has recently
been shown that the liquid-hexatic transition depends
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delicately on the softness of the interaction [16]. This
robustness of the KTHNY-like behavior irrespective of the
nature of interactions is a natural consequence of the fact
that hexatic order is formed primarily by geometrical
packing effects: When hard-sphere-like particles are
packed, this local configuration is entropically favored.
This suggests that the nature of the liquid-solid transition
between the steel and rubber ball systems is not controlled
by the softness of particles but by the dissipation due to the
inelasticity of particles and the friction.

Now, we consider how inelasticity and friction can
change the nature of the liquid-solid transition. Steel balls
are not perfectly elastic, but the system still behaves like a
thermal system. On the other hand, the behavior of the
rubber ball system is distinctly different from the behavior
of its thermal counterpart. So the question can be rephrased
as: What physical mechanism controls the transition from
apparently thermal to athermal behavior when we change
the degree of inelasticity and friction from steel to rubber
balls? For a vertically vibrated monolayer system, the
particle-wall (top and bottom) collision frequency f,,, is
higher than the particle-particle collision frequency f,,, as
long as T" > I'.. We estimate f,, as roughly 100 Hz by
illuminating light from a low angle from the horizontal
plane and f,, as roughly 20-50 Hz, depending upon on the
local ¢, by using normal illumination from the top, with a
fast camera. For an inelastic particle system to apparently
behave like an elastic thermal system, the energy dissipated
by each particle-particle collision should be fully recovered
by energy input through particle-wall collisions before the
next collision with a particle takes place. As long as this
condition is satisfied, even a dissipative system apparently
behaves like a thermal system, as our steel ball system does.

The athermal nature is accompanied by inhomogeniza-
tion of a system and the resulting coexistence of two phases
with different effective granular temperatures. Such two-
phase coexistence characteristic to athermal systems was
already discovered for a quasi-2D driven granular system,
in which bilayer formation is allowed, unlike our strictly
monolayer system [24-29]. In such a case, the different
granular temperatures can be explained by the difference
between monolayer excitation and bilayer excitation (e.g.,
differences in effective mass and type of excitation).
However, this mechanism cannot explain the two-phase
coexistence we find in a driven monolayer system. Below,
we consider the origin of inhomogenization and the
resulting coexistence of two phases with different granular
temperatures on a qualitative level.

Here, we consider a gedanken experiment, where the
inelasticity is gradually increased in a continuous manner.
With an increase in the inelasticity of particles, the perfect
recovery before the next interparticle collision becomes
more and more difficult. With an increase in the particle
density, or ¢, the interparticle collision frequency f,,
which controls the rate of energy dissipation, increases

but with a rather constant particle-wall collision frequency
JSpw» Which makes this recovery process less efficient. The
energy dissipation is due to both the inelastic and the
frictional nature of interparticle collisions. We believe that
this crossover from perfect to imperfect recovery of the
kinetic energy during 1/f,, with an increase in the particle
density destabilizes a nonequilibrium steady state with
spatially homogeneous density and granular temperature,
leading to the transition from an apparently thermal to
strongly athermal behavior. Now, we qualitatively consider
how the imperfect recovery makes a system inhomo-
geneous: In such a situation, the degree of recovery of
the kinetic energy of a particle should decrease with an
increase in local ¢ since f, increases with an increase in ¢.
Thus, higher-density regions formed by spontaneous fluc-
tuations should transiently have lower kinetic energy than
lower-density regions, which leads to lower pressure in the
former. This mechanism is essentially the same as that of
clustering instability in dissipative gases [33]. So the
higher-density regions are further compressed, resulting
in the enhancement of density fluctuations. However, an
increase in density eventually causes the increase in the
interparticle collision frequency and thus the increase in
pressure. When the horizontal pressure is spatially homog-
enized, this development of density fluctuations stops,
ending in two-phase coexistence. In this way, the system
finally reaches a steady state, where the energy input rate
and the dissipation rate are balanced while keeping two
phases with different ¢ and granular temperature 7*. Thus,
a high enough density region and a low enough density
region should coexist in a steady state for a certain range of
the average ¢. The average horizontal pressure in the two
phases should be the same since the mechanical force
balance is to be satisfied across the domain interface.
Because of its mechanical nature, this equal pressure
condition may hold even in an athermal condition (see
below on the effect of interparticle friction). However, the
fluctuations of pressure may be much larger than in a
thermal system, since the particle velocity is determined not
only by interparticle collisions but also by particle-wall
collisions. Another constraint comes from the condition for
a steady state: the balance between the energy input rate
and the dissipation rate should be balanced in each phase.
The low-density liquid phase is characterized by low f .
which means low energy dissipation and results in high 7™,
whereas the high-density solid phase is characterized by
high f},,, which results in low 7*. This situation is realized
under a homogeneous energy input, or spatially homo-
geneous f,,,. On the basis of this physical picture, below
we consider a principle behind the two-phase coexistence
on a phenomenological level.

Here, we note that it is interesting to study the depend-
ence of the phase-transition behavior as a function of
inelasticity. However, a precise control of particle inelas-
ticity is not easy in experiments, and thus numerical
simulations may be more promising.

031025-10



ROLES OF ENERGY DISSIPATION IN A LIQUID-SOLID ...

PHYS. REV. X 5, 031025 (2015)

C. How to approach the problem

Before discussing the principle behind the two-phase
coexisting more theoretically, here we consider which
theoretical framework is suitable for the description of
what we discussed above. One candidate is a hydrodynamic
theory for a confined granular system, which was recently
developed by Brito et al. [45]. It was shown that under a
situation where the thermostat does not inject momentum
but only energy, the equations for the conserved density
field and momentum density are the continuum equation
and the Navier-Stokes one, as in the case of usual fluids,
and the equation for the nonconserved (granular) temper-
ature field is a balance equation for the energy. A collisional
model for a 2D system was also developed on the same
basis (see Sec. IV of Ref. [45]); however, in this model the
stationary temperature is density independent and the
pressure increases monotonically with density, and accord-
ingly there is no two-phase coexistence, contrary to our
experimental observation. In this model, the granular
temperature in a homogeneous stationary state was
assumed to be determined by a balance between energy
dissipation and injection [45], but the energy dissipation
due to an effective friction proportional to a particle
velocity was not considered. Although it is interesting to
take this effect into account in this theory and to study
whether it can induce two-phase coexistence, here we take
a more phenomenological approach.

To take this velocity-dependent dissipative force into
account in a natural manner, we consider a thermal
condition to maintain a steady state in a quasi-2D system,
on the basis of a Langevin-like equation of motion
(see, e.g., Ref. [46]).

D. Physical principle behind two-phase coexistence
in a nonequilibrium steady state

Now we consider a principle behind two-phase coexist-
ence in a nonequilibrium steady state. For a thermodynamic
system, in order for two phases of the same substance in
contact to be in equilibrium, there must be mechanical,
thermal, and chemical equilibrium, i.e., (i) equal pressure,
(ii) equal temperature, and (iii) equal chemical potential.
For our driven granular system, however, condition (ii) is
not applicable because of the out-of-equilibrium nature.
On the basis of a physical picture we describe in Sec. [V B,
here we focus our attention on this condition, using a model
of granular Brownian motion [46].

The change in particle velocity due to a binary instanta-
neous collision between particle i and j with the same
mass m is given by v; =v;— (1 +a/2)[(v; —V}) - A]n,
v; =V + (1 +a/2)[(v; = v;) - A]A, where v and V' are the
velocity after and before the collision, respectively, 1 is the
unit vector joining the centers of particles, and « is
the restitution coefficient (0 < @ < 1), which is equal to
1 in the elastic case. In order to maintain a steady state, we

need an external energy source that is coupled to every
particle in the form of a thermal bath. In our case, this
external energy is supplied by collisions with vibrating
walls confining a granular monolayer. The motion of a
particle i is then described by the following stochastic
equation [46]:

dv;(t)

m— = =1i(1) —yvi(t) + & (7). (1)

Here, f; is the force taking into account the collisions with
other particles, y = m/z is a drag coefficient characterizing
the velocity decay towards a steady state, whose time scale
we express by 7, and §,(¢) is random white force noise
exerted by particle-wall collisions, with ({,(¢)) = 0 and
(Cp.ia(t)Cp jp(t) = 2Ty 8;;6,56(t — ') (T, being the effec-
tive bath temperature). Here, we note that the viscous term
in Eq. (1) takes into account the friction among particles
and energy transfers between various degrees of freedom
(e.g., the friction between particles and the walls) [34].

Here, we mention the random nature of force noise. In
our system, the excitation itself has a well-defined fre-
quency, but the randomization of the energy injection by
interparticle collision and the wall roughness leads to a self-
generated effective white bath in a long time scale. The
Langevin-type approach can be rationalized by the fact that
Brownian dynamics simulations can fully reproduce the
behavior of a driven monolayer granular system of weakly
polydisperse steel balls even without any adjustable param-
eters [22]. Its validity to a rubber ball system is not obvious,
but our visual inspection of the motion of steel and rubber
balls at least indicates the same type of random motion.
Although the exact nature should be investigated, e.g., by
measuring the velocity distribution function in the future,
this visual inspection and the consideration in Sec. IV C tell
us that in a steady state the physics may be the same
between the two systems, at least on a phenomenological
level. So we assume that the randomization also takes place
efficiently for a rubber ball system.

A stationary state is maintained since the effect of the
external energy source balances the energy lost by inter-
particle collisions and particle-wall collisions. The key
parameters of the system are the characteristic velocity
decay time 7 and the packing fraction ¢». Multiplying the
above stochastic equation [Eq. (1)] by v and averaging
yields

()
dt

= (v(1) - £(0) =y {v(1)?) + (v(1) - & (1)). (2)

We note that the granular temperature 7* is defined as
T* =1m(v?), and thus the left-hand side of the above
equation can be written as 207*/0t. The first term in the
right-hand side of Eq. (2) can be written as (v(z) - f(¢)) =
—(AE),;, where AE = (1/8m)(1—a?)[(v; —v,) 0]
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represents the average energy dissipation rate due to
interparticle collisions. (---).; is the collision average,
whose expression is known for granular gas [46] but not
for high-density liquid or solid because of the difficulty
associated with not only excluded volume effects but
also recollisions and memory effects. We express the term
(v(r) - £(1)) = —(AE), as 2D. Although its exact form is
not clear, it should be a decreasing function of a and an
increasing function of ¢ and T*. The second term is
rewritten from the definition of 7% as 27*/z. Finally, the
third term is the total energy input rate and is written
as (v(1) - &(1)) = 2¢Ty/m = 2T} /7.

Here, we briefly consider the role of interparticle friction.
Although the friction coefficient itself may be similar
between the steel and rubber balls, the rubber ball may
have a larger coefficient of rolling friction with the walls as
well as another ball upon collision than the steel ball does.
On a phenomenological level, this effect can be included in
the coefficient y; then, y, or z, should be an increasing
function of ¢. The friction also affects the term D (see, e.g.,
Ref. [47]). We also note that the presence of interparticle
friction also induces forces tangential to the domain inter-
face. This may perturb the interface position and induce
large fluctuations of the interface. Such a signature can
indeed be seen in Fig. 5, although it might be largely due to
the large pressure fluctuations unique to a driven granular
system (see Sec. IV B). For simplicity, however, we do not
consider this dynamical effect when we discuss the phase
coexistence.

Although the difference in the friction property between
steel and rubber balls may play a role in the observed
difference in the phase-transition behavior, the coefficient
of rolling friction is generally small for smooth spherical
particles. Thus, we argue that the difference in the resti-
tution coefficient between the steel and rubber ball should
be the major source of the difference in the energy
dissipation between the two systems.

By incorporating all the above factors, Eq. (2) can be
expressed as follows:

0., ™ T,

E—atTfD T—i—T. (3)

In a steady state, we should have the relation £ = 0. This
relation is just a consequence of energy conservation,
simply implying that the energy input to a 2D granular
system 1is partially dissipated by inelastic interparticle
collisions and by viscous damping due to the particle-wall
interactions. For an elastic system where @ = 1 and thus
D = 0, this relation together with £ = 0 reduces to the
relation 7, = T*. Strictly speaking, we should also con-
sider the energy flux arising from the spatial inhomogeneity
of ¢ and T* (see below), but we tentatively ignore it here
since it is not relevant to the description od a steady state.
On the basis of the above physical picture, we argue that
the strong discontinuous nature of the transition of an

inelastic system found here is a consequence of the
inhomogenization of a system under the above-mentioned
constraint £(¢p, T*) = 0. Here, we assume that £ is a
function of the two state variables, ¢ and T*. First the
condition of equal pressure P(¢;,T;) = P(¢ps,T%) = Py
immediately tells us that T} > T7 since ¢, < ¢bg, which is
seen in Fig. 5(c). We note that this condition may be robust
since it is of mechanical origin, as described Sec. IV B.
Then the two conditions &(¢;.T;) = E(ps.T5) =0,
together with Eq. (3), tell us that the denser solid phase
dissipates more energy. Another condition is the chemical
equilibrium condition, which is also a subtle issue.
Chemical-balance conditions of two coexisting phases with
different temperatures should be obtained as a steady-state
solution of the relevant kinetic equations also considering
bond-orientational and translational ordering. It may be a
promising way to introduce a nonequilibrium free energy
[48], F (¢, T*,P), and consider the balance of 0F/J¢p
between the two phases, which are expected to be the
necessary conditions to maintain a steady state. Our
discussion is purely phenomenological, and furthermore
we also need to consider wg. Thus, a more rigorous
approach is highly desirable in the future.

The lever rule Ag/A; = (¢p—¢pr)/(¢ps —p) is then
obtained from the condition (1) N =N, + Ng, i.e.,
¢rAL + psAs = PA, where ¢;, N;, and A;, are the particle
area fraction, the number of particles, and the total area of
phase i, and (2) A = A; + Ag. The similar lever rule was
also observed for the monolayer-bilayer transition (see,
e.g., Refs. [24,29]). The crucial difference from a thermal
system arises from the fact that in our system the granular
temperature (i.e., the kinetic energy) 7™ is different between
the two phases. The above condition £ = 0 is required for
maintaining the dynamical steady-state dissipating energy,
and it may be this condition that plays the most crucial role
in the phase selection in a nonequilibrium state.

E. Dissipation-induced wetting

The sidewall-particle collisions dissipate energy with a
rate different from bulk, which affects the wettability of a
phase to a solid sidewall, as shown in Fig. 10. From Eq. (3),
we can infer that a wall harder than particles tends to wet a
liquid phase of high 7* rather than a solid phase of low 7™,
whereas a wall softer than particles tends to wet a solid
phase rather than a liquid phase. This is simply because
particles near a hard (soft) sidewall tend to have higher
(lower) T*. This spatial inhomogeneity of 7 near a
sidewall should be coupled to the local area fraction ¢
to satisfy the following steady-state condition for the
balance of the heat flux q [35]:

q = —KkVT* - V¢ =0, (4)

where x and A are transport coefficients. This condition
qualitatively explains why the solid phase with a
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higher ¢ tends to wet to the softer wall, which locally
lowers T*.

F. Dissipation-induced demixing

Demixing shown in Fig. 11 can be explained by the fact
that the energy loss upon collision with the top and bottom
plates is smaller for steel balls than for rubber balls. The
resulting higher kinetic energy of steel balls is a reason why
steel balls tend to be located in a liquid phase of hight 7.
This is again consistent with the physical principle dis-
cussed above. The higher kinetic energy of a steel ball
should lead to a larger specific area per particle for it. Such
a tendency can be seen in Figs. 11(a) and 11(b). This can
also be explained by the condition of the balance of the heat
flux q [see Eq. (4)], which tells us the negative correlation
between the local effective temperature 7* and the local
area fraction ¢.

V. CONCLUSION AND OUTLOOK

To summarize, we find that energy dissipation plays a
crucial role in self-organization of driven monolayer
granular matter, which allows the coexistence of states
with different effective temperatures, contrary to the phase
coexistence in a thermal system. The two-phase coexist-
ence obeys the lever rule as in a thermodynamic first-order
transition; however, the underlying selection rule is funda-
mentally different in the sense that the energy dissipation
rate, which is an intrinsically nonequilibrium quantity, is
the key factor of the phase selection. Since our discussion is
phenomenological, however, it is desirable to theoretically
describe the coexistence conditions in a nonequilibrium
steady state in a more rigorous manner. There are also many
fundamental open questions, such as what determines the
interface profile and what is the nature of the fluctuations of
the interface. We also show that it is possible to separate
particle species by solidification using the inelasticity
contrast, which is similar to purification of materials
including impurities by crystallization in thermodynamic
systems. Our findings may shed light on a general principle
governing the state selection of granular matter far from
equilibrium, which should also be important for our
understanding of industrial processing of granular materials
by vibration and flow.

Finally, we expect that a similar principle may hold for
the state selection in active matter, which is another
important class of out-of-equilibrium systems. For active
systems, there have recently been many studies on a liquid-
solid transition [49-53], glass transition [54—56], demixing
of self-propelled particles [57-60], and rotors [52,61,62].
These studies have elucidated unique characters of the
phenomena distinct from their thermodynamic counter-
parts. It has been clarified that the coupling between local
energy input (or motility) and density [63] plays a crucial
role in the state selection (see, e.g., Refs. [64,65]). Inclusion

of inelastic interactions, nonlocal viscous dissipation, and
local friction may also significantly alter the nature of the
state selection in such a system [52,53,60]. In active matter,
and particularly in living systems, interactions between
active objects are often dissipative or nonconservative.
Thus, it is quite interesting and important to study effects
of dissipative interactions, such as inelasticity and local (or
nonlocal) friction on the state selection of active matter in a
systematic manner. We hope that our study can aid the
understanding of fundamental roles of dissipative inter-
actions in self-organization of out-of-equilibrium systems.
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APPENDIX A: COMPARISON OF OUR
STUDY WITH PREVIOUS WORKS IN
QUASI-2D SYSTEMS

1. Bilayer-forming solidification in quasi-2D driven
granular systems

Here, we compare the results of our work with those of
previous works done in a quasi-2D situation, for which
bilayer formation is allowed [24-29]. All the previous
works, which reported liquid-solid coexistence, were made
for a cell height 4 of about 1.7-2.0 times the particle
diameter d. Accordingly, these systems can form bilayers,
and the liquid-solid transition in these works always
accompanies monolayer (liquid)-bilayer (solid) transition.
Thus, the situation is essentially different from ours, where
the cell thickness is thin enough to avoid bilayer formation.
Interestingly, this extra degree of freedom, bilayer forma-
tion, makes the physics essentially different from our case
in which granular particles always form a monolayer.

The crucial difference can be seen most clearly in the
dependence of the phase behavior on the strength of
inelasticity. Urbach and his co-workers reported that
inelasticity significantly expands the low-density liquid
region for a system in which bilayer formation is allowed
[26,27]. Furthermore, computer simulations showed that
the ordered phase is not present at any vibration amplitude
when the inelasticity is large. Similar behaviors were also
reported by Clerc et al. [29]. These results clearly indicate
that ordering is suppressed by inelasticity. We stress that
this is completely the opposite of our case: In our case,
inelasticity changes the nature of the transition from
continuous to discontinuous, and the upper bound density
of a homogeneous disordered liquid state is lower for the
inelastic system than for the elastic one; i.e., inelasticity
helps the ordering. Another important difference comes
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from the fact that bilayer formation leads to a change in the
number density of the bottom layer because of the con-
servation of the total number of particles. This extra degree
of freedom also causes a difference in the physics between
the two types of systems.

Lobkovsky et al. [27] showed by numerical simulations
that the monolayer-bilayer transition becomes rather con-
tinuous for random forcing. This is an interesting observation
in the sense that the way of driving affects the nature of the
transition. However, they also showed that inelasticity
suppresses the onset of the ordered phase with random
forcing, as is observed in the vibrating system. We stress that
this tendency is again the opposite of our case.

Furthermore, we note that the monolayer-bilayer tran-
sition can take place as a function of I" [24,43], whereas our
transition cannot be induced by changing I', as we can see
from the phase diagrams in Fig. 9. A change from a
discontinuous to a continuous nature of the I'-induced
transition was observed with an increase in the normalized
cell thickness h/d from 1.83 to 1.94 [43]. Here, the key
control parameter is the cell thickness, which affects the
symmetry of the bilayer solid phase (square or hexatic
symmetry) [24,43], and not the degree of inelasticity. This
fact and the above-mentioned crucial difference in the I
dependence of the transition also tell us that the physics is
essentially different between the two cases.

The phase ordering behavior in granular matter was
proposed to be generally expressed by the Ginzburg-
Landau-type free energy (or potential) and relevant equa-
tions of motion [48]. On the basis of this picture, a
theoretical explanation for bilayer formation was proposed
by Clerc et al. [29]. The thermodynamic force on the
density field # mainly comes from the effective (non-
equilibrium) pressure gradient calculated from this poten-
tial. They also included the friction term for the u field and
random force noises. The kinetic equation governing the
phenomena was shown to be nondiffusive and include not
only du/0t (i.e., ¢/ 0t) but also &*u/0t* (i.e., *p/0t*)
[29]. The sum of these forces leads to acceleration of the
field u. The reaction-diffusion-type equation of motion
with these forces captures the traveling wave features. This
is markedly different from our monolayer case, where we
have never observed such traveling waves.

We confirm by comparing results of experiments and
those of Brownian dynamics simulations that our driven
monolayer granular system obeys Langevin (or Brownian)
dynamics with viscous damping and random noise [22].
This indicates that there is no acceleration term, which is
proportional to 9?¢/0¢>, in our system. Thus, the above
theory cannot be applied to our monolayer case. This
presence or absence of the acceleration term crucially
affects the dynamics and makes our monolayer system
distinct from a bilayer-forming system. Nevertheless, it
does not influence a steady state, since there 0X /0t = 0 for
any quantity X, In a steady state, thus, the two-phase

coexistence is determined by the Ginzburg-Landau-type
potential [48]. This coexistence is then controlled solely by
the parameter e, which is a coefficient of the quadratic term
(u?) in the potential. This parameter ¢ is assumed to be
proportional to the inverse of the compressibility coeffi-
cient, as in the case of a usual thermodynamic gas-liquid
coexistence. This (negative) compressibility tells us how
easily bilayers can be formed. In this model, the coexist-
ence is determined by the equal pressure and the equal
nonequilibrium chemical potential under the mass con-
servation. The parameter e is shown to be given by
the derivative of the momentum flux with respect to the
density. Thus, its negative value, which leads to the
coexistence, reflects the fact that the granular temperature
is lower for a higher density [48]. Thus, this nonequilibrium
chemical potential allows the granular temperature to be
different between the two coexisting phases.

Here, we propose an intuitive explanation for the role of
inelasticity in the liquid-solid transition accompanying
bilayer formation, i.e., a relation between the above ¢
and inelasticity. For a quasi-2D system which can form a
bilayer, even for elastic particles there is a liquid-solid
coexistence (see, e.g., Fig. 3 in Ref. [29]). This is because
the bilayer formation should be easier for more elastic
particles since a smaller loss of the kinetic energy asso-
ciated with interparticle collisions allows particles in the
bottom layer to more efficiently jump to the top layer. With
an increase in the inelasticity, the discontinuous nature
becomes weaker and eventually the transition becomes
continuous for particles having a small enough restitution
coefficient. This termination of the discontinuous first-
order-like transition was called a critical point (¢ = 0) by
Clerc et al. [29]. Criticality was also observed experimen-
tally, using I as a control parameter, when I" approaches a
critical value [43]. The theory may be valid for a quasi-2D
driven granular system where bilayer formation is allowed.
However, we emphasize again that the above-mentioned
dependence on the inelasticity is completely opposite to
what we find in our system: Our central finding is that an
increase in inelasticity changes the nature of the 2D liquid-
solid transition from (thermal-like) two-step continuous
transitions to a one-step discontinuous transition. For
bilayer formation the kinetic energy has to overcome both
gravity and energy loss due to inelastic collisions. This tells
us that more elastic particles can form a bilayer more easily,
as described above. To our knowledge, our work is the first
to show a discontinuous first-order-like liquid-solid tran-
sition of a monolayer granular system in a high I" regime,
whose nature is primarily controlled by energy dissipation,
as discussed in Sec. IV.

2. Pattern formation due to inhomogenization
of the energy input

Here, we mention another “apparently” similar behavior,
but it has a very different physical origin. Olafsen and
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Urbach [23] reported clustering or ordering upon decreas-
ing the vertical vibration amplitude for a quasi-2D system,
but it has no upper plate and thus is not confined by two
parallel walls unlike our case: At large I', particle corre-
lations exhibit only short-range order as in the case of
equilibrium 2D hard-sphere gases, but lowering I" cools the
system, resulting in a dramatic increase in correlations
leading to either clustering or an ordered state. Further
cooling forms a collapse: a condensate of motionless balls
coexisting with a less dense gas. Measured velocity
distributions are non-Gaussian, showing nearly exponential
tails. In our systems, we observe similar phenomena below
a critical value of I'., which is shown in Fig. 9(b) for a
rubber system as the “inhomogeneous excitation” state (the
gray region). For a steel ball system, this phenomenon is
observed for a much lower value of I', as described in the
main text. We note that these phenomena have an essen-
tially different physical origin, which is, for example,
discussed in detail on the basis of MD simulation [36]
and a Navier-Stokes granular hydrodynamics [37]. Nie
et al. showed by MD simulation [36] that at high I" the
particle motion is isotropic and the velocity distributions
are Gaussian. The deviations from a Gaussian distribution
at low I' is related to the degree of anisotropy in the motion.
Below I',, the vertical velocity distribution becomes
bimodal: The cluster particles move with the plate, while
the gas particles are noninteracting, as they collide pri-
marily with the plate. They proposed that dissipative
contact forces are responsible for this phenomenon. It
was also mentioned by Khain and Aranson [37] that the
phenomenon can be viewed as a consequence of a negative
compressibility of granular gas. This explanation is some-
what similar to that for bilayer formation discussed above
[29], but the range of I" is very different between the two:
the clustering is observed for low I', whereas the ordering
accompanying bilayer formation is observed for much
higher T'. In relation to this, it was stated [37] that the
behavior does not significantly depend on the inelasticity of
collisions between the particles; one does not need inelastic
particle collisions to reproduce experimental observations.
They proposed that the mechanism of phase separation
occurring at low I' is related to the nontrivial interplay
between the energy injection and the vertical temperature of
the particles. In any case, thus, an inhomogeneous granular
temperature is primarily a consequence of inhomogeneous
energy injection. It was also shown that the behavior does
not significantly depend on the inelasticity of collisions
between the particles. This clearly indicates that this
phenomenon has a physical origin essentially different
from ours.

3. Gas-liquid coexistence in driven inelastic particles

Finally, we mention gas-liquid coexistence observed in
driven inelastic particles [44]. In this case, the difference in
the type of particle motion between the two phases was

found to play a key role in the coexistence: In the dense
liquid phase, the injected energy is quickly dissipated
within the bulk by frequent interparticle collisions due to
a high density. In the dilute gas phase, on the other hand,
the motion of particles is synchronized with the driving,
which reduces the relative velocity between particles and
thus the rate of interparticle collisions. Thus, two phases
with a large difference in the granular temperature coexist.
However, this phenomenon is also essentially different
from ours, reflecting the difference in the cell thickness
(many layers versus monolayer) and the nature of the
transition (gas-liquid versus liquid-solid transition); for
example, there is no such synchronized motion in our
system.

APPENDIX B: ON THE SPATIAL UNIFORMITY
OF THE ENERGY INPUT

Recently Brito et al. [45] showed that for a granular
monolayer vibrated between the walls, uniform energy
input to a system is generally a good assumption. In a
quasi-2D geometry, in which only a monolayer can exist,
the system is known to remain homogeneous in the
horizontal direction for a wide range of parameters. This
is due to the presence of a distributed energy source. They
also pointed out that in the absence of friction, this energy
source is Galilean invariant and conserves momentum
locally. In such a quasi-2D system, the vertical energy
scale of grains is fixed by vibration parameters. We stress
that the energy injection occurs only through direct
collisions of a particle with the walls, and there is no other
channel. This means that the energy injection rate is
controlled by f,,. So, as long as there are no direct
geometrical restrictions to the vertical motion of the
particles, it is reasonable to assume that the energy input
is rather homogeneous spatially. We note that, according to
our observation, there is no overlap of particle images
projected onto the horizontal plane (see, e.g., images in
Fig. 5). For steel balls, the input energy is homogeneous up
to ¢ = 0.80, which is much higher than the upper bound
area fraction of the liquid phase, ¢;(= 0.695), of the rubber
ball system. Importantly, as shown in Fig. 9, all the phase
transition area fractions, ¢, ¢, ¢, and ¢g, are indepen-
dent of I'. This suggests that the particle-wall collision
frequency [, may be almost the same between the two
phases, or rather homogeneous spatially, for this range of I'.
We note that if the particle-wall collision frequency [,
(i.e., a vibrational parameter) strongly depends on ¢, the
phase boundary compositions should also depend on T
Thus, the energy input rate may be assumed to be
homogeneous. However, since the discussion above is
qualitative, the spatial distribution of the energy input in
two-phase coexistence needs to be checked carefully by
numerical simulations in the future.

For a quasi-2D system, in which a bilayer can be formed,
the situation is very different. For example, it was clearly
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shown [27] by mapping the local average rate of energy
input that a square phase consisting of a bilayer corre-
sponds to a region of dramatically reduced energy input.
However, this is natural since the bilayer formation itself
inevitably accompanies a change in vibrational parameters;
for example, the effective mass of the vibrated object is
roughly doubled by bilayer formation. We note that such
effects are absent for a monolayer system, as men-
tioned above.
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